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Abstract

Key message Field-based phenotyping of root system architectural (RSA) traits in a diversity panel (PI-GAP) of
pigeonpea was conducted across three diverse pigeonpea growing environments along with identification of genomic
regions associated with these traits through GWAS analysis.

Abstract Root system architecture (RSA) plays a crucial role in plant stress tolerance mechanisms serving as the main
route for water and nutrient acquisition, while also mediating plant-rhizosphere signalling. In the current study, an attempt
was made to understand the genetic variability and genomic regions associated with RSA traits, as a relatively unexplored
area of research in pigeonpea. The field-based “Shovelomics” approach was utilized to phenotype eight RSA traits: tap
root length (TRL), lateral root length (LRL), number of lateral roots (NRL), stem diameter (SD), root diameter (RD),
root angle from first and second lateral roots (RA1 and RA2) and root fresh weight (RFW) at physiological maturity. The
pigeonpea international genome-wide association panel (PI-GAP) comprising of 185 genotypes from the reference set and
15 elite genotypes were used in the study. The combined ANOVA revealed significant genetic variance for all RSA traits
except for RA2. Genome-wide association study was conducted using the Axiom Cajanus 56 K SNP array, leading to
identification of 45 marker trait associations (MTAs) associated with RSA traits in pigeonpea. Multi-locus GWAS models
detected six MTAs accounting for 4.84% to 18.73% of the phenotypic variation estimated (PVE) for TRL, 12 MTAs for
LRL (4.73-13.92% PVE) and 11 MTAs for NLR (3.03-14.03% PVE value), respectively. Candidate gene analysis revealed
genes associated with these traits, including BAG (Bcl-2-Associated athanogene) family molecular chaperone regulator
6 (CcLGOI_17476096 and CcLGO1_17476721), root cap (CcLG04_5972718) and Protein MAINTENANCE OF MERIS-
TEMS (MAIN) (CcLG06_8242342). These genes were found to have key roles in growth and establishment of roots under
stress-related conditions in model crops. Further validation of identified MTAs would provide an opportunity to develop
trait-specific markers paving the way for marker-assisted breeding in pigeonpea. Based on RSA traits, pigeonpea genotypes
were categorized into deep, spreading and dimorphic root system. These classifications facilitate the phenotypic selection
of genotypes for breeding against drought, heat, waterlogging and salinity adaptation. Improved cultivars with an ideal
root architecture designed for efficient resource uptake and high yield under diverse environments could help address food
security challenges in semi-arid tropics.
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Introduction

Root system architecture (RSA) refers to the spatial
arrangement of various root components, including pri-
mary root, lateral root, basal root, their branching patterns,
root density, root length, root angle and total root surface
area (Lynch 2013; Kuijken et al. 2015). It plays a funda-
mental role in plant growth and adaptation by facilitating
resource uptake, providing structural anchorage and serv-
ing as a storage unit for essential metabolites (de Dor-
lodot et al. 2007). Root traits have important role in the
resource-limited environments, such as moisture limited
(drought) and excessive (waterlogging) conditions. Deep
and robust root systems enable plants to access water and
nutrients from deeper soil layers, enhancing drought tol-
erance and nutrient uptake efficiency. Root architectural
traits like increased lateral root proliferation and greater
root hair length enable extensive soil exploration horizon-
tally under abiotic condition like waterlogging and salinity
(Vadez 2008; Amarapalli et al. 2022; Bakala et al. 2024).
For decades, breeding efforts have predominantly focused
on above-ground traits, often overlooking the root system
despite its vital role in crop growth and yield. However,
with the increasing challenges posed by climate uncer-
tainty, attention has shifted towards modulating RSA to
enhance crop productivity and resilience under resource-
limited conditions (Lynch 2013; Kuijken et al. 2015) as
well as to focus on interactions between the roots and the
associated rhizosphere.

Being a major grain legume of the semi-arid tropics,
pigeonpea [Cajanus cajan (L.) Millsp.] is a multi-utility
crop integral to food, nutrition and livelihood security.
The grain is majorly consumed as split grain (dal) in
Asia and as a whole grain in Africa. It is rich in protein
(20-22%) and micronutrients such as calcium (Ca), mag-
nesium (Mg), iron (Fe) and zinc (Zn) (Kalyan et al. 2025;
Susmitha et al. 2022). Apart from food, farmers value
this crop for feed, fodder and fuel wood. The deeper tap
roots along with dense lateral roots enhance soil fertility
through symbiotic nitrogen fixation. They also play a role
in eradication of soil erosion by tightly binding to roots
and fixing atmospheric carbon. These attributes of the crop
make it a crop of subsistence farming. It is cultivated in
5.7 million hectares (Mha) with an annual production of
5 million tonnes (Mt) with the productivity of 0.82 t ha™!
(FAOSTAT, 2024). The pigeonpea industry is valued at
around USD 15.6 billion and is projected to grow to USD
31.8 billion by 2035 (FMI, 2025). The uncertain rains and
increasing wetting and dry spells in agricultural lands pose
challenges for high input crops like rice and maize provid-
ing opportunity for pigeonpea. As a crop of marginal soils,
pigeonpea is barely explored in terms of its role in abiotic
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stress adaptations. In this regard, understanding the root
traits alongside yield gains priority in research.

Pigeonpea undergoes epigeal germination and develops
an embryonic root system comprising a primary tap root
and lateral roots. The primary tap root is ortho-gravitropic,
growing vertically into the soil, while lateral roots typi-
cally extend horizontally at specific gravitropic setpoint
angles (Basu et al. 2007; Kuya and Sato 2011; Kirschner
et al. 2024). Both tap root and lateral root mainly focuses on
water and nutritional uptake from deeper layers as well as
subsurface soil in crops like groundnut, common bean and
cowpea (Li et al. 2025; Bochmann et al. 2025; Chen et al.
2024; Zhang et al. 2025). The exploration of diversity for
RSA traits in pigeonpea gives prospect to understand the
spatial distribution of the root system in pigeonpea along
with identification of the donors to be used improvement of
root system architecture with respect to abiotic stress.

Pigeonpea exhibits a wide range of maturity groups, span-
ning from extra early to late. The extra early having a matu-
rity of < 120 days while, early and mid-early have a maturity
of 121-150 and 151-165 days, respectively. The medium
and late groups have a maturity of 166—180 and > 180 days,
respectively. Each maturity groups are having the consider-
able advantages and limitations pertaining to abiotic stress.
Extra early and mid-early maturity groups depict drought
escape mechanism, while medium and late maturity group
depicts sensitivity towards terminal moisture stress, a mois-
ture limited conditions in soil. In India, most pigeonpea vari-
eties grown in farmers’ fields are exposed to terminal mois-
ture stress during the critical pod-filling stage which leads
to yield losses up to 63% (Upadhyaya et al. 2012; Deshmukh
et al. 2009). Hence, in-depth understanding of RSA would
help in improvement of dimorphic root system which indi-
rectly contribute to drought tolerance (Burridge et al. 2020;
Lynch 2019; Lynch et al. 2024).

