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SUMMARY

This article deals with the problem of obtaining efficient designs for 2-colour microarray experiments where same set of
genes are spotted on each array. In the literature, optimality aspects of designs for microarray experiments have been investigated
under a restricted model involving array and variety effects. The dye effects have been ignored from the model. If dye effects
are also included in the model, then the structure of the design becomes that of a row-column design where arrays represent
columns, dyes represent rows and varieties represent treatments. Further, the array effects in microarray experiments may be
taken as random {see e.g. Kerr and Churchill (2001a), Lee (2004)}. For obtaining efficient row-column designs under fixed/
mixed effects model, exchange and interchange algorithms of Eccleston and Jones (1980) and Rathore et al. (2006) have been
modified. The algorithm has been translated into a computer program using Microsoft Visual C++. The algorithm is general in
nature and can be used for generating efficient row-column designs for any 2 < k£ < v, where v is the number of treatments
(varieties) and 4 is number of rows (dyes). Here, the algorithm has been exploited for computer aided search of efficient row-
column designs for making all possible pairwise treatment comparisons for k£ = 2 (2-colour microarray experiments) in the
parametric range 3 <v< 10, v<bh<v(v—1)2; 11 v <25 h=vand (v, b) = (11, 13), (12, 14), (13, 14) and (13, 15), where
b is the number of arrays (columns). Efficient row-column designs obtained under fixed effects model have been compared
with the best available designs and best even designs. 45 designs have been obtained with higher efficiencies than the best
available designs and even designs. The robustness aspect of efficient row-column designs obtained under a fixed effects model
and best available designs were investigated under a mixed effects model. Strength of the algorithm for obtaining row-column
designs for 3-colour microarray experiments has been demonstrated with the help of examples.

Keywords: Microarray experiments, Fixed/Mixed effects model, Row-column designs, A-efficiency, D-efficiency.

1. INTRODUCTION investigation, we consider a situation where same set
of genes is spotted on each array in microarray
experiments. Therefore, genes/gene specific effects (G,
AG, DG, VG) are orthogonal to global effects (4, D, V).
Optimality aspects of designs for microarray
experiments can be studied leaving gene specific effects

from the model, i.e., by taking only array, dye and

In microarray experiments there are four
experimental factors viz. array (4), dye (D), variety (V)
and gene (G). These four experimental factors give rise
to2=16 possible experimental effects. Out of these
16 possible experimental effects, seven effects viz.

array effects (4), dye effects (D), variety effects (V),
gene effects (G), array-gene interaction (4G), dye-gene
interaction (DG), variety-gene interaction (VG) are of
main interest to the experimenter. In the present
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variety effects in the model. Designs that are efficient
under the model containing global (4, D, V) effects are
also efficient under the model containing both global
and gene specific effects.
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In 2-colour microarray experiments only two
varieties labelled with two different dyes can be
accommodated on a single array. Therefore, arrays may
be considered as blocks of size 2 each. In the literature,
attempts have been made to obtain optimal/efficient
block designs of block size 2 for microarray
experiments. Optimal/efficient block designs for
2-colour microarray experiments available in the
literature have been obtained ignoring the dye effects
from the model. If dye effects are included in the model,
then the design becomes a row-column design with
arrays representing columns, dyes representing rows
and varieties representing the treatments. A design
which is efficient under a restricted model involving
array and variety effects may not be efficient under a
3-way classified model involving array, dye and variety
effects. To make the exposition clear, consider the
following example. For v = 6 and b = §, the most
efficient design obtained by taking array and variety
effects in the model (Nguyen and Williams 2005) is

Array

D1 1 2 3 4 5 6 7 8

Dyel | 3|1 |1 ]6]| 4|5 |2]2

Dye 2 5 6 3 2 1 4 4 3

In design D1, the dye effects are not orthogonal
with respect to varieties because all the varieties are not
labelled with both the dyes in same proportion. For
example, varieties 1 and 2 are labelled twice with
Dye 1 and labelled once with Dye 2, whereas varieties
3 and 4 are labelled once with Dye 1 and labelled twice
with Dye 2. Varieties 5 and 6 are labelled once with
both dyes 1 and 2. D1 can be assumed as row-column
design with 6 treatments arranged in 2 rows (dyes) and
8 columns (arrays). The average variance of the best
linear unbiased estimator (BLUE) of all the possible
elementary contrasts of varieties under a 2-way
classified model involving only array and variety effects
in the model (ignoring the row classification) is
3.75000%. On the other hand, the average variance
under a 3-way classified model involving array, dye and

variety effects in the model is 3.85710%. A
corresponding design (D2) for this situation is

Array

D2 1 2 3 4 5 6 7 8

Dyel | 1 | 5|2 |5|3]|4|6]4

Dye2 | 4 |1 | 4]2]|5]|3]|5]6¢6

Design D2 gives average variance of the BLUE of
all the possible elementary contrasts of varieties under
both 2-way and 3-way classified model as 3.8333 o
This happens because dye versus variety classification
is orthogonal and, therefore, the information matrix for
inferring on variety effects is same for both 2-way and
3-way classified data. The average variance for 2-way
classified data using D2 is larger than that obtained
from D1, but the average variance for 3-way classified
data using D2 is smaller than that obtained using D1.
Hence, D1 is more efficient than D2 under block design
set up but D2 is more efficient than D1 under a row-
column set up.

From the above examples, it is clear that obtaining
efficient designs by considering array, dye and variety
effects in the model i.e. under a row-column set up is
important and needs attention. In this article the focus
of the study is on optimality aspects of designs for
microarray experiments under fixed effects model
containing array, dye and variety effects i.e. under a
row-column design set up. Further, in a 2-colour
microarray experiment only two varieties can be
accommodated on a single array. In that sense the arrays
are incomplete blocks and varieties versus arrays
classification is non-orthogonal. In view of this, Kerr
and Churchill (2001a), Wolfinger et al. (2001) and Lee
(2004) emphasized that array effects should be taken
as random, and then the fixed effects model becomes
a mixed effects model. It is indeed possible that a design
optimal/efficient under fixed effects model may not be
optimal/efficient under a mixed effects model.
Therefore, there is a need to generate optimal/efficient
row-column designs under a mixed effects model by
taking array effects as random.
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We begin by giving some preliminaries in Section
2. In Section 3 we give lower bounds to A- and D-
efficiency of row-column designs both under fixed
effects and a mixed effects model. This is used to obtain
robust row-column designs optimal/efficient under
fixed effects model as well as under a mixed effects
model. In Section 4, we modify the exchange and
interchange algorithm of Jones and Eccleston (1980)
and Sarkar et al. (2007) to obtain efficient row-column
designs. The proposed algorithm generates efficient
row-column designs for any v, b= v and 2 < k <v. But
in this article we have used this algorithm to generate
efficient/optimal row-column designs for any v, b > v
and k£ = 2. The algorithm has been developed in Visual
C++ code and computer aided search has been made
for obtaining efficient row-column designs in the
parametric range 3 <v < 10; v< b < v (v — 1)/2; and
(v, b) = (11, 13), (12, 14), (13, 14) and (13, 15).
Section 5 is devoted to a discussion of the efficient row-
column designs generated.

In the literature, three catalogues of block designs
for microarray experiments are available. Using these
catalogues, Sarkar and Parsad (2006) gave a
comprehensive review of designs for 2-colour
microarray experiments and prepared a catalogue of 562
most A-efficient designs available in the literature.
Sarkar et al. (2007) developed an algorithm for
obtaining efficient block designs for 2-colour
microarray experiments. Wit ez al. (2005) also studied
near-optimal designs as well as interwoven loop designs
for dual channel microarray experiments using
simulated annealing for which no catalogue is available.
But it appears that perhaps no serious effort has been
made to obtain optimal/efficient row-column designs
for 2-colour microarray experiments. Bailey (2007)
obtained efficient designs for 2-colour microarray
experiments under a block design set up and suggested
that there is no need to use a design in which each dye
appears equally often. Instead, an efficient row-column
design should be used. In the present investigation, to
study the performance of best available block designs
in the literature in a row-column set up, the block
contents were rearranged in a row-column set up such
that varieties are most balanced with respect to dyes and
their lower bounds to A-efficiencies were obtained in
a row-column set up. These designs are then compared
with the efficient designs obtained through the proposed
algorithm. The results are given in Section 5.1.

Using the proposed algorithm optimal/efficient
row-column designs with two rows have been obtained
under a fixed effects model. Since array effects in
microarray experiments need to be taken as random, it
is desirable to obtain optimal/efficient designs under a
mixed effects model. It may not be possible always to
obtain a design for a mixed effects model because it
would require the knowledge of p, a function of error
variance and inter column variance, which is generally
unknown. An alternative is to use an optimal/efficient
design obtained under a fixed effects model in the
mixed effects model. But it is indeed possible that a
design which is optimal/ efficient under fixed effects
model may not remain optimal/efficient under a mixed
effects model. Therefore, there is a need to investigate
if the designs optimal/efficient under fixed effects
model remain optimal/efficient under a mixed effects
model when array effects are considered as random.
Further, if one looks at expression (6) in Section 3, it
becomes clear that lower bounds to A- and D-
efficiencies of row-column designs under a mixed
effects model depend upon p = 0'2/(0'2 + ko% ), a
function of error variance and inter column variance,
0 < p<1. p=0 corresponds to the fixed effects model.
In the present investigation, the algorithm generates an
efficient row-column design under a fixed effects model
(p=0). Then to study the behavior of the A- and D-
efficiencies of the efficient design obtained under fixed
effects model, the lower bounds to A- [D-] efficiencies
were obtained under a mixed effects model for different
values of 0 < p < 0.9. The per cent coefficient of
variation (CV) of these values are then computed. [f CV
is small, then we say that the design is robust against
different values of p and can be used for any value of
p otherwise not. The robustness aspects of the designs
obtained are then compared with the robustness of best
available designs in Section 6.

The above discussion has been restricted to
2-colour microarray experiments. Recently microarray
experiments for 3 and 4 dyes have also been proposed
in the literature (Woo ef al. 2005). The strength of the
algorithm to obtain efficient row-column designs for
3-colour microarray experiments under a fixed effects
model has been demonstrated with the help of some
examples in Section 7. We begin with some
preliminaries in Section 2.
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2. PRELIMINARIES OF ROW-COLUMN
DESIGNS

In this section, we describe some preliminaries of
row-column designs under fixed/mixed effects model,
which would be useful for a 2-colour microarray
experiment run in a row-column design set up involving
arrays, dyes and varieties effects, with arrays as
columns, dyes as rows and varieties as treatments..

Consider a row-column design d with v treatments,
k rows and b columns, vector of row sizes K" = (ky,...,
kp), vector of column sizes b” = (by,...,b;) and vector
of replication numbers r" = (rq,...,7,). We denote by
R = diag(ry,...r,), K = diag(ky,...,kp) and
B = diag(by, .. ..by) diagonal matrices with diagonal
elements as elements of vectors r, k and b respectively.
With each row-column design are associated block
designs that are obtainable by considering rows
(columns) as blocks ignoring columns (rows). Let
M = ((mp)y sc ks N = ((1p))y 5 p» and W = (W) x &
denote treatments versus rows, treatments versus
columns and rows versus columns incidence matrices,
respectively. For hA=1,...,vii=1,...,kandj=1,...b,
the nonnegative numbers m1,(ny;) denote the number of
times treatment 4 appears in the i™ row (]'th column).
wj; = 0 or 1 indicates empty or nonempty nodes of
b X k lattice according to assignment or non-assignment
of a treatment to the cell (j, 7). Consider the additive
homoscedastic 3-way classified linear model,

y=ul+At+ DB+Dyy +¢ (1)

where n be the total number of observations, y is
n X 1 vector of observations, # is general mean effect,
Tis v X 1 vector of treatment effects, B is b x 1 vector
of column effects, v is k£ X 1 vector of row effects, € is
the n X 1 vector of error components, € ~ [ID(0, ozln),
where o unknown, 1 is 7 X 1 unit vector, A" isn X v
design matrix for treatment effects, Di is n X b design
matrix for column effects and D’2 is n X k design matrix
for row effects.

