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Abstract

Background Kernel grade is a key market trait that significantly influences the market price of groundnut and is
directly proportional to pod yield. A set of 574 multi-parent advanced generation inter-cross (MAGIC) lines including
parents and checks was assessed for kernel grade, yield, and component traits in a partially replicated (p-rep) design
for two seasons (rainy and post-rainy; 2021-22). A genome-wide association study (GWAS) was conducted to identify
marker-trait associations (MTAs) and potential candidate genes for kernel grades and yield.

Results MAGIC lines ICGR 171238 (79.45%) and ICGR 171206 (85.65%) showed highest percent net recovery of
grade-l kernel (PNR_I) in rainy and post-rainy seasons respectively. Twenty-four high confidence SNPs were associated
with kernel-grades and yield traits across 11 chromosomes. SNPs AX_147226917 (A07) and AX_177643480 (B0O8)
showed consistent association with PNR_I and counts per ounce of grade-I kernel (CPO_I) across seasons. Key
candidate genes for kernel grades include Aradu.6778F (RING-HZ2 finger protein), Aradu.993Q7 (ascorbate peroxidase 1),
Araip.MKV8R (protein FART-RELATED SEQUENCE 3-like isoform X1) and Aradu.S3AS8 (Vacuolar protein-sorting protein BROT).
For yield traits, Aradu.Y7AIG (cytochrome P450), Aradu.BD60N (Glucose-1-phosphate adenylyltransferase) and Aradu.
TWB8ME6 (LEA protein) were identified.

Conclusion Predominantly these genes are known to regulate growth and development, control cell functions,
confer disease resistance and stress tolerance, and influence pod size in groundnuts. The validation studies of

the identified MTAs would facilitate the development of molecular markers for use in marker-assisted selection
(MAS), enabling efficient selection of progenies with higher percent recovery of grade-I kernels in the segregating
populations.
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Background

Groundnut (Arachis hypogaea L.), a self-pollinated
annual legume crop widely grown in the arid and semi-
arid tropics of Asia and Africa, is highly valued for its
nutritional composition, comprising 44—56% oil, 22—30%
protein, and 10-25% carbohydrates [1, 2]. Groundnut
cultivation spans a global area of 30.53 million hectares,
yielding a total production of 54.23 million tons with an
average productivity of 1776.2 kg/ha. India, China, Nige-
ria, and Sudan have the largest cultivated areas (5.70,
4.45, 3.40, and 3 Mn ha, respectively) (FAOSTAT, 2023).
Africa produced 17.36 Mn Tn of groundnut, whereas
Asia produced 31.70 Mn tns. Together, Asia and Africa
contribute to 90% of global groundnut production.
Groundnut kernel is composed of high-quality protein,
which is increasingly used as a concentrated protein
ingredient in food formulations, meat analogues, bakery
products, protein bars and animal feed [3]. Consider-
ing the increasing demand for plant-based protein-rich
foods, it will provide opportunities of higher exports for
major groundnut producing countries.

There is a shift in the demand for groundnuts in the
confectionery industry, particularly in developed nations,
compared to the historical demand for oil extraction due
to increased usage of roasted nuts, peanut butter, and
different groundnut-based snack products [4]. This is
evident from a growth of the confectionery market from
$206.97 billion in 2023 to a projected $278.36 billion by
2032 (www.cgiar.org). The characteristics that are desir-
able for confectionery purposes include a higher per-
centage of sound mature kernels (>80% SMK), a creamy
smooth texture, a rich nutty flavor, a 100 seed weight of
more than 55 g, sugar content above 5%, protein content
exceeding 30%, blanchability over 60%, and an oil con-
tent below 45% [5, 6]. The mass of one hundred seeds
is a crucial factor in determining confectionery quality.
Studies at ICRISAT have demonstrated that large-seeded
groundnut genotypes, such as ICGV 90212 and ICGV
97051, are particularly suitable for confectionery use
because of their high kernel yield and superior seed mass
(7, 8].

According to the UNECE (United Nations Economic
Commission for Europe) standards, peanut kernels are
graded by size using the counts per ounce method, which
measures the number of kernels in 28.35 g (1 oz). Grade-I
kernel in peanuts, with 40—-60 kernels per ounce in the
global market, are preferred by the confectionery indus-
try owing to their superior physical and sensory quali-
ties (www.unece.org). These kernels are large, uniform
in size, free of defects, and possess desirable textures
and flavor profiles. These physical and chemical param-
eters make them ideal for value-added products such
as roasted nuts and peanut butter as they evolve during
roasting [9]. In addition, international markets place a
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premium on high-quality grade-I kernels because of their
application to snacks and products. Groundnut exports
for confectionery often follow strict grading standards,
emphasizing the need for well-sorted visually appealing
kernels (https://www.cbi.eu). Considering the increasing
importance of grade-I kernel in the industry, they have
been incorporated into breeding program in market seg-
ment II at ICRISAT, which focuses on developing prod-
uct profiles for the confectionary industry. The kernel
grade is a complex quantitative trait that is affected by
the environment. To cater to the market demand for con-
fectionery groundnuts and considering the importance of
large-seeded grade-I kernels, it is important to combine
yield with a high proportion of grade-I kernel recovery to
develop suitable market-driven groundnut cultivars.

Grade-I kernel with widths greater than 7.5 mm [10]
are in high demand in the confectionary industry. Yield
improvement is always a key breeding objective in most
crop improvement programs, including groundnuts. To
develop suitable market-preferred groundnut cultivars,
it is important that the cultivars have high yields with
superior kernel grades and a crucial understanding of
the molecular mechanisms governing this trait to real-
ize their maximum potential. Since the inception of the
idea of generating and utilizing multi-parent populations,
such as the multi-parent advanced generation inter-cross
(MAGIC) in crop improvement, several MAGIC popu-
lations have been generated in different crops, including
groundnuts, for genomic dissection of complex traits
[11-13]. Groundnut MAGIC populations have been
used to dissect and characterize complex traits, such
as drought tolerance [14], late leaf spot [15], pod-size
related traits [16], pod weight, seed weight, shelling per-
centage, pod constriction, and pod reticulation [17]. A
larger number of recombination events in MAGIC popu-
lations provide an opportunity to map genomic regions
with a higher resolution.

