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Abstract

The world population is increasing at an alarming rate, and there is a continued need to increase

crop productivity to meet the food requirements. To meet the ever-increasing demand for food,

cytoplasmic male-sterility (CMS) has been successfully exploited to develop hybrids for increasing

crop production worldwide. However, large-scale cultivation of crop hybrids based on a single

source of CMS may pose a serious challenge to sustainable crop production because of decreasing

genetic diversity. This review analyses the potential for exploitation of different CMS systems for

hybrid production, effects of CMS on various agronomic traits, and expression of resistance to

insect pests and diseases in high-yielding hybrids of sorghum, maize, pearl millet, rice, wheat, and

barley. Considerable information has been generated on the effects of CMS on physiology, yield,

and agronomic characteristics of the plant. However, there is limited information on the effects of

CMS on expression of resistance to insect pests and diseases. The available information indicates

that the CMS lines are more susceptible to insect pests and diseases, and large-scale cultivation of

hybrids based on a single source of CMS might result in pest outbreaks because of narrow genetic

base. Therefore, there is a continuing need to evaluate various CMS systems in different genetic

backgrounds for their effects on cultivar susceptibility to insect pests and diseases to develop

strategies for large-scale deployment of pest-resistant hybrids on farmer’s fields. Genetically

engineered insect-resistant CMS lines can also be exploited to diversify the hybrid parents for

sustainable crop production.

Keywords: Cytoplasmic male sterility, CMS systems, Cereals, Hybrids, Insect pests, Diseases, Resistance,

Agronomic traits, Molecular characterization

Review Methodology: We searched the information from national and international journals and their cross references, newsletters,

CAB Abstracts, AGRICOLA, and Web pages on the internet using the keywords such as cytoplasmic male-sterility, insect pests,

diseases, sorghum, maize, rice, wheat, barley, pearl millet, cereals, hybrids, agronomic traits, molecular characterization, physiology,

etc, individually or in different combinations, and analysed the information in relation to expression of resistance to insect pests,

morphological and physiological traits, and development and deployment of hybrids based on CMS for sustainable crop production.

Introduction

Cytoplasmic male-sterility (CMS) results from the inability

of plants to produce functional pollen because of repro-

ductive deficiency in hermaphrodite flowers. In angio-

sperms, it may be the result of suppression of anthers

(abortion, phyllody, petallody, or pistillody), aberrant

meiosis (where anthers do not dehisce even if viable

pollen is present), and the abortion of the androecium

before pollen grains are formed (probably the result of

premature dissolution of callose, and malformed androe-

cium in which no pollen grains are formed) [1]. Male-

sterility based on gametophytes results from disturbances

in normal microsporogenesis, which leads to formation of

non-viable microspores because of mitochondrial muta-

tions, barriers of the tapetal layer, and improper timing of
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callose activity and operon control [1]. Sporophyte-based

male sterility may be conditioned by cytoplasmic, genetic,

or cytoplasmic–genetic factors [1]. CMS occurs due to

the mutation of mitochondria or some other cytoplasmic

factors outside the nucleus, which results in the trans-

formation of fertile cytoplasm into sterile cytoplasm. This

CMS system is advantageous in ornamental species, as

they tend to bloom and remain fresh longer than their

fertile counterparts. The CMS is also useful for producing

single/double-cross hybrids in crops where vegetative

parts are the commercial product. However, it is

unsuitable for hybrid seed production in crops where

the fruit or seed is the commercial product. Genetic

male sterility occurs in plants because of mutation at

the fertility locus situated on a chromosome within the

nucleus, and is usually governed by recessive genes. This

type of male sterility is maintained by crossing male-sterile

and male-fertile plants, and recovering the male-sterile

segregants (1 sterile : 1 fertile). However, this system has

not been used much in practical plant breeding because of

maintenance problems. Cytoplasmic–genetic male sterility

arises from the interaction of nuclear genes with the

sterile cytoplasm, and is essentially a cytoplasmic sterility

with a provision for restoration of fertility. Cytoplasmic

genes exclusively control the male sterility. The term

CMS, although a misnomer, has been widely used to

describe genetic CMS.

Influence of CMS on Physiology of Cereal Plants

Increased accumulations of amino acids may also be

related to their increased synthesis or non-utilization by

male-sterile anthers. Once amino acid composition is

altered, defective proteins are formed in male-sterile

anthers, resulting in disruption of carbohydrate and pro-

tein metabolism [1–4]. Asparagine and glutamine are

important vehicles of nitrogen transport in higher plants,

and their accumulation influences pollen development and

physiology. Reduced nucleic acid content has also been

reported in male-sterile anthers of sorghum [5, 6] and

barley [7]. Nucleic acid content increases in male-fertile

wheat anthers, and decreases in T-type CMS anthers after

the tetrad stage, and in Taign CMS system after the

sporogenous cell stage [8].

