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Abstract—A methanol extract of the pod surfaces ofCajanus cajan, a feed-
ing stimulant for fifth-instarHelicoverpa armigera, was shown to contain four
main phenolic compounds. Three of these were identified as isoquercitrin,
quercetin, and quercetin-3-methyl ether, by comparing UV spectra and HPLC
retention times with authentic standards. The fourth compound was isolated by
semipreparative HPLC and determined to be 3-hydroxy-4-prenyl-5-
methoxystilbene-2-carboxylic acid (stilbene) by NMR spectroscopy and
mass spectrometry. Quercetin, isoquercitrin, and quercetin-3-methyl did not
affect the selection-behavior of fifth-instarH. armigera. However, larvae were
deterred from feeding on glass-fiber disks impregnated with the stilbene. Further-
more, larvae exposed to quercetin-3-methyl ether consumed significant amounts
of both disks. In a binary-choice bioassay, a combination of quercetin-3-methyl
ether and the stilbene on one disk and pure quercetin-3-methyl ether on the other
disk resulted in increased consumption of both glass-fiber disks by larvae. In
contrast, consumption was reduced if the combination was presented to larvae
on one disk with purified stilbene on the other disk.Cajanus cajancultivars that
varied in their susceptibility toH. armigerawere surveyed for the presence of the
four phenolic compounds. An absence of quercetin and higher concentrations
of isoquercitrin than the cultivated variety characterized pod surface extracts of
pod-borer-resistant cultivars. In addition, the ratio of the stilbene to quercetin-
3-methyl ether was greater in the pod-borer-resistant cultivars. These findings
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are discussed in relation to the identification of chemical characters that can be
used for crop improvement.

Key Words—Cajanus cajan, podborer, Helicoverpa armigera, feeding
behavior, stilbene, quercetin-3-methyl ether, quercetin, isoquercitrin.

INTRODUCTION

Helicoverpa armigera(Hübner) (Lepidoptera: Noctuidae) is a major pest of pi-
geonpea,Cajanus cajan(L.) Millsp. (Fabaceae: Papilionoideae) (Lateef and Reed,
1990; Ranga Rao and Shanower, 1999). Larvae cause substantial damage to plants
and reduce the yield of grain by feeding upon flowers and pods (Shanower et al.,
1999).

Previous experiments have shown that acetone extracts from the pod sur-
face of a variety ofC. cajan (ICPL 87) susceptible to pod-borers stimulated
the feeding of third-instarH. armigera(Shanower et al., 1997). More recently,
we showed that hexane, methanol, and water extracts ofC. cajan (ICPL 87)
pods also stimulate feeding of fifth instars, with the methanol extract being most
stimulatory (Green et al., 2002). Food selection behavior ofH. armigera lar-
vae is known to be affected by secondary compounds present in other culti-
vated species of legumes, such as chickpeas (Cicer sp.), in which some com-
pounds act as feeding stimulants, whereas others deter feeding (Simmonds and
Stevenson, 2001). Secondary compounds on the surface of pods ofC. cajanmay
also modulate the feeding of larvae ofH. armigera. We now report on the iso-
lation and characterization of some compounds from a methanol extract of the
pod surfaces ofC. cajan (ICPL 87) and describe their effects on the feeding
behavior of larvae ofH. armigera. A comparison of the presence and concen-
tration of these compounds is made among different cultivars ofC. cajan that
vary in their susceptiblity to predation by the pod-borer. The implications of
these data in understanding the factors that determine why the cultivated geno-
type of C. cajan (ICPL 87) is susceptible to predation by pod-borer larvae are
discussed.

METHODS AND MATERIALS

Preparation of Extracts.A methanol extract from a known surface area of
freshly collected, 7- to 10-day-old,C. cajanpods (ICRISAT accession: ICPL 87)
was prepared (at ICRISAT in November 1998) by dipping individual pods into
the solvent for 120 sec. The extract was concentrated under reduced pressure and
redissolved in methanol so that each 100µl of solvent contained the equivalent
extract from 3.46 cm2 of pod surface, the surface area of a glass-fiber disk. Thus,
the concentration of different compounds in an aliquot could be equated to an
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area of pod surface to ensure that insects were presented with naturally occurring
concentrations during feeding bioassays.