Recent advancements in groundnut genomics and cost-
effective sequencing have enhanced our understanding
of complex traits. Reference genomes for cultivated tet-
raploid groundnut are available [18-20]. New sequenc-
ing methods like genotyping-by-sequencing [21] and
“Axiom_Arachis” SNP arrays [22] have reduced costs,
enabling detailed genetic mapping [23]. Association stud-
ies in multiparent populations help dissect complex traits
with high resolution. Studies have identified genomic
regions associated with pod/kernel yield and traits like
hundred-seed mass and shelling percentage. Thirty sig-
nificant markers explaining 11.22-32.30% phenotypic
variation were found to be associated with seed-related
traits through an association analysis by utilizing 104
peanut accessions and SSR markers [24]. A nested asso-
ciation mapping (NAM) population genotyped with 58 K
SNP array revealed genomic regions linked to seed and
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pod weights [25]. SSR and SNP array-based maps identi-
fied major regions on chromosome B06 and A07/B07 for
pod and seed related traits [26]. QTL on chromosome
A05 showed major effects on seed size in US mini-core
collection [27]. Two major loci on chromosome A06 and
A02 [28] and another two on chromosome A08 and B06
[29] have been identified for yield-related traits.

However, no QTL mapping or association mapping
studies have identified genomic regions associated with
the high recovery of grade-I kernels in groundnuts. Con-
sidering the need to develop confectionary purposes high
yielding groundnut cultivars with high recovery of grade
I kernels and the unavailability of genomic resources to
augment the breeding pipeline, we have conducted a
genome-wide association studies (GWAS) utilizing 574
MAGIC lines and a high density “48k SNP array” to iden-
tify markers linked to yield attributing traits and kernel
grades.

Methods

Genotypes and experimental design

A MAGIC population consisting of five hundred and sev-
enty-four lines that includes eight founder parents and 12
checks, was evaluated [30] (Supplementary Table S1). The
founder parents viz., used to develop MAGIC popula-
tion were ICGV 91114, ICGV 06040, ICGV 00440, ICGV
00308, ICGV 05155, ICGV 88145, GPBD 4 and 55-437.
Among these, ICGV 00440 is a large-seeded, high-yield-
ing variety with a hundred seed weight of 75 g. The trials
were laid out in a partially replicated design (p-rep) con-
sisting of 722 plots indexed by 19 rows and 38 columns
ordered as columns within rows. 30% of the test lines
(148) and checks were replicated twice. While reduc-
ing the total number of experimental plots and optimiz-
ing resources, the replicated plots increased. Each plot
consisted of four rows of 4 m each, with a row-to-row
spacing of 30 cm and a plant-to-plant spacing of 10 cm,
grown on a broad bed. The experiments were conducted
during two seasons: rainy 2021 and post rainy 2021-22 in
alfisols at ICRISAT, Patancheru (17°53'N, 78%°27’E, and
545 m asl), India. The recommended agronomic man-
agement practices such as timely irrigation immediately
after planting and as required thereafter, the application
of gypsum at peak flowering, measures to protect against
insect pests and diseases were implemented to ensure the
cultivation of a healthy crop.

Traits measured

Yield traits included pod weight per plot (PW), kernel
weight per plot (KW), hundred kernel weight (HKW),
and shelling percentage (SHP). Kernel grade traits com-
prised percent net recovery of grade-I kernel (PNR-I),
hundred kernel weights of grade-I kernel (HKW-I), and
counts per ounce of grade-I kernel (CPO-I). The PW

Page 3 of 20

from each plot was recorded after drying the pods using a
measuring balance. The SHP and HKW values were pre-
dicted using CT scans [31] and the details on the proce-
dure and calibration were described later in this section.
KW was determined using the PW and SHP data. The
PNR-I, HKW-1, and CPO-I were manually determined.

Kernel grading

Kernel grading is a replica of industrial seed grading, in
which seeds are sorted based on commercially defined
screens. 500 gms of sound mature kernels (SMK) were
passed through 3 sieves that were of 8.5 mm, 7.5 mm
and 6.5 mm consecutively (Fig. 1). This method divided
the entire material into three grades. Kernel weight,
hundred kernel weight, and counts per ounce for each
grade were measured using a weighing balance. The per-
cent net recovery of each grade was calculated using the

. _ Kernel weight of individual grade
formula: ANR = Total weight (300gm) x 100

Digital trait value prediction of hundred kernel weight and
shelling percentage using computed tomography

The methodology for a non-destructive analysis of seed
traits that determines the quality of groundnut traits
has been comprehensively described in a previous study
[31]. The main traits of interest, hundred kernel weight
and shelling percentage, were predicted as part of a pipe-
line that first determined kernel weight and shell weight
in preliminary steps using X-ray image transformation
(XRT). A 50 g peanut pod sample, representative of each
plot harvest (total 722 plots, each with a 4 mx4 m plot
size), was scanned to extract 2D X-ray image features,
which were then processed by the XRT model. This
model demonstrated high predictive accuracy, achieving
a kernel weight coefficient of determination (R*) of 0.93
for kernel weight and 0.78 for shell weight, with mean
absolute errors of 0.17 and 0.08, respectively. These pre-
dictions were then used to calculate the kernel size and
shelling percentage. These predicted values were sub-
sequently used to calculate the kernel weight and the
shelling percentage. This robust, statistically validated
methodology provides a non-destructive, high-through-
put solution for crop evaluation and quality control,
making it highly effective for breeding programs and
postharvest assessments.

Single trial analysis
The model for the partially replicated design is described

as follows.