The activity of several enzymes is also altered in male-

sterile lines. Cytochrome oxidase activity in male-sterile

wheat anthers is greater than in male-fertile anthers [3],

but deficient in abnormal anthers in sorghum [6], rice

[1, 9], and maize [10], resulting in inefficient oxidative

phosphorylation in anthers. Peroxidase activity is greater

in sterile hybrids than in fertile hybrids and parents

[11, 12]. Male-sterile cytoplasm also has altered levels of

ribulose-bisphosphate carboxylase (RUBPcase), adenosine

triphosphatase (ATPase), and the plant defence enzymes

during the later stages of growth, particularly under

nitrate stress. Abnormal formation or dissolution of

callose enzyme is also associated with male sterility in

sorghum [13].

The CMS affects protein content and protein index

[14, 15], but there is no effect of CMS on amylose content

or starch viscosity [16]. The chlorophyll content is greater

in CMS plants of barley, maize, rice, and wheat than in

male-fertile plants [17]. The indole-3-acetic acid (IAA)

content in anthers of male-sterile lines of maize is sig-

nificantly lower than in the normal lines, but the zeatin

content is higher in the CMS than in normal lines [18].

Murty et al. [19] observed substantial differences in

soluble proteins, free amino acids, and peroxidase and

esterase activity between CMS and maintainer lines in

pearl millet. However, there were no differences in

chlorophyll content and phenolics. Chhabra et al. [20] did

not observe any differences in meiosis among isonuclear

CMS lines, but chromosomal orientation and segregation

were affected in the A3 cytoplasm.

CMS Systems in Different Cereal Crops

Sorghum

CMS in sorghum was reported by Stephens and Holland

[21] in crosses involving Dwarf Yellow Milo and Kafir, and

Milo and Blackhull Kafir. The male-sterility resulted from

introduction of Kafir genes into Milo cytoplasm. This male-

sterility system is based on cytoplasmic–genetic male

sterility instead of CMS, since the male sterility is based on

the interaction between Milo cytoplasm and Kafir nuclear

genes [21, 22]. The degree of male sterility increases with

an increase in the proportion of Kafir genes in Milo

cytoplasm. The recessive genes msc1 and msc2, present in

Milo cytoplasm result in male sterility. In addition to Milo

(A1) cytoplasm, cytoplasmically male-sterile lines are also

available in the A2, A3, A4, A4M, A4VzM, A4G1, A5, A6, 9E,

and Kansas (KS) cytoplasms [23–28], but their heterotic

potential has not been exploited because of a lack of

appropriate restorers. Changes in mitochondrial genome

and in DNA clones derived from the genes of known

function are responsible for male sterility [29–31], and

internal mitochondrial transcription processing has been

reported to be correlated with fertility restoration

[32–36]. The restriction fragment length polymorphisms

(RFLPs) using mitochondrial DNA (mtDNA) clones as

probes and chloroplast DNA (ctDNA) restriction endo-

nuclease fragments have been reported to be useful as

molecular tools for fingerprinting sterility-inducing cyto-

plasms, determining CMS among germplasm accessions,

and identifying new sources of cytoplasm with a potential

to induce male sterility to broaden the base of CMS

systems [37–46] (Table 1). Restriction endonuclease

patterns of ctDNA have also been reported to distinguish

fertile and male-sterile cytoplasms [47]. The A1 (milo)

cytoplasm has been widely deployed for producing sor-

ghum hybrids. The A2 cytoplasm has been deployed for
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hybrid production in China [48]. Different CMS systems

and the maintainer and restorer lines have also been

analysed for their influence on expression of resistance to

biotic and abiotic stresses and agronomic traits.

Rice

Sampath and Mohanty [49] first emphasized the role of

cytoplasm in inducing male sterility in rice, and later,

Japanese scientists reported several sources of CMS. The

first cytoplasmically male-sterile line was developed by

substituting nuclear genes of the indica variety, Taichung

Native 1 [50]. This CMS line had poor plant type,

unstable sterility, and was photoperiod-sensitive, and thus

could not be used in hybrid seed production. There are

three major types of CMS (HL, BT and WA), and two

types of GMS systems (photoperiod-sensitive and tem-

perature-sensitive) in rice. The BT- and HL-type CMS

genes have been characterized as orf-79 and orfH79 [51].

