
Figure 2. Grain yield performance of pearl millet hybrids made

between three topcross pollinators and male-sterile line ICMA

92777 in a range of summer season drought nursery moisture

environments, ICRISAT 2001.

• A random contro l : a random sample f rom w i th in the

mapping populat ion (to constitute a random TCP) .

The three TCPs were subsequently used as pol l inators

on 12 A- l ines (male-steri le l ines) to produce topcross

hybrids, as shown in Figure 1. Compared to hybrids of the

phenotype and random TCPs, the M A S T C P hybrids had

better drought tolerance indices and grain yields (F ig . 2)

in the drought-stress environments, although they had a 

lower yields in the irrigated control environment. Selecting

s imply on the basis of f ield performance under drought

was ineffective, but M A S was able to produce improvement

in this character, wh ich is notor iously d i f f i cu l t to breed

for using conventional methods.
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At a t ime when most of the wor ld sti l l v iewed molecular

technology as a luxury , for use on ly w i t h major staple

crops, a D F I D - J I C - I C R I S A T project anticipated as early

as 1991 the appl icat ion of molecular diagnostics in the

breeding of orphan crops for developing countries.

The f irst molecular marker-based genetic l inkage map

of pearl mi l le t [Pennisetum glaucum (L.) R. Br.] was bui l t

w i th restriction fragment-length polymorphisms (RFLPs) ,

the marker system of choice in the early 1990s (L iu et al .

1994). This map has served as the base for subsequent

pearl mi l let marker-based studies at J1C (Busso et al .

1996, 2000; Devos and Gale 2000; Devos et al . 2000; L i u

et a l . 1996, 1997). The R F L P f ramework in the consensus

map now available (F ig . 1, see pages 18 -19 of this issue)

is based on 173 (out of 500 available) mapped PstI

genomic clones f r om inbred l ine T i f t 2 3 D B , wh ich has

now become the base genotype for pearl mi l le t molecular

genetics. The clones are available as D N A or, in some

cases, as D N A sequences, and have been distr ibuted

freely wor ldwide .

I C R I S A T was able to bu i ld one of the very early

molecular marker faci l i t ies in the C G I A R system in the

early 1990s, and has used this faci l i ty for pearl mi l le t

diversi ty assessment (Bhattacharjee et al . 2002), mapping

populat ion skeleton map construct ion (Azhaguvel 2 0 0 1 ;

Kolesnikova-Allen 2001), and marker-assisted backcrossing

(Sharma 2001). The markers and maps have also been

used at C A Z S and IGER in the U K , Universi te d 'Orsay in

Paris, and T i f ton in the U S A , to map and tag genes

contro l l ing important traits in the pearl mi l le t crop. These

include downy mi ldew resistance (Jones et al . 1995 and

2002; Azhaguvel 2 0 0 1 ; Ko lesn ikova-Al len 2001), fo l iar

disease resistance (Morgan et al. 1998), drought tolerance

(Yadav et a l . 2002), plant height (Azhaguvel 2001),

f lower ing t ime, and the mul t ip le phenotypic changes mat

occurred when pearl mi l le t was domesticated - the so-

called 'domestication syndrome' (Poncet et al. 2000, 2002).

Molecu lar marker technologies have moved on,

part icular ly w i th the development of the polymerase

chain reaction (PCR) that al lows the rapid and inexpensive

ampli f icat ion of small quantities of D N A precisely targeted

to known regions. The ampl i f icat ion commences f rom

small lengths of D N A of known sequence known as primers.
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Depending on the pr imers, different segments of D N A are

ampl i f ied in the PCR reaction. The program was quick to

develop the first microsatel l i te markers (simple sequence

repeats - SSRs) in pearl mi l le t (A l lou is et al. 2 0 0 1 ; Qi et

al. 2001). Some 100 markers, of wh ich 60 are mapped

(Fig . 1), are now available either as D N A primers for

laboratories wi thout the faci l i ty to make them themselves,

or as D N A sequences of the f lank ing regions of the SSR.

A si lver-staining detection system has been developed

that is more suited for SSR applications in developing

countries because it does not require the use of

radioactive label ing. We a im to continue development to

about 200 SSRs but are already anticipating the next

technological development, single nucleotide po lymorph ism

(SNPs) for application in pearl mi l le t (F ig. 2), wh ich can

also be handled by PCR.

The uptake of molecular marker technology at I C R I S A T

is central to the program, not only for applications in the

breeding program, but also as a developing country-based

test bed, and as an intermediate technology for further

transfer to commerc ia l and national laboratories in India

and Af r i ca . Recent wo rk w i th the new SSR markers has

determined that op t imum work ing condit ions - for

example, ampl i f icat ion regimes and M g
+
 levels - can vary

markedly w i th local ly supplied chemical resources.