Yijk = 1 + Q¢+ 75+ Cp + Cyjk

Where.
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Fig. 1 Schematic diagram illustrating the methodology followed for assessing kernel grading in groundnut

a; is the variety main effect considered “random,” 7;
and cj (global trend) are the design factors, which are
random terms, for rows and columns.

e;jk (local +extraneous) is the residual corresponding
to the observational units, which are the plots.

The statistical model is thus given by,

The row and column effects describe the extraneous
variations that usually arise from the experimental pro-
cedures. Plot-to-plot variability can be split into global
and local trends. Global trends arise from uneven soil
moisture, soil depth, and other natural variations. Local
trends or nuggets are small-scale spatial variations within
the field, an indicator of how noisy the spatial structure
is. Thus, the error structure is.

R=0" (g 0> ) +0?l

2
U;U
o

o2 [(SRO SC) +

where Sy and S indicate the row and column correlation
matrices, respectively, as the combination of row and col-
umn factors represents unique positions in the spatial
grid. A separable autoregressive model of order 1 (AR1)
was fitted for Sy and Sc. and o 2 is the nugget variance.

Genotyping

DNA was extracted from 574 MAGIC lines including
eight parent plants using a NucleoSpin 96 Plant II Kit
from Machery Nagel in Germany. The DNA amount was
measured with a Nanodrop 8000 spectrophotometer
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). The

quality of the DNA was checked on a 0.8% agarose gel.
A 48 K Affymetrix SNP array (‘Axiom_Arachis 2.0’) was
used to genotype the extracted DNA samples. The out-
put files (Cell Intensity File) from the Affymetrix instru-
ment were analyzed in Axiom Analysis Suite (AAS) v
5.2 (Thermo Fisher Scientific, Inc.). The Axiom Analysis
Suite integrates SNP genotyping, indel detection, multi-
allele analysis, off-target variant (OTVs) calling, and copy
number detection into a graphical interface. The 48 K
SNP array data for the MAGIC population is provided in
Supplementary Table S2.

Filtering of genotypic data and genome-wide association
study (GWAS)

In Axiom Analysis Suite (AAS, Thermo Fisher Scien-
tific) genotyping analysis was executed. AAS followed
best practices workflow, where it runs genotyping algo-
rithms, allow to view cluster graphs and export of data.
Best practices workflow controls the quality with a dish
QC value > 0.82 and QC call rate of > 97%. All markers
were visually verified to inspect the quality of the clus-
ter pattern. After filtering out 47,837 SNPs based on a
missing rate exceeding 10%, a minor allele frequency
(MAF) below 0.05, and heterozygosity greater than 0.3,
a total of 13,937 high-quality single nucleotide poly-
morphisms (SNPs) were retained and used for further
GWAS analysis. Previously we have calculated the LD
decay for the same population and it was 2.02 Mb [15].
This information was used in the current study to sup-
port genome-wide association study (GWAS) analysis.
13,937 high-quality filtered SNPs and best linear unbi-
ased predictor (BLUP) values of kernel grades and yield
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component traits, such as PW, KW, HKW, SHP, PNR-I,
HKW-1, and CPO_I were used for GWAS analysis sepa-
rately for the rainy and post-rainy seasons. The BLUP
values for above mentioned traits were estimated using
ASREML-R package [32] in R software. GWAS analysis
was performed using Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK) model
of “GAPIT 3.0” (Genomic Association and Prediction
Integrated Tool) package [33] in R v.4.1.2 software [34]
because of its superiority in computing speed, high statis-
tical power, and fewer false positives in the identification
of significant MTAs. A Bonferroni-corrected threshold of
3.58757E-06 was set to reduce Type I and II errors. QQ
plots, Manhattan plots, and association tables assessed
the results, to detect high confidence MTAs.

Identification and gene ontology (GO) analysis of the
potential candidate genes

Due to the extensive linkage disequilibrium (LD) and
the computational challenges involved in identify-
ing candidate genes within the LD region of significant
SNPs, a 50 kb range both upstream and downstream of
significant SNPs (100 kb window) was utilized as a con-
fidence interval to locate candidate genes linked to the
traits of interest. Data on candidate genes within SNPs’
confidence interval was sourced from the Peanut Base
(https://peanutbase.org/home), using the genome of the
diploid ancestors of cultivated peanut, A. duranensis and
A. ipaensis. Gene Ontology (GO) enrichment analysis
was performed using the PlantRegMap platform (http://
plantregmap.gao-lab.org) which implements a Gene Set
Enrichment Analysis (GSEA)-based statistical frame-
work. The list of candidate genes identified from Pea-
nutBase was used as input for Arachis duranensis and
Arachis ipaensis. The analysis categorized significantly
enriched GO terms into three functional domains; bio-
logical process (BP), molecular function (MF), and cel-
lular component (CC) based on hypergeometric testing
and false discovery rate (FDR) correction. Enriched GO
terms were further visualized and interpreted to iden-
tify the predominant biological processes and molecular
functions associated with the candidate genes.

In-silico expression profiling of candidate genes and allele
distribution pattern

Expression profiles of the candidate genes were analyzed
in-silico using publicly available transcriptome data-
sets of Arachis hypogaea. The normalized expression
data (FPKM >1) across 20 developmental tissues and
stages were retrieved from the PeanutBase expression
atlas and compiled into an expression matrix [35]. Each
gene’s expression pattern was compared across tissues
such as cotyledon, embryo, flower, leaves, nodules, roots,
seeds, and stems. Data processing was performed using
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Microsoft Excel and R (v4.x) for normalization and visu-
alization. Genes with the highest mean expression values
were considered top-ranked candidates. The expression
data were visualized using heatmaps to determine tissue-
or stage-specific expression trends. This computational
workflow enabled the identification of genes with distinct
or constitutive expression profiles without the need for
experimental validation, thereby providing an efficient
in-silico strategy for expression analysis. Fold-change was
computed using Root_veg as the reference tissue, follow-
ing the formula:

Fold Change = (Expression in target tissue/Expression
in Root_veg).

Zero values were adjusted by adding 1 to avoid division
by zero.