Despite the significance of root traits in crop adapta-
tion, root phenotyping remains a major challenge due to the
complexity and opacity of soil environments. Greenhouse-
based phenotyping methods provide controlled conditions
for high-throughput screening (York et al. 2013). However,
greenhouse trials typically rely on pots, which limit soil
volume and restrict root growth and development (Poorter
et al. 2012). Field-based phenotyping is crucial for capturing
genotype X environment (G X E) interactions. In this regard,
shovelomics emerges as a low-cost field phenotyping tech-
nique enabling breeders to assess root traits in natural soil
conditions. This method involves excavating root systems,
washing them and analysing their architecture using phe-
notyping boards or imaging (Trachsel et al. 2011; Burridge
et al. 2016). Furthermore, the absence of genetic studies
on RSA traits in pigeonpea limits RSA-based breeding.
Hence, incorporating RSA trait into breeding programmes
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can enhance targeted genetic improvement for abiotic stress
adaptation. Integrating GWAS with detailed phenotyping
of RSA traits offers new opportunities to identify candidate
genes and genomic regions underlying root development,
paving the way for marker-assisted selection and the genetic
improvement of the crop (Kim et al. 2023; Donde et al.
2023; Jiang et al. 2025).

Given the crucial role of RSA in conferring abiotic
stress resilience, study was initiated to investigate the
genetic potential of RSA traits in pigeonpea. While previ-
ous research using shovelomics has highlighted RSA traits
in other crops like cowpea, soybean and common bean, a
comprehensive understanding in pigeonpea remained unex-
plored. Therefore, this investigation systematically assessed
the genetic variability and genome-wide association studies
(GWAS) for RSA traits within the Pigeonpea International
Genome Wide Association Panel (PI-GAP). The aim was
to identify promising trait donors and associated mark-
ers which will subsequently be incorporated into breeding
programmes.

Materials and methods
Plant material

The current study material consisted of 185 reference set
accessions and 15 elite genotypes from the Pigeonpea Inter-
national Genome Wide Association Panel (PI-GAP) sharing
the origin across 25 countries worldwide (Table S1; Fig. S1).
The seeds were collected from Rajendra Singh Paroda Gen-
ebank, ICRISAT, and single plant selection was carried out
for two seasons as a purification process before deriving a
uniform accession. This panel was selected for its exten-
sive genetic diversity, capturing variability across multiple
morpho-physiological and yield-related traits.

Field experiment

The experimental trial was laid out in an alpha lattice
design for 200 genotypes with two replications, using a
block size of 10. Each genotype was planted in two rows
of 3.0-m length, with an inter row spacing of 75 cm and
plant to plant spacing of 15 cm, providing a plot size of
4.5 m? (0.75%x3x2). The field trials were conducted dur-
ing rainy-2023 across three distinct environments: Interna-
tional Crops Research Institute for the Semi-Arid Tropics
(ICRISAT), Patancheru, India (17.51°N latitude, 78.27°E
longitude, 545.00 m above mean sea level), Indian Institute
of Pulses Research (ITPR), Kanpur, India (26.27°N latitude,
80.14°E longitude and 125.00 m above mean sea level) and

Regional Agricultural Research Station (RARS), Warangal,
India (15.50°N latitude, 79.28°E longitude, 268.50 m above
mean sea level), whereas sowing was done on 16 June 2023
at ICRISAT-Patancheru and IIPR-Kanpur and on 24 June
2023 at RARS-Warangal. The environmental conditions
varied across environments. At ICRISAT-Patancheru, the
average maximum and minimum temperatures were 31.8
and 21.5 °C, respectively, with 923.18 mm total rainfall
and 86.33% relative humidity (RH), while RARS-Warangal
recorded the temperatures 32.5 °C (max), 21.55 °C (min),
954.80 mm rainfall and 85.97% RH. The third environment,
[TPR-Kanpur, recorded the temperatures 30.74 °C (max) and
19.21 °C (min), with 859.10 mm rainfall and 84.14% of RH
in Table S2. The soil type too varied at the experimental
sites with Vertisols type at ICRISAT-Patancheru, Alfisols
at RARS-Warangal and Inceptisols at IIPR-Kanpur being
a major soil type. The details of the soil profiles of three
experimental sites are provided in Table S3.

Shovelomics: a root phenotyping protocol

Shovelomics is a field-based phenotyping method that
involves manually excavating plants using standard shovels
(Trachsel et al. 2011; Burridge et al. 2016). This method
makes it possible to thoroughly characterise the root mor-
phology and architecture under typical growing circum-
stances, offering important insights into root traits associated
with plant performance and stress tolerance. As root archi-
tecture studies in pigeonpea are a first of its kind, standard-
izing the Shovelomics protocol represented a pioneering step
in this research. The protocol included the following steps.

Root excavation

Three plants were randomly selected for root phenotyp-
ing. The physiological maturity stage was identified as the
optimal time for phenotyping, as root growth and establish-
ment could be considered evident at this stage. To facilitate
root excavation, the experimental field was irrigated to field
capacity for consecutive days. On the day of excavation, run-
ning irrigation was applied to soften the soil further, allow-
ing for easier manual excavation with minimal root damage.
Roots were excavated using a standard spade, which enabled
careful uprooting of the primary tap root along with long,
horizontally spread lateral roots and intact fine tertiary roots.
This ensured a complete and representative root sample for
phenotypic assessment. Each selected root crown was care-
fully tagged and labelled for accurate identification prior
root washing.
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Root cleaning and washing

A standardized cleaning protocol was applied for excavated
roots before trait measurements to maintain precision.
Accordingly, the following steps were followed.

(1) Removal of soil particles: Briefly shaking root crowns
to remove excess soil.

(2) Detergent soaking: Submerging roots in a 0.5% of
detergent solution for 10—15 min to detach remaining
soil particles.

(3) Cleaning: Rinsing of root vigorously under low water
pressure to eliminate any residual soil particles adher-
ing to the roots.

(4) Shade drying: Thoroughly cleaned roots were dried
for 10 min under shade to remove excess water before
measurements.

Phenotyping and trait measurement

Cleaned root samples were arranged on a phenotyping board
specifically designed for precise root trait measurement. The
phenotyping measuring board is a simple wooden frame of
1 m height; 2 m length; and 1 m width without a grid or
section marking. The roots were horizontally placed on the
board, and the trait measurements were taken for RSA traits
with the help of measuring tape, vernier calliper, 180° pro-
tractor and precision weighing balance. Roots were meas-
ured sequentially for all traits, and data were recorded. The
following eight RSA traits were measured using standard-
ized protocols as shown in Figs. 1 and 2.

(a)

(1) Tap root length (TRL): Distance from the base of the
stem to the tip of the tap root was measured in centi-
metres using a measuring tape.

(2) Lateral root length (LRL): Length of lateral roots
emerging from the tap root was measured in centime-
tres using a measuring tape.

(3) Number of lateral roots (NLR): A number of lateral
roots branching from the tap root were manually
counted.

(4) Stem diameter (SD): Stem diameter was measured at
the soil surface using an electronic digital vernier cal-
liper (Model SHA 1890, Omni-Tech Electronic Co.,
Limited, Hong Kong, China). The vernier calliper was
adjusted at the cut crown of the stem, and digital read-
ing was recorded in centimetres

(5) Tap root diameter (RD): A tap root diameter was meas-
ured at 10 cm below the soil surface by adjusting the
vernier calliper around root to record the reading.

(6) Root angle 1 (RA1): Roots were laid on the 180° pro-
tractor placed on the phenotyping board; root stem was
then kept at the centre point of protractor such that tap
root is parallel to 90° line. A root angle between first
lateral root and the reference line was recorded manu-
ally.

(7) Root angle from second lateral root (RA2): RA2 was
measured similarly to RA1 for the second lateral root.

