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Abstract. The resistance or susceptibility of sorghum genotypes to damage by the spotted 

stemborer, Chilo partellus (Swinhoe) (Noctuidae: Lepidoptera) in sorghum is commonly 

measured in terms of leaf damage, deadheart formation and stem tunneling. Effect of the 

host plant on the insect survival and development (antibiosis), and the plant’s response to 

insect damage (tolerance or recovery resistance) are also important parameters for 

measuring host plant resistance to stemborers. We compared 10 selection indices 

commonly used to select genotypes for tolerance/ resistance to various stresses, namely 

functional plant loss index (FPLI), antibiosis index (ABI), mean productivity index (MPI), 

mean relative performance (MRP), relative efficiency index (REI), tolerance index (TOL), 

Fischer and Maurer’s stress susceptibility index (FMSSI), Fernandez stress tolerance index 

(FSTI), Geometric mean productivity (GMP), and Schneider’s stress severity index (SSSI). The 

indices based on grain yield reduction can be combined with those associated with grain 

yield response and potential under borer-infested and -uninfested conditions, since each 

index assesses different biological mechanisms (such as tolerance, adaptation, and/or 

productivity). Amongst these, FPLI can be used to differentiate the sorghum genotypes for 

different components of resistance by taking into account both the foliar damage and 

deadheart formation. GMP, REI, and FSTI provided a better discrimination of the stemborer 

tolerant genotypes under borer-infested condition, and were good predictors of grain yield 

performance than TOL, MPI, MRP, ABI, SSSI, FMSSI, and FPLI. A strong association between 
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GMP and REI indicated that both these indices could be used to select for low grain yield 

loss and high productivity. However, the selection of genotypes with high grain yield 

potential and adaptation to borer infestation may be achieved by combining selection 

indices related to the mean grain yield performance under borer-infested and uninfested 

conditions (GMP and REI), and low levels of grain yield loss under borer infestation. 

 

Key words: sorghum, Sorghum bicolor, selection indices, host plant resistance, 

spotted stemborer, Chilo partellus 

 

 

Introduction 

Sorghum, Sorghum bicolor (L.) Moench, is a major cereal crop in the semi-arid tropics (SAT), 

but grain yields on the smallholder farms are generally low (500 to 800 kg ha
-1 

compared to 

potential yields of >10 tones ha
-1

), with insect pests constituting a major constraint to 

increased production (Sharma, 1993). Of the more than 150 insect species that damage 

sorghum, the spotted stemborer, Chilo partellus (Swinhoe) (Lepidoptera: Noctuidae) is a 

major pest in Asia and eastern and southern Africa (Jotwani et al., 1980). It attacks all the 

above-ground parts of the sorghum plant, from the second week after seedling emergence 

until crop harvest. Feeding by the young larvae results in pinholes and elongated lesions on 

the whorl leaves. Early infestation may also destroy the growing point, resulting in the 

drying of two to three central leaves, commonly known as deadheart. In addition, leaf 

feeding also reduces plant vigor, affects photosynthetic efficiency, delays flowering, and 

leads to a reduction in grain-filling and yield. Older larvae (3
rd

 instar) leave the whorl leaves 

and bore into the stem at the plant base, causing extensive stem tunneling that affects not 

only nutrient supply to the developing grain, but also results in partially or completely 

chaffy panicles. Stemborer damage also results in losses in fodder yield and quality (Bardner 

and Fletcher, 1974; Sharma, 2002). Global sorghum crop losses due to stem borer damage 

have been estimated at over US$ 300 million annually (ICRISAT, 1992; Sharma et al., 1997). 

In general, the yield losses range between 5 and 10%, especially when the infestation 

occurs early. 

 

Stemborer damage in sorghum is a complex interaction between the insect and the host 

plant. In addition to its effects on the plant, the survival, development, and fecundity of the 

borer are also affected by the plant’s resistance mechanisms (Singh et al., 1983; Dabrowski 

and Kidiavai, 1983; Singh and Rana, 1984, 1989; Rana et al., 1984, 1985; Sharma and 

Nwanze, 1997). The use of insecticides for stemborer control is often uneconomical and 

beyond the reach of resource-poor farmers. As such, host plant resistance (HPR) offers the 

best option for minimizing losses due to stemborers (Davies, 1981). Host plant resistance 

also assumes greater significance in sweet sorghums, which are now being exploited as a 

source of ethanol for energy.  Genotypic resistance to stemborer damage in sorghum is 

based on leaf feeding, number of deadhearts, exit holes, tunnel length, effect of the host 

plant on survival and development of the insect, and recovery resistance (production of 
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auxiliary tillers following borer damage to the main shoot) (Ajala and Saxena 1994; Sharma 

and Nwanze, 1997). 