Favorable and unfavorable alleles were identified for
significant SNPs associated with high and low yield-
attributing traits and kernel grades.

Results

BLUP estimates and assessment of yield contributing traits
in the MAGIC population

PW, KW, and HKW(g) were higher during the post-
rainy season, whereas HKW (GRADE I) and counts per
ounce (C GRADE I) had overlapping distributions (Fig.
2, Supplementary Table S3). The row and column effects
were not significant for any trait. The autocorrelations
were positive in both directions for yield traits HKW
and SHP, indicating that trait values in plots are influ-
enced by neighboring plots. However, PNR-I showed a
significant negative autocorrelation in the row direction
during the post-rainy season, indicating dissimilar neigh-
boring plots. The MAGIC population exhibited highly
significant genetic variation (p<0.01) for all traits across
both seasons (Tabs. 1 and 2). Among the genotypes rep-
licated twice, ICGR 171175 and ICGR 171497 performed
best for pod and kernel yields in the rainy and post-rainy
seasons. ICGR 171058 and ICGR 171259 excelled in the
shelling percentage in both seasons, with ICGR 171379
being the best in the post-rainy season. ICGR 171582 and
ICGR 171532 had the highest HKW in the post-rainy and
rainy seasons, whereas ICGR 171497 maintained good
HKW across seasons (Tab. 3). Among the genotypes
tested once, ICGR 171070 had the highest pod and ker-
nel yields in the post-rainy season, whereas ICGR 171280
and ICGR 171437 had the highest pod and kernel yields
in the rainy season. GG 20 performed well for both traits
across all seasons. ICGR 171437 and ICGR 171005 were
the best for shelling % in the rainy and post-rainy sea-
sons. ICGV00440 ranked high for HKW in both seasons,
with ICGR 171238 and ICGR 171588 performing best in
the rainy and post-rainy seasons, respectively (Supple-
mentary Table S4) .
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Fig. 2 Variability in pod weight (PW; kg/ha), kernel weight (KW; kg/ha), shelling percentage (SH; %), hundred-kernel weight (HKW; g), percent net re-
covery of grade-I kernel (PNR GRADE [; %), HKW of grade | kernels (HKW GRADE I; g), and counts per ounce of grade | kernels (C Grade I) in the MAGIC

population during the rainy season of 2021 and post-rainy season of 2021-22

BLUP estimates and assessment of kernel grade
contributing traits in the MAGIC population

The PNR-I kernel (kernel width>7.5 mm) was better in
the post rainy season than in the rainy season, while the
HKW and CPO of grade I kernels (40-60 kernels/ounce)
were comparable during both seasons. Among the rep-
licated genotypes, ICGR 171433 (70.66%) and ICGR
171206 (85.65%) recorded the highest PNR-I in the rainy
and post-rainy seasons, respectively. ICGR 171476 (57.28
gm) and M 335 (59.06 gm) recorded the highest HKW-I
during the rainy and post-rainy seasons, respectively.
Conversely, ICGR 171260 (51) and M 335 (48) exhib-
ited the lowest CPO-I value in the rainy and post-rainy
seasons, respectively. Among the genotypes replicated
once, ICGR 171,238 (79.45) and ICGR 171,576 (84.31)
recorded the maximum PNR-I kernel in the rainy and
post-rainy seasons, respectively. Additionally, genotypes
ICGR 171196 (64.27) and ICGR 171430 (62.34) recorded
the highest HKW-I during the rainy and post-rainy sea-
sons, respectively. Meanwhile, ICGR 171268 (41) and

ICGR 171519 (41) registered the lowest CPO-I value in
the rainy and post-rainy seasons, respectively.

Table 3 and Supplementary Table S4 provide detailed
information on the performance of the top twenty MLs,
replicated twice and once, including checks for pod yield
and net recovery of grade-I kernels, respectively dur-
ing rainy and post rainy season. ICGR 171410, a Span-
ish bunch type ML, shows excellent yield potential with
2033.88 kg/ha during Rainy (R) and 1296.91 kg/ha dur-
ing post rainy (PR), and high recovery of grade-I kernels
at 66.84% PR and 63.96% R during both seasons. ICGR
171044 demonstrated good yield with 2003 kg/ha PR
and 1291.27 kg/ha R, and a good shelling percentage of
78.63% during PR and 72.05% during R. ICGR 171376
recorded 2345.18 kg/ha during PR and 1283.60 kg/ha R,
with bold seed size and high HKW of 40.85 gm PR and
32.96 gm R across seasons. ICGR 171260 shows high
recovery of grade-I kernels at 70.68% PR and 52.18%
R, with HKW of 37.96 gm PR and 31.83 gm R. ICGR
171576 records a grade-I kernel recovery of 84.31% PR
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Table 1 Likelihood ratio test (LRT) for yield and kernel grade component traits during the rainy season of 2021

Trait-Season  Variance Row Column  Nugget Genotype Row Column Error
components autocorrelation  autocorrelation

PW-R Estimate 0.0037 899.37 0.059 23387.36 —0.059 0.052 36970.24
p-LRT 0.1269 0.000000069*** 0.5558 0.30038
Model Action  Boundary Dropped  Absent Retained Swapped Swapped

KW-R Estimate 0.0013 524.14 0.030 12032.41 -0.038 0.064 18791.46
p-LRT 0.1067 0.00000007 1%*** 0.870 0.220
Model Action  Boundary Dropped  Absent Retained Swapped Swapped

HKW-R Estimate 0.0000006 0.0000003 6.929 10.196 0.840 0.840 4411
p-LRT 0.00000000002*** 0.000000071*** 0.000000000002***
Model Action  Boundary Boundary Absent Retained Unswapped Unswapped

SHP-R Estimate 0.244 0.0000026 9.494 10.204 0.773 0.719 3401
p-LRT 0.1935 0.0000000004*** 0.00006** 0.0000044***
Model Action  Dropped  Boundary Absent Retained Unswapped Unswapped