Using the principle of ordinary least squares, the
coefficient matrix of reduced normal equations for
estimating the linear functions of treatment effects for
general row-column design under fixed effects model
(1) is

C=R-NK'N - (M- NK'W)B- WK 'wW)
M - WK 'N) (2a)

C-matrix in (2a) is the general form of C-matrix when
rows versus column classification is non orthogonal i.e.
some of the cells of b X k lattice are empty. But when
rows are orthogonal to columns and the treatments
versus rows and treatments versus columns
classifications are binary [(0, 1) type], C-matrix in (2a)
under fixed effects model reduces to

C =R—1NN’—EMM’+irr’ (2b)
k b bk
where,

NN’ = (App)vxr» treatment-column concurrence
matrix,

b .
Ay = 2 j=1Myj My} » inner product of 4 and A"

row of N,
MM’ = (U )vxr» treatment-row concurrence matrix,

k
Hpi = zizlmni My, , inner product of /# and wh
row of M.

In microarray experiments, array effects may be
taken as random. Therefore, the model for arrays effects
as random is same as (1) with an additional assumption
that B and € are independently and identically

distributed with B~ IID(O, aglb) and & ~ 1ID(0,

0’21,1), where 0'2 and ¢ are unknown variance

parameters. Following Shah and Sinha (1989), the
C-matrix for row-column designs under mixed effects
model when rows are orthogonal to columns and
column effects are considered as random is

k bk
(29)

C=R- 1NN’—EMM’+irr’+p ENN’—irr’
k b bk

2
3 5 - pcan be estimated from the data

where p=
o+ kO'ﬁ

or can be assumed to be known. But p is generally
unknown.

The v X v matrix C in (2a), (2b) or (2¢) is
symmetric, non-negative definite and has row sums
zero. For a connected design, Rank (C) = v — 1.
Henceforth, we shall be concerned with connected
designs only. Let C™ be a generalized inverse of C i.e.
CC C = C. A linear function of treatment effects p’z,
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where p is a v X 1 vector, is called a treatment contrast
if p’1 = 0. For a connected design, all treatment
contrasts are estimable. The best linear unbiased
estimator (BLUE) of p’7is p’z , where T is a solution
of the normal equations with var(p’t ) = p’C po’
(which is invariant with respect to choice of C7).
Suppose that the experimenter is interested in obtaining
BLUEs of s treatment contrasts piT, p,T, ... PgT
with differential precision depending upon their
respective importance. Accordingly, different weights
are attached with the precision of estimation of the
contrasts depending upon their importance. To deal with
such situations, Freeman (1976) introduced a weighted
A-optimality criterion for choice of designs in which
weights are used to represent the relative importance
of the s’ contrasts of interest. To be specific, a design
d is said to be weighted A-optimal if it minimizes the
following function over a class of designs D with
specified parameters:

S S
_ ’ A~ _ 2 ) ~—
T= E:a)t va(pit) = o Za)tptC P,
t=1 t=1 3
, (3)
= oztrace(WTP CcP
where Wy = diag(wi, @y,...,@5) is the weight matrix
(to be set by the experimenter) and P’ = (pq pa ... ps)’
is an s X v matrix of coefficients of the s treatment
contrasts. In the context of microarray experiments our
interest is in all the possible pair wise comparisons of
varieties. Therefore, P’ (matrix of coefficients of "C,
treatment contrasts) will be a matrix of order "C, X v.
It may be noted that for s = "C,, PP’ = vI — 11”. Further
if comparisons among treatments are made with the
same precision, then Wy = I and then (3) can be
rewritten as
02T = trace(W;P'CP)
= trace(P’'C P)
= trace(C PP’)
= trace(vC") 4)
where C* is the Moore-Penrose inverse of C and
satisfies C* 1 = 0.

Let D =D(v, b, k, p) denote the class of connected
row-column designs with v treatments, k£ rows and b
columns such that rows versus column classification is
orthogonal, column effects are random and p =

N+ ko% ). Adesignd e D(v, b, k, p) is said to be

A-optimal if it has minimum value of criterion 7" over
all possible combinatorial solutions of designs in

D(v, b, k, p) Similarly a design d e D(®v, b, k, p) is said
to be D-optimal if it minimizes the determinant of the
variance-covariance matrix P’C™P over D(v, b, k, p).

For p= 0, C-matrix in (2c) reduces to C-matrix
in (2b). Therefore, in the following section we obtain
lower bounds to A- [D-] efficiencies under a mixed
effects model. The lower bounds to A- [D-] efficiencies
under a fixed effects model fall out as a particular case
for p=0.

3. LOWER BOUNDS TO A- AND D- EFFICIENCY
OF ROW-COLUMN DESIGNS

In this section, we obtain the expressions for lower
bounds to A- [D-] efficiencies of row-column designs
under a mixed effects model. It can be shown easily that
the problem of obtaining an A- [D-] optimal design for
all possible pair wise treatment comparisons is
equivalent to the problem of obtaining an A- [D-]
optimal design for a complete set of orthonormal
treatment contrasts P’'z; P'P =1, 4, PP’ =1, — 11'/v.

For a row-column design d, let 6;, 6, ... 6,_; be the
v-1
non-zero eigen values of C. Define @4(d) = 2 Hi_l and
i=1
v-1 1
op(d) = HGI_ . For inferring on a complete set of
i=1

orthonormal treatment contrasts, a design is said to be
A- [D-] optimal if it minimizes @4(d)[@p(d)] over
D(v, b, k, p).

The A-efficiency {e4(d)} and D-efficiency {ep(d)}
of any design d over D(v, b, k, p) is defined as

. iy D
e = Ia9R) ang ) = | L2 1%0)
¢, (d) ¢p(d)

where, d*A and d; are the hypothetical A-optimal and
D-optimal designs over D(v, b, k, p) respectively.

Let C=(cpp), h=1,2, ..., v. The inequality given
by Shah and Sinha (1989) is

= -lgov
Zizllf @)= VTZh:lf(VL_lChh] ©)

where fis convex and assumed to be non-increasing
over [0, o).
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Following Shah and Sinha’s (1989) inequality
given in (5) above, the lower bounds to A-efficiency
and D-efficiency for a connected row-column design
under mixed effects model with column effects as
random are computed as

_ (v=1)°
D= kD1 pb—kon@
o) = (v-1) ©

1
{b(k—1)+ pbI—-k/V)Hep (d) Jv-1

The lower bounds to A-efficiency and D-efficiency
of a row-column design under fixed effects model
obtained by substituting o= 0 in (6) are

_ (v-1?
D= kDo)
3 (v-1
and ep(d) = N

b(k —1{ ¢, ()}

Remark 1. The lower bounds in (7) have similar
expressions as in case of block designs obtained by
Rathore et al. (2006). More efforts need to be made to
obtain sharper lower bounds for row-column designs.

4. ALGORITHM BASED ON EXCHANGE AND
INTERCHANGE OF TREATMENTS

In this Section we describe the algorithm for
obtaining efficient row-column designs based on
exchange and interchange of treatments. The exchange
steps are same as those of Eccleston and Jones (1980)
and Jones and Eccleston (1980). The interchange steps
are on the similar lines of Rathore ef al. (2006) and
modifications to suit the requirements of a row-column
setting. The broad outline of the algorithm is described
below:

1. Input v (number of treatments), b (number of
columns) and k& (number of rows) and generate
randomly a column-wise binary, treatment
connected row-column design for given
parameters. A design is treatment connected if
C + (1/v)11” is non-singular. The procedure of
random selection of design is described in the
sequel.

2. Employ exchange procedure as explained by
Jones and Eccleston (1980). In this step weakest

observation is replaced by the strongest
observation. The exchange procedure is continued
until no further improvement is made in the design
in terms of the criterion used.

3. After the termination of exchange steps, apply the
interchange procedure. In this step the algorithm
differs from that of Eccleston and Jones (1980).
Here we follow the steps similar to that of Rathore
et al. (2006). In this procedure a pair of treatments
is swapped in their position of occurrence in the
design (both within and between columns) taking
care that the design remains binary in columns.
Changes in the criterion value are recorded for all
possible swapping of the positions. The
interchange that yields maximum improvement
with respect to optimality criterion is
implemented. This is called as strongest treatment
interchange. The interchange procedure is
continued until no further improvement is possible
in the design in terms of the criterion used.

4. After the termination of Step 3, the lower bounds
to A- and D- efficiencies of the final design
obtained are computed using expression (7).

5. If a design with more A- and D-efficiencies needs
to be obtained, then steps | to 4 are repeated again
by selecting a new starting design randomly. Let
A; and D; denote the lower bounds to A- and D-
efficiencies, respectively of the design generated
at i"" iteration and A¢i-1y and D;_1) the
corresponding lower bounds at (i—1)"" iteration. If
|A,~ - A(, _ 1)| < € and |D, - D(i—1)| < g, the
algorithm goes to step 6. Here € > 0 is a very
small real number. Otherwise, the whole
procedure is continued till a design with desired
efficiency is obtained. In the present investigation,
all the designs are obtained with maximum of 3
to 4 random starts.

6. The A- and D-efficiencies of the final design
obtained in Step 5 are computed for different
values of p viz. p = 0.1, 0.2,..., 0.9 using
C-matrix in (2¢) and the expression (6). The per
cent coefficient of variation (CV) in the
efficiencies for different values of 0 < p< 0.9 is
computed.

Remark 2. Following modification is also made in this
algorithm which was not in the algorithm of Eccleston
and Jones (1980) or Rathore et al. (2006).
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If the CV is small, then we can say that the design
is robust under a mixed effects model and can be used
for any value of p. The algorithm is general in nature
and can be used for obtaining efficient row-column
designs for any number of rows 2 < k < v. However,
this algorithm has been exploited in detail here for
k=2.

We now describe various terms used in the broad
outline of the algorithm.

4.1 Random Selection of Design

The random selection of the initial design is an
important step to begin with. Choice of different initial
designs may result in different designs with different
lower bounds to A- and D-efficiencies. Once v, b, k are
entered by the user, the routine computes the total
number of experimental units, n = bk. If n <v + b+ k
— 2, then the routine gives the message that the
generation of connected row-column design is not
possible for this parametric combination and the
program terminates. When n =2 v + b + k — 2, we
generate the starting design using the following two
approaches:

First Approach

In this approach, the selection of the design is
completely random. We start the routine by considering
only number of experimental units available and
restricting to column wise binary property of design.
We select a set of three random numbers (4, j, i); h =
L2,....,vij=1,2,....b;i=1,2, ..., k. Now allocate
treatment / to the i position of the jth column. Select
another set of random numbers (%', j', '), W =1, 2, ...,
v, = 1,2,..,band i =1, 2, ... , k. Allocate the
treatment /' to the i’ position in j’th column if it is
empty. Otherwise reject the random number generated
and generate a fresh set of random number. A set of
fresh random numbers is also selected if the column j’
already contains treatment 4’ . Repeat this process till
all the n = bk experimental units have been allotted the
v treatments and also ensuring that the columns are
binary. Further, check the connectedness of the design
generated. If the design is disconnected, repeat the
whole procedure again until a connected design is
obtained. The replication of treatments is arbitrary in
this approach.

Second Approach

In this approach we fix the replication number of
treatments and then allocate the treatments randomly
to available rows and columns. The approach of
generating random design then is the same as in first
approach. The replication of treatments for a column-
wise binary row-column design is computed as,

(i) If bk is divisible by v, then the replication of
treatments is taken as bk/v. This reduces the
number of exchange steps.

(ii) If bk is not divisible by v, then v — ¢ treatments
are replicated int[hk/v] times and ¢ randomly
selected treatments are replicated int[hk/v] + 1
times, where ¢ = bk — v{int[bk/v]}. Here int[.]
denotes the greatest integer function.

It can be seen easily that the scheme (ii) is feasible
only for those situations for which {int[bk/v] + ¢} < b.

When {int[bk/v] + ¢} > b, the generation of a column-
wise binary design is not possible.

Remark 3. We have used the first approach mostly for
generation of efficient designs; the second approach
may yield efficient designs in fewer trials, though.
Therefore, we have used the second approach whenever
the resulting design from first approach is not found
efficient.