 

However, the effect of stemborer damage on grain yield is a complex interaction between 

the insect and the host plant, and expression of resistance varies depending on time of 

infestation (Alghali, 1985, 1987; Jarvis et al., 1986; Klenke et al., 1986; Taneja and Nwanze, 

1989; MacFarlane, 1990; Thome et al., 1994); interplant variation (Harris, 1962); recovery 

resistance; ability to withstand stemborer damage (Flattery, 1982); compensation in grain 

yield (Heinrich et al., 1983; van den Berg et al., 1990), or a combination of two or more of 

these parameters.  

 

Selection for resistance to C. partellus based on a single parameter is therefore difficult, as a 

sorghum genotype resistant to one form of damage may be susceptible to another (Ajala et 

al., 1993; Alghali, 1987). However, there is considerable interaction among the parmeters 

associated with reduction in grain yield due to stem borer damage (Ajala and Saxena, 1994). 

The accumulation of resistance traits through phenotypic recurrent selection accounted for 

the high grain yields observed in some borer-resistant selections.  To achieve an overall 

improvement in the level of genotypic resistance that protects all stages of plant growth, 

resistance to more than one damage variable is required (Ampofo, 1986; Saxena, 

1990).Thus, it is important to develop approaches that eventually improve the efficiency of 

selecting borer-resistant genotypes in a high-yielding background.  The selection criteria 

should consider measuring the combined effect of different components of host plant 

resistance, an approach that requires the use of appropriate indices that result in 

simultaneous selection for resistance per se, as well as grain yield performance. 

 

A fundamental limitation to selection is the difficulty in weighting the various damage traits 

used to calculate selection indices. Antibiosis against larvae and tolerance for grain yield 

loss are considered important for genotypic resistance to stemborer damage (Anglade, 

1992; Anglade et al., 1996). Several selection indices have been used for crop improvement 

under stress, based on grain yield performance under stress and non-stress environments, 

to select resistant genotypes (Ortega et al., 1980; Ampofo, 1986; Fischer and Maurer, 1978; 

Rosielle and Hamblin, 1981; Samper, 1984; Graham, 1984; Fernandez, 1993; Schneider et 

al., 1997). The susceptibility of a genotype is often measured as a function of the reduction 

in grain yield under infested conditions, while taking into account the variable yield 

potential of the genotypes. The studies reported in this article compared the utility of 10 

selection indices based on tolerance, antibiosis and grain yield potential and response for 

identifying sorghum genotypes that perform well under borer-infested conditions.  

 

Materials and methods 

 

Plant material 
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Twenty-five sorghum genotypes comprising of 15 germplasm accessions, three landraces, 

one commercial hybrid, four improved varieties, and a resistant and a susceptible check 

(Table 1) were evaluated for resistance to C. partellus under artificial infestation during the 

rainy and post-rainy seasons at the International Crops Research Institute for the Semi-Arid 

Tropics (ICRISAT), Patancheru, Andhra Pradesh, India. All the genotypes were planted in 4-

row plots, each 2-m long with ridges 75 cm apart, in a randomized complete block design 

(RCBD) with three replications. The plots were fertilized with a basal application of 40 kg N 

and 40 kg P205 per hectare. The seedlings were thinned to a spacing of 10 cm by maintaining 

a population of 20 seedlings per 2-m row. At the flowering stage, the panicles were covered 

with pollination paper bags, which were subsequently replaced with nylon bags (30 mesh) 

at the milk stage to prevent bird damage. In each plot, two rows were infested with 

stemborer neonates, as described below. The remaining two rows served as an uninfested 

control.  