(8) Root weight (RFW): Roots were placed on the precision
weighing balance (Mettler PM16) and the weight was
recorded in grams.
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Fig.1 Root System Architecture (RSA) of pigeonpea: a RSA traits
evaluated across three diverse environments: ICRISAT-Patancheru,
IIPR-Kanpur and RARS-Warangal; b Genotype exhibiting a deep root
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system; ¢ Genotype with a spreading root system d Genotype show-
ing a dimorphic root system



Theoretical and Applied Genetics (2026) 139:45

Page50f20 45

Fig.2 Shovelomics phenotyping of root system architectural traits
in pigeonpea including: a tap root length (cm), measured using a
meter tape; b lateral root length (cm) and number of lateral roots, also
measured using a meter tape and manual counting, respectively; ¢
stem diameter at the soil level (cm), measured with a vernier calliper;

Categorizing root systems based on RSA traits

Roots were further classified into three distinct types, based
on to their architectural characteristics. This classification
was derived from measurable traits such as tap root length,
lateral root length, the number of lateral roots, root diam-
eter, stem diameter and root angles (Burridge et al. 2020).
Accordingly, roots were classified into:

Deep root system

Roots growing predominantly downward with deeper tap
root length and shorter lateral roots were classified as deeper
root system. In such system, a number of lateral roots were
minimal, whereas root diameter and stem diameter were
found to be higher with steeper root angle (Fig. 1b).

Spreading root system

Roots spreading horizontally near the soil surface with
longer and numerous lateral roots were termed as spreading
root system. They had higher stem diameter and a shallow
root angle (Fig. 1c).

d tap root diameter 10 cm below the stem (cm), measured with a ver-
nier calliper; e root angle from the first and second lateral roots (°),
measured using a protractor; and f root fresh weight measured with a
weighing balance

Dimorphic root system

Roots growing both deeper and horizontal to the soil surface
layer were classified as dimorphic root system. Such roots
had lengthier tap roots, longer lateral roots, moderate root
as well as stem diameter, with lesser root angle (Fig. 1d).

The observations generated from the study were further
utilized for assessing genetic variability. As there were
sequenced data for the genotypes under the study, marker
trait associations (MTAs) linked with these root traits were
identified.

Genotyping using Axiom Cajanus SNP array
with 56 K SNP data

The Axiom Cajanus 56 K SNPs array genotyping platform
was developed from the sequence of 103 pigeonpea lines.
A total of 56,512 unique and informative sequence variants
were included in this genotyping array (Saxena et al. 2018).
The genotyping for 185 lines used in the present study was
done using this Axiom Cajanus 56 K SNPs array. High-
quality DNA was isolated from fresh leaves of each genotype
using the NucleoSpin Plant IT kit (Macherey—Nagel). The
quality of the extracted DNA was checked on 0.8% agarose
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gel electrophoresis, and DNA quantification was performed
using a Qubit 2.0 Fluorometer (Life Technologies Thermo
Fisher Scientific Corp.). Target probes were prepared using
high-quality DNA (20 pL of 10 ng pL™") from each line fol-
lowing “Affymetrix Axiom 2.0” procedure. Further, DNA
samples were amplified, fragmented and hybridized on the
chip followed by single-base extension through DNA liga-
tion and signal amplification. Affymetrix GeneTitan was used
for staining and scanning samples. Alternate and reference
alleles for each SNP markers were detected using Axiom
Analysis Suite version 1.0. (http://media.affymetrix.com_/
r nl manuals/Axiom analysi i I
guide.pdf). Allele assignment was performed based on the
pigeonpea reference genome ICPL 87119 (v1.0). The sug-
gested genotyping workflow (Best Practices Workflow) was
used for the genotyping of imported CEL files.

Statistical analysis
Variance and genetic parameters

A combined analysis of variance (ANOVA) was used to
analyse the main and interaction effects of environment and
genotypes, with environment, replication, the nested effect
of block with replication and genotype treated as random.
Individual variances of environments were estimated and
modelled to error distribution using the residual maximum
likelihood (REML) algorithm in SAS Mixed (SAS v9.4,
SAS Institute Inc. 2023). BLUPs (Best Linear Unbiased
Predictors) were computed for genotypes (G), environment
and environment X genotypes using a combined analysis of
variance.

The estimates of repeatability for each RSA trait across
environment were categorized into low (< 0.40), medium
(0.41-0.69) and high (> 0.70) (Falconer and Mackay 1996).
Correlation coefficients among RSA traits were computed
using the native R function cor () and visualized with the
corrplot package of RStudio (Wei and Simko 2017). The
Multi-Trait Genotype—Ideotype Distance Index (MGIDI)
was used to select genotypes with ideal performance across
multiple RSA traits (Olivoto and Nardino 2020).

Genetic diversity estimation, PCA (Q matrix)
and kinship relatedness (K matrix)

The diversity of the reference set genotypes was estimated
using the Tassel software based on the nucleotide diver-
sity (Bradbury et al. 2007). The Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) statistics were
employed to construct a dendrogram for the 185 genotypes.
The resulting “NWK” extension file was subsequently used
in the “iTOL” webtool (https://itol.embl.de/) to improve the
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representation of the tree. Principal component analysis
(PCA) was conducted using the GAPIT package of RStudio
(Lipka et al. 2012). To identify sub-populations within the
185 genotypes additionally, the genetic relationships among
the selected genotypes were evaluated using kinship matrix
(K), which helps correct false positives and is likely to pro-
vide the true marker trait associations.

Genome-wide association mapping

In the Axiom Cajanus 56 K SNPs array containing a total
of 56,512 markers (SNPs and Indels), filtration was done
with minor allele frequency (MAF) > 0.05 and maximum
heterozygous proportion 25%. Following filtration, the
trait-specific SNPs were identified through Multi-locus
Random-SNP-Effect Mixed Linear Model (mrMLM)
and The Genomic Association and Prediction Integrated
Tool (GAPIT) version 3 package of RStudio. Further-
more, within mrMLM framework, six different associa-
tion models were implemented including (1) Multi-Locus
Random-SNP-Effect Mixed Linear Model (mrMLM),
(2) Fast Multi-Locus Random-SNP-Effect Mixed Linear
Model (FASTmrMLM), (3) Fast Multi-Locus Mixed-
Model Association (FASTmrEMMA), (4) Polygenic-
background-control-based Least Angle Regression and
Empirical Bayes (pLARmEB), (5) Polygenic-background-
control-based Kruskal-Wallis test and Empirical Bayes
(pPKWmEB), (6) Iterative Sure Independence Screening
Extended Empirical Bayes LASSO (ISIS EM-BLASSO)
(Zhang et al. 2020a, b). For the mrMLM models, SNPs
with a LOD score greater than 3 were considered sig-
nificantly associated with the trait. In the GAPIT model,
genome-wide threshold was determined using the Bon-
ferroni correction, calculated as 0.05/37865=1.32048E-
06, corresponding to —log10 (p value)=5.87. SNPs that
met the significance threshold were defined as significant
(Dudbridge and Gusnanto 2008).

Allelic distribution of the identified significant MTAs

The allelic distribution of all the markers was checked in
the 185 genotypes. The distribution of favourable and unfa-
vourable alleles in the extreme genotypes was compared,
and significant markers having associations with RSA were
selected.

Identification of candidate gene
Systematic process to identify candidate genes for RSA-

related traits was used. Candidate genes were fetched from
the 58 kb upstream and downstream region of the identified
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MTAs. The genes filtered based on their predicted functions,
and those likely related to the trait of interest were retained
as candidate genes. The function of these genes was identi-
fied using KEGG annotation file of pigeonpea draft genome
version 1 (ICPL 87119) (Varshney et al. 2012). The function
of unknown genes was identified in Interproscan (https://
www.ebi.ac.uk/interpro/search/sequence/) webtool using the
amino acid sequence of the genes.

