Genetic Enhancement and Breeding

Pearl Millet Male-sterile Population NCD₂A₄ and its Counterpart Maintainer Population NCD₂B₄

KN Rai*, AS Rao and AK Singh (ICRISAT, Patancheru 502 324, Andhra Pradesh, India) *Corresponding author: k.rai@cgiar.org

The pearl millet (Pennisetum glaucum) population NCD₂B₄ is a d_2 dwarf population developed as a maintainer of the A₄ cytoplasmic-nuclear male-sterility system (Hanna 1989). NCD₂A₄ is the male-sterile counterpart of NCD₂B₄ in the A4 cytoplasmic background. Both populations were developed at ICRISAT, Patancheru, India. NCD₂B₄ was derived from NCD₂ by three cycles of recurrent selection for male-sterility maintenance ability of male-sterile line 81 A₄(Rai et al. 2000). In each cycle, 123 to 392 plants of NCD₂ were selfed as well as testcrossed onto 81A₄; of these, 76 to 131 testcrosses that were fully male-sterile were selected. In each cycle, S1 progenies of the NCD2 plants that produced these male-sterile testcross hybrids were recombined by hand to produce the seed of the next cycle bulk. The frequency of male-sterile testcrosses increased from 36% for the $C_{\rm 0}$ cycle to 88% for the $C_{\rm 1}$ and 100% for the C2 cycle. The NCD, C3 bulk produced by recombining 116 S₁ progenies of those plants from NCD₂ C₂ that produced fully male-sterile testcross progenies was designated as NCD₂B₄ maintainer population.

Initially, the NCD₂ C₀ bulk was crossed onto 81A₄ to produce the topcross F_1 hybrid. During the 1994 postrainy hot summer (hereafter referred to as 'dry') season, 20 male-sterile plants of this hybrid were crossed with bulk pollen from 160 plants of the NCD, C₁ bulk to produce NCD₂A₄-BC₁, Two subsequent backcrosses were made on about 50 male-sterile plants of backcross populations using the bulk pollen from more than 200 plants of the C₂ and C₃ cycle bulks of NCD₂. Five additional backcrosses were made with the NCD₂C₃ bulk (ie, NCD₂B₄) crossed onto male-sterilc plants of the advancing backcross populations. The NCD₂A₄-BC₈ produced as the final backcross generation was designated as NCD₂A₄.

Comparison of male-sterility of NCD_2A_4 -BC₃ with a commercial male-sterile line with the A₁ cytoplasm (841 A₁) used as a control showed that both had similar

and low frequency of pollen shedders (0.2 to 1.0%) in the 1998 rainy season and 1999 dry season at Patancheru (Table 1). Further evaluation of a completely male-sterile version NCD_2A_4 (= NCD_2A_4 -BC₈) during the 2000 dry season showed that it had no pollen shedders, while 841 A₁ had up to 0.1 % pollen shedders.

Evaluation of the four cycle bulks of NCD_2B_4 in a yield trial conducted at Patancheru during the rainy and dry seasons of 1996 showed that there was no significant difference between the C₀ bulk of NCD_2 and its final C₃ bulk (ie, NCD_2B_4) for grain yield and other agronomic traits (Table 2). Although not evaluated in a replicated trial, after eight generations of backcrossing, NCD_2A_4 and NCD_2B_4 plants, as expected looked phenotypically similar in observation plots. In a replicated trial for two seasons at Patancheru, NCD_2B_4 had a mean grain yield of 183 g m⁻², with plant height of 1.5 m and 53 days to 50% flowering. NCD_2B_4 has long panicles (33 cm), produces mostly one main panicle plant⁻¹ and has small seeds (7.1 g

Table 1. Pollen shedders in pearl millet male-sterile NCD_2 populatioas (NCD_2A_4 -BC, and NCD_2A_4) at Patancheru, India.

Male-sterile population/line	Season	Total plants	Pollen shedders (%)	
Experiment 1				
NCD_2A_4 - BC_3	Rainy 1996	1431	1.0	
	Dry 1997	1067	0.2	
841 A ₁ (control)	Rainy 1996	1119	1.0	
	Dry 1997	1333	0.2	
Experiment 2				
NCD ₃ A ₄	Dry 2000	750	0.0	
841 A ₁ (control)	Dry 2000	838	0.1	

Table 2. Mean grain yield and agronomic traits of four cycle bulks of NCD_2 in pearl millet during 1996 rainy and dry seasons, Patancheru, India.

	Grain	Time to	Plant	Panicle	No. of	1000-	
Cycle	,	50%	height	length	tillers	seed mass	
bulk	(g m ⁻²)	flowering	(m)	(cm)	plant ⁻¹	(g)	
C_0	196	53	1.5	34	1.1	7.3	
C_3	145	58	1.4	34	1.1	6.7	
C_2	180	56	1.5	34	1.1	7.1	
C_3^1	183	53	1.5	33	1.2	7.1	
SE	± 5.6	0.2	0.02	0.4	0.02	0.13	
1. C_3 bulk = NCD ₂ B ₄ .							