 

Stemborer rearing and infestation 

Artificial diet developed at ICRISAT was used for mass rearing the C. partellus (Taneja and 

Leuschner, 1985). Eighteen days after seedling emergence (Sharma et al., 1992), the plants 

were artificially infested with 5 to 7 freshly emerged neonate larvae using a ‘bazooka’ 

applicator, between 0800 to 1100 h. Leaf feeding data were recorded on a rating scale of 1-

9 (where 1 = ≤ 10% leaf area damaged, and 9 = ≥ 80% leaf area damaged), and the 

percentage of plants with deadhearts at 15 and 40 days after infestation. 

 

Grain yield 

At physiological maturity, all the panicles were harvested and threshed from the borer-

infested and uninfested plots separately, and represented as grain yield response and 

potential (in kg/ha), respectively. Grain yield loss was calculated as the difference between 

grain yields from the infested and uninfested plots of each genotypes following Walker 

(1981, 1983): 

 
                                                 Grain yield potential (uninfested) – Grain yield response (infested) 

          Grain yield loss (%) = -----------------------------------------------------------------------------------  x 100 

                                                                         Grain yield potential (uninfested). 

 

 

 

Selection indices 

The following selection indices were used to characterize the test genotypes into different 

categories of resistance or susceptibility, based on grain yield performance under 

stemborer-infested and uninfested conditions, with an exception of functional plant loss 

index (FPLI), which is based solely on leaf feeding damage and deadheart formation during 

the vegetative stage of the sorghum crop. The following abbreviations were used in the 

formulae given below: 
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GYI (IN) = Grain yield of I
th

 genotype under borer infestation;  

GYI (UN) = Grain yield of I
th

 genotype under uninfested conditions 

GYI (SC) = Grain yield of susceptible check under borer infestation 

LFS = leaf feeding score 

DH (%) = deadheart percentage 

 

1. Functional plant loss index (FPLI) was calculated by modifying the methods of Morgan et 

al. (1980), Ortega et al. (1980), and Panda and Heinrichs (1983) as:  
 

FPLI = [1 - (LFS of I
th

 genotype / Mean LFS across the test genotypes) + 1 - (DH % of I
th

 

                           genotype / Mean DH% across the test genotypes)]  

 

Mean grain yield under borer-infested conditions and the FPLI of each genotype under 

borer infestation have been used to categorize the genotypes for expression of resistance 

to C. partellus (Ortega et al., 1980; Ampofo, 1986; Kumar, 1994). 

 

2. Antibiosis index (ABI) was calculated as: 

 
ABI = [GYI (IN) /GYI (SC)]  

 

High ABI values indicated high levels of resistance to the stemborer. 

 

3. Mean productivity index (MPI) was calculated as: 

 
MPI = [GYI (IN) + GYI (UN)] / 2 

 

MPI is based on arithmetic mean, and therefore, has an upward bias wherein there are 

large differences between grain yield under borer-infested and uninfested conditions 

(Rosielle and Hamblin, 1981). MPI favours genotypes with high grain yield performance and 

low stress tolerance.  

 

4. Mean relative performance (MRP) was calculated as: 

 
MRP = [GYI  (IN)  /GY (IN)] + [GYI  (UN)/GY (UN)]  

 

The MRP indicates selection for tolerance based on differences in grain yield performance 

under borer-infested and uninfested conditions. Selections for tolerance based on MRP 

suggest selection of genotypes with low loss in grain yield, and low grain yield performance 

under borer-infested and uninfested conditions.  

 

5. Geometric mean productivity (GMP) (Samper, 1984; Samper and Adams, 1985; Ramirez 

and Kelly, 1998) was calculated as:  

 
GMP = √√√√ (GYI (IN) x GYI (UN)) 
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GMP accounts for large differences in performance between borer-infested and uninfested 

conditions than does the simple arithmetic mean, and identifies genotypes with high grain 

yield potential and adaptation to borer infestation.     

 

6. Relative efficiency index (REI) was calculated by modifying the formula of Graham (1984) 

and Rosales-Serna et al. (2000) to: 

 
REI = [(GYI (IN)/GY (IN)) x (GYI (UN) /GY (UN))]  

 

The REI can be used to classify genotypes based on grain yield under borer-infested and 

uninfested condition. The index is suitable for genotypes with high grain yield potential and 

tolerance to borer damage.  