Isolation and Identification of Compounds from Pod Surface of Pigeonpea
(ICPL 87). Extracts were analyzed and compounds isolated by HPLC (Waters
600E pump; 717 autosampler and 996 photodiode array detector). Aliquots (20µl)
were injected onto a reverse-phase column (Merck, Lichrospher 100; 250 mm long,
4 mm ID, RP-18; 5-µm particle size, temperature 30◦C) and eluted at 1 ml/min
using the gradient 25% A: 75% B att = 0 min to 100% A att = 20–30 min, where
A is methanol in water and B is 2% acetic acid. Three compounds present in the
extract of the pod surfaces were identified by comparison with HPLC profiles of
authentic standards (>95% purity, Apin Ltd., Oxford, UK). A fourth, unknown,
compound was isolated by manually collecting it as it eluted from a semipreparative
reverse-phase column (Merck, Lichrospher 100, 250 mm long, 10 mm ID, RP-18;
10-µm particle size, temperature 30◦C), with the flow rate set to 4.7 ml/min. The
eluent was then dried under reduced pressure.

NMR Spectroscopy and Mass Spectrometry.Both 1D and 2D1H NMR spec-
tra of 4 were acquired in CDCl3 at 30◦C on a Bruker 400 MHz instrument.
13C NMR data were obtained from the indirectly detected dimension in HSQC
and HMBC experiments. Spectra were referenced to residual solvent resonances
at δH/C 7.25/77.0 (CDCl3) relative to TMS. Negative ion first-order MS were
recorded using LC-MS (Thermo-Finnigan LCQ) with an electrospray ionization
(ESI) source.

Quantification.Known concentrations (1, 10, 100, 250, and 500 ppm) of each
of the phenolic compounds were injected onto an analytical column and eluted ac-
cording to the method described above. Peak areas were integrated and compared
with the authentic standards (Apin Ltd.), the isolated compound,
and an extract of the pod surfaces of ICPL 87 at a known concentration (i.e.,
100µl contained the extract from 3.46 cm2 of pod surface). These data were used
to calculate the concentration of compounds in the pod surface extracts.

Larval Behavior.Authentic standards (>95% purity; Apin Ltd.) or the isolated
compound (>95% purity) were used in the behavioral bioassays. Glass-fiber disks
(Whatman GF/A grade, 2.1 cm diam., 3.46 cm2) were impregnated with 100-µl
aliquots of either a methanol extract of the pod surfaces of ICPL 87 (N = 15) or a
naturally occurring concentration of one of the four phenolic compounds present
in the methanol extract (N = 10, for each compound). Individual larvae from a
control group (N = 10) were each presented with two blank disks (no extract or
compound). Once dry, disks were weighed and placed into individual 9-cm-diam.
plastic Petri dishes with a weighed, untreated disk. Disks were moistened with
100µl of distilled water, as previous experiments had shown that larvae were less
likely to feed on a dry disk (Green et al., 2002). Subsequently, one fifth-stadium
H. armigera, selected from a colony reared at the Royal Botanic Gardens, Kew,
UK, according to the methods of Armes et al. (1992) was added to each dish.
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Each insect was 24–36 hr into the fifth stadium and had been without food for 2 hr
(Simmonds et al., 1990).

Dishes were placed into a growth cabinet 12 hr light at 27◦C, 12 hr dark at
20◦C, 70% relative humidity. After 24 hr, insects were removed from the dishes
and disks were left to dry for a further 24 hr prior to being reweighed to determine
the amounts of control and treated disk eaten. The mean amounts of both the
control and treated disk eaten by larvae were calculated for all the insects. Feeding
indices (FI) were calculated from the amounts of control (C) and treated disks (T)
eaten:F I = [(C − T)/(C + T)] × 100 (Simmonds et al., 1990). Since feeding
indices are calculated for each replicate within a treatment, they can be distorted
by inclusion of replicates in which larvae consume small amounts of disk material.
Therefore, only replicates in which larvae had consumed at least 1 mg of one of
the disks were used for the purposes of calculating a FI. This also ensured the
inclusion only of those insects taking large bites from a disk, as opposed to those
that had merely rasped the surface of the disks without consuming disk material.

Data Analyses.The amounts of glass-fiber disk eaten by larvae exposed to
different treatments and the feeding indices associated with each treatment were
compared with the Mann-Whitney test (MW) (Minitab, v. 12). The quantities of the
control and treated disk eaten within a treatment were compared with the Wilcoxon
signed rank test (WSR) (Sokal and Rohlf, 1987).