PNR-I-R Estimate 0.0000049 0.0000018 32.612 240.176 0.575 0.729 17.133
p-LRT <2.2e-16*** 0.0294% 0.0005%*
Model Action  Boundary boundary Absent Retained Unswapped Unswapped

HKW-I-R Estimate 0.0000003 0.858 17.81 31.811 0.945 0.980 3261
p-LRT 0.0975 0.000000000000001***  0.0004**
Model Action  Boundary Dropped  Absent Retained Unswapped Fixed, Unswapped

CPO-I-R Estimate 0.0000001 0.0053 0.501 1.281 0973 0.980 0.10
p-LRT 03974 0*** 0.0015**
Model Action  Boundary Dropped  Absent Retained Unswapped Fixed, Unswapped

Retained: model term retained; Absent: model term excluded; Fixed: autocorrelation fixed at boundary (< 1); Unswapped: residual structure unchanged due to significant
autocorrelation; Swapped: residual structure modified to exclude non-significant autocorrelation

Table 2 Likelihood ratio test (LRT) for yield and kernel grade component traits during the post- rainy season of 2021-22

Trait-Season  Variance Row Column Nugget Genotype Row Column correlation Error
components correlation

PW-PR Estimate 165.0393  4073.81 2793722  62913.82 0.935 0.980 36101.41
p-LRT 04698817 0.0083 0.00000000 0.0000
Action Dropped  Retained  Absent Retained Unswapped Fixed, Unswapped

KW-PR Estimate 1425337 1922652 14176460 37783.93 0917 0.964 15514.01
p-LRT 0453 0.018* 0x** (Ol QF**
Model Action Dropped  Retained  Absent Retained Unswapped Unswapped

HKW-PR Estimate 0.0000006 0.0000010 4.961 15.727 0.961 0.898 2396
p-LRT <22e-16%%* 0.0000005***  0.000002***
Model Action Boundary Boundary  Absent Retained Unswapped Unswapped

SHP-PR Estimate 0.020 00753634 3379 15.874 0874 0.952 3.892
p-LRT 0.469 0.355 <2.2e-16%** 0.00000003***  0.0000000000007***
Model Action Dropped  Dropped  Absent Retained Unswapped Unswapped

PNR-I-PR Estimate 0.0000007  4.954 32125 250.233 -0.782 0.634 8.896
p-LRT 0.0095 <2.2e-16*** 0.035* 0.3864
Model Action Boundary Retained  Absent Retained Unswapped Swapped

HKW-I-PR Estimate 0.0000025 0.236 0.000009  29.872 -0.070 0.129 20.778
p-LRT 0.344 0.000000000000006***  0.4166 0.09648
Model Action Boundary Dropped  Absent Retained Swapped

CPO-I-PR Estimate 0.0000000  0.0000 0.047 0.258 0.022 0.385 0.072
p-LRT 0.000 0.8685 0.0431
Model Action Boundary  Boundary  Absent Retained Unswapped Swapped

Retained: model term retained; Absent: model term excluded; Fixed: autocorrelation fixed at boundary (< 1); Unswapped: residual structure unchanged due to significant
autocorrelation; Swapped: residual structure modified to exclude non-significant autocorrelation
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Table 3 Top twenty groundnut MAGIC lines/checks based on pod weight (PW) and percent net recovery of grade | kernel (PNR_I)

tested in two replications

PW (Kg/ha) PNR_I (%)
Genotype Rainy Genotype post Rainy Genotype Rainy Genotype Post rainy
ICGR 171586 1381.66 ICGR 171497 281524 ICGR 171433 70.66 ICGR 171206 85.65
ICGR 171175 137412 ICGV03043 252359 ICGR 171073 69.08 ICGR 171223 77.69
ICGV03043 1334.01 ICGV02266 2494.15 M 335 68.35 ICGR 171188 74.81
ICGR 171172 1297.39 ICGR 171138 239862 ICGR 171018 65.73 ICGR 171277 74.38
ICGR 171410 1296.91 ICGR 171276 2364.39 ICGR 171172 64.87 ICGR 171476 7341
ICGR 171228 1291.95 ICGVE040 2359.77 ICGR 171033 64.39 ICGR 171433 7135
ICGR 171044 1291.27 ICGR 171376 2345.18 ICGR 171410 63.96 ICGR 171254 70.99
ICGR 171376 1283.60 ICGR 171528 2311.79 ICGR 171376 63.53 ICGR 171545 70.90
ICGR 171315 1281.23 ICGR 171477 219413 ICGR 171442 62.52 ICGR 171260 70.68
ICGR 171101 1257.87 ICGR 171282 217394 ICGV 88145 54.03 ICGR 171278 69.75
ICGR 171087 124346 ICGR 171228 2162.06 ICGR 171383 5367 ICGR 171118 69.51
ICGR 171580 123828 ICGR 171582 214842 ICGR 171191 53.66 ICGR 171305 69.39
ICGR 171491 1220.37 ICGR 171318 214443 ICGR 171068 52.90 ICGR 171563 69.37
ICGR 171427 1220.25 ICGR 171251 2068.10 ICGR 171254 5272 ICGR 171076 68.56
ICGR 171157 1217.72 ICGR 171540 2061.03 ICGR 171079 5261 ICGR 171105 68.35
ICGR 171260 1207.54 ICGR 171580 2042.21 ICGR 171260 5218 ICGR 171379 67.84
ICGR 171379 1188.08 ICGR 171410 2033.88 ICGR 171223 51.84 ICGR 171073 67.76
ICGR 171532 1184.22 ICGR 171044 2003.00 ICGR 171499 4844 ICGR 171383 67.39
ICGR 171600 1181.65 ICGR 171324 1942.08 ICGR 171315 47.98 ICGR 171018 67.07
ICGR 171276 1176.87 ICGR 171349 1936.25 ICGR 171427 46.50 ICGR 171410 66.84
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Fig. 3 Pearson correlation matrix showing relationships among yield-attributing traits and kernel grade components in the MAGIC population across

seasons

and 72.68% R, with an SHP of 77.20% PR and 72.89% R in
both seasons.