However, with the advent of wild abortive (WA) cyto-

plasm from wild rice (Oryza sativa f. spontanea or Oryza

rufipogon or Oryza perenis) in China, about 95% of the

CMS lines currently used in producing rice hybrids have

been derived from this source [52]. A large number of

CMS lines in rice have also been developed by exploiting

intra- and inter-specific cytoplasmic differences [53–56].

The genes encoding and restoring CMS have been map-

ped using different techniques [57–63]. The restorer allele

Rf-1 is present in some indica rice lines, whereas most

lines of the subspecies japonica carry a non-restoring Rf-1

allele [62]. The fertility in the WA CMS system is con-

trolled by more than two loci [63]. The fertility restorer

genes Rf-3 and Rf-5, have been mapped on to the short arms

of chromosomes 1 and 10, respectively, while Rf-4 and Rf-6

genes have been mapped on the long arm of chromosome

10 [51, 64, 65]. The Rf-1 gene encodes a PPR protein

associated with functions in fertility restoration of CMS-

Boro II and BT-type male-sterile cytoplasms [66–69].

Wheat

Male sterility in wheat was first reported by Kihara [70],

with the discovery of male-sterile cytoplasm from Aegilops

candida. Majority of these systems are not usable because

of reduced vigour, abnormal plant morphology, zygote

elimination, reduced seed set, fertility variation, and

delayed maturity. Fertility restoration genes in wheat have

not been discovered, and to date, only Triticum timopheevii

has shown potential for development of a wheat fertility

restoration system [71]. Triticum aestivum cv. Norin 26,

which contains Aegilops crassa alloplasm, is nearly

male-sterile under long-day length (>15 h), but is highly

male-fertile under short-day length (< 14.5 h). Ethyl-

methane-sulphonate-induced mutagenesis has also been

used to obtain photosensitive CMS lines [72]. Wheat

cultivars with a restorer gene, Rfv1 located on the short

arm of chromosome IB, which contains the IBL-IRS, can

be used to develop wheat hybrids with SV CMS [73].

Fertility restoration for T. timopheevii CMS in wheat is

controlled by major fertility restorer (Rf) and modifier

genes [74]. There is considerable genotype�environment

Table 1 Molecular differentiation of male-sterile and fertile cytoplasms in sorghum

Technique/gene/marker/clone Characteristics References

N1 and N2 plasmid-like DNAs Differentiated A3 cytoplasm of IS 12563C and IS 1112C at
plasmid sizes 1.7 and 2.3 kb.

[37]

Restriction endonuclease enzymes Differentiated sterile and fertile, and A1, A2, A3 and A4

CMS cytoplasms.
[38]

coxI clone Differentiated 9E (IS 17218) and A4 (IS 7920C) cytoplasms
at Hin dIII fragment size 1.9 kb.

[39]

atp6 probe Differentiated 9E and A4 cytoplasms. [40]
rrn18 and rrn 26 probes Differentiated between KS 37 and KS 39. [40]
orf107 gene Mitochondrial gene orf107 is associated with male-sterility. [40]
atp6 probe Differentiated Texas fertile and A3 cytoplasms at orf25. [25, 41]
Restriction enzyme The A1 and A2 cytoplasms have identical HindIII patterns,

while Bam HI-digested ctDNA produced the same patterns
in A2, A3 and A4, and Eco RI and Pst I produced identical
patterns in all four cytoplasms.

[42]

RFLPs Classified Indian origin CMS (Maldandi, Guntur, Vizianagaram)
as Indian A4 types, and distinguished from the American
A4- and A1-types.

[43]

RFLPs Mitochondria of fertile 2219A have more respiring efficiency and
mitochondrial electron transport (ET) rates from NADH to oxygen
than CMS line, thus indicating responsible for male sterility.

[44, 45]

RFLPs Restriction fragment locations of various mitochondrial genes and
their transcripts suggest polymorphism for genes related to the
ATP synthase complex between CMS and maintainer cytoplasms.

[46]
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(G�E) effect, which makes it difficult to develop CMS-

based hybrids.

Maize

CMS in maize was reported by Rhodes [75], and restorer/

maintainer reaction patterns have since been differ-

entiated into three types: CMS-T (Texas), CMS-S (USDA)

and CMS-C (Charrua) by Duvick [76] and Beckett [77].