4.2 Exchange and Interchange Steps

Once a random, treatment connected initial design
is obtained, we apply exchange and interchange steps
as discussed in the sequel. Let N = (n;)yxp and
M = (mp)yxi> where ny; denotes the number of times
h™ treatment appears in jth column and m,; denotes the
number of times 4™ treatment appears in ith row,
respectively, j=1,2, ..., b;i=1,2, ... , k.

Exchange Step refers to exchange of a treatment
within a column by any one of the remaining v — k
treatments not contained in the column. This will
change replication vector but vector of row sizes and
column sizes will not change.

Interchange Step refers to interchange of a pair of
treatments belonging to two different positions in the
row-column setup. This step leaves replication vector
unchanged. At every exchange and interchange steps,
the algorithm tests for connectedness of the resulting
design.
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In the Exchange step, the weakest observation is
replaced with strongest observation. Exchange step and
weakest and strongest observations used here are same
as discussed by Jones and Eccleston (1980), Eccleston
and Jones (1980) and Rathore et al. (2006). Let C,y(,),
C,—1 and C,;) be, respectively the information matrices
of the design with original n observations, design with
n — 1 observations obtained on deleting one observation
and new design with new n observations obtained on
addition of a new observation.

Weakest Observation: An observation for which
trace (C,_,PP") —trace(C

n(0) PP’) is minimum for all

possible C__; obtained on deletion of an observation;

in other words trace(C__,PP") is minimum.

Strongest Observation: The observation for which
trace(C,__,PP") — trace(C

n(n) PP’) is maximum for all

possible C;(n) obtained on addition of a new

observation; in other words trace( C;(n)PP') is
minimum.

For exchange process, we start from an
observation in first row and first column and search for
weakest observation in the whole design. In other
words, we delete each observation one by one from the

design and compute trace( C;_1PP') at each step. Once

we delete one observation, the row-column

classification becomes non-orthogonal, therefore, C;_l

is computed using (2a). We delete the observation for
which trace( C;_lPP' ) — trace( C;( 0) PP’) is minimum.
It is followed by the search of the strongest observation
as a replacement of the deleted observation. For
identifying the strongest observation, we replace the
deleted observation by each of the remaining v — &
treatments not present in the column so as to be able
to have a column-wise binary design and compute trace
(C;(n)PP') at each step (C;(n) is computed using
(2b)). The deleted observation is replaced by the

observation for which trace( C;(n)PP') is minimum.

Since in the replacement scheme the original treatment
is also included, therefore, minimum of

trace( C;(n)PP') is always less than or equal to

trace( C;(O)PP'). If minimum of trace( C;(n)PP’) is

less than trace( C;(o) PP’), then we say that there is an
improvement in the design. The exchange step is
implemented when there is an improvement in the
design. Using the improved design, we go on to find
weakest observation and replace it with strongest
observation until the strongest substitute for the weakest
observation is same as the weakest observation. The
exchange procedure fixes the replication vector of
treatments.

Now after termination of exchange process a
different process named strongest treatment
interchange is implemented to achieve an optimal
assignment of treatments to rows and columns.

Strongest Treatment Interchange is an interchange
process where we substitute the A" treatment in i
position ofjth column with &’ (# h) treatment
appearing in any position of any column in the design
including the column under consideration, which
favours the criterion most, i.e., for which the

trace( Cn( 0)

PP") — trace( C;(I )PP') is maximum. Here,

C,(0) and C,y) are the information matrices of the
starting design at the interchange step and new design
obtained after interchange, respectively. If there is an
improvement in the design, then this interchange of a
pair of treatments is implemented and the old design
is replaced by the new design. If no improvement is
achieved, then the original design is retained as new
design. This interchange will be attempted for all
positions in the design one by one. The process stops
when all required treatments get interchanged with the
appropriate ones. At this stage the algorithm possesses
a design, which it could find in this try.

The proposed strongest treatment interchange is a
modification of the interchange process of Eccleston
and Jones (1980), where they search for any pair of
treatments 4,/" between the two cells (i, j), (7, j/) for
allh=n, (=1, ..,v), i, '(=1, ..,k j,j (=1, ..., b) and
which favours the criterion most. In the proposed
interchange procedure, we search for a strongest
interchange for a given treatment in a given cell with
all other treatments in all other cells. This given
treatment is selected from each cell one by one.
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The C-matrix of the final design is computed
under fixed effects model using (2b) and the lower
bounds to A- and D-efficiencies are calculated using (7).
If the efficiencies are satisfactory, we stop making the
search; otherwise one can make a retry and may get a
better design next time, better in terms of A- and D-
efficiency. However, there is no guarantee that the new
search will yield a better design.

To this, we add the process of computing the lower
bounds to A- and D-efficiencies of the final design
under a mixed effects model. A- and D-efficiencies of
the final design are computed for different values of
p=0.1, 0.2, ..., 0.9 and the per cent coefficient of
variation (CV) of the efficiencies of the generated
designs are computed and in Sraker et al. (2007). If the
CV is low then the design which is efficient under fixed
effects model can also be used when array effects are
random. In the present investigation, we term a design
as robust (strongly robust) if the coefficient of variation
(CV) in the efficiencies of the design for different
values of p’s (p=10.1,0.2,...,0.9) is less than 5% (1%).

5. EFFICIENT ROW-COLUMN DESIGNS FOR
2-COLOUR MICROARRAY EXPERIMENTS

The algorithm developed in Section 4 has been
converted into a Visual C++ code. Although the
algorithm and the Visual C++ code are general in nature
and can be used for generation of efficient row-column
designs for any v, b and £, in this section we exploit
the algorithm to obtain efficient row-column designs
with two rows (k=2) and b > v.

The computer aided search is made for A- and D-
efficient designs in the parametric range 3 < v < 10,
v<bhb<vv—1)2; 11 £v<25 b=vand (v, b) = (11,
13), (12, 14), (13, 14) and (13, 15). A total of 139 row-
column designs with k£ = 2 have been obtained under
fixed effects model. Among the 139 designs generated,
designs for 132 parametric combinations are available
for restricted model ignoring dye effects in the literature
along with their lower bounds to A- and D- efficiencies.
For the 7 parametric combinations no designs (even
under restricted model) are available in the literature.
These designs are given in Table 7 in the Appendix.

In Table 7, the design marked with asterisk (¥) is
row-regular Generalized Youden Design (GYD). We
know that for odd v, b = v(v — 1)/2 and k = 2 the
A-optimal design is row-regular Generalized Youden

Design (GYD) under row-column set up. In our case
we find row-regular GYD for (v, b) = (3, 3), (5, 10),
(7,21) and (9, 36).

5.1 Comparisons with Best Available Designs

In the present investigation we consider the 3-way
classified model containing array, dye and variety
effects in the model. In the literature, optimal/efficient
designs for 2-colour microarray experiments are studied
under linear fixed effects model containing array and
variety effects. Very little seems to have been done to
study optimal/efficient designs under the model
containing array, dye and variety effects in the model.
Therefore, we found best available designs and best
even designs available under the restricted model. The
block contents of these designs are rearranged in such
a fashion that the varieties are most balanced with
respect to the two positions in blocks. We say that
varieties at position | are labelled with one dye and at
position 2 are labelled with other dye. The rearranged
designs are then compared with the designs obtained
under 3-way classified model.

Best Available Designs

In the literature there exist three catalogues of
efficient designs under a restricted model for microarray
experiments (see e.g. Kerr and Churchill 2001a, Yang
2003 and Nguyen and Williams 2005). Among the
designs available, the designs of Nguyen and Williams
(2005) are most balanced with respect to dyes effects
and are available at http://mcs.une.edu.au/~nkn/mad/.
For the remaining catalogues (Kerr and Churchill
2001a, Yang 2003) the designs are not in the most
balanced form with respect to dyes. These designs are
catalogued in Sarkar and Parsad (2006). Therefore, we
tried to arrange the contents of these designs such that
varieties are most balanced with respect to dyes. The
lower bounds to A-efficiencies are then computed under
row-column design set up for all the designs available
in the literature in the parametric range under
investigation. These lower bounds are compared with
lower bounds to A-efficiencies of the row-column
designs generated through the proposed algorithm to
identify the best available row-column design. It is
observed that designs of Yang (2003) have maximum
lower bound to A-efficiencies for 3 <v<25and b =v.
For (v, b) = (13, 14), designs given by Kerr and
Churchill (2001a) have maximum lower bound to
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A-efficiency and for the remaining parametric
combinations Nguyen and Williams (2005) designs has
maximum lower bound to A-efficiency. Most of the
designs of Kerr and Churchill (2001a) have same lower
bound to A-efficiency as that of the designs given by
Nguyen and Williams (2005). For those parametric
combinations where the efficiencies of designs given
by Kerr and Churchill (2001a) and Nguyen and
Williams (2005) are same, we take the designs of
Nguyen and Williams (2005) as these are available in
the form where varieties are most balanced with respect
to dyes. Design layout of 132 best available designs and
designs obtained for these parametric combinations
along with their lower bounds to A- and
D-efficiencies are also available with the first author
and can be obtained by sending an E-mail to
ananta8976@gmail.com.

Best Even/Row-Orthogonal Designs

Even/row-orthogonal designs are also catalogued
in literature by Kerr and Churchill (2001a) and Nguyen
and Williams (2005). The lower bound to A-efficiencies
of even designs is found to be the same for both the
catalogues. Therefore, out of 132 parametric
combinations we find 108 even designs of Nguyen and
Williams (2005) as best even designs. In the parametric
range, no even design is catalogued for the following
24 parametric combinations

Table 1. Parameters for which no even design is
Catalogued in Literature

v 3|4]5[6|6]|]6|7[7|8]|8([8]38
b |3 145 |13]|14]|15(19]20]25]|26(27]28

v [9[9|10[10]10]10 10|21 (22]23]24(25
34 135(41 142|143 (44 [45]21]22 (232425

Out of these 24 parametric combinations, it is
possible to get an even design for the 8 parametric
combinations for b = v. Clearly a loop design is the only
even design for any b = v. Therefore, loop designs are
considered as best available even design for the
following 8 parametric combinations (v, b) = (3, 3), (4,
4), (5, 5), (21, 21), (22, 22), (23, 23), (24, 24) and
(25, 25).

The even designs are row orthogonal, therefore,
the lower bounds to A-efficiencies under fixed effects
model containing array and variety effects in the model
(restricted model) remain same with the lower bounds

to A-efficiencies under fixed effects model containing
array, dye and variety effects in the model (full model).

We have compared the designs obtained with the
best available designs as well as with the best even
designs. The number of designs in the parametric range
having higher efficiencies, same efficiencies and lower
efficiencies than that of the best available designs after
rearranging the block contents such that varieties are
most balanced with respect to dyes and best even
designs are summarized in Table 2.

Table 2. Comparison of the Designs obtained with Best
Available/Even Designs

Best Available Best Even
Designs Designs
Higher efficiency 45 90
Same efficiency 64 16 (11* +5)
Lower efficiency 23 10 (6* +4)
Total 132 116

Lower bound to A-efficiencies is same as that of best
available designs under block design setup

45 designs (obtained) have been found to have
higher efficiencies, 64 designs to have same efficiencies
and 23 designs to have lower efficiencies than the best
available designs. Out of these 45 designs, 40 designs
obtained have higher efficiencies than those of the best
even designs; for 3 parametric combinations (v, b) =
(6, 8), (9, 9) and (10, 12) the design obtained have same
lower bound to A-efficiency as that of the best even
design and for remaining 2 parametric combinations
(v, b) = (7, 19) and (9, 34) no even design is given in
the literature. 45 designs with higher efficiencies are
given in Table 6 in APPENDIX.