 

7. Tolerance index (TOL) (Rosielle and Hamblin, 1981) was calculated as:  
 

TOL = [GYI (IN)  - GYI (UN)]  

 

Selection based on TOL favors genotypes with low grain yield potential under infestation, 

and higher grain yield response under borer infestation. A larger value of TOL represents 

greater sensitivity to borer infestation and greater yield reduction. 

 

8. Fischer and Maurer’s stress susceptibility index (FMSSI). The FMSSI has been used to 

select for drought tolerance (Fischer and Maurer, 1978), and was modified to estimate 

relative susceptibility to stemborer damage. 

 

Stemborer susceptibility index (SBI) was calculated as: 

 
SBII = [1 - (GYIN  / GYUN)]  

 

Using the SBI, the FMSSI for each genotype was calculated:  

 
FMSSI = {[1-(GYI (IN) /GYI (UN))] / SBII}  

 

The FMSSI separates the effects of grain yield potential and borer susceptibility in terms of 

grain yield response under borer infestation. However, selection based on FMSSI favors 

genotypes with low grain yield potential and high yield response. Thus, FMSSI values that 

are <1.00 or >1.00 indicate high or low tolerance to stemborer infestation respectively. 

 

9. Fernandez stress tolerance index (FSTI). Based on grain yield reduction adjusted to 

stemborer intensity in a particular environment, the FSTI (Fernandez, 1993) was estimated 

as:  

 
FSTI = [GYI (IN) /GY (IN)] x [GYI (UN) /GY (UN)] x [GY (IN) /GY (UN)] 
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High FSTI value for a genotype indicated high tolerance to stemborer damage and high 

grain yield potential.  

 

10. Schneider’s stress severity index (SSSI). The SSSI was derived by modifying the formula of 

Schneider et al. (1997) as: 

 
SSSI = {[1-(GYI  (IN)  / GYI (UN))]–[1-(GY (IN)  /GY (UN))]} 

 

The SSSI estimates the relative tolerance for yield reduction of a genotype relative to the 

population mean reduction in grain yield response due to stemborer damage. It is useful for 

the identification of both stable and responsive sorghum genotypes with better grain yield 

response under borer infestation.    

 

Statistical analyses 

Data were subjected to analysis of variance for each parameter, and the significance of 

differences between the genotypes was tested using the F-test, while the significance of 

differences between the genotypic means was judged by using LSD (least significant 

difference) at P < 0.05. Data were also subjected to correlation and regression analyses to 

elucidate the relationship among the selection indices, and their association with grain yield 

performance and loss.   

 

Results 

 

Grain yield performance under borer-infested and uninfested conditions 

Differences in grain yield responses and potentials among the test genotypes were 

significant (Table 1). Yield potentials varied from 1134 to 8750 kg ha
-1

during the rainy 

season and 647 to 2116 kg ha
-1

in the post-rainy season.  Yield responses varied between 

1122 and 6074 kg ha
-1

, and 480 and 1934 kg ha
-1

 in the rainy and the post-rainy seasons, 

respectively. Grain yield response and potential were positively correlated under 

stemborer-infested and uninfested conditions during the rainy (r = 0.65*) and postrainy (r = 

0.54*) seasons. The genotypes ICSV 743, CSH 9, ICSV 112, IS 2309, IS 1054, ICSV 714, and IS 

5469 showed high yield potential and yield response under borer un-infested and infested 

conditions during the rainy season (Fig. 1a). Both, the potential yield and the response were 

very low for IS 12308 and IS 13100; while IS 2269, IS 2146, IS 2123, and IS 2205 exhibited 

moderate levels of yield under borer infested and un-infested conditions.  During the 

postrainy season, CSH 9, AF 28, IS 5469, ICSV 112, IS 21444, and ICSV 714 showed high yield 

potential and response; while IS 18573, IS 5604, IS 12308, IS 13100, IS 1044, is 2263, and IS 

5566 exhibited low yield potential and low yield response (Fig. 1b). The genotypes IS 2269, 

IS 2123, IS 2146, Seredo, ICSV 1, and IS 2205 exhibited moderate levels of yield under 

stemborer infested and un-infested conditions.  
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There was a very poor relationship between grain yield potential and loss in grain yield (r = 

0.05 to 0.15).  However, the genotypes IS 2123, IS 2146, IS 18333, and IS 21444 in the rainy 

season; and IS 5469, IS 5604, IS 2205, IS 5469, and IS 18573 in the postrainy season showed 

an increase of 1.7 to 24.0% in grain yield response, indicating that recovery (tolerance) is an 

important component of resistance in these genotypes to damage by  C. partellus (Table 1). 