1000-seed mass). The seed is light gray and hexagonal in shape. Both populations have mixed anthers of purple and cream color.

Seed of NCD_2A_4 and NCD_2B_4 will be maintained and distributed upon request in germplasm quantities by ICRISAT, Patancheru under the terms and conditions of the ICRISAT Breeding Materials Transfer Agreement.

References

Hanna WW. 1989. Characteristics and stability of a new cytoplasmic-nuclear male-sterile source in pearl millet. Crop Science 29:1457-1459.

Rai KN, Andrews DJ and Rao AS. 2000. Feasibility of breeding male-sterile populations for use in developing inter-population hybrids of pearl millet. Plant Breeding 119:335-339.

ICMR 98001: A Restorer Stock of A₅ Cytoplasmic-nuclear Male Sterility in Pearl Millet

KN Rai* and AS Rao (ICRISAT, Patancheru 502 324, Andhra Pradesh, India) *Corresponding author: k.rai@cgiar.org

ICMR 98001 pearl millet (*Pennisetum glaucum*) restorer stock is a highly male-fertile inbred line in the A, cytoplasmic background. This line was developed at ICRISAT, Patancheru, India from one of the several pollen-fertile plants identified in a topcross hybrid produced by crossing Large-seeded Genepool-1 (LSGP-1) developed at ICRISAT, Patancheru (Rai et al. 1999) with malesterile line $81A_5$ that possesses the A_5 cytoplasm. LSGP-1 was developed by random mating 959 large-seeded (>10 g 1000-seed mass) germplasm accessions from 23 countries (Rai et al. 1999). The line $81A_5$ was developed by seven generations of backcrossing of a d_2 dwarf maintainer line 81B (Anand Kumar et al. 1984) into the A_5 male-sterilityinducing cytoplasm identified from one of the 67 pollensterile plants of LSGP-1 (Rai and Rao 1998).

During the 1995 postrainy hot summer (hereafter referred to as 'dry') season, $81 A_5$ was crossed using the bulk pollen from 140 plants of LSGP-1. Of the 645 plants of the resulting topcross hybrid grown at Patancheru during the 1995 rainy season, six were pollen-fertile. Two generations of head-to-row evaluation, using seeds from open-pollinated panicles of the pollen-fertile plants in the A_5 cytoplasmic background, concomitant with selection

for high levels of pollen fertility, was followed by one generation of selfing of pollen-fertile plants to produce six S_1 progenies, one S_1 from each of the six rows. Six fertile plants in each S_1 were selfed to produce S_2 progenies and also testcrossed onto $81A_5$. During the 1997 dry season, it was observed that all plants in one S_2 progeny were pollen-fertile and they had 65-95% selfed seedset. Similarly, all the plants in the corresponding testcross were pollen fertile and they had 75-95% selfed seedset. Further selfing in this S_2 produced S_4 progenies. An additional selfing in this S_3 produced S_4 progenies and testcross hybrids.

Evaluation during the 1998 dry season at Patancheru showed that all plants in one S4 progeny and its corresponding testcross were pollen-fertile and they had 90-100% selfed seedset. A S5 progeny (ICMA5R-1) produced from this S₄ progeny was designated as ICMR 98001. It was evaluated in a yield trial along with three other restorer stocks during the rainy season in 1998 and 1999 at Patancheru. ICMR 98001 gave a mean grain yield of 201 g m⁻² compared to 264 g m⁻² for an A₁-system restorer line (ICMR 356) of a commercial hybrid ICMH 356. In this trial, ICMR 98001 grew 1.6 m tall, produced 1.4 panicles plant⁻¹, and took 54 days to 50% flowering (6 days later than ICMR 356). ICMR 98001 has short (21 cm), cylindrical and compact panicles with tufted tip. It has hairy leaf blade and leaf sheath, and yellow anthers. It is a prolific pollen producer with plants having 85-100% selfed seedset. The seed is small (7.2 g 1000-seed mass), gray in color, hexagonal in shape and has spiny outer surface.

Seed of ICMR 98001 will be maintained and distributed in germplasm quantities on request by ICRISAT, Patancheru, under the terms and conditions of ICRISAT Breeding Materials Transfer Agreement.

References

Anand Kumar, Andrews DJ, Jain RP and Singh SD. 1984. ICMA-1 and ICMB-1 pearl millet parental lines with A₁ cytoplasmic-genic male sterility system. Crop Science 24:832.

Rai KN, Andrews DJ, Rao AS, Rajewski JF and Du RH. 1999. Restorer sources of A,₅cytoplasmic-nuclear male sterility in *Pennisetum* germplasm and its implications in pearl millet hybrid breeding. International Plant Genetic Resources Newsletter 120:20-24.

Rai KN and Rao AS. 1998. Registration of pearl millet cytoplasmic-nuclear male-sterile line ICMA-5. Crop Science 38:556.