Results

Estimates of variance components for genotypes,
environment and their interactions

From the combined analysis of variance (Table 1), all
traits except RA2 showed significant genetic variation
and genotype X environment interaction (p < 0.05). The
main effect of environment is substantial for all RSA
traits, indicating that environment variances were high.

Table 1 Estimation of variance components for root architectural traits among 200 pigeonpea genotypes evaluated across ICRISAT-Patancheru;

RARS-Warangal and IIPR-Kanpur

Traits Components Genotypes Environment Genotypes x

environment

Environment Environment
x replication  x replication x

ICRISAT, RARS, Waran-
Patancheru gal

IIPR, Kanpur

block
TRL Variance 2.75 37.19 6.28 0.09 2.59 35.21 9.59 50.39
SE 1.15 37.42 1.62 0.27 0.81 3.47 1.06 4.7
Prob. chi- 0.0092 0.0006 <0.0001 0.6714 <0.0001 - - -
square
LRL Variance 19.45 5.72 19.46 0 5.76 64.43 61.89 81.78
SE 4.39 6.18 4.97 - 2.13 7.12 6.44 8.17
Prob. chi- <0.0001  0.0293 <0.0001 - 0.0006 - - -
square
NLR Variance 0.76 1.81 0.57 0.07 0.29 4.54 1.83 4.61
SE 0.18 1.87 0.2 0.08 0.1 0.44 0.2 0.44
Prob. chi- <0.0001 0.0107 0.0024 0.061 0.0001 - - -
square
SD  Variance 0.03 0.26 0.01 0 0.02 0.07 0.06 0.24
SE 0.01 0.26 0.01 - 0 0.01 0.01 0.02
Prob. chi- <0.0001  0.0003 0.0226 - <0.0001 - - -
square
RD  Variance 0.02 0.05 0.02 0 0.01 0.03 0.03 0.1
SE 0 0.05 0 - 0 0 0 0.01
Prob. chi- <0.0001  0.0003 <0.0001 - <0.0001 - - -
square
RA1 Variance 2.24 2.28 0 0 0.81 33.85 26.73 4391
SE 0.87 2.4 - - 0.6 2.81 2.16 341
Prob. chi- 0.0067 0.0085 - - 0.1294
square
RA2 Variance 1.78 6.84 1.37 0 1.35 54.1 26.58 59.25
SE 1.16 7.01 2.02 - 0.79 4.72 2.63 4.83
Prob. chi- 0.1062 0.0057 0.4884 - 0.0463 - - -
square
RFW Variance 189.3 271.2 285.7 1.5 353 115.2 106.9 447.3
SE 38 275.6 34.7 3.6 10.1 13.9 13.3 59.4
Prob. chi- <0.0001  0.0015 <0.0001 0.5541 <0.0001 - - -
square

TRL: Tap root length; LRL: Lateral root length; NLR: Number of lateral roots; SD: Stem diameter; RD: Root diameter; RA1; Root angle from
Ist lateral root; and RA2: Root angle from 2nd lateral root; RFW: Root fresh weight; SE: Standard error; and Prob. Chi-square: Probability of

chi-square
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The mean performance of the genotypes for RSA
traits

The mean values and distribution of variation across geno-
types for multiple RSA traits are presented in Fig. S2. The
mean performance of the genotypes in the study varied for
trait TRL ranging from 13.17 to 37.75 cm, with a mean of
24.87 cm. The LRL varied from 26.75 to 63.08 cm, with
trial mean of 43.03 cm. Similarly, the NLR varied from 5.58
to 13.39 with trial mean of 9.57. The SD varied from 0.98
to 2.55 cm, with a mean of 1.95 cm. The RD ranged from
0.52 to 1.53 cm, with a mean of 0.98 cm. The RA1 ranged
from 10.00° to 25.83°, with a mean of 16.55°. Similarly, the
RAZ2 ranged from 12.5° to 31.39° with a mean of 19.81°.
The RFW ranged from 9.83 to 131.50 g, with an average of
52.91 g (Table 2).

Genetic variability and character association
among RSA traits

The genetic variability analysis of root traits in pigeonpea
revealed considerable variation, as indicated by the estimated
genotypic coefficient of variation (GCV), phenotypic coef-
ficient of variation (PCV), repeatability and genetic advance
as a percentage of the mean (GAM). The GCV varied from
6.59 (TRL) to 26.14 (RFW). Similarly, the PCV ranged from
11.55 (SD) to 34.07 (RFW). The repeatability and GAM for
RSA traits ranged from 18% (RA2) to 59% (RFW) and 5.78
(RA2) to 41.33 (RFW), respectively. The traits RFW and RD
have high GAM (>20%) and repeatability, which indicated
additive gene action and selection is likely to be more suc-
cessful for the respective traits. The moderate-to-high GAM
(10% to 20%) and repeatability of the traits LRL, NLR and

Table 2 Mean, range and

. R Traits Mean Above Range CV% GCV PCV Repeatability (%) GAM (%)

genetic varlgblllty paral.neFers average .

of root architectural traits in genotypes Min Max

pigeonpea genotypes
TRL (cm) 24.87 99 13.17 37.75 2238 6.59 12.65 27.00 7.06
LRL (cm) 43.03 102 26.75 63.08 19.21 10.17 14.13 52.00 15.07
NLR 9.57 106 558 13.39 19.77 899 12.89 49.00 12.88
SD (cm) 1.95 106 0.98 255 17.82  8.39 11.55 53.00 12.54
RD (cm) 099 94 0.52 1.53 23.34 13.36 18.02 55.00 20.38
RAT1 (°) 16.56 95 10.00 25.83 35.35 8.96 16.99 28.00 9.73
RA2 (°) 19.81 99 12.50  31.39 34.11 6.66 15.80 18.00 5.78
RFW (gm) 5291 92 9.83 131.50 28.38 26.14 34.07 59.00 41.33

TRL: Tap root length; LRL: Lateral root length; NLR: Number of lateral roots; SD: Stem Diameter; RD:
Root diameter; RA1; root angle from 1st lateral root; RA: Root angle from 2nd lateral root; RFW: Root
fresh weight; GCV: Genotypic coefficient of variance; PCV: Phenotypic coefficient of variance, GA:
Genetic advance and GAM: Genetic advance as per cent of mean
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Fig.3 Graphical illustration of Pearson’s correlation among root sys-
tem architectural traits of pigeonpea, including: tap root length (TRL,
cm); lateral root length (LRL, cm), number of lateral roots (NLR);
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stem diameter at the soil level (SD, cm); root diameter 10 cm below
the stem (RD, cm); root angle from the first and second lateral roots
(RA1, RA2, °); and root fresh weight (RFW, g)
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SD indicated that selection may improve these traits. The
low GAM (< 10%) and repeatability observed for RA1, RA2
and TRL indicate that these traits are strongly influenced by
the environment, making phenotypic selection less effec-
tive. The coefficient of variation CV (%) for each of the 8
traits ranged from 17.82% (SD) to 35.35% (RA1) (Table 2).
A significant positive correlation was observed between
TRL and LRL (r=0.405, P <0.001) and between SD and
RD (r=0.616, P <0.001). The trait RFW showed signifi-
cant a positive correlation with TRL (r=0.429, P <0.001),
LRL (r=0.609, P<0.001), NLR (r=0.477, P<0.001), SD
(r=0.672, P<0.001) and RD (r=0.502, P<0.001) (Fig. 3).
Desirable genotypes for each RSA trait were identified
based on the combined values of mean and standard error.
Genotypes ICP 4715 and ICP 8211 were found for TRL,
while ICP 12105 and ICPL 20202 were found superior for
LRL. For the number of NLR, ICP 10508 and ICPL 20201
were the best performers. Genotypes ICP 14444 and ICP
12515 showed superior performance for SD. In terms of
RD, ICP 4715 and ICP 9750 were identified as promis-
ing, whereas ICP 7337 and ICP 11969 performed well for
RFW. Genotypes ICP 11230 (MGIDI=2.824), ICP 12515
(MGIDI=2.959), ICP 11833 (MGIDI=3.161) and ICP
10559 (MGIDI=3.166) were selected as an ideal genotypes
based on the Multi-Trait Genotype—Ideotype Distance Index
(MGIDI) for root system architectural traits (Table S1).

