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Accessing genetic diversity for crop improvement
JC Glaszmann1,2, B Kilian3, HD Upadhyaya4 and RK Varshney2,4,5
Vast germplasm collections are accessible but their use for

crop improvement is limited—efficiently accessing genetic

diversity is still a challenge. Molecular markers have clarified

the structure of genetic diversity in a broad range of crops.

Recent developments have made whole-genome surveys and

gene-targeted surveys possible, shedding light on population

dynamics and on the impact of selection during domestication.

Thanks to this new precision, germplasm description has

gained analytical power for resolving the genetic basis of trait

variation and adaptation in crops such as major cereals,

chickpea, grapevine, cacao, or banana. The challenge now is to

finely characterize all the facets of plant behavior in carefully

chosen materials. We suggest broadening the use of ‘core

reference sets’ so as to facilitate material sharing within the

scientific community.
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Introduction
Genetic resources enable plant breeders to create novel

plant gene combinations and select crop varieties more

suited to the needs of diverse agricultural systems. A

wealth of germplasm is accessible worldwide, with about

6 million accessions held in over 1400 gene banks [1]. Yet

the collections are barely tapped (less than 1%) [2] by

breeders, owing to the scarcity of information on accessions

other than their taxonomic status and geographical origin.

Genome analysis tools provide access to thousands of

polymorphisms, thus considerably broadening our capacity
www.sciencedirect.com
to monitor genetic diversity. Our whole approach to

ecology and biological adaptation has been enriched

[3,4]. Arabidopsis thaliana – the first plant with a sequenced

genome – was used to develop and explore innovative

applications including high-density array re-sequencing

and genome-wide association mapping [5–7,8�]. Given

their economic importance, major crops have also bene-

fited from early investment in genomics. However, crops

are not like wild plants in natural populations, that is, they

have undergone and are still undergoing domestication.

This is a complex anthropogenic process caused by numer-

ous human populations with specific habits and needs [9�].

Over the past five years, an increasing number of studies

have been carried out on the molecular diversity of crop

plants and their wild relatives, illustrating various facets of

the domestication process and suggesting ways of devis-

ing targeted approaches to access the diversity conserved

in ex situ germplasm collections. Soon it will be possible to

determine and compare the whole sequence of hundreds

of accessions. We therefore advocate identification of a

common set of reference materials to help R.E.A.D.
(Represent existing diversity – Enter the whole collection

– Assess phenotypic variation – Dissect trait–gene associ-

ations) germplasm through concerted efforts within the

research community.

Unraveling the drivers of crop evolution
Over the past 12 000 years, humans have sampled,

selected, cultivated, travelled through, and colonized

new environments, thus inducing a plethora of bottle-

necks, drifts, and selection. Plant breeders have acceler-

ated the whole process by selecting preferred genotypes.

Meanwhile, evolution was progressing, some genomes

were being reshuffled and genes occasionally mutated.

Overall, plant domestication tailored plant development

and adaptation to meet the needs of human populations

[10–12,13�,14–16]. Observing the concomitant modifi-

cations of the genome provides clues to the genetic bases

of useful variation.

Global diversity patterns

Molecular characterization is now the favored means to

quantify variation within large germplasm samples. New

DNA sequencing and genotyping technologies provide

the power to interrogate thousands to millions of diag-

nostic polymorphisms, across hundreds to thousands of

genotypes, thus facilitating the analysis of genetic struc-

ture and providing a rationale basis to identify and select

among the underlying lineages (Figure 1a). Such

approaches not only resolve genetic relationships at fine

scale, but they also provide important measures of genetic
Current Opinion in Plant Biology 2010, 13:167–173
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Figure 1

The impact of domestication and selection on genetic diversity patterns among cultivated forms. (a) Fundamental demographic processes contribute

to patterning diversity during domestication from wild ancestors. Multiple domestications can result in separate foundations. Introgression between

wild and cultivated forms is common and can result in selection of favorable wild alleles in cultivated backgrounds. Migration of cultigens with mankind

typically causes drift, except for genes useful in adapting the crop to new environments. New sympatry between distinct lineages can result in

recombination, from a balanced admixture to fine introgression. (b) These processes generate various types of linkage disequilibrium (LD), from global