Comparison of Concentration of Compounds in Other C. cajan Cultivars.
Methanol extracts of a known area of pod surface were prepared from different va-
rieties ofC. cajandisplaying resistance (ICPL 332) or moderate resistance (ICPL
7203-1, ICPL 84060, and ICPL 187-1) to damage caused by podborer larvae. The
level of resistance was measured as the proportion of undamaged pods recorded
on plants grown in experimental field plots at ICRISAT. These plants were ex-
posed to naturally occurring insect populations (Sharma et al., 2001). The extracts
were prepared as described for ICPL 87 and analyzed by HPLC. The concentra-
tions of the four phenolic compounds in the extracts were calculated as described
above.

RESULTS

Identification of Compounds from Pod Surface of Pigeonpea (ICPL 87).
Methanol extracts of the pod surfaces of ICPL 87 contained isoquercitrin (1)
(Rt = 13.8 min), quercetin(2) (Rt = 17.1 min), and quercetin-3-methyl ether(3)
(Rt = 18.1 min), respectively (Figure 1).

The UV spectrum of compound4 (Rt = 23.2 min) recorded in acidic MeOH
was typical of a stilbene (λmax= 260, 304, 325sh nm) (Gorham, 1989). Its1H
NMR spectrum contained resonances for a double bond in theE configuration (δ
7.82 and 6.82, both 1H, d,J = 15.9 Hz), a monosubstituted phenyl ring (δ 7.52,
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FIG. 1. Structure of phenolic compounds present in a methanol extract of the pod surfaces of
Cajanus cajan: isoquercitrin(1), quercetin(2), quercetin-3-methyl ether(3)and 3-hydroxy-
4-prenyl-5-methoxystilbene-2-carboxylic acid(4).

2H, d, J = 7.2 Hz; 7.37, 2H, t,J = 7.5 Hz, 7.28, 1H, m), and a single aromatic
proton atδ 6.65 (s) indicating the presence of a pentasubstituted phenyl ring. Long-
range3J(1H–13C) correlations observed in HMBC data between the double-bond
protons and carbon atoms of both phenyl rings (Table 1) confirmed that4 was a
stilbene. The substituents of the pentasubstituted phenyl ring were identified as
carboxyl (δC 174.0), hydroxyl (δH 11.52, br s), prenyl (δ 3.38, 2H, d,J = 7.1 Hz;
5.21, 1H, m; 1.79, 3H, d,J = 0.9 Hz; 1.68, 3H, d,J = 0.9 Hz), and methoxyl
(δH 3.94, s). Their relative locations were determined from long-range1H–13C cor-
relations in HMBC data (Table 1) and dipolar1H–1H connectivities from 1D ROE
experiments. ESI-MS data (negative mode) for4 showed a deprotonated molecule
at m/z 337 [M−H]− and a fragment ion atm/z 293 [M-H-44]−, consistent with
the loss of CO2. UV, NMR, and MS data allowed the structure of4 to be con-
firmed as 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid (C21H22O4),
a phytoalexin reported previously from leaves ofCajanus cajanchallenged with
Botrytis cinerea(Cooksey et al., 1982).13C NMR resonance assignments for this
compound were not given in the earlier report and are summarized in Table 1 to-
gether with a complete set of1H NMR resonance assignments acquired in CDCl3

(previous data given only in acetone-d6 and C6D6).
Compound Concentrations in Extracts.Of the four main compounds in the

methanol extract of the pod surfaces,3 occurred at the highest concentration
(880 ppm; 2.46µg/cm2 of pod surface), followed by4 (560 ppm; 1.57µg/cm2),
1 (60 ppm; 0.17µg/cm2), and2 (50 ppm; 0.14µg/cm2).
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TABLE 1. 1H AND 13C NMR RESONANCEASSIGNMENTS(δ) AND COUPLING CONSTANT

DATA FOR COMPOUND4 IN CDCl3 AT 30◦C

Carbon 13C 1H HMBC correlations

1 141.7
2 102.9
3 162.4
4 116.8
5 162.3
6 103.3 6.65 (s) C-1a, C-2, C-4, C-5, C-6, C-15a

7 130.4 7.82 (d,J = 15.9 Hz) C-1a, C-6, C-8a, C-9,
8 131.1 6.82 (d,J = 15.9 Hz) C-1, C-7a, C-9a, C-10, 14,
9 137.2

10, 14 126.8 7.51 (d,J = 7.2 Hz) C-8, C-12,
11, 13 128.8 7.37 (t,J = 7.5 Hz) C-9,

12 127.9 7.28 (m) C-10, 14
15 174.6
16 22.2 3.37 (d,J = 7.1 Hz) C-3, C-5, C-17, C-18
17 121.9 5.21 (m)
18 132.0
19 17.9 1.79 (d,J = 0.9 Hz) C-17, C-18, C-20
20 26.0 1.68 (d,J = 0.9 Hz) C-17, C-18, C-19

OCH3 55.8 3.94 (s) C-5,
3-OH 11.52 (br s) C-3, C-4, C-2

a Weak correlations indicative of two and four bond couplings.