A comparison of best even designs among the 116
parametric combinations with best available design
under block design set up revealed that only 17 even
designs have same lower bound to A-efficiencies as that
of the best available designs under block design set up.
The remaining 99 best even designs have smaller lower
bound to A-efficiencies than those of the best available
designs. In even designs, dye effects are always
orthogonal to variety effects. Therefore, one can assume
that an even design may have higher efficiency than the
best available design under row-column design set up.
We have compared optimality aspects of row-column
designs generated through the proposed algorithm with
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those of best even designs under row-column design set
up. We find that out of 99 cases (where best available
designs have higher efficiency than best even designs)
90 row-column designs have higher efficiency, 5
designs have same efficiency and remaining 4 designs
have lower efficiency than that of best even designs
under row-column design set up. Again, among the 17
cases (where best even designs are best available
designs) 11 row-column designs have same lower
bound to A-efficiencies and 6 designs have smaller
lower bound to A-efficiencies than that of best even
designs.

Again among the 90 parametric combinations for
which the designs obtained have higher lower bound
to A-efficiency than best even designs, for 38
parametric combinations the designs obtained have
higher lower bound to A-efficiency; for 40 parametric
combinations the designs obtained have same lower
bound to A-efficiency and for remaining 12 parametric
combinations the designs obtained have smaller lower
bound to A-efficiency than best available row-column
designs.

We now consider two row-column designs
obtained by the proposed method which have higher
lower bound to A-efficiencies than those of the best
available ones. For v = 6, b = 9, the best available
design and the row-column design obtained are
given in Table A.

For v =7, b = 19, the best available design and
the row-column design obtained are given in Table B.

Remark 4. Even designs are row-orthogonal with
respect to treatments when block size k£ = 2. Therefore,
in the literature even designs are catalogued as
A-optimal designs under the restricted class that
treatments are row-orthogonal. Therefore, one
advantage of searching row-column design is one can
obtain an optimal/efficient design under both the
restricted class (when treatments are row-orthogonal)
and the non-restricted class (when treatments are not
row-orthogonal) i.e., under the model containing all
three array, dye and variety effects in the model. The
example for v =7 and b = 19 shows that a non-even
design is better that an even design.

6. ROBUSTNESS OF EFFICIENT DESIGNS
UNDER MIXED EFFECTS MODEL

In Section 5, we have obtained efficient row-
column designs under a fixed effects model. Kerr and
Churchill (2001a), Wolfinger et al. (2001) and Lee
(2004) have advocated that the array effects may be
taken as random in microarray experiments. If we
consider array effects as random, the fixed effects

Table (A)

D1: Best Available Row-Column Design

D2: Row-Column Design Obtained

Dyel |5 5131 1|4 6 212

Dye 1 5 1 6 3 1 2 4 2 4

Dye2 | 4 6 |46 |21 3

Dye2 |1 [3|2|4]6]S5

Lower Bound to A-eff = 0.8758
Lower Bound to D-eff = 0.9132

Lower Bound to A-eff = 0.9132
Lower Bound to D-eff = 0.9350

Table (B)

D1: Best Available Row-Column Design

Dye 1 3 2 1 1 7 3 7 3 6

4 2 1 5 7 5 2 4 4 6

Dye 2 5 3 6 7 5 4 3 1 2

1 4 2 1 2 6

Lower Bound to A-eff = 0.9665; Lower Bound to D-eff = 0.9809

D2: Row-Column Design Obtained

Dyel | 5|7 |57 |2 |6|1]3]4

2 7| 4 2 1 4 6 1 3

Dye 2 1 2 6 3 6 714 |4 5

4 5 6 3 7 7 1 3 5 2

Lower Bound to A-eff = 0.9708; Lower Bound to D-eff = 0.9830
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Table 3. Robustness of Designs Obtained and Best Available Designs

Row-Column Design Obtained Best Available Row-Column Design
Efficiency Efficiency
Higher | Same | Lower Total Higher | Same | Lower Total
Strongly Robust 9 22 5 36 Strongly Robust 7 22 7 36
Robust 22 32 15 69 Robust 23 32 11 66
Non-robust 14 10 3 27 Non-robust 15 10 5 30
Total 45 64 23 132 Total 45 64 23 132

model then becomes a mixed effects model. Designs
optimal/efficient under fixed effects model may not be
optimal/efficient under a mixed effects model. There is
need to study optimality aspects of designs for
microarray experiments under a mixed effects model
considering array effects random. The lower bounds to
A- and D-efficiencies in a mixed effects model are
dependent on p. The value of pis unknown. Therefore,
we need to search designs which are efficient for any
value of p. To meet this objective we study the
robustness property of the row-column designs under
fixed effects model (p = 0) against different values of
p in the range 0 < p< 0.9 under a mixed effects model.
For this purpose, lower bounds to A- and D-efficiencies
of the efficient designs under fixed effects model are
studied for 0 £ p < 0.9. The percent coefficient of
variation (CV) of lower bounds to A-efficiencies for
0 < p<0.9 is also computed.

A design is said to be robust (strongly robust) if
the coefficient of variation (CV) in the A-efficiencies
of the designs is less than 5% (1%). Lower bounds to
the A- and D-efficiency have been obtained in Section
5. The robustness of all the efficient row-column
designs generated under fixed effects model in Section
5 is investigated against the value of p. The lower
bounds to A- and D-efficiencies for 0 < p< 0.9 and their
CV are computed. The number of designs which are
strongly robust, robust or non-robust are summarized
in Table 3.

Designs Obtained: Among the 132 designs obtained, 36
designs are found to be strongly robust and 69 designs
are found to be robust under a mixed effects model. The
remaining 27 designs which are not robust in the range
£ =0.0 to 0.9 are found to be robust in the range p =
0.3 to 0.9.

Best Available Designs: Among the 132 designs
obtained, 36 designs are found to be strongly robust and
66 designs are found to be robust under a mixed effects
model. The remaining 30 designs which are not robust
in the range 0 < p < 0.9 are found to be robust in the
range 0.3 < p<0.9.

The robustness aspects of the designs are studied
separately for designs obtained with higher efficiency,
same efficiency and lower efficiency than the best
available designs and are summarized in Table 3.
Among the 45 designs obtained with higher efficiency,
9 designs are found to be strongly robust, 22 designs
are found to be robust and remaining 14 designs are not
robust under a mixed effects model. Out of these 45
parametric combinations for which a best available
design is less efficient than the design obtained, 7
designs are strongly robust, 23 are robust and 15 are
not robust.

The designs with higher A- and D-efficiencies and
A- and D-efficiencies of corresponding best available
designs are separately catalogued in Table 6 in
APPENDIX. To study the designs with higher
efficiencies than that of the best available designs we
made a comparison of both robustness and the CV
(A-efficiencies) of both the designs. The results are
summarized in Table 4.

Table 4. Designs with Higher Efficiency: Robustness
versus CV (A-Efficiencies) Designs with Higher
Efficiencies: Robustness vs CV of lower bound

to A-efficiencies

Strongly | Robust | Non- Total
Robust robust
lower CV (A-eff) 9 21 13 43
same CV (A-eff) 0 0 0
higher CV(A-eff) 0 1 1
Total 9 22 14 45
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Out of 45 designs with higher efficiencies, 43
designs have lower CV of A-efficiencies and 2 designs
have higher CV of A-efficiencies than the
corresponding best available designs. From Table 6 in
APPENDIX, it was also observed that out of 43 designs
(with lower CV of A-efficiencies) 26 designs have
higher A-efficiencies for 0 < p < 0.9 and for the
remaining 17 designs (with lower CV of A-efficiencies)
have higher A-efficiencies at smaller values of p’s and
lower A-efficiencies at higher values of p’s. The
number of designs and the corresponding p-value at
which lower bound to A-efficiency changes from higher
to lower are summarized as

Efficiencies changes

from higher to No. of
lower for p (v, b) Designs

0.1 (6, 8), (7,9), (8, 22), 8

9, 24), (10, 12), (11, 13),
(12, 14), (13, 15)

0.2 (7, 12) 1

0.3 (10, 13) 1

0.4 (6, 10), (9, 16), (10, 17) 3

0.5 (8, 13), (9, 15) 2

0.7 (7, 11), (9, 14) 2

Total 17

Among 64 designs with same efficiency 22 designs
are found to be strongly robust, 32 designs are found
to be robust and remaining 10 designs are non-robust
for both our designs and the best available designs
under mixed effects model.

Among our 23 designs with lower efficiency 5
designs are found to be strongly robust, 15 designs are
found to be robust and remaining 3 designs are non-
robust under mixed effects model whereas for these 23
parametric combinations among the best available
designs 7 designs are strongly robust, 11 are robust and
5 are non-robust among the best available designs.

Mix designs have been studied by Yang (2003)
under block design setup for the situation where number
of blocks is equal to number of treatments in the
experiment i.e., v=5b and 3 <v <25. We have studied

Mix designs under row-column design setup. We have
computed lower bounds to A-efficiencies for Mix(2),
Mix(3), Mix(4), Mix(5) and loop designs [Mix(v)] in
the same parametric range (i.e. for all v = b and
3 <v <25) and find 5 designs with parameters (v, b) =
(13, 13), (14, 14), (15, 15), (16, 16) and (17, 17) to have
higher lower bound to A-efficiencies than the best
available design (Yang 2003) or the row-column
designs obtained.

7. ROW-COLUMN DESIGNS FOR 3-COLOUR
MICROARRAYS

This paper describes an algorithm for generating
efficient/optimal row-column designs for microarray
experiments for given v, b and & under a fixed effects
model. The robustness aspects of efficient designs under
a mixed effects model are investigated under a mixed
effects model. The case k = 2, i.e. 2-color microarray
experiments, has been studied in detail. 3- and 4-colour
microarrays have also been proposed in the literature
where more than two (i.e. three or four or more) dyes
may be used in a single microarray experiment (see,
e.g., Woo et al. 2005). The proposed algorithm and
Visual C++ code developed are capable of generating
efficient row-column designs for any v, b, k such that
k <v. Therefore, it is possible to obtain optimal/efficient
row-column designs for any & <v. Some efficient row-
column designs for k = 3 are obtained (see
Table 5).

The design for v=5 =7 and k = 3 is a Youden
Square Design. It demonstrates the usefulness of the
algorithm in generation of Youden Square Designs as
well.

8. DISCUSSION

Efficient row-column designs have been obtained
for two-colour microarray experiments under fixed /
mixed effects model. The methodology described in this
paper may be expressed in more general framework
with applications to a broader collection of problems
rather than limiting to two-color microarray
experiments. For example, a common problem
encountered in microarray experiments is the batch
effects, especially in large cell cycle experiments. A
batch is defined as a set of microarrays that are
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Table 5. Row-column Designs for 3-Colour Microarray Experiments £ =3 (> 2)
v b k A-Efficiency D- Efficiency CV (A-Eff) CV (D-Eff)
6 4 3 0.8082 0.8423 2.7023 1.7194
Dye 1 2 5 6 1
Dye 2 4 2 3 5
Dye 3 1 6 4 3
6 6 3 0.9804 0.9903 0.6358 0.3124
Dye 1 3 1 5 6 4 2
Dye 2 5 2 1 3 6 4
Dye 3 1 4 6 2 3 5
6 8 3 0.9573 0.9630 0.5490 0.3681
Dye 1 2 2 5 6 3 4 5
Dye 2 5 1 3 2 6 3
Dye 3 1 3 2 4 5 6
7 7 3 1.0000 1.0000 0.0000 0.0000
Dye 1 5 7 6 2 1 4 3
Dye 2 1 5 7 4 2 3 6
Dye 3 4 2 1 6 3 7 5
processed together within a single experiment. Different REFERENCES

batches of the same microarray experiment are
processed at different times, in different laboratories, by
different operators, and so on. Batch effects may be
caused by many factors such as the methods for RNA
isolation, amplification and target labeling, and array
processing and scanning. There is a need to relook at
the methodology presented in this paper and explore the
possibility of its application to the problem of batch
effects in microarray experiments by taking batch
effects in the model as random effects. There is also a
need to investigate whether or not the designs efficient
under a two tailed alternative remain efficient for order-
restricted inference, i.e. when “treatments” are ordered
(such as doses, time, tumor stage, etc.).
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APPENDIX

Table 6. Row-Column Designs Obtained which are More Efficient than Best Available Row-Column Designs for 2-Colour Microarray Experiments in
Parametric Range 3 <v <10, v<b<v(v-1)/2,11 <v<25,b=vand (v, b) = (11, 13), (12, 14), (13, 14) and (13, 15)