Correlation between yield and kernel grade contributing
traits

A correlation study was conducted to examine the rela-
tionship between yield-contributing traits and kernel-
grade traits during the rainy and post-rainy seasons. The
percent net recovery of grade-I kernels was positively and
significantly associated with HKW and HKW-I during

both seasons, whereas the counts per ounce of grade-I
kernels (CPO-I) were negatively and significantly associ-
ated with PNR-I. PW and KW showed a significant posi-
tive association with PNR-I during the post-rainy season
but a non-significant association during the rainy season.
(Fig. 3).

Genomic regions associated with yield contributing traits
PW, KW, HKW, and SHP are the yield-contributing
traits. A total of fifteen SNPs identified to be associated
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with yield-contributing traits; out of which twelve were
unique, significant SNPs above the Bonferroni corrected
threshold of 3.58757E-06. Three SNPs (AX_176822892,
AX 176805020, and AX_147234427) were identified
for pod yield on chromosomes A01, A04, and A09 dur-
ing the rainy season, with PVE of 3.37-4.97%, SNP
AX_176803444 was detected on A03 during the post-
rainy season, with a PVE of 10.88%. Three SNPs associ-
ated with kernel yield were identified: AX_176805020
and AX_ 147234427 on chromosomes A04 and A09 dur-
ing the rainy season, explaining 7.42 and 7.11% of phe-
notypic variance, respectively, and AX_176803444 on
A03 during the post-rainy season, explaining 12.48% of
phenotypic variance. Three SNPs, namely AX_176805020
and AX_147234427, identified during the rainy season,
and AX_176803444, identified during the post-rainy sea-
son, were found to be common loci associated with both
pod and kernel yield traits. Four SNPs were associated
with HKW during the rainy season on chromosomes
A03, A05, B07, and B08, with a PVE of 2.13-7.90%. Three
SNPs were identified for HKW during the post-rainy
season on AQ7 and B08, with PVE of 2.83-12.94%. One
significant SNP was identified on B03 for SHP during the

BLINK.PNR_I.R
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rainy season, with a PVE of 22.52% (Fig. 4, Supplemen-
tary Table S5, Supplementary Table S6, Supplementary
Figure S1).

Genomic regions associated with grade-Il kernel

Three component traits, namely PNR-I, HKW-I, and
CPO-I, constitute grade-I kernel traits. A total of fif-
teen SNPs were identified to be associated with the
kernel-grade component traits. Out of which, nine were
unique significant SNPs above the Bonferroni corrected
threshold. Three SNPs (AX_147226917, AX_177642221,
and AX_ 176803178) were identified on chromosomes
A07 and B09 for PNR-I, which explained a PVE of 5.32
to 11.90%. SNP AX_ 147226917 was consistently asso-
ciated with PNR-I on chromosome A07 during both
seasons. Five SNPs (AX_147226949, AX_177637658,
AX_176812240, AX_176820983, and AX_177643480)
were associated with HKW-I on chromosomes A07,
B09, A04, B0O5, and B08, respectively, during the rainy
season with a PVE range of 1.68-7.58%, while one
SNP, AX_177638905, on chromosome B07 was associ-
ated with HKW-I during the post-rainy season, which
explained a PVE of 30.04%. Four SNPs, AX_147226949,
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AX_176817367, AX_177643480, and AX_176818356, on
chromosomes A07, B0O5, B08, and A03, were associated
with CPO-I during the rainy season, which explained
a PVE of 1.55-9.52%. Two SNPs, AX_177643480 and
AX_147226917 on chromosomes BO8 and AOQ7, respec-
tively, were associated with CPO-I during the post-rainy
season, with a PVE of 16.53-32.94% (Supplementary
Table S5, Supplementary Table S6).

Three SNPs, AX_ 147226917, AX_177643480, and
AX_147226949, were pleiotropic in nature. The SNP
AX 147226917 controlled HKW, PNR-I, and CPO-I,
whereas SNP AX_ 177643480 was associated with HKW,
HKW-I, and CPO-I. SNP AX 147226949 was associated
with HKW-I and CPO-I (Supplementary Table S6). Out
of these three SNPs, AX 147226917 on chromosome
A07 was associated with PNR-I during both rainy and
post rainy seasons. Similarly, AX_177643480 on chromo-
some B08 was associated with CPO-I during both rainy
and post rainy seasons. Allele effect box plots of three
important SNPs; AX_ 176803178, AX_147226949, and
AX_177643480 were tested and found to be significant
(Fig. 5). A chromosome map is given in Fig. 6 for clear
visualization.

Potential candidate genes for yield and kernel grade traits

Potential candidate genes linked to yield and kernel grade
traits were identified in PeanutBase (https://Peanutba
se.org/) within a 100 kb window of significant SNPs (50
kb upstream and 50 kb downstream) using their physi-
cal locations and reference genome sequences. A total
of fifty-six genes were identified for yield-related traits
(PW, KW, HKW, and SHP) and another thirty-eight
genes were identified for kernel grades (Supplementary
Table S7). In order to prioritize candidate genes, GO
analysis was performed for all these identified genes. The
GO analysis identified significantly enriched GO terms
across the three principal categories: Biological Process
(BP), Molecular Function (MF), and Cellular Component

Allele Effects of the Marker_AX_176803178
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(CC). Among the identified candidate genes from A-sub
genome (Arachis duranensis), the most prominent
enrichment was observed for the oxidation-reduction
process (GO:0055114; p=0.0021) under the Biological
Process category, involving eight genes (Aradu.3YG82,
Aradu.993Q7, Aradu.BD60N, Aradu.D1YZ0, Aradu.
SFUO], Aradu.T9TSZ, Aradu.Y7AIG, and Aradu.YHKS80).
In the Cellular Component category, the nucleolus
(GO:0005730; p=0.0023) was significantly enriched, sug-
gesting a role in ribosomal biogenesis and nuclear orga-
nization. Within the Molecular Function category, NAD
binding (GO:0051287; p =0.0093) was enriched, implying
that several genes are involved in enzymatic redox reac-
tions and dehydrogenase activity (Supplementary Table
S9).