Prior to 1970, CMS-T was used extensively, as it imparted

full sterility in most of the inbred lines, and fertility

restoration was relatively easy. However, CMS-T was not

used for hybrid seed production because of susceptibility

to southern corn leaf blight [Bipolaris maydis (Nisik. &

Miyake)], which severely damaged the maize crop in

the USA [78]. The epidemic resulted from a new race

(T-race) of B. maydis, which was extremely virulent to

cultivars containing the T-cytoplasm. Subsequently,

molecular techniques have been deployed for differ-

entiating male-sterile and male-fertile cytoplasms, and a

number of genes responsible for CMS and restoration

have been identified and used for making hybrids in maize

[79–91] (Table 2). Mitochondrial gene T-urf13 confers

Texas-type CMS in maize plants [84], but some restorer

genes interfere with the expression of corresponding

sterility genes at development- or tissue- or organ-specific

stages. The control of expression of a mitochondrial

sterility gene by a nuclear restorer gene represents a

valuable model for the study of interactions between

nuclear and mitochondrial genomes in higher plants.

However, restriction endonuclease fragment analysis of

organelle DNA demonstrated the heterozygosity in

mtDNA among normal fertile [85] and male-sterile [86]

cytoplasms, suggesting that changes in ctDNA [87] may

affect CMS in maize.

Pearl Millet

Since the discovery of cytoplasmic-genetic male-sterility in

Tift 23A (A1 cytoplasm), several CMS sources have been

identified [92, 93]. Tift 23A has excellent agronomic

characteristics and combining ability, and has been widely

used for hybrid production in India and the USA. The A2

and A3 cytoplasms have been identified, but have not been

used in commercial hybrid production because of

unstable sterility [92]. An A4 cytoplasm from a wild sub-

species of pearl millet, Pennisetum americanum subsp.

monodii has been found to be stable for male-sterility, and

is different from A1, A2 and A3 cytoplasms [93]. Although,

a very high frequency of A4 restorer genes occurs in wild

relatives of pearl millet, restorer genes for this cytoplasm

occur in a low frequency in cultivated germplasm. Many

unique sources of male-sterility have also been identified

by using mtDNA RFLP, but there is a need to find

restorers for these CMS systems [94–95].

Barley

CMS in barley was discovered from a population of allo-

plasmic Hordeum jubatum cytoplasm [96]. Hordeum vulgare

acts as a perfect maintainer for this system, but fertility

restorers have not been identified [97]. The two CMS,

msm1 and msm2 have restorer genes [98–101], and Rfm1a

gene restores the fertility of msm1 CMS lines, but none of

these are complete restorers. Locus msg50, with alleles

Table 2 Molecular differentiation of male-sterile and fertile cytoplasms in maize

Technique/gene/marker/clone Characteristics References

urf13TW gene The urf13TW gene, derived from the mitochondrial gene
T-urf13 responsible for Texas CMS has been expressed in
Saccharomyces cerevisiae by targeting the urf13TW
translation product into mitochondria.

[79]

T-urf13 gene The mitochondrial 35 bp open reading frame T-urf13 shares
a 165 kb sequence duplication with CMS T.

[80]

orf355 and orf77 genes The mitochondrial open reading frames orf355 and orf77
are associated with CMS-S, and orf77 and the mitochondrial
ATP synthase subunit atp9 share common sequence.

[81]

R gene The nuclear gene Rf3 suppresses the CMS-S phenotype,
decreases the abundance of the major R gene transcripts,
including the CMS-S-specific 1.6 kb mRNA, in mitochondria
of restored plants.

[82]

T-urf13 gene T-urf13 confers Texas CMS in maize plants. S. cerevisiae
nucleii transformed with the universal code equivalent of
T-urf13 mimic T-urf13 effects in maize and limit respiration.

[83–84]

mtDNA restriction endonuclease
fragment analysis

There is heterozygosity in mtDNA among normal fertile and
male-sterile cytoplasms, due to changes in ctDNA, which may
affect CMS in maize.

[85–87]

Rf4 and Rf5 restorer genes Fengke1 line contains Rf4 and Rf5 duplicating restorer genes
located on 5L and 8S chromosomes, respectively.

[88–91]
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msg50gh and msg50hm, is responsible for the male-sterile

genes msggh and msghm [102]. Several molecular markers

linked to Rfm1 locus have been identified on chromosome

6H [103].

Effects of CMS on Agronomic Traits

An understanding of cytoplasmic influences on yield and

agronomic characters could have a major bearing on

improving crop productivity, since cytoplasm is con-

tributed by the seed parent to its progeny. Cereals are the

major component of human diets, and the exploitation of

CMS for increasing crop production, productivity, and

value addition is crucial to meet the increased demand for

food in future. Studies conducted on effects of CMS on

various agronomic and yield traits such as plant height,

unit seed weight, grain yield, leaf and panicle traits, days to

50% flowering, etc., in major cereals (sorghum, maize,

pearl millet, rice, wheat and barley) in the past are given

in Table 3 [104–168].