Accession IS 21444 had low grain yield potential, but exhibited high compensation in grain 

yield under borer infestation; while the genotypes IS 12308, IS 18573, IS 5604, ICSV 1, Naga 

white, and Seredo exhibited low yield potential, and also suffered high grain yield loss 

during the rainy season (Fig. 2a). IS 1054, IS 5469, IS 2309, ICSV 714, and IS 2269 exhibited 

moderate grain yield potential, and suffered low loss (10 to 20%) in grain yield; while IS 

2123, IS 18333, IS 2146, and IS 2205 suffered no loss in grain yield, and also showed 

moderate levels of yield potential under stem borer infested and uninfested conditions. 

During the post-rainy season, the genotypes IS 5469, CSH 9, AF 28, and ICSV 714 showed 

high yield potential, and also displayed good compensation in grain yield under borer-

infestation (Fig. 2b). On the other hand, the genotypes ICSV 743, IS 21444, and ICSV 112 

exhibited high grain yield potential, but suffered high grain yield losses under borer-

infestation.    

 

Selection indices 

The selection indices based on grain yield potential and response are given in Table 2. There 

were significant differences among the genotypes based on different selection indices.   

 

Functional plant loss index. There were significant differences among the test genotypes for 

FPLI, which provides a reasonable estimate of resistance at the vegetative stage for each 

genotype in relation to grain yield response, under borer infestation. CSH 9, IS 1054, AF 28, 

and ICSV 743 displayed antibiosis, while IS 1044, IS 5604 and IS 18573 showed tolerance to 

C. partellus damage during the rainy season. Both antibiosis and tolerance were observed in 

IS 13100 and IS 12308; while IS 5604 and ICSV 705 displayed both tolerance and antibiosis 

in the post-rainy season.   

 

Antibiosis index. The ABI values were significantly low for IS 2123, IS 2146, IS 18333, IS 

21444, and IS 2205 in the rainy season, and IS 5469, IS 5604, IS 18573, and IS 2205 in the 

postrainy season (Table 2), suggesting that these genotypes had a high degree of antibiosis 

combined with tolerance mechanism of resistance to stemborer damage.  

 

Mean productivity index. The mean productivity was high in IS 1054, IS 2309, AF 28, CSH 9, 

ICSV 714, and ICSV 743 during the rainy season, and IS 5469, AF 28, and CSH 9 during the 

postrainy season (Table 2). Based on productivity and grain yield loss, the genotypes ICSV 

743, CSH 9, IS 1054, and IS 5469 exhibited high productivity, but also suffered high grain 

yield losses in the rainy season, while ICSV 705, IS 1054, IS 5566, and IS 2263, with exhibited 

low productivity, suffered high grain yield loss in the postrainy season.  
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Mean relative performance. The MRP values were significantly high in IS 2309, CSH 9, ICSV 

112, and ICSV 743 in the rainy season, and IS 5469, AF 28, and CSH 9 in the postrainy season 

(Table 2). However, the MRP values were low (<1.45) for IS 1044, IS 12308, and IS 21444, 

and high (>2.63) for ICSV 714, IS 2309, ICSV 743, ICSV 112, and CSH 9 during the rainy 

season. Based on MRP values and grain yield loss, CSH 9, IS 1054, and IS 5469 showed high 

productivity, but suffered high grain yield loss. IS 21444, IS 2146, IS 2123, IS 18333, and IS 

2205 showed high tolerance in the rainy season, while ICSV 112, ICSV 743, and IS 21444 

exhibited high productivity and high grain yield loss. The genotypes IS 18573, IS 2205, and IS 

5604 displayed moderate grain yield potential, and also exhibited tolerance to stemborer 

damage during the post-rainy season (Tables 1 and 2).   