Similarly, the GO analysis of Arachis ipaensis candi-
date genes revealed multiple enriched GO terms. Under
the Biological Process category, several ion-related pro-
cesses were significantly overrepresented, including
metal ion homeostasis (GO:0055065; p=0.0033), cation
homeostasis (GO:0055080; p=0.0042), and inorganic
ion homeostasis (GO:0098771; p=0.0052), represented
by genes such as Araip.7QIHT and Araip.UOAUG. In
the Cellular Component category, the integral compo-
nent of membrane (GO:0016021; p=0.0031) and intrin-
sic component of membrane (GO:0031224; p=0.0038)
were enriched, highlighting that several genes encode
membrane-associated proteins possibly involved in
transport and signal transduction. In the Molecular
Function category, enrichment of oxidoreductase activity
(GO:0016705; p =0.0016), iron ion binding (GO:0005506;
p=0.0021), and heme binding (GO:0020037; p =0.0028)
was observed, represented by genes including Araip.
C78LH, Araip.CLW9Z, Araip.F3W88, and Araip.L96AH.
These categories reflect a strong association with redox
regulation and electron transfer. Furthermore, gen-
eral molecular function such as metal ion binding
(GO:0046872; p=0.006) and (GO:0005488; p=0.0094)
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Witann Whitney = 5509.00, p = 0.02, 7{ar = .0.26, Class; [-0.45, -0.05], ngps = £

3
5
@
&
EX
g
]
2

¢ T G
(n=493) (n=4) (n=63) (=1 (n=177)
Alleles

N

(n=6)
Alleles

uunQ 159} asiied

@ finesan = 28.02

JueoyuBrs umoys sseg

T G
(n=378) (n=533)

Alleles
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Fig. 6 distribution of yield (YIELD)and kernel grades (KERNEL) SNPs identified through GWAS in groundnut MAGIC population

was also significantly enriched, suggesting the involve-
ment of these genes in a variety of enzymatic and regula-
tory activities (Supplementary Table S9).

Sixteen genes for yield and seven genes for kernel
grades were prioritized based on literature review, gene
ontology study, and in silico expression analysis for
their roles in biological processes and yield regulation
(Tab. 4). The loci Aradu.6262P (CHLG), Aradu.Y7AIG
(CYP), and Aradu.Z67WQ (CCCH-ZFP) were identified
on chromosome AOl. The locus AraduVi4167 (PP7)
was located on chromosome A04. Additionally, the loci
Aradu.7P3Q2 (B3-DBP) and Aradu.D1YZ0 (ZEP) were
situated on chromosome AQ9, while Aradu.TW8M6
(LEA) was found on chromosome A03.These loci were
associated with pod yield. SNPs and candidate genes

associated with kernel yield were also linked to pod
yield. Four loci around SNP AX_176815442 on chromo-
some A03 include Aradu.45HCQ (Dnaj), Aradu.A28]W
(DNAH), Aradu.F9ZRP (PP7), and Aradu.HP9LA (PPP).
Three loci on chromosome B07 were Araip.2TN3Y
(COX11), Araip.8E63N (KIN), and Araip.C78LH (CYP).
Loci on chromosome A07 include Aradu.188]4 (DNAH),
Aradu.8G9XJ (ENO), and Aradu.BD60N (GPT). Addi-
tionally, potential candidate genes Araip.CLW9Z (CYP)
and Araip.UT461 (PHLH10) for shelling percentage were
associated with SNP AX 147246094 on chromosome
B03. A total of thirty-eight genes were identified for
kernel grades (Supplementary Table S8). Of these, only
seven were prioritized as potential candidate genes based
on a literature search. Key genes regulating kernel grades
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Table 4 Gene description of SNPs associated with yield attributing and kernel grade component traits

Trait SNPID Chr Diploid GeneID Tetraploid Sart End Length Gene description
Gene ID
PW_R AX_176822892 AO01 Aradu.6262P Arahy.44A4XL 3,398,298 3,399,687 1389  chlorophyll synthase
Aradu.7L5GB Arahy.00G2U6 3,377,240 3383903 6663  ATP-binding ABC transporter
Aradu.Y7AIG Arahy.08738Y 3,416,192 3,417,702 1510 Cytochrome P450 superfamily protein
AX_176805020 A04 AraduVi4i67 Arahy.6VZ2KG 97,104,284 97,106,562 2278  serine/threonine-protein phospha-
tase 7 long form homolog
AX_147234427 AQ9 Aradu.7P3Q2 Arahy.108MS0 115,055,440 115,077,534 22,094  plant-specific B3-DNA-binding
domain protein
Aradu.D1YZ0 ArahyMS9EFZ 115,143,020 115,147,880 4860  zeaxanthin epoxidase
PW_PR AX_176803444 A03 Aradu.TW8M6 Arahy.FE1PUB 25,790,840 25,792,591 1751 Late embryogenesis abundant (LEA)
protein-related (Root cap)
KW_R AX_147234427 A09  Aradu.7P3Q2 Arahy.108MS0  115,055440 115,077,534 22,094  plant-specific B3-DNA-binding
domain protein
HKW_R AX_176815442 A03 Aradu.45HCQ Arahy.1B470G 13,135,235 13,138969 3734  Chaperone DnaJ-domain superfam-
ily protein, (DnaJ domain)
Aradu.A28)W Arahy.JS7C8X 13,170,555 13,174,493 3938  large subunit GTPase 1 homolog
AX_177638855 BO7 Araip.2TN3Y Arahy.87SQNY 114,655 117,664 3009  cytochrome c oxidase assembly
protein CtaG/Cox11 family
Araip.8E63N Arahy.07YELL 66,887 73,309 6422  Protein kinase superfamily protein
Araip.C78LH Arahy.05IA51 109,894 111,123 1229 Cytochrome P450 superfamily protein
AX_176822338 B08 Araip.UOAUG Arahy.44QEU2 26,178,326 26,183,214 4888  sodium/calcium exchanger family
protein
AX_147226917 A07 Aradu.188J4 Arahy.TSR8I7 1,225,601 1,228,083 2482 ATP-dependent DNA helicase,
(P-loop containing nucleoside
triphosphate hydrolase)
Aradu.8GoXJ Arahy.86EPEX 1,210,713 1,215639 4926  phosphopyruvate hydratase (Enolase)
PNR_R AX_176803178 A07 Aradu.6Z78F Arahy.08TDR6 9,722,343 9,723,004 661  RING-H2 finger protein 28, (Zinc
finger, RING/FYVE/PHD-type)
Aradu.993Q7 Arahy.5D1G3K 9,730,990 9,733,378 2389  ascorbate peroxidase 1
PNR-PR AX_147226949 A07 Aradu.HR82P Arahy.1PBH7D 1,472,710 1,473,414 705  ALG-2interacting protein X-like
[Glycine max]
Aradu.S3AS8 Arahy.INQ2CM 1,454,176 1,456,622 2447  Vacuolar protein-sorting protein
BRO1
AX_177643480 B08 Araip.MKVSR Arahy.29S8ZW 8,698,068 8,699,400 1333 protein FART-RELATED SEQUENCE
3-like isoform X1 [Glycine max]
HKW_I_PR AX_147226949 AO07 Aradu.HR82P Arahy.10Y6YW 1,472,710 1473414 705  ALG-2interacting protein X-like
[Glycine max]
Aradu.53AS8 Arahy.17Q87X 1,454,176 1,456,622 2447  Vacuolar protein-sorting protein
BRO1