SINo. v b Eff p=00 p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09 CV(EM Robustness CV(EfT)
1 6 8 AEff 08152 0.8334 0.8484 0.8607 0.8707 0.8789 0.8855 0.8907 0.8948 0.8978 3.0421 Robust  lessCV
6 8 AEff 08102 0.8499 0.8789 0.9004 0.9163 0.9280 0.9364 0.9424 09463 0.9485 4.8577 Robust

6 8 DEff 0.8944 0.9049 09131 09194 09242 09278 0.9304 009323 09335 09341 1.3865
6 8 DEFf 08915 09115 09262 09371 09452 09512 0.9556 09586 0.9607 0.9619 2.3799
Dyel 5 6 3 5 6 2 1 4
Dye2 2 1 5 4 3 6 5 6
Dyel 3 1 1 6 4 5 2 2
Dye2 5 6 3 2 1 4 4 3
2 6 9 AEff 09132 09303 0.9437 09541 09619 09677 09718 09744 09758 09762 2.1410 Robust  lessCV
6 9 AEff 08758 0.8988 09174 09323 0.9443 09538 0.9612 09668 09709 09738 3.3436 Robust
6 9 DEff 09350 0.9460 0.9545 09611 0.9661 0.9699 0.9727 09746 09758 09765 1.3865
6 9 DEf 09132 09281 09399 09493 0.9567 0.9626 0.9672 0.9707 0.9734 0.9754  2.0769
Dyel 5 1 6 3 1 2 4 2 4
Dye2 1 3 2 4 5 6 3 5
Dyel 5 5 3 1 1 4 6 2
Dye2 4 6 4 6 2 1 3 5 3
3 6 10 AEff 0.8958 0.9122 0.9249 0.9346 09421 09476 09516 009544 09562 09571  2.1022 Robust  lessCV
6 10 AEff 0.8859 09057 09212 09334 0.9430 0.9504 0.9561 09603 09634 09655 2.7091 Robust
6 10 DEff 09258 0.9357 0.9433 0.9492 09537 09572 09598 09617 09631 09639 1.2777
6 10 DEFf 09296 09410 0.9498 0.9567 0.9620 0.9660 09692 09715 09732 09744 1.4853
Dyel 4 6 3 6 4 4 1 5 2 2
Dye2 1 1 4 3 6 5 2 6 3 5
Dyel 3 1 6 1 5 5 2 4 2 6
Dye2 5 4 2 6 1 2 4 3 1 3
4 7 9 AEff 0.7659 0.8127 0.8462 0.8708 0.8889 0.9023 09120 09190 09238 09269 5.8071 Non-robust lessCV
7 9 AEff 0.7652 0.8180 0.8565 0.8850 0.9059 0.9213 0.9324 09403 0.9455 0.9487 6.5352 Non-robust
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7 9 DEff 08677 0.8929 09109 09239 009334 009402 009451 09484 09506 0.9518 2.8809

7 9 DEff 08644 0.8936 09147 09300 009412 009494 09553 09595 09623 0.9640 3.3807

Dyel 1 4 7 6 4 3 5 6 2

Dye2 6 1 2 5 7 7 4 3 6

Dyel 3 1 2 4 7 6 4

Dye2 6 7 4 5 2 3 2 3 1

7 10 AEff 0.8327 08708 0.8988 0.9195 0.9347 0.9456 09533 0.9585 09616 0.9631 4.5151 Robust  lessCV
7 10 AEff 0.8081 0.8512 0.8831 09069 09247 009379 009475 09544 09590 0.9619 5.3561 Non-robust

7 10 DEff 0.9004 09212 09364 09476 009558 09618 09660 0.9689 0.9708 09718 2.3945

7 10 DEff 0.8860 0.9098 0.9274 09405 09502 009575 09628 09667 09694 09712 2.8601

Dyel 7 3 1 5 1 6 3 2 5 4

Dye2 1 4 2 6 6 3 7 4 7 5

Dyl 6 3 4 2 3 5 7 2 4 1

Dye2 4 1 5 5 2 1 6 6 3 7

7 11 AEff 0.8605 0.8916 009144 009312 09435 009523 09584 09624 09648 0.9658 3.6075 Robust  lessCV
7 11 AEff 08354 0.8733 09014 09224 009381 009498 009584 09646 09689 09716 4.6593 Robust

7 11 DEff 09083 09258 00938 09480 09551 09602 09639 09665 0.9682 0.9692 2.0384

7 11  DEff 09020 09228 09382 09497 009583 009647 09695 09729 09754 09770  2.4939

Dyel 2 4 7 7 6 3 1 1 5 6 6

Dye2 1 2 4 5 3 7 5 3 6 4 2

Dyel 7 5 2 1 4 5 3 2 4 6 1

Dye2 1 2 4 3 6 3 7 1 7 5 6

7 12 AEff 0.8936 09096 09223 09322 09399 009457 009500 0.9530 0.9548 0.9558  2.1465 Robust  lessCV
7 12 AEff 0.8905 0.9088 0.9235 09354 009448 009523 09581 09625 0.9658 0.9680 2.6402 Robust