Effects of CMS on Expression of Resistance

to Plant Diseases

Tan-coloured CMS lines in combination with tan restorer

lines produce hybrids with high levels of resistance to rust

(Puccinia purpurea Cooke) and head blight (Fusarium spp.)

in sorghum. Hybrids based on red CMS lines�tan

restorer lines are also resistant to these diseases, while

red�red and tan�red hybrids are susceptible [169, 170],

suggesting that characteristics of the restorer parent are

dominant over the CMS line. Cytoplasm had no effect on

head blight incidence or grain mould (Fusarium moniliforme

J. Sheld) severity [171]. The hybrids based on A2 CMS

system have 14–19% more smut (Sporisorium reilianum

(Kuhn) Landon and Fullerton) and 6% more grain mould

incidence than the hybrids based on A1 cytoplasm [171–

173].

Wheat hybrids based on Aegilops juvenalis cytoplasm

have greater resistance to powdery mildew (Erysiphe

graminis É.J. Marchal) and better seed germination than

the hybrids based on A. kotschyi cytoplasm [132]. Cyto-

plasm accounts for 23.5% of the variance in Puccinia

recondita Roberge resistance at the seedling stage in

alloplasmic lines with bread wheat nucleus (Penjamo 62),

and 17.4% at the adult stage [174]. Newly developed mt-A

lines (IBL-IRS chromosome-inhibited lines) have been

reported to be resistant to both E. graminis and P. recon-

dita, but SV-A lines (SV cytoplasm-substituted lines) are

susceptible to these pathogens. Mantle and Swan [175]

observed >20% sclerotia of ergot (Claviceps purpurea (Fr.)

Tul.) in threshed grain of poorly pollinated male-sterile

wheat plants as compared with 0.7% sclerotia in the fertile

plants.

The male-sterile barley cytoplasms (msm1 and msm2)

have no effect on expression of resistance to barley yel-

low mosaic virus (BaYMV) transmitted by Polymyxa gram-

inis Ledingham, but the Fusarium head blight (Fusarium

graminearum Schwabe) damage is greater in fertile than in

the sterile lines, indicating that pollen or anthers are

important for infection by F. graminearum [176]. Male-

sterile lines based on msm1 cytoplasm without pollen have

lower Fusarium head blight infestation than in the main-

tainer lines [176].

Male-sterile cytoplasm affects the rice plant’s reaction

to pathogens, as the WA male-sterile cytoplasm is less

susceptible to rice blast (Pyricularia oryzae Cavara) and

bacterial blight [Xanthomonas campestris pv. oryzae (Xoo)]

than the fertile cytoplasm [177]. The P. oryzae resistant

rice hybrids have been obtained from highly resistant

A-lines�moderately resistant R-lines, while moderately

resistant A-lines�highly susceptible R-lines produced

moderately resistant hybrids. Susceptible A-line-

susceptible R-line crosses produced susceptible hybrids

[178]. Thus, resistance is required in both A- and R-lines

to produce pathogen-resistant hybrids. To incorporate

bacterial leaf blight (Xanthomonas oryzae pv. oryzae)

resistance in rice hybrids, it is desirable to have resistance

in both CMS and restorer lines, because the disease is not

only affected by nuclear genes, but also by the sterile

cytoplasm [179, 180]. Conversely, Fusarium sheath rot

(F. moniliforme) and Karnal smut (Tilletia barclayana Sacc. &

P. Syd.) diseases have been found to be more severe on

CMS lines and hybrids as compared to that on the

maintainer and restorer lines [181].

Susceptibility in Texas CMS maize lines to southern

corn leaf blight [B. maydis] and yellow leaf blight (Phyllos-

ticta maydis Arny & Nelson) are associated with the

unusual mitochondrial gene T-urf 13, which encodes a

13 kDa polypeptide (urf13) in comparison with normal

C- or S-cytoplasm [182, 183]. Interactions between fungal

toxins and urf13 polypeptide result in inner mitochondrial

membrane permeability, and account for susceptibility to

these fungal pathogens. Plants with the Texas CMS are

also more susceptible to the toxins from the pathogens

than that of the normal fertile plants, and those with other

types of CMS [184]. There are no unfavourable effects of

C- and M-type CMS in maize on expression of resistance

to Ustilago zeae (Schwein.) Unger and Sphacelotheca reili-

ana (Kühn) Clinton under natural infection, but C-type

cytoplasm is susceptible to smut, and M-type to U. zeae

and stalk rot, Physoderma maydis (Miyabe) Miyabe [150].