Genetic diversity, SNP distribution, linkage
disequilibrium

The Axiom Cajanus 56 K SNPs array contains a total of
56,512 markers (SNPs) after filtrations of 37,865 biallelic
SNPs remained for 185-genotype panel. The filtered SNPs
were distributed across all 11 pigeonpea chromosomes
(CcLGO01-CcLG11), with the highest number observed on
CcLGO02 (5,942) and CcLG11 (5,955), while the lowest was
on CcLGO5 (667). This genome-wide distribution provides
balanced coverage, with an average SNP density ranging
from~ 1 per 3.4 kb to~1 per 7.9 kb, facilitating a robust
genotypic analysis (Fig. 4a) and indicating that the marker
set was well suited for diversity analysis and GWAS for RSA
in pigeonpea.

Using the 37,865 polymorphic SNPs, genetic distance
mapping was undertaken on 185 genotypes from the PI-GAP
which classified the entire panel into four clusters. Cluster II
was the largest followed by clusters III, I and IV with 62, 54,
43 and 26 genotypes, respectively (Fig. 4b). The PCA results
showed 185 pigeonpea genotypes divided into four differ-
ent sub-groups with overlapping areas. PC1, PC2 and PC3
accounted for 8.28, 1.94 and 1.62%, respectively (Fig. 4c.).
The linkage disequilibrium (LD) of each pair of SNPs across
the genome was evaluated by a squared Pearson correlation
coefficient (R?). The analysis produced half LD decay value
of 57,994 bp (57.99 kb) (Fig. 4d). Thus, a 58 kb upstream
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Table 3 Identified marker trait associations for root system architectural traits in pigeonpea

Trait MTAs Chr Position LOD score —log,o(P) PVE (%) Allele Method Environment

TRL CcLG06_21839601 6 21,839,601 15.45 9.68 15.46 GT 1,4,6,7,8,9 IIPR, Pooled

TRL CcLG11_4683590 11 4,683,590 10.44 11.38 7.43 GG 1,2,3,4,5,6 IIPR, pooled

TRL CcLG08_3668059 8 3,668,059 8.38 9.27 6.23 AG 2,6 Pooled

TRL CcLG04_2997123 4 2,997,123  10.70 11.65 4.85 AA 2,6 Pooled

TRL CcLGO07_8576366 7 8,576,366  10.11 11.05 18.73 AG 2,4,5,6 Pooled

TRL CcLG04_5972718 4 5,972,718  10.88 6.94 12.40 CC 1,2,3,4,5,6,7,8,9 IIPR, ICRISAT

LRL CcLG02_17573019 2 17,573,019 7.86 9.35 12.01 CC 1,2,3,6,8 [IPR, Pooled

LRL CcLG01_17476096 1 17,476,096  7.49 8.37 10.09 TT 2,5 IIPR, Pooled

LRL CcLG10_14793616 10 14,793,616  8.05 8.94 10.03 CC 1,2,4,6 pooled, IIPR

LRL CcLG04_12104634 4 12,104,634  6.53 7.74 4.81 GG 1,2,3,5 IIPR, Pooled

LRL CcLGO02_18335854 2 18,335,854  6.33 6.89 7.47 AA 1,2,6 ICRISAT, pooled

LRL CcLGO02_21874790 2 21,874,790 8.83 9.74 10.46 AG 1,2,5,6 Pooled

LRL CcLGI11_38239829 11 38,239,829  8.50 9.40 5.87 GG 2,6 Pooled

LRL CcLGO06_14902152 6 14,902,152  5.37 6.18 4.89 GG 2,3,4,7 ICRISAT, IIPR, RARS

LRL CcLG03_1613404 3 1,613,404 6.05 6.87 791 TT 1,3,5,7 ICRISAT, IIPR

LRL CcLGO01_17476721 1 17,476,721 13.23 14.22 10.65 NN 1,4,6,8 ICRISAT, IIPR

LRL CcLG06_8242342 6 8,242,342 8.23 9.12 13.93 NN 1,3,4,5,6,7,8,9 IIPR, ICRISAT

LRL CcLG02_36257342 2 36,257,342 6.71 6.42 4.73 AA 2,3,4,5,6,8 IIPR, RARS

NLR CcLG11_19662589 11 19,662,589 12.14 13.11 8.02 AA 2,3,4,5,6,9 ICRISAT, IIPR, Pooled

NRL CcLG03_20602085 3 20,602,085 9.04 10.75 6.60 GG 1,2,3,4,5,6 ICRISAT, RARS, Pooled

NLR CcLG02_34607221 2 34,607,221  9.77 9.23 14.03 TT 1,2,3,4,5,6 RARS, Pooled

NLR CcLG03_20581935 3 20,581,935 11.54 12.50 3.16 AA 1,4 Pooled, ITPR

NLR CcLG07_12804270 7 12,804,270  8.13 9.02 6.46 CC 1,2,4,5,6 Pooled, ICRISAT

NLR CcLG11_28734375 11 28,734,375 14.52 10.59 6.19 GG 1,2,4 Pooled

NLR CcLG02_28533358 2 28,533,358  6.57 7.41 4.00 CC 1,2,4 Pooled

NLR CcLGO01_4230162 1 4,230,162  10.25 11.19 5.25 TT 2,4 Pooled

NLR CcLGO01_16026261 1 16,026,261 10.07 8.85 3.03 AA 1,4 Pooled

NLR CcLG11_7595283 11 7,595,283 8.12 8.32 8.22 AA 1,3,4,5,6 ICRISAT, RARS

NLR CcLG11_36332334 11 36,332,334 6.04 6.87 4.99 TT 1,3,4,6 ICRISAT, RARS

SD CcLG06_21336203 6 21,336,203 25.21 26.33 1.68 GG 1,3,4,5,6 ICRISAT, ITIPR

RD CcLG02_22484596 2 22,484,596  6.79 7.64 10.28 AA 1,2,4 Pooled

RD CcLG09_6531175 9 6,531,175 6.84 9.14 9.89 GG 1,2,4,5 Pooled

RD CcLG09_3522548 9 3,522,548 6.79 9.15 21.57 CC 1,2,4 Pooled

RA1 CcLG11_34089457 11 34,089,457 12.31 9.22 11.34 AA 1,2,4,5,6 ICRISAT, IIPR, RARS,
pooled

RA1 CcLG03_16109802 3 16,109,802  9.88 7.03 6.27 AA 2,4 ICRISAT, IIPR, RARS,
pooled