Larval Behavior.A methanol extract of ICPL 87 at the naturally occurring
concentration per unit area of glass-fiber disk stimulated feeding of fifth-instarH.
armigera(Table 2). Comparison of the total amount eaten by larvae exposed to
either compound1 or 2 with the total amount consumed in the control shows that
neither of these compounds stimulated feeding. In contrast, larvae exposed to3
and4 consumed as much of either the compound-treated and/or control disk as
occurred when larvae were exposed to the methanol extract (Table 2). However,
the effect of3 and4 on the food selection behavior of larvae varied. For example,
the stilbene showed potent antifeedant activity, whereas3 did not affect selection
behavior.

As the phagostimulatory activity of the methanol extract of ICPL 87 could
not be explained by the activity of compounds1–4 when tested on their own,
a combination bioassay was undertaken with the two compounds (3 and4) that
resulted in appetitive behavior (Table 3). In this binary-choice bioassay, compound
3or4was applied to one of the disks and exposed to larvae along with a disk treated
with both3 and4. The concentration of each compound was the same as occurred
in the methanol extract of ICPL 87. Very few larvae exposed to4 versus the
3+ 4 combination consumed the disks. So the antifeedant activity of4 masked
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TABLE 2. FEEDING BY FIFTH INSTAR H. armigera, ON GLASS FIBER DISKS DURING

CHOICE BIOASSAYS: EFFECTS OFMETHANOL EXTRACT AND COMPOUNDS1 – 4ON

FEEDING

Amount eaten,
Extract or (mg, mean± SEM)

compound on Feeding Index
treated disk (ppm) Control disk Treated disk Control+ Treated (mean± SEM)b Nc

Water control 0.4± 0.11 b 0.5± 0.13 c 0.9± 0.16 b
ICPL 87 methanol 0.3± 0.11 b 4.8± 1.06 * a 5.1± 1.08 a −88± 4.7 c 10

extract
1 (60) 0.3± 0.15 b 0.5± 0.37 c 0.8± 0.48 b
2 (50) 0.6± 0.33 b 0.5± 0.29 c 1.1± 0.61 b
3 (880) 2.7± 1.05 a 2.2± 0.66 b 4.9± 1.35 a 6± 18.4 b 7
4 (560) 3.2± 0.86*a 0.9± 0.38 c 4.1± 1.03 a 62± 16.7 a 7

a 1 to 4 correspond to the compounds shown in Figure 1.
b Where no feeding-index is shown,<5 larvae consumed, on average,>1 mg of both disks.
c N = the number of replicates used to calculate the feeding index.
The amounts of control and treated disk eaten, within a treatment, were compared with the Wilcoxon
signed rank test.∗P < 0.05. The amounts of disk eaten and feeding indices were compared between
treatments using the Mann-Whitney test, different letters in a column indicate significant differences.
P < 0.05.

the appetitive activity of3 (Table 3). Larvae exposed to disks treated with3 and
3+ 4 consumed both disks: thus, in this combination the ability of the stilbene
(4) to modulate the selection behavior of the larvae has been lost. However, the
combinations tested do not enable us to explain the phagostimulant activity of the
methanol extract of ICPL 87.

Comparison of Concentration of Compounds in Other C. cajan Cultivars.
The pod surface extracts of the resistantC. cajanvarieties were characterized by

TABLE 3. EFFECTS OFCOMBINATIONS OF COMPOUNDS3 AND 4 ON FEEDING BY

H. armigeraLARVAEa

Compounds on disks Amount eaten, (mg, mean± SEM)
Feeding Index,

Treatment 1 Treatment 2 Treatment 1 Treatment 2 Treatment 1+ Treatment 2 (mean± SEM)b Nc