7 12 DEff 09222 09328 09411 09475 09524 09562 09590 0.9611 09625 09634 1.3857

7 12 DEff 09322 09438 09528 09598 09653 09696 09728 09752 09769 09781 1.5218

Dyel 3 1 4 7 7 6 2 5 5 1 2 6

Dye2 1 5 2 3 4 3 5 6 7 4 3 4

Dyel 2 1 3 6 4 3 7 2 6 4 5 1

Dye2 4 5 5 2 1 7 1 7 3 3 2 6
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8 7 17 AEff 09531 09628 09700 09754 0.9794 0.9824 0.9846 0.9861 09871 0.9878 1.1286 Robust  lessCV
7 17  AEff 09502 09606 009684 09742 09785 0.9817 0.9841 0.9858 09869 09877 1.2196 Robust
7 17 DEff 09715 09767 09805 0.9834 0.9856 0.9872 0.9885 0.9894 0.9900 0.9904 0.6101
7 17 DEff 09701 09756 009797 009828 0.9851 0.9869 0.9882 0.9892 0.9899 0.9904 0.6534
Dyel 6 7 2 5 3 5 5 4 6 6 3 7 4 1 2 1 7
Dye2 1 1 3 3 4 1 4 7 5 2 6 3 6 4 7 2 5
Dyel 3 5 2 1 3 7 4 2 4 6 1 6 7 5 2 4 6
Dye2 1 7 1 4 2 3 2 6 6 3 7 5 4 3 5 5 1
9 7 19 AEff 09708 09755 09790 009817 0.9836 0.9851 0.9862 0.9870 0.9875 0.9879 0.5515 S-robust  lessCV
7 19 AEff 09665 09721 09764 09796 0.9820 0.9839 0.9853 0.9864 0.9871 0.9877 0.6853 S-robust
7 19 DEff 09830 009853 009870 0.9884 0.9894 0.9901 0.9907 0.9911 0.9914 09916 0.2752
7 19 DEff 09809 009837 009858 009874 0.9836 0.9895 0.9902 0.9908 09912 09915 0.3379
Dyl 5 7 5 7 2 6 1 3 4 2 7 4 2 1 4 6 1 3 5
Dye2 1 2 6 3 6 7 4 4 5 4 5 6 3 7 7 1 3 5 2
Dyel 3 2 1 1 7 3 7 3 6 4 2 1 5 7 5 2 4 4 6
Dye2 5 3 6 7 5 4 3 1 2 1 4 2 1 2 6 5 6 7 3
10 8 10 AEff 0.7364 0.8007 0.8467 0.8800 0.9041 0.9214 0.9337 09422 09476 0.9508 7.6723 Non-robust lessCV
8 10 AEff 0.7259 0.7915 0.8390 0.8737 0.8991 0.9176 0.9309 0.9402 0.9464 0.9503 8.0702 Non-robust
8 10 DEff 0.8502 0.8861 0.9113 09293 009421 09513 0.9577 0.9621 0.9650 0.9666 3.9501
8 10 DEff 0.8406 0.8786 0.9055 0.9248 0.9387 0.9487 0.9559 0.9609 0.9642 0.9663 4.2783
Dyel 4 8 6 1 4 3 7 2 6 5
Dy2 5 2 2 7 7 4 8 3 1 6
Dyel 3 5 1 1 4 2 7 8 6 2
Dye2 7 4 8 6 3 1 2 3 4 5
11 8 11 AEff 0.7831 0.8352 0.8727 0.9000 0.9198 0.9339 0.9438 0.9505 0.9547 0.9569 6.1118 Non-robust lessCV
8 11 AEff 0.7641 08212 08623 0.8921 09138 0.9295 0.9407 0.9483 09534 0.9563  6.7900 Non-robust
8 11 DEff 0.8766 0.9049 0.9251 09396 0.9501 0.9576 0.9628 0.9664 0.9687 0.9699  3.1447
8 11 DEff 0.8665 08974 09194 09353 09468 0.9551 0.9611 0.9652 0.9679 0.9696 3.4758
Dyel 8 7 2 1 7 3 6 2 5 4 6
Dye2 1 5 3 2 8 6 8 4 3 7 4
Dyel 3 2 7 1 6 5 8 4 4 6 2
Dye2 5 6 4 8 3 2 3 5 1 7 1
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12 8 12 AEff 08393 0.8812 09118 09344 0.9509 09628 0.9711 0.9768 09802 0.9820 4.8512 Robust  lessCV
8 12 AEff 08358 0.8772 09078 0.9306 0.9474 09598 09687 0.9749 0.9790 009814 4.9533 Robust
8 12 DEff 09012 09251 09424 0.9551 009643 09711 09759 0.9792 09814 09827 2.7041
8 12 DEff 08975 09217 09395 09525 09622 09693 09745 0.9783 0.9808 0.9824 2.8158
Dyel 2 4 8 5 1 4 8 6 7 7 3 6
Dye2 1 1 5 7 8 5 6 2 3 2 4 3
Dyel 7 7 8 3 5 5 4 6 1 2 4
Dye2 1 2 4 6 2 8 3 5 8 3 7 1
13 8 13 AEff 08482 0.8823 09074 0.9260 0.9397 09497 0.9569 0.9618 0.9649 0.9665 4.0570 Robust  lessCV
8 13 AEff 08416 0.8775 09042 09242 09392 09504 09586 0.9645 0.9685 09710 4.4240 Robust
8 13 DEff 09057 09249 09391 0.9495 09573 09629 09670 0.9699 09718 0.9730 2.2480
8 13 DEff 09064 09268 09417 09529 09612 09673 09718 0.9750 09773 09787  2.3995
Dyel 6 8 4 3 2 5 4 7 6 2 1 3 8
Dye2 1 2 5 8 5 6 1 3 8 7 7 5 4
Dyel 8 7 1 1 5 2 3 4 4 2 8 6 6
Dye2 7 2 6 7 1 4 5 8 1 5 3 3 2
14 8 14 AEff 08667 0.8963 09181 09342 09462 0.9551 09615 09660 09691 0.9709 3.5302 Robust  lessCV
8 14 AEff 08622 0.8924 09149 09318 09444 09537 0.9605 0.9654 09687 0.9707 3.6883 Robust
8 14 DEff 09252 09411 09528 0.9614 09678 09726 09760 0.9784 0.9800 0.9810 1.8396
8§ 14 DEff 09220 09388 09511 09602 09670 09720 09756 09781 0.9799  0.9809 1.9450
Dyl 6 8 2 4 5 3 1 4 2 7 1 5 3 8
Dye2 1 2 6 8 2 7 6 3 8 3 7 4 1
Dyl 5 3 4 6 1 7 8 6 2 8 1 3 2
Dy2 3 7 5 4 8 1 4 2 2 1 7 3 6 5
15 8 19 AEff 09316 0.9469 009583 0.9668 0.9731 09778 09811 0.9835 09850 0.9860 1.7886 Robust moreCV
8 19 AEff 09315 09469 09583 0.9667 09730 09776 09810 0.9834 0.9850 09859 1.7866 Robust
8 19 DEff 09607 09690 09751 0.9797 009830 09855 09874 0.9886 0.9895 0.9900 0.9518
8 19 DEff 09605 0.9688 09750 0.9796 0.9830 0.9855 0.9873 0.9886 0.9895 0.9900 0.9570
Dyel 5 6 2 2 3 7 4 8 6 1 7 4 1 6 1 3 8 8 5
Dye2 2 2 1 3 4 5 8 5 1 7 6 5 8 4 3 7 7 2 6
Dyel 7 5 8 2 6 5 8 1 1 7 1 5 3 4 3 6 2 4 4
Dye2 5 6 4 8 2 2 5 6 2 4 1 7 6 8 3 1 7 3
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16 8 21 AEff 09553 09647 09718 09772 09812 0.9842 0.9863 0.9878 0.9887 0.9893 11115 Robust  lessCV
8 21 AEff 09501 0.9605 0.9684 09744 09790 009825 009851 09869 09882 09890 1.2713 Robust
8 21 DEff 09732 0.9785 0.9824 0.9854 09876 0.9892 0.9904 09912 09917 09921 0.6104
8 21 DEff 09704 0.9762 0.9806 0.9840 0.9865 09884 009898 09908 09915 09919 0.6953
Dyel 6 5 7 6 3 8 2 4 7 2 5 3 8 5 4 1 1 8 4 6 3
Dye2 1 1 5 3 5 7 3 5 6 4 2 1 2 8 6 4 8 6 7 2 7
Dyel 3 7 7 5 2 1 5 4 1 8 1 3 2 4 2 3 6 6 4
Dye2 1 6 2 8 6 4 7 7 2 5 1 2 8 8 5 1 3 3
17 8 22 AEff 09551 09639 09705 09754 0.9791 0.9818 0.9837 09851 0.9860 0.9866 1.0264 Robust  lessCV
8 22 AEff 09549 09641 09711 09764 009803 009832 009853 09869 09879 09885 1.0973 Robust
8 22 DEff 09730 0.9778 0.9814 0.9840 0.9860 0.9875 0.9886 0.9894 0.9899 0.9903 0.5557
8 22 DEff 09749 09798 009835 09862 09882 09897 09908 09916 0.9921 0.9925 0.5657
Dyel 2 4 6 2 6 6 2 5 8 4 3 1 7 5 5 4 8 7 3 7 1 8
Dye2 1 1 1 3 2 4 4 6 5 5 8 3 3 7 7 4 1 6 2 8 2
Dyel 3 1 8 3 4 7 3 1 2 5 1 4 5 4 5 6 2 8 6 2
Dye2 7 5 2 2 8 6 4 2 4 3 8 1 4 1 7 6 1 8 7 3 3 5
18 9 9 AEff 05333 07088 0.8134 0.8803 0.9247 0.9545 0.9743 0.9872 0.9949 0.9988 16.4878 Non-robust moreCV
9 9 AEff 05120 0.5520 0.5770 0.5941 0.6065 0.6157 0.6227 0.6280 0.6322 0.6353  6.3538 Non-robust
9 9 DEff 07698 0.8575 0.9085 09411 0.9628 0.9775 0.9873 0.9936 0.9974 0.9994 7.5740
9 9 DEFf 06285 0.6508 0.6655 0.6757 0.6831 0.6885 0.6924 0.6952 0.6972 0.6986  3.2255
Dyel 4 8 5 7 3 1 9 2 6
Dye2 6 3 7 9 1 5 4 8 2
Dyel 1 2 3 11 1 1 1
Dye2 2 3 4 1 5 6 7 9
19 9 12 AEff 07500 08118 0.8561 0.8881 09111 0.9275 0.9389 0.9466 009514 09541 7.2594 Non-robust lessCV
9 12 AEff 07331 07992 0.8467 0.8810 0.9059 0.9237 0.9363 0.9448 0.9504 0.9536  7.8846 Non-robust
9 12 DEff 08589 0.8934 09175 0.9346 0.9468 09554 09614 09655 09681 0.9695 3.7346
9 12 DEff 08493 0.8863 09122 09307 0.9439 09533 09599 09645 09675 09692 4.0595
Dyel 9 6 4 3 1 1 2 6 5 7 8 8
Dye2 1 3 2 9 5 2 6 7 7 8 9 4
Dyel 6 7 1 3 8 9 5 4 3 2 6 2
Dye2 9 4 7 1 5 2 4 6 8 1 3 5
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20 9 14 AEff 0.8212 0.8659 0.8986 0.9226 0.9401 0.9527 09617 09677 0.9715 0.9736 5.2356 Non-robust lessCV
9 14 AEff 0.7996 0.8509 0.8883 0.9158 0.9360 0.9509 0.9615 09690 0.9740 0.9771 6.1103 Non-robust
9 14 DEff 0.8898 09154 09340 0.9475 0.9573 0.9645 0.9696 09732 0.9756 0.9770 2.9112
9 14 DEff 0.8838 09125 09332 09482 0.9592 0.9672 09730 09771 0.9799 0.9817 3.2552
Dyel 9 5 6 1 3 4 2 7 2 8 1 7 7 8
Dye2 2 1 8§ 3 6 9 3 4 7 9 4 6 5 5
Dyel 8 8 1 4 3 1 4 7 2 9 6 5 6 2
Dye2 1 5 9 5 7 6 8 4 3 3 9 1 7
21 9 15 AEff 0.8389 0.8772 0.9049 0.9250 0.9397 0.9503 0.9578 0.9629 0.9661 0.9678 4.4145 Robust  lessCV
9 15 AEff 0.8331 0.8728 09017 0.9231 0.9389 0.9505 0.9589 0.9648 0.9688 0.9712 4.7244 Robust
9 15 DEff 09040 0.9254 0.9407 0.9519 0.9600 0.9659 09701 0.9730 0.9749 0.9760  2.3926
9 15 DEff 09039 09262 09423 0.9541 0.9628 0.9691 09736 0.9768 0.9789 0.9802  2.5286
Dyel 7 8 2 3 4 6 4 1 5 5 2 9 9 3 6
Dye2 2 4 1 4 9 5 6 5 3 8 8 7 1 7 7
Dyel 3 7 9 3 8 5 2 6 4 6 9 1 2 1 8
Dye2 6 4 2 5 2 1 5 7 8 1 3 7 9 3
22 9 16 AEff 08532 0.8866 0.9113 0.9295 0.9429 0.9527 0.9596 0.9645 0.9676 0.9693  3.9638 Robust  lessCV
9 16 AEff 0.8451 0.8825 09094 0.9290 0.9434 0.9539 09615 0.9669 0.9705 0.9727 4.3297 Robust
9 16 DEff 09144 09333 0.9470 0.9570 0.9644 0.9697 09735 09762 0.9779 0.9789 2.1373
9 16 DEff 09157 09355 09498 0.9602 0.9678 0.9733 09773  0.9800 0.9819 0.9830 2.2158
Dyel 9 1 7 9 3 2 4 7 3 6 1 8 5 2 1 6
Dye2 4 4 3 3 1 8 6 9 2 7 8 9 7 5 5 2
Dyel 4 3 1 5 8 9 7 2 6 3 4 1 7 5
Dye2 2 6 1 &8 2 4 5 6 5 8 3 4 9
23 9 24 AEff 09403 09520 0.9609 0.9676 0.9726 0.9763 0.9790 0.9809 0.9821 0.9827 1.4009 Robust  lessCV
9 24 AEff 09400 09535 09636 09712 0.9769 09811 0.9842 09864 0.9879 0.9888 1.5976 Robust
9 24 DEff 09647 09713 0.9762 0.9799 0.9826 0.9846 0.9860 0.9870 0.9877 0.9881 0.7600
9 24 DEff 09657 09731 09787 0.9829 0.9859 0.9882 0.9899 0.9911 09919 0.9924 0.8633
Dyel 9 7 9 9 3 8 4 5 7 3 8 4 1 5 8 5 2 1 1 6 3 2 6 6
Dye2 2 5 4 1 4 1 6 9 3 9 9 5 7 2 7 8 3 4 2 9 8 o6 8 7
Dyel 9 2 3 2 3 4 5 5 9 8 6 3 5 1 8 4 7 9 6 1 4 1 2
Dye2 6 4 S 8 2 7 2 7 1 4 3 1 6 3 2 9 1 8 5 7 8 3 5 6
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24 9 25 AEff 09450 09578 0.9673 0.9742 0.9793 0.9831 0.9857 0.9875 0.9887 0.9894 0.9894 S-robust  lessCV
9 25 AEff 09437 09567 09663 0.9735 0.9787 0.9826 0.9853 09873 0.9885 0.9893  1.4875 Robust
9 25 DEff 09701 09769 0.9818 0.9855 0.9881 0.9900 0.9914 0.9923 0.9929 0.9933 0.9933
9 25 DEff 09694 09763 0.9814 0.9851 09878 0.9898 0.9912 0.9922 0.9929 0.9932 0.7680
Dyet 6 8 5 9 5 2 8 6 5 7 8 2 9 4 1 1 7 2 6 3 4 4 9 1
Dye2 1 1 1 5 3 8 5 8 7 6 4 7 3 5 9 4 8 9 3 2 7 9 6 2
Dyel 7 6 2 4 1 7 8 3 9 2 8 9 5 6 2 8 3 1 9 4 5 5
Dye2 1 3 8§ 4 2 5 5 7 9 6 1 3 9 8 4 7 5 3

25 9 31 AEff 09764 09819 0.9859 0.9888 0.9910 0.9925 0.9936 0.9944 0.9949 0.9952 0.6034 S-robust  lessCV
9 31 AEff 09750 0.9808 0.9850 0.9881 0.9904 0.9921 0.9933 0.9942 0.9948 0.9952  0.6462 S-robust
9 31 DEff 09862 09891 0.9912 0.9927 0.9939 0.9947 0.9953 0.9958 0.9961 0.9963 0.3223
9 31 DEff 09854 09885 0.9907 0.9924 0.9936 0.9945 0.9952 0.9957 0.9960 0.9963  0.3450
Dyet 6 3 8 5 7 7 8 4 8 5 4 6 9 5 4 6 3 6 2 2 1 1 8 2 7 3 3 9 9
Dye2 1 1 1 4 1 8 4 2 6 8 7 5 7 9 6 2 7 7 3 5 4 2 9 2 8 5§ 6 3
Dyel 4
Dye2 3
Dyel 6 3 7 4 7 5 2 6 4 2 8§ 3 3 7 4 8 8 6 2 1 5 5 4 2 9
Dye2 1 4 7 9 6 8 6 3 3 8 5 2 52 1 9 5 8 4 9 4 7 1 5 3
Dyel 9
Dye2 2