In addition, C-type CMS was resistant to Cochliobolus

heterostrophus (Drechs.) Drechs. and Setosphaeria turcica

(Luttrell) Leonard et Suggs [185]. The sub group CI (CMS-

C) of group C is susceptible to B. maydis race C, but the

subgroups CII (CMS-RB) and CIII (CMS-ES) are not

infected seriously [186].

In pearl millet, incidence of downy mildew [Sclerospora

graminicola (Sacc.) Schroet.] was similar in hybrids carrying

either A1 male-sterile or B-cytoplasm [187], and there
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Table 3 Influence of male-sterile/male fertile cytoplasms on agronomic traits in different cereal crops

Crop/traits Cytoplasm Effect References

Sorghum
Grain yield, seeds/panicle, 100-seed weight, panicles per plant,
leaf length and area, leaves per plant, and days to flowering.

MS1 versus MF2 Yes [104]

Grain yield components MS versus MS No [104]
Grain yield, plant height, panicle length and excretion,
flowering, and grain moisture

MS versus MS No [104–108]

Plant height and days to 50% flowering MS versus MS and
MS versus MF

Yes [109–110]

Grain yield and other agronomic traits MS versus MS No [111–112]
Grain size, yield and yield components MS versus MS Yes [113–114]
GCA and SCA of morphological traits MS versus MS Yes [114]
Days to flowering, inflorescence length and plant height MS versus MS No [115]
Agronomic and morphological traits, pollen fertility and seed set MS versus MS Yes [116–118]
Heterosis for yield MS versus MF Yes [119]
Days to flowering, plant height, grain yield and forage quality MS versus MF No [120]
Seed setting MS versus MS Yes [120]

Wheat
Grain weight and texture MS versus MF Yes [121]
Agronomic traits MS versus MF No [122–123]

MS versus MS Yes [122–123]
Number of tillers, ear length, seed setting, days to maturity,
yield/panicle, and grain yield

MS versus MF Yes [124–126]

1000-grain weight, ear density, flag leaf length, and winter hardiness MS versus MF No [126]
Agronomic traits, except ear length MS versus MS No [124]
Panicle emergence, spikelet number, kernel texture,
germination rate, and grain weight/plant

MS versus MF Yes [127]

Grain quality MS versus MF No [127]
Internodes length and plant height MS versus MF Yes [128]
Bread making, and agronomic or yield traits MS versus MS No [129]
Grain yield, panicle emergence, days to flowering, and height MS versus MF Yes [130]
Grain yield MS versus MF Yes [131]
Agronomic characters MS versus MS No [132]
Seed germination Yes [132]

Barley
1000-grain weight, effective panicles/plant, grains/panicle, plant
height, length of peduncle and total grain weight/plant

MS versus MF Yes [133]

Morphological and yield characteristics MS versus MF No [134]

Rice
Grain yield MS versus MF Yes [135–142]
Panicle number, panicle length and grain yield MS versus MS and

MS versus MF
Yes [143]

Pollen and spikelet sterility MS versus MS Yes [144]
Dry matter in early growth stages and yield MS versus MF Yes [145–146]

Maize
Stability and phenotypic expression of growth MS versus MF No [147]
Stem breakage/lodging and grain yield MS versus MF Yes [148–149]
Hybrid heterosis MS versus MF Yes [150–151]
Grain moisture content and stem breakage at harvest MS versus MS No [152–153]
Grain yield MS versus MF Yes [154]
Plant height, tassel length, branches/tassel, and yield MS versus MS Yes [155]
Grain yield, ears per plant, grains per ear,
tassel length, and tassel branches

MS versus MF No [156]

Yield and morphological traits MS versus MF No [157–158]

Pearl millet
Grain yield, and leaf and peduncle lengths MS versus MS Yes [159]
Grain yield, and leaf and peduncle lengths,
and commercial hybrid production

MS versus MS No [160–161]

Grain yield MS versus MS Yes [162–165]
Dry matter production MS versus MS and

MS versus MF
No [162–165]

Plant height, days to flowering, dry matter yield, and grain yield MS versus MF Yes [166]
Stability of male-sterility MS versus MS Yes [167]
Earliness, panicle weight, length and girth,
number of tillers, and grain yield

MS versus MS Yes [168]