3 3and4 2.5± 0.42 a 3.1± 0.70 a 5.6± 0.58 a 1± 16.2 10
4 3and4 0.6± 0.32 b 0.9± 0.28 b 1.4± 0.57 b

a 3 and4 correspond to the compounds shown in Figure 1. Compounds were applied to disks at their
naturally occurring concentrations.

b Where no feeding-index is shown,<5 larvae consumed, on average,>1 mg of both disks.
c N = the number of replicates used to calculate the feeding index.
The amounts of disk eaten were compared between treatments using the Mann-Whitney test, different
letters in a column indicate significant differences.P < 0.05. There were no differences between the
amounts of control and treated disk eaten within each of the two treatments (Wilcoxon Signed Rank,
P > 0.05).
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TABLE 4. CONCENTRATION OFCOMPOUNDSPRESENT INPOD SURFACEEXTRACTS OF

C. cajanCULTIVARS WITH DIFFERENTSUSCEPTIBILITY TO POD-BORERPREDATION

Degree of resistance to podborer feedingb and concentration (ppm),c

of compounds in different accessions ofCajanus cajan

Susceptible Moderate resistance Resistant

ICPL ICPL ICPL ICPL ICPL
Compounda 87 7203-1 84060 187-1 332

1 60 253 379 206 412
2 50 ND ND ND ND
3 880 2284 893 774 1092
4 560 1852 738 745 923

a 1, 2, 3 and4, correspond to the compounds shown in Figure 1.
b Data from Sharma et al. (2001).
c ND = not detected.

the absence of compound2 and by concentrations of compounds1 and 4 that
differed from those in the extracts of the susceptible cultivar, ICPL 87 (Table 4).
The ratio of compound3 to 4 in the pod-surface extract of the susceptible cultivar
(ICPL 87) was 1.6, whereas the ratio in extracts from the less suceptible genotypes
varied from 1.2 (ICPL 7203-1, ICPL 332, ICPL 84060) to 1 (ICPL 187-1). A
decrease in the proportion of the feeding stimulant3, compared to the antifeedant
stilbene4, could, therefore, contribute to the resistance of theC. cajangenotypes
to pod-borer larvae (Table 4).

DISCUSSION

Of the phenolic compounds identified in the methanol extract of the pod
surfaces of ICPL 87, quercetin (2) is the most widespread in the plant kingdom. This
compound is found in many higher plants and frequently occurs in glycosylated
forms, such as isoquercitrin (1) and rutin (Harborne et al., 1999). Quercetin-3-
methyl ether (3) has a more restricted distribution and occurs mainly in the leaves,
leaf resin, and flowers of the Compositae, Cistaceae, Cyperaceae, and Cactaceae
(Harborne et al., 1999). The stilbene (4) has previously been reported only from the
leaf surfaces ofCajanus cajanthat had been challenged with the fungus,Botrytis
cinerea(Cooksey et al., 1982). However, we found that the pod surfaces produced
this compound in the apparent absence of fungal infection.

The data presented above show that larvae ofH. armigeraare able to perceive
the methanol extract of the pod surfaces, as they consumed more of the disks
impregnated with the methanol extract than untreated glass-fiber disks. While a
methanol extract of the pod surfaces stimulated feeding, the response of larvae to
the phenolics in the extract varied. For example, exposure of larvae to the stilbene
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(4) resulted in larvae feeding on the untreated disk, while the other compounds did
not affect selection behavior. The fact that larvae did not feed on disks treated with
isoquercitrin (1) and quercetin (2) may have been because they were at too low a
concentration to elicit a feeding response from larvae ofH. armigera. Isoquercetrin
(1) has been reported to stimulate feeding ofBombyx mori(L.) (Hamamura et al.,
1962), although it is common for quercetin and derivatives of quercetin not to
affect the feeding behavior of Lepidoptera larvae (Lindroth and Peterson, 1988;
Faini et al., 1997).

Protection of grain legumes from larvae of Noctuidae, by modulating the lev-
els of phenolic compounds, has been proposed for developing genotypes of chick-
pea that produce concentrations of isoflavonoids that are deterrent and growth in-
hibitory toH. armigera(Simmonds and Stevenson, 2001). Similarly, development
of cultivars of groundnut that produce concentrations of quercetin glycocides and
phenylpropanoids deterrent to larvae ofSpodoptera litura(Fabricius) (Stevenson,
1993) have been suggested. Other phenolic compounds, such as schaftoside (an
apigenin-C-glycoside) deter feeding by insects, such as the brown planthopper
[Nilaparvata lugens(Stal)] (Grayer et al., 1994) and affect the growth of plan-
thopper nymphs (Stevenson et al., 1996). Rutin (quercetin-3-O-rhamnosyl [1→6]
glucoside) similarly deters feeding byHeliothis zea (Boddie) andHelicoverpa
armigeraat concentrations in excess of 10−3 M (Blaney and Simmonds, 1983).