 

Geometric mean productivity. There were significant differences in GMP among the test 

genotypes. ICSV 743, CSH 9, IS 1054, and IS 5469 exhibited high productivity, and also 

suffered high loss in grain yield; while ICSV 112, ICSV 714, IS 2309, IS 2269, IS 18333, IS 

2123, IS 2146 and IS 2205 showed moderate to high productivity, and suffered low loss in 

grain yield during the rainy season. During the postrainy season, ICSV 112, ICSV 743 and IS 

21444 showed high productivity, but also suffered high grain yield loss; while IS 5469, ICSV 

714, CSH 9 and AF 28  showed high productivity and suffered low loss in grain yield.  

 

Relative efficiency index. The REI values for IS 2309, CSH 9, ICSV 112, ICSV 714, and ICSV 743 

were high during the rainy season, and IS 5469, AF 28, and CSH 9 in the postrainy season. 

These genotypes had a high grain yield potential and also showed adaptation to borer 

damage (Tables 1 and 2). 

 

Tolerance index. Selection based on TOL indicated that ICSV 743 had low tolerance and 

suffered high losses in grain yield; while high tolerance to stemborer damage was observed 

in IS 21444 during the rainy season. In addition, ICSV 705, IS 5566, IS 2309, and IS 2263 

exhibited high tolerance, and suffered modest losses in grain yield due to stemborer 

damage during the post-rainy season (Tables 1 and 2).   

 

Fischer and Maurer’s stress susceptibility index. There were significant differences in FMSSI 

among the genotypes tested. Based on FMSSI values and grain yield loss, the genotypes IS 

5604, ICSV 743, and ICSV 1 had low levels of tolerance associated with high grain yield 

losses. IS 2123, IS 2146, IS 2205, and IS 21444 exhibited high tolerance and suffered low loss 

in grain yield during the rainy season. During the postrainy season, the genotypes ICSV 743, 

IS 2309, ICSV 705, IS 21444, IS 2263, IS 1054, and IS 5566 not only showed low tolerance, 

but also suffered high grain yield loss; while IS 5604, IS 2205, IS 5469, ICSV 714, and IS 

18573 exhibited high tolerance during the postrainy season.  

 

Fernandez stress tolerance index. There were significant differences among the test 

genotypes for FSTI. Grouping of genotypes based on grain yield loss and FSTI indicated that 

CSH 9, ICSV 112, and ICSV 743 had low tolerance, associated with high grain yield loss in 
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both the rainy and postrainy seasons. Genotypes IS 2146, IS 2205, IS 2123, and IS 18333 

exhibited high levels of tolerance to stemborer damage in the rainy season. IS 2205, IS 

5604, and IS 18573 showed high tolerance to borer damage in the post-rainy season.  

 

Schneider’s stress severity index. IS 12308 and ICSV 743 showed highly positive SSSI values 

during the rainy season, suggesting that they suffered high stress and high grain yield loss. 

IS 21444, IS 2146, IS 2205, IS 2123, IS 18333, and IS 13100 had negative SSSI values, 

indicating that they experienced low stress and low grain yield loss. Similarly, positive SSSI 

values in IS 1054, ICSV 743, ICSV 705, and ICSV 112 during the postrainy season indicated 

that they are prone to stress caused by stemborer damage, and also suffered greater grain 

yield loss (Table 2).  

 

Association of selection indices with grain yield performance under borer-infested and 

uninfested conditions 

 

There were highly significant and positive correlations between GMP and MPI with MRP, 

REI and FSTI.  Higher GMP and FSTI values indicated greater tolerance to borer infestation, 

as observed for drought tolerance (Fernandez, 1993).  

 

FMSSI was positively correlated with ABI, SSSI, and TOL (Table 3). Similarly, positive 

correlations were observed between ABI and SSSI and TOL; REI and FSTI, and SSSI and TOL. 

FLPI did not show any association with other selection indices or with grain yield 

performance under borer-infested and uninfested conditions, including grain yield loss; and 

hence, it may not be a reliable criterion for use in the selection for host plant resistance to 

C. Partellus, as it is based on damage at the vegetative stage.  

 

FMSSI, ABI, SSSI, and TOL exhibited strong correlation with grain yield loss due to borer 

infestation, in both rainy and postrainy seasons, but correlation coefficients with grain yield 

were non-significant (except for TOL, which was significantly correlated with grain yield 

during the rainy season under uninfested conditions) (Table 4). GMP, MPI, MRP, REI, and 

FSTI exhibited highly significant association with grain yield, but had no association with 

grain yield loss.  