1MS=male-sterile cytoplasm.
2MF=male-fertile cytoplasm.
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was no effect of different CMS systems on expression of

resistance to downy mildew [188]. The A1 cytoplasm

confers moderate susceptibility to smut (Tolyposporium

penicillariae Brefeld), downy mildew, and leaf blight (Xan-

thomonas spp.) in A1-based pearl millet hybrids [189]. In

the case of T. penicillariae, pollination affects disease

development [190], and susceptibility to smut may be

attributed to cytoplasmic�nuclear interaction effects

[191]. High ergot (Claviceps fusiformis Loveless) suscept-

ibility in pearl millet hybrids has been associated with

the A1 cytoplasm, but highly resistant hybrids have

been obtained from the crosses of highly resistant A- and

R-lines [192]. The A-lines are more susceptible to smut

than the B- and R-lines. Thakur et al. [193] noted that

open-pollinated varieties are less susceptible to ergot than

the F1 hybrids. Pearl millet hybrids based on A1 cytoplasm

are also more susceptible to smut than the open-

pollinated varieties [194]. The A-line-based hybrids had

higher smut severity than the hybrids based on B-lines,

indicating that CMS rather than the A1 cytoplasm per se

resulted in greater smut severity in A-line hybrids. How-

ever, the hybrids based on smut-resistant A- and R-lines

were as resistant as the hybrids based on B-lines. The A2,

A3, and A4 cytoplasms are not linked to downy mildew

susceptibility, and can be exploited commercially for

hybrid production [195]. Hybrids based on A2, A3 and

Violaceum CMS systems have better downy mildew, ergot

and smut resistance, and can be exploited commercially

for hybrid production [161].

Effects of CMS on Expression of Resistance

to Insect Pests

Most of the sorghum hybrids grown in India are based on

the A1 cytoplasm, which is highly susceptible to insect

pests [196, 197]. Ross and Kofoid [105] reported that the

Kansas lines KS 34 to KS 39 based on Kansas CMS system

are as susceptible as CKA (Combine Kafir-based CMS

lines) to the greenbug, Schizaphis graminum (Rondani).

Sharma et al. [198] recorded low damage by the sorghum

midge, Contarinia sorghicola (Coqillett), and reduced midge

emergence on midge-resistant B-lines as compared with

corresponding A-lines (Figure 1). However, there were

no differences in midge damage or adult emergence

between midge-resistant and -susceptible A-lines. Midge-

resistant CMS�susceptible restorer-based hybrids are

less susceptible to C. sorghicola damage than susceptible

CMS�susceptible restorer-based hybrids [199–201].

The expression of non-preference and antibiosis com-

ponents of resistance to southwestern corn borer, Dia-

traea grandiosella Dyar and sugarcane borer, Diatraea

saccharalis Fab. was better in resistant inbred lines based

hybrids CML 67�CML 135 and CML 139�CML 135 than

the inbreds [202]. These hybrids also suffered low leaf and

stalk damage, and grain yield loss (3–4%) in comparison

with the susceptible hybrid Ki 3�CML 131 (35–40%). The

oviposition and deadheart formation on main plants and

tillers by the sorghum shoot fly, Atherigona soccata (Ron-

dani), are significantly lower on maintainer lines compared

with the CMS lines [203] (Figure 2). Larval development

was prolonged and pupal mortality was greater on main-

tainer lines than on the CMS lines, wheras pupal weights

and fecundity were greater on the CMS lines [203]. The

maintainer lines showed better recovery resistance than

the CMS lines, but such differences were more apparent

in the shoot fly-resistant CMS and maintainer lines as

compared to shoot fly-susceptible CMS and maintainer

lines. Expression of morphological traits such as leaf

glossiness, trichomes, and leaf surface wetness (which are

associated with resistance to shoot fly) was better in the

maintainer lines as compared to the CMS lines [204]. The

shoot bug (Peregrinus maidis Ashmead)- and sugarcane

aphid [Melanaphis sacchari (Zehntner)]-resistant CMS lines

suffered more damage than the B-lines, whereas such

Figure 1 Effect of CMS on midge, Stenodiplosis sor-
ghicola adult emergence in resistant and susceptible groups
of CMS (A) and maintainer (B) lines of sorghum [198] Figure 2 Effect of CMS on expression of resistance to

shoot fly, Atherigona soccata in resistant and susceptible
groups of CMS (A) and maintainer (B) lines of sorghum
[203]
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differences were not apparent in the case of susceptible

CMS and the maintainers [205] (Figures 3 and 4). The A-

lines, in general, suffered greater damage than the cor-

responding B-lines (except in the case of stem borer),

suggesting that factors in the cytoplasm of the maintainer

line influence the expression of resistance to insects. The

stem borer, Chilo partellus (Swinhoe)-resistant CMS and

maintainer lines had a similar level of deadheart formation,

while the stem borer-susceptible maintainers suffered

more damage than the CMS lines (Figure 5) [205].