LD spanning the whole genome (LD1) to admixture LD, which extends to large chromosome segments when the number of generations has been

limited (LD2), and to proximal LD around a gene under selection (LD3). (c) When studied within the specific window of high LD, haplotype networks are

expected to collectively reflect the most significant lineages among domesticates and possibly new branches corresponding to novel variation arising

through recent mutations. Discordance between global structure patterns and allele phylogenies are useful indicators of introgression, possibly under

the action of selection.
divergence between and genetic diversity within the

major genetic clusters that comprise crop germplasm.

Numerous studies have been undertaken with a range

of molecular marker technologies, focusing principally on

nuclear markers. The precision and robustness of the

patterns thus revealed now principally rest on a pertinent

choice of materials, implying that a sufficient number of

accessions are analyzed. DNA markers also allow access

to cytoplasmic (i.e. mitochondrial or chloroplastic) vari-

ation, which is usually maternally inherited and not

affected by recombination. This provides another view

of genetic diversity, which is very helpful in highlighting

the role of hybridization in the overall crop evolution

process.

Molecular diversity studies assess all levels of genetic

structure, ranging from relationships between species

complex components, as illustrated by recent results

on potato [17], tomato [18], wheat [19], or common bean

[20], to the origin of particular genotypes. Musa, which
Current Opinion in Plant Biology 2010, 13:167–173
encompasses banana and plantain crops, illustrates a

species complex from which several very successful clonal

cultivar groups have emerged, whose parentage can now

be inferred through molecular markers [21].

Variations along the genome

Accurate genome coverage makes it possible to detect

associations within the genome and to characterize the

levels of linkage disequilibrium (LD) (Figure 1b).

The selection on ‘domestication genes’, while the rest of

the genome is subjected to drift, can be documented

through selection signatures – usually peaks of localized

LD around a homogenized locus – within the cultivated

gene pool. This has been most successful in maize

[22,23�,24�].

The analysis of rice (Oryza sativa L.), whose cultivated

forms are annual and predominantly self-pollinating, has

led to in-depth descriptions of genetic diversity among
www.sciencedirect.com
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landraces, while highlighting the impact of domestication

in a highly structured species. This has prompted a

number of very interesting reviews [25–28]. The best

documented examples suggest that domestication has

been built on diffuse selection of new alleles in different

lineages, and on the mobilization within single lineages

(e.g. indica) of domestication alleles that emerged in

another lineage (e.g. japonica) through fine introgression

(reviews [25,26,28,29,30�]). An alternative scenario would

consist of a diversification essentially through the intro-

gression of a major domestication gene into diverse wild

forms [27]. The spread of domestication alleles by means

of introgression could be a general phenomenon in cereal

domestication [31].

Traits outside the domestication syndrome but under

targeted human selection, such as fragrance in rice, are

subjected to the same phenomenon [32,33]. Other illus-

trations of the occurrence of introgression, highlighted by

single nucleotide polymorphisms (SNPs) of 20 rice culti-

vars for more than a hundred thousand loci [34��], include

several examples of large genome segments, spanning

several Mb, introgressed between varietal groups in all

directions, including the group centered around the ‘Aus’

varieties [35]. In species with longer reproductive cycles,

molecular data have revealed germplasm ‘compartments’

whose specific history determines important internal fea-

tures such as LD. Cacao (Theobroma cacao L.) [36�] is an

example of a fruit tree species where one of the major

compartments typically displays admixture-derived LD

over 15–20 cM. These examples illustrate cases where

admixture and introgression are important in the domes-

tication process and can be used for genetic analysis using

extant materials.

Local sequence variation

One growing form of molecular characterization is allele

re-sequencing in diverse materials. Local sequence vari-

ation can be finely interpreted within small genetic dis-

tance windows, where there is sequence variation but

little or no confounding recombination. The order of

mutation appearance can thus be inferred, while dis-

tinguishing between ancient, if not ancestral, and recent

haplotypes (Figure 1c). These phylogenies can be indi-

vidually affected by specific drift and selection history,

but they collectively depict the structure of a crop’s

ancestry. They can also highlight variation emerging

via positive selection.