26 9 32 AEff 09813 09855 0.9886 0.9908 0.9925 0.9937 0.9946 0.9952 0.9956 0.9958 0.4648 S-robust  lessCV
9 32 AEff 09803 09847 0.9880 0.9904 0.9921 0.9934 0.9944 0.9950 0.9955 0.9958 0.4958 S-robust
9 32 DEff 09887 0.9909 0.9925 0.9938 0.9947 0.9953 0.9958 0.9962 0.9964 0.9966 0.2533
9 32 DEff 09882 09905 0.9922 0.9935 0.9945 0.9952 09957 0.9961 0.9964 0.9966 0.2687
Dyet 2 4 8 3 9 7 3 2 5 4 8 6 9 9 2 6 9 5 6 8 3 4 5 2 8§ 7 1 7 1
Dye2 1 1 1 8 6 6 7 4 3 7 4 3 2 8 7 1 4 6 2 5 4 5 9 5§ 6 9 8 7
Dyel 1 1
Dye2 3 9
Dyel 6 3 9 5 2 3 5 5 9 2 6 2 8 1 7 4 4 7 1 7 6 3 4
Dye2 3 4 1 5 7 315 5 9 9 2 6 9 6 3 2 6 8 4 2 8 8 9 5
Dyel 3 1
Dye2 1 7
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27 9 34 AEff 09867 009889 0.9905 0.9917 0.9926 0.9932 0.9937 0.9940 0.9942 0.9944 0.2452 S-robust  lessCV
9 34 AEff 009857 0.9881 09899 09912 09922 0.9929 0.9935 0.9939 0.9942 0.9944  0.2758 S-robust
9 34 DEff 09927 0.9938 09945 0.9951 09955 0.9958 0.9961 0.9962 0.9964 0.9964 0.1185
9 34 DEff 09922 0.9934 09943 09949 0.9954 0.9957 0.9960 0.9962 0.9963 0.9964  0.1329
Dyel 2 3 2 3 7 2 2 9 9 8 6 6 4 3 1 9 3 1 7 4 9 6 5 5 1 7 8 1 7
Dye2 1 1 6 6 1 9 5 6 3 1 4 5 9 8 5 8 2 9 3 2 7 8 4 3 6 4 7 4 2
Dyel 5 6 5 8
Dye2 7 7 8 2
Dyel 2 2 7 8 8 4 5 7 8 6 1 2 5 7 9 9 3 4 4 6 1 3 2 36 4 5
Dye2 6 3 1 5 8 4 1 5 2 1 9 2 8 2 3 3 2 7 6 7 9 8 4 39 9
Dyel 8 7 1 5
Dye2 7 5 6 4
28 10 12 AEff 0.6650 0.7458 0.8026 0.8429 0.8715 0.8917 0.9057 09151 09211 0.9245 9.6821 Non-robust lessCV
10 12 AEff 0.6618 07599 0.8248 0.8690 0.8996 0.9209 0.9356 0.9454 0.9516 0.9552 10.5587 Non-robust
10 12 DEff 0.8149 0.8603 0.8908 09119 0.9265 09366 0.9435 0.9480 0.9508 0.9522 4.7419
10 12 DEff 08137 08671 09019 09254 09416 0.9529 0.9606 0.9658 0.9691 0.9709 5.3153
Dyel 3 10 9 1 10 5 2 7 8 4 9 6
Dye2 4 2 7 9 5 1 8 6 9 10 3 10
Dyel 1 9 0 2 2 6 8 4 3 5 1
Dye2 8 2 3 4 7 6 1 3 9 4 10
29 10 13 AEff 0.7101 0.7819 0.8313 0.8658 0.8903 0.9076 0.9196 0.9278 0.9330 0.9360 8.1899 Non-robust lessCV
10 13 AEff 0.6922 07742  0.8309 0.8708 0.8992 009192 09332 09428 0.9489 0.9525 9.3757 Non-robust
10 13 DEff 0.8379 0.8778 0.9047 09234 0.9365 09456 0.9519 09561 0.9587 0.9601 4.1630
10 13 DEff 08281 0.8737 009045 09259 09410 09517 0.9591 0.9642 0.9675 0.9694 4.7886
Dyel 7 5 10 8 4 1 6 6 3 2 9 9 3
Dye2 9 3 6 1 10 7 1 10 9 4 8 2
Dyel 5 10 4 5 9 2 2 7 3 6 8 1 4
Dye2 9 1 10 8 2 7 4 6 6 1 3 5 3
30 10 14 AEff 0.7418 08122 0.8605 0.8944 0.9185 009355 0.9473 09552 0.9601 0.9628 7.7695 Non-robust lessCV
10 14 AEff 07336  0.8066 0.8564 0.8914 09163 09339 09462 09544 0.9597 0.9626 8.0655 Non-robust
10 14 DEff 0.8577 0.8950 0.9206 09386 0.9513 09603 0.9666 0.9708 0.9735 0.9751 3.9362
10 14 DEff 08536 0.8922 09186 09371 09502 0.9595 0.9660 0.9704 0.9733 09750 4.0708
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Dyel 8 1 10 3 4 2 9 5 7 3 4 7 10
Dye2 2 4 1 1 5 9 10 7 8 6 9 8 2 3
Dyel 1 3 2 7 3 1 4 8 9 6 10 8 2
Dye2 7 6 4 8§ 2 10 5 6 4 5 3 1 9 7
31 10 15 AEff 0.8021 0.8563 0.8959 0.9248 0.9458 0.9609 0.9714 0.9786 0.9830 0.9855 6.2807 Non-robust lessCV
10 15 AEff 0.7759 0.8367 0.8810 09135 09373 09546 0.9669 0.9755 09812 0.9846 7.2011 Non-robust
10 15 DEff 0.8827 09141 0.9364 0.9524 0.9640 0.9723 09781 0.9821 0.9847 0.9863 3.4340
10 15 DEff 0.8693 09042 0.9290 0.9469 0.9598 0.9692 0.9759 0.9807 0.9839 0.9859 3.8768
Dyel 6 8 2 9 4 10 5 1 4 3 7 9 2 3 1
Dye2 2 3 5 1 10 8 7 5 6 9 4 6 8 7 10
Dyel 5 3 1 7 6 4 7 8 9 2 2 4 10 8 10
Dye2 3 9 6 8 5 6 4 1 2 1 100 9 7 3 5
32 10 16 AEff 0.8106 0.8616 0.8978 0.9237 0.9422 0.9553 0.9644 0.9704 0.9741 0.9760 5.6659 Non-robust lessCV
10 16 AEff 0.7937 0.8479 0.8866 09146 09350 0.9497 0.9602 0.9675 09723 09751 6.2476 Non-robust
10 16 DEff 0.8933 0.9209 0.9403 0.9541 0.9639 0.9709 0.9758 0.9791 0.9811 0.9823 2.9493
10 16 DEff 0.8833 09131 0.9342 0.9494 09603 0.9682 09738 0.9777 0.9803 0.9819 3.2731
Dyel 2 5 5 3 10 7 8 8 9 4 7 9 2 6 1 4
Dye2 1 1 6 2 8 3 3 5 8 9 6 7 10 4 10
Dyel 7 1 3 9 2 6 8 10 1 7 4 8 2 6 5
Dye2 3 6 m 1 4 3 5 2 5 8 2 1 10 9 7 9
33 10 17 AEff 0.8334 0.8732 0.9023 0.9236 0.9392 0.9504 0.9584 0.9638 0.9672 0.9691 4.6581 Robust  lessCV
10 17 AEff 0.8290 0.8704 0.9007 0.9230 0.9394 09513 0.9599 0.9658 0.9697 09719 4.8995 Robust
10 17 DEff 0.9021 09248 09412 0.9531 0.9616 0.9678 0.9722 0.9752 0.9771 0.9783 2.5307
10 17 DEff 09026 0.9262 0.9431 0.9554 09643 09707 09753 0.9784 0.9805 0.9817 2.6181
Dyel 6 4 0o 9 2 10 5 8 8 4 6 1 1 2 3 5 7
Dye2 3 2 1 5 3 6 7 9 10 9 4 2 7 8 6 10
Dyel 1 2 5 1 2 w 3 7 8 3 9 4 6 4 6 10
Dye2 9 10 1 & 1 7 9 4 4 5 2 3 2 6 5 3
34 10 18 AEff 0.8444 0.8823 0.9101 0.9305 0.9455 0.9564 0.9641 0.9695 0.9729 0.9748 4.4414 Robust  lessCV
10 18 AEff 0.8416 0.8804 0.9086 09293 0.9444 09555 0.9634 0.9688 0.9724 09745 4.5245 Robust
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10 18 DEff 0.9147 09356 09507 0.9616 0.9695 0.9752 09792 09820 0.9837 0.9847 2.3095
10 18 DEff 09129 0.9344 09498 0.9609 09690 0.9748 0.9789 0.9818 0.9836 0.9847 2.3625
Dyel 9 0 10 4 7 9 8 3 1 7 8 1 5 6 2 2 3 5
Dye2 1 8 7 10 5 7 5 8 6 3 9 10 2 3 9 4 4 o6
Dyel 9 7 31 3 7 5 5 2 10 4 6 9 4 6 8 2 1
Dye2 3 4 o 2 1 2 4 3 5 6 1 7 6 9 8 5 10 8
35 10 24 AEff 0.9308 0.9464 09582 0.9673 0.9741 0.9793 09830 0.9856 0.9873 0.9882 1.8986 Robust  lessCV
10 24 AEff 09269 09430 09553 09648 09721 09776 0.9817 0.9847 09867 0.9879 2.0148 Robust
10 24 DEff 09590 09682 09750 0.9802 0.9841 0.9869 0.9890 0.9904 0.9913 0.9919 1.0692
10 24 DEff 0.9562 0.9658 09731 09786 0.9828 0.9859 0.9882 0.9899 0.9910 09917 1.1547
Dyel 6 9 8§ 2 4 10 6 4 10 1 10 1 7 2 5 5 7 1 3 8 3 9 5 3
Dye2 1 7 1 5 5 6 7 10 2 8 8§ 3 8 6 4 9 9 3 4 10 9 6
Dyel 3 9 3 6 7 8 9 5 7 1 1 8 2 1 6 4 6 2 10 5 2 10 7 4
Dye2 8 6 4 3 3 2 4 8 2 7 8 9 10 10 1 1 5 4 5 7 6 3 9 5
36 10 26 AEff 0.9414 09544 09645 0.9723 0.9783 0.9829 0.9862 09886 0.9901 0.9909 1.6332 Robust  lessCV
10 26 AEff 09409 09537 0.9636 09714 09774 09820 0.9854 0.9879 0.9896 0.9906 1.6345 Robust
10 26 DEff 09632 09714 09777 0.9824 0.9860 0.9887 0.9906 0.9920 0.9928 0.9933 0.9801
10 26 DEff 0.9636 09715 09776 09822 09857 0.9883 0.9903 0.9917 0.9926 0.9932  0.9598
Dyel 3 8 6 10 7 8 9 7 2 7 2 1 1 6 5 4 4 4 10 10 5 2 6 3 9
Dye2 1 1 3 3 10 2 4 6 3 2 5 7 9 9 10 5 7 8 8 7 6 9 8 4 10
Dyel 3 2 55 1 9 6 9 2 9 3 3 7 7 8 8 6 2 1 1 10 4 10 6
Dye2 7 8 8§ 7 2 7 1 8 10 6 6 100 2 1 1 3 2 4 10 4 5 9 5 9 5
37 10 27 AEff 0.9429 09554 09649 0.9722 0.9777 0.9819 09849 09870 0.9884 0.9891 1.5196 Robust  lessCV
10 27 AEff 09407 09535 09633 09709 09766 09810 0.9842 0.9865 0.9881 0.9890 1.5876 Robust
10 27 DEff 0.9665 0.9739 09794 0.9836 0.9867 0.9889 0.9906 09917 0.9925 0.9929 0.8552
10 27 DEff 0.9652 0.9728 09785 09828 09861 0.9885 0.9902 0.9915 0.9923 0.9928  0.8952
Dyel 10 1 3 10 5 8 6 6 1 3 7 4 4 2 5 9 8 9 1 4 2 6 2 10 9 5
Dye2 1 3 4 4 1 2 8 7 9 6 9 5 7 7 2 5 9 10 8 8 10 10 3 5 3 6
Dyel 3 1 4 4 5 5 9 1 3 3 7 6 5 7 9 8 2 10 6 2 7 8 1 4 10 2
Dye2 1 8 2 9 2 8 6 6 4 10 6 3 4 4 10 3 3 7 5 9 2 9 10 1 5 1
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38 10 32 AEff 09597 09691 0.9762 0.9815 0.9854 0.9883 0.9903 0.9918 0.9927 0.9932 1.0901 Robust lessCV
10 32 AEff 09591 09686 09758 0.9812 0.9851 09881 0.9902 0.9917 0.9926 0.9932 1.1083 Robust
10 32 DEff 09777 09829 0.9868 0.9896 0.9917 0.9932 0.9942 0.9950 0.9954 0.9957 0.5785
10 32 DEff 09774 09826 09865 0.9894 0.9915 0.9931 0.9942 0.9949 0.9954 0.9957 0.5900
Dyet 5 9 10 4 4 8 1 6 10 4 1 6 8 5 7 2 7 5 1 6 9 3 10 2 10 8 3 7 9 9
Dye2 1 3 5 3 6 1 3 8 7 7 6 S5 9 2 5 4 9 9 7 10 4 10 4 1 2 10 5 8 6 2
Dyel 2 3
Dye2 8 8
Dyel 1 10 7 53 1 4 9 4 10 10 9 6 5 3 4 2 7 8 1 1 2 7 6 3 4 5 2 8
Dye2 6 8 1 1 4 10 4 10 3 6 2 5 4 8 2 2 3 6 2 3 w1 s s 7 7 9 9 7
Dyel 8 6
Dye2 9 3