RA1 CcLG01_2584353 1 2,584,353 9.64 7.18 7.62 AA 5,6 ICRISAT, pooled

RA1 CcLG10_21708404 10 21,708,404 7.85 7.36 5.76 AA 2,6 RARS, Pooled

RA1 CcLGO03_16125624 3 16,125,624  7.85 6.74 17.82 AA 5,6 Pooled

RA1 CcLGO03_16109773 3 16,109,773  7.48 8.35 8.37 TT 6 IIPR, RARS

RA2 CcLG02_7827305 2 7,827,305 8.51 8.80 7.74 CC 3,4,5 ICRISAT, Pooled

RA2 CcLG06_16255646 6 16,255,646  7.21 6.42 14.12 CC 1,3,4,5,6 ICRISAT, Pooled

RFW CcLG10_19933799 10 19,933,799  9.00 8.82 8.64 TT 1,2,4,4,6 RARS, Pooled

RFW CcLG08_16101471 8 16,101,471 10.37 11.31 5.52 CT 1,4 Pooled

RFW CcLG10_7777322 10 17,777,322 8.72 9.62 7.90 TT 4,5 Pooled

RFW CcLG04_11882078 4 11,882,078  8.59 9.49 5.54 TT 1,2 Pooled

TRL: Tap root length; LRL: Lateral root length; NLR: Number of lateral roots; SD: Stem Diameter; RD: Root diameter; RA1; root angle from
Ist lateral root; RA: Root angle from 2nd lateral root; RFW: Root fresh weight; Chr: Chromosome; LOD: Logarithm of odds; PVE; Phenotypic
variation explained; Methods 1-9 represent six mrMLM and 3 GAPIT models; mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKW-
mEB, ISISEM-BLASSO, Blink, FarmCPU and Super, respectively
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Fig.5 Manhattan plots of multi-locus genome-wide association studies
of root system architecturral traits using a 185 genotypes from Pigeonpea
International genome-wide association panel. a Tap root length b Lateral
root length ¢ Number of lateral roots d Root diameter e Root angle from
Ist lateral root f Root fresh weight Manhattan plots were created for the
genomic regions identified for pooled data of three environments with
six models. The displayed MTAs, with peaks showing potential genomic
regions linked to root traits. (Models: mrMLM (red @), FASTmrMLM
(green @), FASTmrEMMA (dark blue @), pLARmMEB (yellow ),
pKWmEB (blue @) and ISIS.EM.BLASSO (magenta @))

and downstream region from significant MTAs was consid-
ered for identifying the trait-associated gene.

Genome-wide association studies for root system
architecture (RSA)

Genome-wide association mapping was performed using
185 pigeonpea genotypes for RSA traits both for pooled as
well as the individual environments (ICRISAT-Patancheru,
RARS-Warangal and IIPR-Kanpur). The significant MTAs
identified for each RSA trait were given below (Table 3,
Fig. 5).

Tap root length

Genome-wide association mapping identified a total of
six significant MTAs linked to TRL, which were detected
in two or more models and confirmed in both pooled data
and in more than one environment. These MTAs were
distributed across five different chromosomes: 4, 6, 7, 8
and 11. LOD scores, —log;,(p) and PVE value for these
MTAs ranged from 8.37 (CcLGO8_3668059) to 15.449
(CcLGO08_21839601), 6.94 (CcLG04_5972718) to 11.65
(CcLG04_2997123) and 4.84% (CcLG04_2997123) to
18.73% (CcLGO7_8576366), respectively. However, among
six MTAs for TRL, CcLG06_21839601 was identified
as the best MTA, as it showed the highest LOD score of
15.45, —log,,(p) value 9.38 and explaining 15.45% of the
PVE consistently across four mrMLM (1, 4, 6, 7) and a
GAPIT model (8 and 9) in pooled as well as [IPR-Kanpur
environment.

Lateral root length

Around 12 MTAs are significantly associated with LRL
which are distributed on chromosomes 1, 2, 3, 4, 6, 10
and 11. LOD score, —log4(p) and PVE value of these
MTAs vary from 5.37 (CcLG06_14902152) to 13.22
(CcLGO1_14476721); 6.18 (CcLGO6_14902152) to 14.22
(CcLGO1_14476721); and 4.89% (CcLG06_14902152)
to 13.92% (CcLG06_8242342), respectively. The MTA
CcLG06_8242342 was found to be highly significant and
identified across all models of mrMLM and GAPIT at IIPR-
Kanpur and ICRISAT-Patancheru environment.

Stem diameter

The MTA CcLGO08_16101471 associated with stem diam-
eter showed LOD score 25.20 and —log,(p) value of 26.33.
It was observed in five mrMLM models at ICRISAT-
Patancheru and IIPR-Kanpur environments.

Root diameter

In case of root diameter, around three MTAs were found on
chromosomes 2 and 9 which are significantly associated with
RD. LOD score and —log,(p) value of these MTAs ranged
from 6.78 (CcLG02_22484596) to 6.83 (CcLG09_6531175)
and 7.64 (CcLG02_22484596) t0 9.15 (CcLG09_3522548),
respectively. MTA CcLG09_3522548 showed highest PVE
value of 21.56% in pooled data.

Number of lateral roots

A total of 11 MTAs was significantly associated with NLR
and detected on chromosomes 1, 2, 3, 7 and 11. LOD
score and —log,o(p) value of MTAs ranged from 6.03
(CcLG11_36332334) to 14.52 (CcLG11_28734375) and
6.84 (CcLG11_36332334) to 12.56 (CcLG03_20581935),
respectively. MTA explained the maximum PVE of 14.03%
(CcLG02_34607221). However, MTA CcLG11_19662589
was observed in all the mrMLM models with maximum
LOD score of 9.04 and —log;(p) value of 13.11.

For RFW, four significant MTAs were identified on
chromosomes 4, 8 and 10, with —log;,(p) values ranging
from 8.82 to 11.31. Six MTAs associated with RA1 were
detected on chromosomes 1, 3, 10 and 11, explaining
5.76-17.81% PVE among which CcLG11_34089457 and
CcLG03_16109802 were consistently identified across all
environments. In the case of RA2, two significant MTAs
were observed on chromosomes 2 and 6, with —log,,(p) val-
ues of 6.42 and 8.80, and PVE of 7.73 and 14.12% (Table 3;
Fig. 5).
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Allelic distribution of identified MTAs and candidate
gene identification

Based on the phenotyping data, a PI-GAP panel genotypes
with varied RSA trait performance were selected to assess
the efficacy of the identified MTAs to distinguish between
the trait values observed in the GWAS population. Allele
calls of the identified MTAs for TRL, LRL, NLR, SD, RD
and RFW from the selected genotypes were used for assess-
ing the allelic distribution using ‘Axiom_cajauns 56 K
SNP array’ genotyping data. There was clear differentiation
between the favourable and unfavourable, allele present in
the associated markers for the selected contrasting genotypes
for each RSA traits (Figs. 6 and S4.).

The identified significant MTAs for all eight RSA traits
were further used for candidate gene identification using
the pigeonpea reference genome version 1. Furthermore,
the gene ontology and enrichment analysis were carried
to understand the molecular, cellular and biological func-
tions of the identified genes. A total of 14 candidate genes
were identified as potentially influencing root characteris-
tics (Table 4), among which 4 candidate genes were puta-
tively associated with the trait TRL. These include: gene
C. cajan_07827 which encodes for the unc-50 like protein
which was mapped on MTA CCLGO02_35174840. The gene
C.cajan_00496 codes for a LOB domain-containing 22 pro-
tein identified near the MTA CCLGI11_4683590. AT-hook
motif nuclear-localized protein 15-29 protein encoding gene
C.cajan_13135 associated with MTA CCLG06_21839601.
Similarly, gene C.cajan_21512 which encodes for a root cap
protein family identified on CcLG04_5972718.