Recent analyses of specific genes of proven or sus-

pected function involved in flower, fruit, and seed

development in tomato [37�], grapevine [38], barley

[39�,40], rice [41�,42–44], and sorghum [45�] or plant

adaptation to specific constraints in maize [46], rice

[47��], and wheat [48�] have revealed multiple

examples of mutations that may have occurred

and been selected during domestication. Adaptive
www.sciencedirect.com
neo-diversity undoubtedly superimposes on ancestral

diversity inherited from wild relatives.

Ecogeographical (environmental, ethnological, etc.)

information concerning the materials (ideally included

in the passport information in germplasm banks) is essen-

tial for locating and identifying unique variants for

specific adaptation. This was recently illustrated with

wheat Pm3 alleles uncovered through the Focused Identi-

fication of Germplasm Strategy (FIGS) applied using

molecular amplification from a proven disease resistance

gene [49��], that is, allele mining using the known mol-

ecular structure of a locus.

With the growing body of gene function hypotheses, an

increasing number of genes will be analyzed and allele

phylogenies compared to the global population structure.

This will shed new light on the domestication process,

including the wild-to-domesticated transition and the

differentiation between domestication lineages [31,50,

51], as well as on specific pressures affecting gene evol-

ution.

Organizing access to diversity
Access to genetic diversity contained in large germplasm

collections continues to be a significant challenge. The

core collection concept [52] was developed 25 years ago to

facilitate access to the diversity available in these large

collections. The idea is to identify a representative man-

ageable sample upon which analysis will be concentrated

before re-exploring broader ranging materials. The ration-

ale underlying core collections has been thoroughly dis-

cussed [53�] and for many species has led to germplasm

subsets containing 3000 accessions or more. In practice,

however, core collections composed of thousands of acces-

sions are too large for use in breeding programs, and as a

consequence breeders have preferred to focus on dozens to

hundreds accessions. The result has been increased incorp-

oration of useful genetic and phenotypic diversity into

cultivated material, as illustrated for example in rice

[54], chickpea [55�], and groundnut [56]. ‘Mini core’

approaches focusing on only 1% of the collection [57,58]

when whole collections are very large have been imple-

mented for seven important crops at the International Crop

Research Institute for the Semi-Arid Tropics (ICRISAT).

The availability of molecular markers offers an opportunity

for adjusting the size, the representativeness and the

general quality of ‘core’ samples.

Accessible core reference sets

We suggest implementing the core collection concept

through ‘core reference sets’. As argued by AHD Brown,

‘‘One aim of the core is to build up a body of information

on a restricted ‘reference’ set of lines’’ [53]. A crop core

reference set is to be understood as a set of genetic stocks that
are representative of the genetic resources of the crop and are used
by the scientific community as a reference for an integrated
Current Opinion in Plant Biology 2010, 13:167–173



170 Genome studies and molecular genetics - Plant biotechnology

Figure 2

Concepts proposed for organized access to genetic diversity. Existing

diversity is the ultimate resource. The part accessible from ex situ

collections is distributed among numerous accessions gathered in base

collections exceeding the observation capacity of the community. The

core collection concept can be used to focus broad surveys using

molecular markers, which then provide complementary information for

identifying a set of manageable size that represents the diversity thus

described and can be distributed as a core reference set; currently, the

option adopted is in the 50–500 range. This makes it a material of choice

for contributing to association panels to assess diverse phenotypes and

relate traits to genes and alleles through association studies. It should be

accompanied by a nucleus sample that any experiment addressing and

characterizing diversity could incorporate.
characterization of its biological diversity. The value of a

formalized reference set will emerge from its use by the

largest number of scientists. Ideally it will be adopted as a

reference, and its description will capitalize on successive

efforts and serve to integrate data. This community is

potentially very broad, as the capacity to finely charac-

terize materials is extremely varied and evolves with the

advent of new technologies. Moreover, biologists may be

interested first in a crop, but also in a trait, or a gene

family, for example. However, the chance of making good

biological sense of materials will certainly be greater

when there is substantial data on this material to be

tapped.