39 10 33 AEff 09639 09719 0.9779 0.9825 0.9859 0.9884 0.9902 0.9915 0.9923 0.9928 0.9394 S-robust  lessCV
10 33 AEff 09597 09691 09761 09813 0.9851 09879 0.9899 0.9913 0.9922 0.9927 1.0727 Robust
10 33 DEff 09795 09840 0.9874 0.9899 0.9917 0.9930 0.9940 0.9946 0.9951 0.9953 0.5084
10 33 DEff 09777 09828 0.9865 0.9893 0.9913 0.9928 0.9938 0.9945 0.9950 0.9953 0.5637
Dyet 6 9 6 3 4 9 6 5 3 10 2 2 7 7 5 2 8 5 1 1 9 8 3 4 1 10 5 4 1 7
Dye2 1 1 9 8 1 5 8 6 2 6 10 6 6 5 4 7 5 3 8 3 3 2 7 2 7 3 10 9 10 4
Dyel 2 10 8
Dye2 9 4 4
Dyet 9 4 7 9 7 1 10 3 1 3 8 5 7 2 1 2 4 9 3 10 2 2 6 6 10 5 8 1 5 6
Dye2 2 10 5 8 10 9 4 6 7 3 4 8 10 1 9 1 8 3 3 7 2 5 6 4 6 7 9 4
Dyel 4 8 3
Dye2 2 5 1

40 10 35 AEff 09709 09787 0.9844 0.9886 0.9917 0.9939 0.9954 0.9965 0.9972 0.9975 0.8577 S-robust  lessCV
10 35 AEff 0969 09777 09836 0.9880 0.9912 0.9935 0.9951 0.9963 0.9970 0.9975 0.8952 S-robust
10 35 DEff 09830 0.9872 0.9903 0.9926 0.9942 0.9955 0.9963 0.9969 0.9973 0.9976 0.4661
10 35 DEff 09823 09867 09899 0.9922 0.9940 0.9953 0.9962 0.9968 0.9973 0.9976 0.4871
Dyet 2 8 3 3 5 9 8 6 3 9 10 5§ s 1 7 10 6 7 2 10 7 § 6 2 7 9 4 3 4 6
Dye2 1 1 1 5 9 10 2 8 6 7 2 7 8 7 8 1 2 4 5 8 2 10 4 3 6 4 10 9 5 9
Dyel 10 1 1 4 8
Dye2 6 9 4 3 3
Dyel 9 10 9 7 1 9 1 2 7 7 5 7 10 4 10 1 4 5 5 8 2 6 8 3 2 10 6
Dye2 7 4 3 5 9 10 § 8 4 10 2 8 9 1 6 2 1 2 4 6 9 3 9 5 8 10 1 1 7
Dyel 6 4 33 2
Dye2 3 3 5 7 6
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41 10 36 AEff 09720 09787 0.9836 0.9873 0.9900 0.9919 0.9933 0.9942 09948 0.9952 0.7473 S-robust  lessCV
10 36 AEff 09706 09776 0.9828 0.9866 0.9894 09915 0.9930 0.9940 0.9947 0.9951 0.7886 S-robust
10 36 DEff 009841 09877 09903 09922 0.9937 0.9947 0.9954 0.9959 0.9963 0.9965 0.3981
10 36 DEff 09833 09871 0.9899 09919 0.9934 009945 0.9953 09958 0.9962 0.9965 0.4198
Dyel 6 4 9 8 9 7 3 10 8 10 2 8 7 3 5 7 4 5 9 10 8 6 6 1 5 5 9 2 7 4
Dye2 1 1 10 1 6 6 10 6 4 8 4 7 4 1 9 9 9 7 3 2 3 5 8 10 3 8 2 8 2 6
Dyel 2 3 1 4 1 10
Dye2 5 7 3 5 7
Dyel 3 4 1 5 7 1 9 3 9 7 3 8 7 6 2 1 2 1 4 10 7 5 5 4 10 6 8 8 9
Dye2 1 10 8 1 3 10 3 10 2 4 6 3 2 7 4 7 8 9 9 7 9 10 3 5 2 4 6 9 5 5
Dyel 10 4 5 2 6 6
Dye2 8 8 6 1 2 1

42 10 37 AEff 09746 09803 09845 09876 0.9898 0.9915 0.9926 0.9934 0.9940 0.9942 0.6324 S-robust  lessCV
10 37 AEff 09733 09792 09836 09869 09893 09911 0.9923 0.9932 0.9938 0.9942 0.6733 S-robust
10 37 DEff 009859 09889 09911 09927 0.9939 0.9948 0.9954 0.9958 0.9961 0.9962 0.3306
10 37 DEff 09852 09884 09907 0.9924 0.9937 0.9946 0.9952 0.9957 0.9960 09962 0.3515
Dyel 4 5 7 9 2 6 8 4 7 2 9 4 1 3 10 8 7 2 5 5 10 6 9 6 5 10 3 10 2 3
Dye2 1 1 1 4 4 4 1 3 10 9 10 8 10 5 8 9 5 7 9 6 6 8 7 7 8 3 2 2 5 6
Dyel 9 1 1 1 4 6 8
Dye2 3 9 3 6 7 2 2
Dyl 1 2 3 5 7 2 5 7 1 5 3 3 7 4 51 4 1 9 6 7 2 8 6 4 2 3 9 10
Dye2 5 6 7 2 1 8 4 6 6 8 4 2 2 6 3 10 2 8 4 8 5 1010 7 9 7 9 5 1 9
Dyel 10 10 4 8 10 6 8
Dye2 4 3 9 3 1 3 1

43 11 13 AEff 0.6271 07279 0.7948 0.8407 0.8725 0.8946 0.9096 0.9197 09259 0.9294 11.2607 Non-robust lessCV
11 13 AEff 06242 07415 08157 0.8650 0.8985 0.9214 0.9370 0.9474 0.9539 09575 12.0172 Non-robust
11 13 DEff 07984 0.8527 0.8878 09115 09276 0.9386 0.9461 0.9510 0.9539 09554 5.4021
11 13 DEff 0798 0.8602 0.8989 0.9245 09420 0.9540 0.9621 0.9675 0.9709 09728  5.8780
Dyel 1 6 4 3 8 11 2 9 5 9 10 7 3
Dye2 2 5 8 1 3 3 9 7 9 4 11 10 6
Dyel 4 3 7 2 6 3 8 5 10 9 11 1
Dye2 9 7 8 4 10 1 4 2 3 6
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44 12 14 AEff 0.5951 0.7228 0.8045 0.8590 0.8960 0.9212 0.9382 0.9493 0.9561 0.9598 13.2763 Non-robust lessCV
12 14 AEff 0.5920 0.7245 0.8067 0.8606 0.8969 09216 0.9382 0.9491 0.9559 0.9596 13.3198 Non-robust
12 14 DEff 0.7860 0.8537 0.8958 0.9235 0.9422 0.9550 0.9636 0.9692 0.9727 0.9745 6.3685
12 14 DEff 0.7836 0.8530 0.8955 09233 09420 0.9548 0.9634 0.9690 0.9725 09744 6.4357
Dyel 8 9 100 2 10 7 4 11 1 9 5 6 3 12
Dye2 2 7 8§ 11 12 6 5 1 3 11 9 10 12 4
Dyel 7 3 1 11 5 3 8 4 6 10 12 9 2 4
Dye2 2 8 2 10 2 6 7 11 4 1 3 1 9 5
45 13 15 AEff 0.5685 0.7073 0.7917 0.8466 0.8835 0.9085 0.9254 0.9364 0.9433 0.9471 13.9229 Non-robust lessCV
13 15 AEff 05647 0.7123 0.8011 0.8584 0.8965 0.9223 0.9396 0.9509 0.9578 0.9616 14.3983 Non-robust
13 15 DEff 0.7634 0.8366 0.8808 0.9097 0.9292 0.9425 09515 09575 0.9613 0.9635 6.8333
13 15 DEff 0.7721 0.8483 0.8936 0.9229 09425 0.9557 0.9646 0.9704 09740 09759 6.8623
Dyel 10 7 3 9 11 1 12 13 4 5 7 2 8 6 4
Dye2 11 9 1 12 5 6 2 3 2 8 1 13 9 10 1
Dyel 4 4 m s 1w 2 1 13 2 3 6 7 9 12 8
Dye2 10 12 4 2 5 8 6 1 9 13 11 3 1 3 7

Bold faced indicates for the designs obtained in the present investigation; Contents of best available designs are given below the contents of design obtained for each parametric

combination

S-robust indicates that percentage CV(A-efficiency) of the design is less than 1%; Robust indicates that percentage CV(A-efficiency) of the design is less than 5%
Non-robust indicates that percentage CV(A-efficiency) of the design is more than 5%; moreCV (lessCV) indicates that percentage CV(A-efficiency) of the design obtained

in the present investigation is more (less) than the best available design
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Table 7. Seven New Row-Column Designs for 2-Colour Microarray Experiments not Catalogued in Literature of Microarray Experiments

SINo. v b Eff p=00 p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09 CV(EM Robustness
1 4 5 AET 08757 08903 09020 09115 09192 09255 0.9305 009345 009377 09401 22359 Robust
DEff 09196 09266 09322 09367 0.9404 0.9433 0.9457 0.9475 0.9490 0.9502 1.0348

Dyel 3 3 2 4 1
Dye2 2 4 4 1 3
2 4 6 AEff 09375 0.9408 0.9438 0.9465 0.9490 0.9512 0.9533 0.9552 0.9569 0.9585 0.7028 S-robust
DEff  0.9410 09440 09467 09491 0.9514 0.9534 0.9553 0.9570 0.9586 0.9601 0.6370
Dyel 4 2 3 301
Dye2 1 4 4 3 2 2
3 5 6 AEff 08466 0.8698 0.8888 0.9042 0.9168 0.9268 0.9347 0.9408 0.9454 0.9487 3.5876 Robust
DEff  0.9008 09154 09269 09360 0.9432 0.9488 0.9531 0.9564 09587 0.9603 2.0250
Dyel 5 3 4 5 1 2
Dye2 1 4 5 2 3 3
4 5 7 AEff 0.8571 0.8817 0.9005 0.9150 0.9260 0.9343 0.9405 0.9451 0.9482 0.9502 3.2281 Robust
DEff  0.9099 0.9228 0.9327 0.9403 0.9462 0.9507 0.9541 0.9567 0.9585 0.9598 1.6833
Dyel 3 3 1 5 4 1 2
Dye2 4 4 3 2 5 5
5 5 8 AEff 09184 09304 09397 09468 0.9522 0.9562 0.9592 0.9613 0.9626 0.9634 1.5212 Robust
DEff  0.9431 09498 0.9550 0.9590 0.9621 0.9645 0.9664 0.9678 0.9688 0.9695 0.8749
Dyel 3 2 4 4 5 3 1 1
Dye2 5 4 5 3 1 2 2 3
6 5 9 AEff 09259 009361 0.9440 0.9503 0.9552 0.9591 0.9623 0.9647 0.9667 0.9682 1.4038 Robust
DEff  0.9593 09638 09673 09701 0.9723 09741 0.9754 0.9766 0.9774 0.9781  0.6140
Dyel 5 5 4 4 1 3 3 1 2
Dye2 1 2 1 5 2 5 4 3 4
*7 5 10 AEff 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 S-robust
DEff  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  0.0000
Dyel 3 2 5 3 2 4 5 1 4 1
Dye2 1 4 3 4 3 5 2 5 1 2

« S-robust indicates that percentage CV(A-efficiency) of the design is less than 1%
« Robust indicates that percentage CV(A-efficiency) of the design is less than 5%

« Non-robust indicates that percentage CV(A-efficiency) of the design is more than 5%
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