Expression of resistance may also be influenced by the

interaction of factors in the cytoplasm of maintainer lines

with the nuclear genes. Hybrids based on shoot bug

(Figure 6), sugarcane aphid (Figure 7), sorghum midge

(Figure 8), and shoot fly (Figure 9)-resistant CMS and

restorer lines suffer less damage than the hybrids based

on susceptible CMS and resistant or susceptible restorer

lines, suggesting that the expression of resistance to these

insects is influenced by the genetic background of the

CMS lines [197, 201, 206, 207]. However, the hybrids

based on stem borer-resistant or susceptible CMS lines

with resistant restorers showed significantly lower dead-

heart formation as compared with the hybrids based

on stem borer-resistant or -susceptible CMS lines and

-susceptible restorers (Figure 10), suggesting that

restorer lines exercised a greater influence on expression

of resistance to stem borer in sorghum [205]. Similar

results have also been reported for expression of resis-

tance to stem borers, C. partellus and Busseola fusca

(Fuller) in maize [208]. The A4M cytoplasm has been

found to be comparatively resistant to A. soccata damage

than the A1, A2, A3 or A4G, A4VzM cytoplasms [28, 109].

Figure 5 Effect of CMS on expression of resistance
to spotted stem borer, Chilo partellus in resistant and
susceptible groups of CMS (A) and maintainer (B) lines of
sorghum [205]

Figure 3 Effect of CMS on shoot bug, Peregrinus maidis
damage in resistant and susceptible groups of CMS (A) and
maintainer (B) lines of sorghum. DR=damage rating (1–9)
[205]

× × × ×

(1
–9

)

Figure 6 Influence of CMS on expression of resistance
to shoot bug, P. maidis in sorghum hybrids based on insect-
resistant or -susceptible CMS and restorer lines. RA=
resistant CMS (A) lines; SA=susceptible CMS (A) lines;
RR= resistant restorer lines; SR=susceptible restorer lines
[197, 201, 205]

Figure 4 Effect of CMS on sugarcane aphid, Melanaphis
sacchari damage in resistant and susceptible groups of
CMS (A) and maintainer (B) lines of sorghum. DR=damage
rating (1–9) [205]
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The A4M (Maldandi) cytoplasm in combination with shoot

fly-resistant restorers can be used to produce sorghum

hybrids with high levels of resistance to this pest [28].

Conclusions

Considerable information has been generated on effects

of CMS on morphological and physiological characteristics

in different crop plants, and on the influence of CMS on

expression of resistance to insect pests and plant patho-

gens. There is a continuing need to evaluate different

cytoplasms for their effects on cultivar susceptibility to

pest insects and diseases. The analyses of literature

available on different CMS systems in cereals suggested

that the genetic background of CMS, cytoplasmic factors,

the interactions of the factors in the cytoplasm of main-

tainer lines with the nuclear genes, and the restoration

abilities of the restorers influence the expression of

resistance to insect pests and diseases. Therefore, it will

be desirable to use more than one source of CMS in

different genetic backgrounds as a safeguard against out-

breaks of major pest insects and diseases in different

crops. There is an urgent need to convert various sources

of resistance to insect pests and diseases into CMS,

maintainer, and restorer lines, so as to be able to develop

hybrids with increased levels and diverse mechanisms of

resistance to the target pests.

(1
–9

)

× × × ×
Figure 7 Influence of CMS on expression of resistance to
sugarcane aphid, M. sacchari in sorghum hybrids based on
insect-resistant or -susceptible CMS and restorer lines.
RA= resistant CMS (A) lines; SA=Susceptible CMS (A)
lines; RR= resistant restorer lines; SR=susceptible restorer
lines [197, 201, 205]

× × × ×

Figure 8 Influence of CMS on expression of resistance
to midge, S. sorghicola in sorghum hybrids based on
insect-resistant or -susceptible CMS and restorer lines.
RA= resistant CMS (A) lines; SA=susceptible CMS (A)
lines; RR= resistant restorer lines; SR=susceptible restorer
lines [197, 201, 205]

× × × ×

Figure 9 Influence of CMS on expression of resistance
to shoot fly, A. soccata in sorghum hybrids based on
insect-resistant or -susceptible CMS and restorer lines.
RA= resistant CMS (A) lines; SA=susceptible CMS (A)
lines; RR= resistant restorer lines; SR=susceptible restorer
lines [197, 201, 205, 207]

× × × ×
Figure 10 Influence of CMS on expression of resistance
to spotted stem borer, C. partellus in sorghum hybrids
based on insect-resistant or -susceptible CMS and restorer
lines. RA= resistant CMS (A) lines; SA=susceptible CMS
(A) lines; RR= resistant restorer lines; SR=susceptible
restorer lines [205]
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