 

Discussion 

 

Selection based on a combination of indices may provide a more useful criterion for 

improving stemborer resistance in sorghum, but an indication of the association between 

different indices and/or loss in grain yield is useful in finding the degree of overall linear 

association between any two attributes, which could be used for identification of the 

superior genotypes for borer-infested and uninfested conditions. The FSTI and GMP were 

quite reliable for identifying genotypes with high yield potential and good response to stem 

borer damage. The FSTI, REI, GMP, MRP, and MPI were useful in identifying genotypes with 
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high yield potential under both borer-infested and uninfested conditions. However, when 

the severity of stemborer damage is high, TOL, SSSI, ABI, and FMSSI were more useful for 

discriminating tolerant/resistant cultivars, although none of the indicators could clearly 

identify genotypes with high yield potential under both infested and uninfested conditions.  

 

An optimal selection criterion should be able to distinguish genotypes exhibiting high yield 

potential and suffering low loss in grain yield. But the selection indices based on tolerance 

and antibiosis mechanisms such as FPLI, TOL, MPI, MRP, SSSI, STR, ABI, and FMSSI did not 

provide a good separation of the genotypes exhibiting high yield potential and suffering low 

loss in grain yield. GMP was found to be better than MPI in separating genotypes exhibiting 

high yield potential and suffering low loss in grain yield. The studies indicated that breeding 

for improved grain yield response in sorghum can be realized under stemborer infestation, 

while maintaining high grain yield potential.  

TOL did not distinguish between the genotypes exhibiting high yield potential and suffering 

low loss in grain yield. Similar observations for TOL have earlier been made by Clarke et al. 

(1992) for drought tolerance in wheat. Under borer infestation, selections for high grain 

yield response using TOL would be ineffective to breed for resistance to C. Partellus, since 

the stemborer infestation under natural conditions is often uneven and sporadic.  

FMSSI has been widely used by researchers to identify genotypes that are sensitive or 

tolerant to drought (Fischer and Maurer, 1978). Genotypes with low FMSSI values are 

considered stress-tolerant; and such genotypes exhibit lower reduction in grain yield under 

stress compared to non-stress conditions. MPI can be related to grain yield response only 

when infestation is not too severe. Genotypes with a high MPI have similar performance in 

both stress and non-stress conditions. However, genotypes with relatively low yields under 

borer infestation exhibited high MPI values. MPI was highly correlated with grain yield 

performance, REI, and FSTI, but not with TOL. Genotypes with high MPI may not be in the 

lowest TOL, and selecting superior genotypes may be difficult. These observations are in 

agreement with the results obtained for drought tolerance (Clarke et al., 1992; Rosielle and 

Hamblin, 1981). There was a large variation in index based on geometric mean productivity 

of the genotypes tested, and it was strongly correlated with both yield potential and grain 

yield response under stemborer infestation. A highly significant correlation between MPI 

and GMP suggested that GMP is a good indicator of genotypic performance under 

stemborer infestation. FMSSI tends to favor low-yielding genotypes, but to a much smaller 

extent than selection for TOL. The FSTI was highly correlated with GMP, MPI, MRP, and REI. 

FSTI is also correlated with both grain yield potential and response, and these indices 

account for large differences in grain yield performance of the genotypes between borer-

infested and uninfested conditions, and is similar to drought tolerance reported by Rosielle 

and Hamblin (1981). 

 

Selections based solely on grain yield response provided an estimate of tolerance to 

stemborer damage, but may be associated with low grain yield potential under uninfested 
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conditions. Similar observations have earlier been reported for drought tolerance in dry 

bean (Phaseolus vulgaris) under stress and unstressed conditions (Samper, 1984; Samper 

and Adams, 1985). Therefore, FSTI and GMP seem to be more useful for resistance to stem 

borer damage in sorghum, as FSTI discriminates the genotypes with high yield and stress-

tolerance potential. A general linear model regression of grain yield response on FMSSI 

revealed a positive correlation during the rainy and post-rainy seasons (R
2
= 0. 89** and 

0.98**respectively). However, the FMSSI did not differentiate between potentially borer-

tolerant genotypes and those that possess low overall yield potential.  