The development of the pearl mi l le t maps and markers

has provided a nucleus around which other mil let resources

and technologies have been developed. A m o n g these is

the first pearl mi l let bacterial art i f ic ial chromosome (BAG)

library (Al louis et al. 2001). This library is necessary for

experiments that ident i fy the precise locat ion of part icular

pearl mi l le t genes in order to be able to clone them.

The very first UK plant genome database is Mi l le tGenes,

wh ich is based at JIC. Mi l le tGenes was init iated w i th

D F I D funding and has now been incorporated into the

BBSRC- funded UK CropNet programme. Mi l le tGenes

collates all genome related data - maps, markers, D N A

sequences and images - on pearl mi l le t , f inger mi l le t

(Eleusine coracana Gaertn.), foxta i l mi l le t [Setaria italica 

(L.) P. Beauv.], and tef [Eragrostis tef (Zucc.) Trotter], a 

related crop of importance in Ethiopia. A m o n g the new

technologies is genetic transformation of pearl mi l le t ,

achieved both in a small PSP-funded project at Bangalore

in India, in an E U - I N C O project at the Univers i ty of

Hamburg , Germany, and at Foodtek in Pretoria, South

Af r i ca .

Integration of the Pearl Millet Map in the Grass

Consensus Map

Today we know quite a lot about the 2,400 m i l l i on base-

pair Pennisetum glaucum genome. The seven chromosomes

that make up the haplo id complement are we l l mapped

and have an unusual prof i le in wh ich recombinat ion is

except ional ly biased towards the chromosome ends. As

wi th other 'd ip lo ids ' we are detecting several ancient

dupl icat ions in the genome, and some 2 8 % of the R F L P

probes map to more than one locus. Some of the l inkage

groups now include the chromosome ends (the telomeres),

although al ignment w i th the cytological map has st i l l to

be achieved.

These results show complex relationships, w i th in

wh ich can be detected the now classical evolut ionary

translocations that define the Andropogonae group w i th in

the grasses. These al ignments are quite adequate to a l low

the rice genomic sequence, wh ich is now becoming

available, to be applied directly to pearl mil let improvement.

A comparative analysis of the small foxta i l mi l le t genome

(C=450 M b ) , a member of the Paniceae tr ibe wh ich also

includes pearl mi l le t , w i t h r ice (C=400 M b ) revealed a 

simple relationship between the chromosomes of the two

species (Devos et al . 1998). The larger pearl mi l le t

genome, on the other hand, appears to have undergone

many rearrangements relat ive to fox ta i l mi l le t and r ice

(F ig . 3, see color plate on page 21 of this issue) w i th the

maps of r ice, al though gene orders have remained

conserved w i th in each of the translocated segments

(Devos et a l . 2000). Most of these rearrangements are

l ike ly to be specific to pearl mi l le t . However, at least two

could be ident i f ied that are common to al l Panicoideae 

species analysed to date. Nevertheless, since both foxta i l

and pearl mi l le t belong to the same tr ibe, it is clear that

some species undergo and f ix rearrangements more

readi ly than others, and that the number of gross

structural rearrangements alone is not a measure for

evolut ionary divergence. The comparat ive data further

demonstrated the presence of a major dupl icat ion between

F i g u r e 1 (see pages 1 8 - 1 9 o f th is issue) . U p d a t e d J I C consensus m a p f o r pea r l m i l l e t s h o w i n g d i s t r i b u t i o n o f R F L P , S S R a n d i s o z y m e

l o c i across seven l i n k a g e g r o u p s and a l i n k a g e f r a g m e n t . Because th i s i s a consensus m a p d e r i v e d f r o m severa l m a p p i n g p o p u l a t i o n s , no t

a l l m a r k e r s are m a p p e d aga ins t o n e a n o t h e r and t h e r e f o r e s o m e m a r k e r s are p o s i t i o n e d w i t h less p r e c i s i o n t han o the rs . B l a c k bars t o the

r i g h t h a n d s ide and g reen bars t o the l e f t h a n d s ide o f each l i n k a g e g r o u p i n d i c a t e the l i m i t s o f p r e c i s i o n o f p l a c e m e n t o f s o m e m a r k e r s .

T h e c h r o m o s o m e s o f pea r l m i l l e t ( P e n n i s e t u m glaucum, 2n = 2x = 14) are n o w w e l l m a p p e d w i t h r e s t r i c t i o n f r a g m e n t l e n g t h

p o l y m o r p h i s m ( R F L P i n b l a c k ) , sequence t agged si te ( S T S i n red ) and m i c r o s a t e l l i t e ( S S R i n g reen ) m a r k e r s . T h e m a r k e r s are used b o t h

b y b reeders f o r m a r k e r - a i d e d se lec t i on o f genes c o n t r o l l i n g a g r o n o m i c t ra i t s , a n d a l so b y researchers f o r d i s c o v e r i n g n e w a g r o n o m i c

genes and f o r m a p - b a s e d gene i s o l a t i o n .
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