In case of lateral root length (LRL), two significantly asso-
ciated MTAs, CcLGO1_17476096 and CCLGO1_17476721,
were located near the gene C. cajan_20841, which encodes
a protein for the BAG family molecular chaperone regula-
tor 6. Similarly, gene C. cajan_06237 which code for fluG-
like protein was housed at MTA CcLG02_18335854. The
gene C.cajan_22050 encodes for the protein family Aspar-
tic protease which identified on MTA CcLGO04_12104634.
In addition, gene C. cajan_03474, which encodes a pro-
tein belonging to the LanC-like/GCR2 family, was iden-
tified on CcLG11_38239829. Another important gene
C.cajan_11792, encoding a MAINTENANCE OF MERIS-
TEMS-like protein, essential for meristematic cell identity
and plant developmental processes was found on MTA
CcLG06_8242342. For the number of lateral roots, poten-
tially associated gene C.cajan_02617 codes for protein
SNARE-interacting KEULE-like isoform X2 located on MTA
CcLG11_28734375.
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Discussion

Pigeonpea has a deeper tap root system, capable of penetrat-
ing to a depth of 75 cm and spreading laterally up to 95 cm
(Reddy et al. 2022). Phenotyping in pots and even cylin-
ders is a challenge, due to lack of natural root growth and
establishment. Henceforth, Shovelomics was adopted as a
feasible phenotyping method for RSA traits. (Trachsel et al.
2011; Burridge et al. 2020; Bucksch et al. 2014; Colombi
et al. 2015; York and Lynch 2015). However, it also has
limitations such as loss of tap root tips and partial lateral
root loss during excavation as well as post-excavation root
wash. Alongside, environmental variability and soil hetero-
geneity also add on affecting the trait estimation (Li et al.
2022; Tracy 2020; Poorter 2023; Griffin et al. 2025). As this
study is the first of its kind in pigeonpea, standardizing the
phenotyping protocol was an important step. Accordingly,
the physiological maturity stage was identified as the ideal
stage for RSA phenotyping, as roots would have attained
maximum growth and establishment at this stage. Seedling,
vegetative and flowering stages were noticed to have grow-
ing roots, while harvesting stage observed root senescence.

The studies in Phaseolus vulgaris, Phaseolus acutifolius,
Glycine max, Vigna unguiculata and Arachis hypogea have
shown that dimorphic root systems are advantageous for tol-
erance to drought, heat and salinity, whereas shallow root
systems are more effective under waterlogging conditions.
In the present study, based on tap root length and lateral root
width, root system was classified into three categories: deep
root types, spreading types and dimorphic types (Burridge
et al. 2020). Deep root types were characterized by taproots
extending beyond 30 cm below the soil surface, along with
shorter lateral roots that spread up to 50 cm horizontally. In
contrast, spreading types exhibit shorter taproots (<30 cm)
but possess longer (>50 cm) and denser lateral roots.
Dimorphic types possess both deeper taproots (> 30 cm) and
longer lateral roots (> 50 cm) enabling efficient exploration
of both surface and deep soil layers (Figs. 1 and S3). This
classification could be a valuable framework for breeding
pigeonpea genotypes with tolerance to terminal drought,
heat, waterlogging and soil salinity (Kumar et al. 2017;
Hingane et al. 2015; Fakir et al. 1998). Furthermore, soil
types were found to have a greater influence on expression
of RSA traits (Correa et al. 2019; Wang et al. 2022), with
the Vertisols soil at ICRISAT-Patancheru and the Alfisols at
RARS-Warangal favouring spreading root systems in most
of the studied genotypes, whereas the Inceptisols soil type at
ITPR-Kanpur promoted deeper tap root system compared to
the former. This necessitates the further genotype X environ-
ments studies to get in depth understanding of root plasticity.

Combined data from three environments revealed signifi-
cant variation in RSA among the 200 pigeonpea genotypes.
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Fig.6 Allelic distribution of significantly associated MTAs among
representative PI-GAP genotypes with minimum and maximum trait
values, showing the separation of favourable and unfavourable alleles

The analysis of variance (ANOVA) detected significant gen-
otypic differences (P <0.0001) for root RSA traits, except for
RAZ2 (Table 1). (Zhao et al. 2025; Tripathi et al. 2021; Vadez
et al. 2014; Henry et al. 2011). RSA traits such as LRL, NLR
and SD were noted to have higher variability with moder-
ate repeatability, indicating phenotypic selection as effective
way of genetic improvement. In contrast, root angles (RA1
and RA2) exhibited high variation but lower repeatability,
indicating influence of environment on these traits (Heng
et al. 2018; Zhao et al. 2025; Ayalew et al. 2017; Burridge
et al. 2016). Significant correlation was observed among the

for a lateral root length (LRL), b number of lateral roots (NLR) and ¢
root fresh weight (RFW)

traits TRL, LRL and RFW, between SD and RD. However,
focusing on NLR, SD, RD traits might have positive effects
on root length-related traits in pigeonpea (Burton et al. 2014)
(Fig. 3). Kumar et al. (2022) and Farooq et al. (2017) sug-
gested root length as one of the selection criteria for yield
improvization in chickpea under moisture stress conditions.

RSA traits such as deeper roots, higher root length density
and greater root-to-shoot ratio enhance drought avoidance
and water-use efficiency (Heng et al. 2018). Genetic vari-
ation in RSA, including root angle and thickness, contrib-
utes to drought adaptation, with DRO1 (Deeper Rooting 1)
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Table 4 (continued)

GO cellular component GO molecular function

GO biological process

Protein family

Gene ID Orthologous gene IDs

Trait SNP ID

acyl-binding domain-con-

taining 4-like

C.cajan_22424 Glyma.20G191900,

RD  CcLG09_3522548

Vigun07g189600,

Phvul.007G 140800,

AT5G04420

TRL: Tap root length; LRL: Lateral root length; NLR: Number of lateral roots; SD: Stem Diameter; RD: Root diameter; RA1; root angle from 1st lateral root; RA: Root angle from 2nd lateral

root; REW: Root fresh weight; and GO: Gene ontology

doubling yield under severe stress by promoting deep root-
ing (Uga et al. 2013). Our study on pigeonpea RSA genetic
variability supports these findings and it offers an opportu-
nity to evaluate these traits under contrasting soil moisture
regimes to improve drought adaptation. Differences in RSA
traits underly variation in soil water capture and drought
adaptation strategies. For instance, Polania et al. (2017)
evaluated 36 bush common bean genotypes using soil cyl-
inder root phenotyping and field-based shoot measurements,
revealing that genotypes with larger, deeper roots achieved
higher grain yield under drought through improved water
uptake, moderated transpiration and sustained vegetative
growth (water-spender strategy), whereas genotypes with
smaller, shallower roots maintained higher water-use effi-
ciency (water-saver strategy). Lateral roots also facilitated
greater soil nitrogen uptake via fine roots, and thicker roots
supported enhanced biological nitrogen fixation. These con-
trasting RSA patterns highlight the potential to select geno-
types with either deep, shallow or dimorphic roots tailored
to specific drought environments.