 

Although a potential selection criterion to differentiate the role of antibiosis and tolerance 

(components of resistance) to C. partellus damage, FPLI showed no relationship with grain 

yield performance under borer-infested and uninfested conditions. However, FPLI has a 

great bearing since the leaf feeding injury reflects antixenosis and/or early stage antibiosis 

to stemborer larvae, which restricts the establishment of the borer larvae on the plant, and 

thus, its population buildup. 

 

Breeding for high grain yield response under borer-infestation is quite difficult, since 

selections based on resistance to stemborer damage often are associated with low grain 

yield potential. Negative association between grain yield and FMSSI has been observed 

under drought conditions in wheat (Fischer and Maurer, 1978), maize (Fischer et al., 1983, 

1989), lentil (Hamdi and Erskine, 1986), and sunflower (Fereres et al., 1986). FMSSI has 

been considered to be of limited value as a selection criterion for measuring tolerance to 

drought in wheat (Clarke et al., 1992) and common bean (White and Singh, 1991; Schneider 

et al., 1997), as it does not differentiate between potential drought-resistant genotypes and 

those possessing overall high yield potential. The use of FMSSI is inherently problematic, as 

it measures tolerance to stemborer rather than grain yield response. Intrinsically low-

yielding genotypes exhibit low FMSSI values, since only a small differential in grain yield 

exists between borer-infested and uninfested conditions. On the other hand, genotypes 

with a large reduction in grain yield may have superior yielding capacity under both 

conditions (White and Singh, 1991; Clarke et al., 1992). Selection indices based solely on 

grain yield response under borer infestation are poor estimators of resistance (Samper, 

1984; Samper and Adams, 1985).  

 

Genotypes with small differences in grain yield performance under borer-infested and 

uninfested conditions had relatively low FMSSI and high GMP and REI values, suggesting 

that selection should not be based on a single index as this will result in the selection of 

genotypes with similar grain yields and low grain yield losses. Strong correlations between 

GMP and REI indicated that both these indices could be used to select for low grain yield 

loss and high productivity. However, the selection of genotypes with high grain yield 

potential and adaptation to borer infestation may be achieved by combining selection 

indices related to the mean grain yield performance under borer-infested and uninfested 

conditions (GMP and REI), and low levels of grain yield loss under borer infestation. 
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Selection based solely on grain yield response under borer infestation is a poor estimator of 

resistance; the resistance may be associated with reduced grain yield potential under un-

infested conditions, as seen inbreeding for drought resistance (Samper, 1984; Samper and 

Adams, 1985). These observations are consistent with those reported for drought tolerance 

in mungbean (Fernandez, 1993), maize (Farshadfar and Sutka, 2003), and durum wheat 

(Golabadi et al., 2006). A significant and positive correlation between grain yield and MPI 

and FSTI indicated that the first dimension separated the high yielding genotypes from the 

low yielding ones, and the second one separated the borer-tolerant and susceptible 

genotypes. Thus, most of the genotypes exhibiting high yield potential and suffering low 

loss in grain yield had high FSTI values, while others had moderate FSTI values, and 

therefore, FSTI could be used to distinguish the high-yielding genotypes under borer 

infested and un-infested conditions. Grain yield reduction due to stemborer damage 

showed a strong association with FMSSI, ABI, SSSI, and TOL. However, GMP, MPI, MRP, REI 

and FSTI were better predictors for grain yield.  These indices can be combined with those 

associated with grain yield performance under borer-infested and uninfested conditions, 

since each type of index assesses different biological mechanisms (e.g. tolerance, 

adaptation, and/or productivity).  

 

The effectiveness of selection indices depends on the borer-induced stress severity, and 

potential yield greatly influences yield response under stemborer infested conditions. 

Similar observations have been reported for drought tolerance (Blum, 1996; Panthuwan et 

al., 2002). It is also important to consider phenological characteristics of sorghum 

genotypes, such as time to flower and maturity, and grain yield performance under borer-

infested and uninfested conditions, when screening and breeding for resistance to C. 

partellus.  
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Fig.1. Relationship between grain yield potential (uninfested conditions) and grain yield response 

(under stem borer infestation) during the rainy (a) and postrainy (b) seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Relationship between grain yield potential (under uninfested conditions) and grain yield loss due to 

stem borer, Chilo partellus damage during the rainy (a) and postrainy (b) seasons. 
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