Single compounds, in isolation, are unlikely to explain completely the inter-
action between larvae ofH. armigeraand pigeonpea. The response of larvae to
combinations of compounds was complex. In a binary choice test, the response of
larvae to one disk impregnated with both compound3and4was determined by the
compound, either3or4, present on the other disk: stilbene (4) inhibited feeding on
both disks, whereas quercetin-3-methyl ether (3) stimulated feeding. This result
shows that quercetin-3-methyl ether (3) could modulate the antifeedant activity
of the stilbene (4) at concentrations found in the susceptible cultivar, ICPL 87.
However, the larval responses of1–4do not explain the phagostimulatory activity
of the methanol extract of ICPL 87. It is clear from our results that plant host
recognition of pigeonpea by larvae ofH. armigera is not attributable to any of
the individual phenolic compounds isolated in this study. Synergism between two
or more compounds can determine host selection by gravid female Lepidoptera
(Feeny et al., 1988; Roessingh et al., 1991; Carter et al., 1998). Thus, the interac-
tions between phenolic and/or other compounds could similarly affect the feeding
of larvae ofH. armigeraon pigeonpea.

The levels of identified compounds were found to vary among theC. cajan
cultivars that vary in their susceptibility to pod-borers. Quercetin (2) was absent
from all but the susceptible cultivar (ICPL 87). The ratios of quercetin-3-methyl
ether (3) to the stilbene (4) were consistent among the threeC. cajancultivars
(ICPL 332, ICPL 7203-1, and ICPL 84060) that are the least susceptible varieties
to pod damage by larvae ofH. armigera (Sharma et al., 2001) and were less
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than occurred in the susceptible variety (ICPL 87). Therefore, an increase in the
amount of quercetin-3-methyl-ether, relative to the stilbene, could inhibit feeding
inhibition due to the stilbene once the ratio exceeds 1.2.

In conclusion, although a crude methanol extract of the pod surfaces ofC.
cajan stimulates feeding, it also contains phenolics that deter feeding (stilbene,
4), stimulate consumption (quercetin-3-methyl ether,3), or that have no effect on
selection or consumption (isoquercitrin,1 and quercetin,2). Further studies are
necessary to investigate the effects of different ratios and combinations of these
phenolic compounds with the other (nonphenolic) compounds in pod surface ex-
tracts on food selection by larvae. Overall, data showed that the absolute amounts of
stilbene (4) and its concentration relative to other phenolic compounds, especially
quercetin-3-methyl ether (3), in pigeonpea genotypes could influence predation by
larvae ofH. armigera. Thus, there is a potential for using cultivars that produce
high proportions of stilbene, relative to the other phenolics, in selective breeding
programs for developing pigeonpea genotypes that are both less susceptible to
fungal infection (Cooksey et al., 1982) and more resistant to pod-borers.
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of their production on the pod-surface of pigeonpea [Cajanus cajan(L.) Millsp.]. Competitive
Research Facility Project R7029 C, Final Technical Report. DFID, London, United Kingdom.

SIMMONDS, M. S. J. and STEVENSON, P. C. 2001. Effects of isoflavonoids fromCicer on larvae of
Helicoverpa. J. Chem. Ecol.27:965–977.

SIMMONDS, M. S. J., BLANEY, W. M., and FELLOWS, L. E. 1990. Behavioral and electrophysiological
study of antifeedant mechanisms associated with polyhydroxyalkaloids.J. Chem. Ecol.16:3167–
3196.

SOKAL, R. R. and ROHLF, F. J. 1987. Biostatistics, 2nd ed. W. H. Freeman and Co., New York.
STEVENSON, P. C. 1993. Biochemical resistance in wild species of groundnut toSpodoptera litura

(Fabr.).Bull. OILB/SROP16:155–162.
STEVENSON, P. C., KIMMINS, F. M., GRAYER, R. J., and RAVEENDRANATH, S. 1996. Schaftosides

from rice phloem as feeding inhibitors and resistance factors to brown planthoppers (Nilaparvata
lugens). Entomol. Exp. Appl.80:246–249.


