Figure 2. Grain yield performance of pearl millet hybrids made between three topcross pollinators and male-sterile line ICMA 92777 in a range of summer season drought nursery moisture environments, ICRISAT 2001.

- A random control: a random sample from within the mapping population (to constitute a random TCP).

The three TCPs were subsequently used as pollinators on 12 A-lines (male-sterile lines) to produce topcross hybrids, as shown in Figure 1. Compared to hybrids of the phenotype and random TCPs, the MAS TCP hybrids had better drought tolerance indices and grain yields (Fig. 2) in the drought-stress environments, although they had a lower yields in the irrigated control environment. Selecting simply on the basis of field performance under drought was ineffective, but MAS was able to produce improvement in this character, which is notoriously difficult to breed for using conventional methods.

Acknowledgments. This document is an output from a project (Plant Sciences Research Programme R7375) funded by the UK Department for International Development (DFID) and administered by the Centre for Arid Zone Studies (CAZS) for the benefit of developing countries. The views expressed are not necessarily those of DFID.

References

Yadav RS, Hash CT, Bidinger FR and Howarth CJ. 1999. QTL analysis and marker-assisted breeding of traits associated with drought tolerance in pearl millet. Pages 211-223 in Genetic improvement of rice for water-limited environments (Ito O, O'Toole J and Hardy B, eds.), Los Banos, Philippines: International Rice Research Institute (IRRI).

New Molecular Marker Technologies for Pearl Millet Improvement

MD Gale1*, KM Devos1, JH Zhu1, S Allouis1, MS Couchman1, H Liu1, TS Pittaway1, XQ Qi1, M Kolesnikova-Allen2 and CT Hash2 (1. John Innes Centre, Norwich, UK; 2.ICRISAT, Patancheru 502 324, Andhra Pradesh, India)

*Corresponding author: mike.gale@bbsrc.ac.uk

At a time when most of the world still viewed molecular technology as a luxury, for use only with major staple crops, a DFID-JIC-ICRISAT project anticipated as early as 1991 the application of molecular diagnostics in the breeding of orphan crops for developing countries.

The first molecular marker-based genetic linkage map of pearl millet [Pennisetum glaucum (L.) R. Br.] was built with restriction fragment-length polymorphisms (RFLPs), the marker system of choice in the early 1990s (Liu et al. 1994). This map has served as the base for subsequent pearl millet marker-based studies at JIC (Busso et al. 1996, 2000; Devos and Gale 2000; Devos et al. 2000; Liu et al. 1996, 1997). The RFLP framework in the consensus map now available (Fig. 1, see pages 18-19 of this issue) is based on 173 (out of 500 available) mapped PstI genomic clones from inbred line Tift 23DB, which has now become the base genotype for pearl millet molecular genetics. The clones are available as DNA or, in some cases, as DNA sequences, and have been distributed freely worldwide.

ICRISAT was able to build one of the very early molecular marker facilities in the CGIAR system in the early 1990s, and has used this facility for pearl millet diversity assessment (Bhattacharjee et al. 2002), mapping population skeleton map construction (Azhaguvel 2001; Kolesnikova-Allen 2001), and marker-assisted backcrossing (Sharma 2001). The markers and maps have also been used at CAZS and IGER in the UK, Universite d'Orsay in Paris, and Tifton in the USA, to map and tag genes controlling important traits in the pearl millet crop. These include downy mildew resistance (Jones et al. 1995 and 2002; Azhaguvel 2001; Kolesnikova-Allen 2001), foliar disease resistance (Morgan et al. 1998), drought tolerance (Yadav et al. 2002), plant height (Azhaguvel 2001), flowering time, and the multiple phenotypic changes that occurred when pearl millet was domesticated - the so-called 'domestication syndrome' (Poncet et al. 2000, 2002).

Molecular marker technologies have moved on, particularly with the development of the polymerase chain reaction (PCR) that allows the rapid and inexpensive amplification of small quantities of DNA precisely targeted to known regions. The amplification commences from small lengths of DNA of known sequence known as primers.
The chromosomes of pearl millet (Pennisetum glaucum, 2n = 2x = 14) are now well mapped with restriction fragment length polymorphism (RFLP in black), sequence tagged site (STS in red) and microsatellite (SSR in green) markers. The markers are used both by breeders for marker-aided selection of genes controlling agronomic traits, and also by researchers for discovering new agronomic genes and for map-based gene isolation.

Integration of the Pearl Millet Map in the Grass Consensus Map

Today we know quite a lot about the 2,400 million base-pair *Pennisetum glaucum* genome. The seven chromosomes that make up the haploid complement are well mapped and have an unusual profile in which recombination is exceptionally biased towards the chromosome ends. As with other ‘diploids’ we are detecting several ancient duplications in the genome, and some 28% of the RFLP probes map to more than one locus. Some of the linkage groups now include the chromosome ends (the telomeres), although alignment with the cytological map has still to be achieved.

These results show complex relationships, within which can be detected the now classical evolutionary translocations that define the Andropogonaceae group within the grasses. These alignments are quite adequate to allow the rice genomic sequence, which is now becoming available, to be applied directly to pearl millet improvement. A comparative analysis of the small foxtail millet genome (C=450 Mb), a member of the *Panicaceae* tribe which also includes pearl millet, with rice (C=400 Mb) revealed a simple relationship between the chromosomes of the two species (Devos et al. 1998). The larger pearl millet genome, on the other hand, appears to have undergone many rearrangements relative to foxtail millet and rice (Fig. 3, see color plate on page 21 of this issue) with the maps of rice, although gene orders have remained conserved within each of the translocated segments (Devos et al. 2000). Most of these rearrangements are likely to be specific to pearl millet. However, at least two could be identified that are common to all *Panicoidaeae* species analysed to date. Nevertheless, since both foxtail and pearl millet belong to the same tribe, it is clear that some species undergo and fix rearrangements more readily than others, and that the number of gross structural rearrangements alone is not a measure for evolutionary divergence. The comparative data further demonstrated the presence of a major duplication between

Figure 1 (see pages 18-19 of this issue). Updated JIC consensus map for pearl millet showing distribution of RFLP, SSR and isozyme loci across seven linkage groups and a linkage fragment. Because this is a consensus map derived from several mapping populations, not all markers are mapped against one another and therefore some markers are positioned with less precision than others. Black bars to the right hand side and green bars to the left hand side of each linkage group indicate the limits of precision of placement of some markers. The chromosomes of pearl millet (*Pennisetum glaucum*, 2n = 2x = 14) are now well mapped with restriction fragment length polymorphism (RFLP in black), sequence tagged site (STS in red) and microsatellite (SSR in green) markers. The markers are used both by breeders for marker-aided selection of genes controlling agronomic traits, and also by researchers for discovering new agronomic genes and for map-based gene isolation.