Genotypic diversity estimation and principal component
analysis (PCA) were performed on 185 pigeonpea genotypes
indicating distribution in four cluster. The trait-associated
MTAs were identified using the mrMLM and GAPIT pack-
ages of RStudio. Within mrMLM, six models were applied:
mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB,
pKWmEB and ISIS EM-BLASSO (Zhang et al. 2020a,
b) and FarmCPU, Blink, Super from the GAPIT package
(Lipka et al. 2012). A total of 45 MTAs are found associ-
ated with RSA traits across two environments and pooled
data (Table 3), while environment-specific MTAs are listed
in Table S4. The allele calls of the selected MTAs could be
categorised into two different categories based on the pres-
ence of favourable and unfavourable allele in a genotype
indicating differential genetic contributions to trait expres-
sion. The genotypes ICP 4715 for TRL, ICP 12105 for LRL,
ICP 20201 for the NLR, ICP 9414 for RA1, ICP 8266 for
RA2 ICP 11969 for RFW and ICP 12512 for RD could be
utilized as valuable donors for the improvement of these
specific traits (Bomireddy et al. 2024). Candidate genes near
MTAs were explored within + 58 kb flanking regions using
the GFF annotation file of the pigeonpea genome (ICPL
87119) (Varshney et al. 2012).

The genes showed association with TRL, including “Lat-
eral Organ Boundary (LOB) domain”, was found to have
a major role in auxin signalling, cell division, cell elonga-
tion and lateral root formation by promoting asymmetric
cell divisions in the pericycle cells of Arabidopsis thaliana
(Berckmans et al. 2011; Zhang et al. 2020a, b; Nguyen et al.
2025). The “Root cap” (C. cajan_21512) gene associated
with MTA CcLG04_5972718 was having a role in root cap
uptake of water and nutrient absorption in maize (Matsuy-
ama et al. 1999). Similarly, another gene “AT-hook motif
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nuclear-localized protein” (C. cajan_13135) identified was
found to be associated with the MTA CcLG06_21839601
and noted to be related to vegetative to reproductive phase
transition of the meristem, as well as regulating diverse
aspects of growth and development in plants, being a mem-
ber of the AHL family as reported in rice and poplar by Zhao
et al. 2014 and Lu et al. 2010.

From the current study, the genes C. cajan_20841, C.
cajan_11792, C. cajan_03474, C. cajan_02617 and C.
cajan_22050 were predicted to be involved in the regu-
lation of RSA traits of pigeonpea. Gene C.cajan_20841
known as “BAG family molecular chaperone regulator 6”
was found to be associated with MTAs CcLGO01_17476096
and CcLGO0I1_17476721 of BAG families. It has a promi-
nent role in chaperone regulator protein, regulating plant
growth, development, under stress conditions. (Wang et al.
2024, 2020), while gene C. cajan_11792 known as “Protein
MAINTENANCE OF MERISTEMS-like” was found associ-
ated with MTA CcLG04_8242342. This gene has a pivotal
role in organization of the root apical meristem (RAM) and
the shoot apical meristem (SAM). The gene was also found
to linked with Protein MAINTENANCE OF MERISTEMS
(MAIN) and its homologues, MAIN-like 1/2 (MAIL1/2),
in Arabidopsis thaliana, and they are required to maintain
genome stability and cell division activity in meristematic
cells. MAIL1 also played a role in cell differentiation as it
acts as an important factor for cell fate determination and
maintenance throughout plant development (Uhlken et al.
2014; Wenig et al. 2013). The gene “LanC GCR2” associated
with MTA CcLG11_38239829 likely involved in stress toler-
ance and yield-related traits of pigeonpea (Yasin et al. 2019).
Another gene associated with MTA CcLG04_12104634 was
“Aspartic proteases” widely distributed within the plant
kingdom and was involved in protein degradation during
normal plant development, programmed cell death and stress
response and stress adaptation (Sebastian et al. 2020; Simoes
and Faro 2004; Cruz et al. 2001). Another gene associated
with NRL “SNARE-interacting KEULE-like isoform X2”
was found associated with MTA CclG11_28734375 which
was thought to regulate vesicle trafficking and membrane
fusion processes essential for plant growth and development
in Arabidopsis observed by Assaad et al. (1996) in Table 4.

The tissue-specific expression of the putatively asso-
ciated gene from the gene expression atlas of pigeon-
pea (C.cajan_11096, C.cajan_21512, C.cajan_I13135,
C.cajan_22424 and C.cajan_06237) showed different level
of expression predominantly high in root-related tissues,
particularly in the radicle and vegetative-stage roots. These
genes exhibited strong upregulation during the seedling and
vegetative stages, suggesting their crucial roles in root ini-
tiation and development. However, a marked downregula-
tion was observed in the reproductive-stage roots, implying
differential transcriptional regulation at later developmental

@ Springer

phases. In contrast, genes C.cajan_20841, C.cajan_20862
C.cajan_11096, C.cajan_09366, C.cajan_22409 and
C.cajan_02617 expressed at variable levels across differ-
ent tissue such as vegetative, reproductive and senescence
root tissues, indicating their constitutive involvement in
root function and maintenance throughout plant develop-
ment. The expression of these genes is dynamically regu-
lated according to developmental phase, possibly reflecting
changes in physiological requirements and functional roles
over time (Singh et al. 2022; Pazhamala et al. 2017; Saxena
et al. 2020) (Table S5, Fig. S5). In accordance with this find-
ings, allele-specific markers need to be developed for MTAs
like CcLGO1_17476096 (—log,o(p)=8.37; PVE=10.09),
CcLG04_5972718 (—log,o(p) =6.94; PVE =12.40),
CcLG06_8242342 (- log,o(p)=9.12; PVE=13.93) and
CcLG11_4683590 (—log,y(p)=11.38; PVE=7.43) which
could serve as potential markers for efficiently differentiat-
ing ideal genotypes. Additionally, these MTAs (PVE > 10%)
show potential for developing Kompetitive allele-specific
polymerase chain reaction (KASP) assays and genotypes
with favourable alleles could be used as donors in marker-
assisted breeding. Harnessing the dimorphic root system in
pigeonpea is a priority for breeding programmes, as this
trait could be utilized to redesigning plant architecture. The
novel plant type is anticipated to explore biological nitro-
gen fixation (BNF), carbon capture and tolerance to terminal
drought stress.

Conclusions

Root system architecture (RSA) is emerging as one of the
pivotal traits for breeding in the context of climate change,
despite the difficulties associated with phenotyping. Tap
root length, lateral root length, number of lateral roots,
stem diameter, root diameter, root angle and root weight
together form some of the main root system architectural
traits. The current study developed a standard operating
procedure for shovelomics root phenotyping technique in
pigeonpea. Based on the current study, the root systems
of pigeonpea were grouped into three categories, namely
deep, spreading and dimorphic root system. The genetic
variability for the RSA traits in pigeonpea identified that
the TRL and LRL are the possible traits to be exploited
in further breeding programme. The marker trait associa-
tion revealed 45 significant MTAs associated with 8 RSA
traits in pigeonpea. The candidate gene analysis identified
genes such as BAG family molecular chaperone regula-
tor 6 (CcLGO01_17476096 and CcLG01_17476721), root
cap (CcLG04_5972718) and Protein MAINTENANCE OF
MERISTEMS (MAIN) (CcLG06_8242342) have a direct
role defining root system architecture could help further
in abiotic stress tolerance. The identified MTAs could be
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validated further to detect potential markers related to RSA
traits, eventually permitting marker-assisted breeding.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00122-025-05136-y.
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