This requires a collective effort from the community, as

advocated by Zhu et al. [59] and illustrated in barley

[60,61�]. Indeed, for a given crop, the most relevant base

should be sampled, which generally implies more than a

single collection. The Generation Challenge Programme

(GCP) has devoted much support to developing such core

reference sets from the findings of collective studies.

Composite (i.e. derived from several collections) core
Current Opinion in Plant Biology 2010, 13:167–173
collections have been analyzed with molecular markers

and reduced to potential core reference sets of 50–500

accessions depending on the crop. The materials must be

transformed into genetic stocks that have been purified

(homogeneous/stabilized) and roughly phenotyped to

facilitate practical choices for comparative phenotyping

studies. Furthermore, they must be publicly, quickly, and

cheaply available. This is currently the case for all

resources managed by CGIAR-hosted germplasm cen-

ters, which are best positioned to deal with the pressing

constraints of intellectual property legislation and quar-

antine regulations.

From core to global diversity

The core reference set has diverse applications (Figure 2).

It provides a representation of the major components of

genetic structure, which any assessment must relate to for

proper interpretation. It provides a means for entering the

broader collection, using accurate attached passport data

to establish correlations and guide further exploration. It

helps assess donors of genes and alleles, by giving clues to

phenotype comparability, sample structure descriptions,

meaningful checks for breeders, and known extreme

phenotypes. It helps dissect the genetic control of trait

variation through contributions to panels formed for

association studies, thus paving the way for further tar-

geted diversity mining.

The core reference set is a flexible concept that welcomes

updates and adjustments under close monitoring by the

community. It is viewed as a process facilitating a prac-

tical trade-off between the wish to always include an

absolute reference (here represented as the ‘nucleus

sample’), the wish to cover the broadest range of

materials, and the importance of adjusting the materials

in relation to the practical constraints or specific purpose

of the study which they are used for. The choice of the

materials can be guided by the genotypic and phenotypic

information already accumulated.

A better understanding of core diversity is expected to

encourage the use of broader ranging germplasm derived

from existing ex situ collections or from new in situ
analyses. Access to rare alleles will require renewed

searches in large collections. Moreover, in many cases,

populations of materials are still standing in and around

fields, in evolving environments, with people caring for

them. The new analytical power of ‘ecological’ genomics

can now be used for in situ collection of information and

materials, similarly to what is currently under way for

sorghum and pearl millet in Africa [62,63,64�,65,66].

Conclusion
Genome studies applied to crop germplasm shed light on

the role of selection, foundations, migrations, and intro-

gressions on population patterns, genomic associations,

and genic diversity. Thanks to the sharply declining cost
www.sciencedirect.com
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of genotyping technologies, it is now possible to make

surveys that can be equally broad and whole-genome

oriented [67�], or targeted on specific genes of suspected

function. The history and diversity of crops can then be

analyzed as are those of human populations [68,69�,70�].
Such new information can efficiently foster those essen-

tial interactions – pioneered by Jack Harlan [71] – with

the fields of archeology and ethnobotany so as to gain

greater insight into domestication, while identifying the

main historical benchmarks and biological drivers. Fac-

tors limiting the practical use of germplasm have clearly

become tied to their proper phenotypic assessment. The

use of shared core reference sets of materials can help the

research community to focus studies and be more effi-

cient. Materials specifically adapted to local constraints

and uses will not all be present in reduced samples.

Renewed sampling within and outside existing collec-

tions will still be necessary. The adaptive potential of

these materials can also be grasped through accurate

description of their environments of origin. The avail-

ability and quality of ecogeographical/passport infor-

mation will be the key to a more ecological approach

to germplasm management. Together, genome studies

and molecular genetics will make the future of ‘germ-

plasm science’ very exciting.
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