Table 5 Fold-change analysis of top-ranked candidate genes

Gene ID Nearest Ref  Mean Ex- Highest Fold Tissue of
ID pression Change (vs. Maximum
(FPKM) Root_veg) Expres-
sion
XLOC_075642 AH19G43450, 757x10° ~6.4-fold Seeds_25
AH19G43460
XLOC_075639 AH19G43420 7.57x10° ~6.2-fold Flower
XLOC_075638 AH19G43410 7.57x10° ~59-fold PodWall_
mature
XLOC_075637 AH19G43400 757x10° ~5.7-fold Seeds_15
XLOC_077872 AH19G43370 7.57x10° ~5.5-fold Seeds_25

include Aradu.6Z78F (RHF2B), Aradu.993Q7 (APXI),
Aradu. HR82P (ALIX), Araip. MKV8R (FRS3), and Aradu.
S3AS8 (BRO1) (Table 5).

In-silico gene expression analysis and allelic distribution
pattern

The tissue-specific expression of the identified candidate
genes was examined using the A. iypogaea gene expres-
sion atlas (AhGEA) for the fastigiata subspecies. Among
the potential candidate genes identified for yield, only
13 genes exhibited differential expression in at least one
tissue during critical developmental stages, as observed
across 20 tissues in the gene expression atlas (Figs. 7 and
8). Fold-change expression analysis was carried out to
compare the relative expression levels of the top-ranked
genes across different tissues. Mean expression values
(FPKM) were calculated for all tissues, and the top five
highly expressed genes (XLOC_075642, XLOC_075639,
XLOC_075638, XLOC_075637, and XLOC_077872)
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Fig. 7 Workflow for tissue-specific expression analysis of identified candidate genes in Arachis hypogaea. The pipeline involves retrieval of expression
data from public repositories, normalization and matrix compilation, followed by statistical interpretation and visualization to identify tissue-preferentially
expressed genes
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Fig. 8 In-silico gene expression analysis heat map for kernel grades and yield traits

were selected based on their average expression across
the dataset. A list of top ranked candidate genes across
different tissues is given in Tab. 5. The results revealed
that these genes were highly upregulated in reproductive
tissues (flower, seeds, pod wall) compared with vegeta-
tive tissues (root and stem). For example, XLOC_075642
and XLOC_075639 exhibited>5-fold higher expres-
sion in seeds and flower compared with roots, suggest-
ing their potential roles in reproductive development.
These findings confirm strong transcriptional activity of
the top-ranked candidate genes in reproductive organs,
emphasizing their potential biological significance in pod
and seed development. The phenotypic data of the top
ten MAGIC lines (MLs) with high and low pod yields and
percent net recovery of grade-I kernels from the 2021-22
rainy and post-rainy seasons were analyzed to assess SNP
utility and efficiency (Fig.9). MLs with high yield and per-
cent net recovery of grade-I kernels mostly carried favor-
able alleles, whereas MLs with low yield and percent net

recovery of grade-I kernels predominantly carried unfa-
vorable alleles.

Discussion

Uniqueness of kernel grades in groundnut and need of
marker development for this trait

The kernel grade is highly influenced by environment.
With increasing confectionary groundnut demand versus
oil markets, there is demand for developing high-yield-
ing cultivars with better grade-I kernel recovery. Studies
show bold seed size contributes to grade-I kernel recov-
ery percentage. Kernel grading ensures product qual-
ity and market value, benefiting processing and exports.
Well-graded groundnuts meet standards for consumer
acceptance and safety. Quality kernels with uniform sizes
enhance their use in food products and confectionery
[4]. Premium grades command higher prices for their
quality. In exports, adherence to international standards
like the International Organization for Standardization
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ICGR 171451  398.08 ICGR171179 491.86 | T

GPBD4 38173 ICGR171395 490.44 | T

ICGR 171526  378.38 ICGR 171429 476.90 | T

ICGR 171105 367.67 ICGR171299 471.41 |RNGHN

ICGR 171377 367.05 ICGR 171536 466.73 | T

ICGR 171211 360.78 ICGR 171443 44246 | T

ICGR 171033  358.36 ICGR 171131  400.41 T

ICGV 88145  329.18 ICGR 171427 37137 | T

ICGR 171504 ~ 326.52 ICGR171470 37082 | T
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Genotype PNR-I_R 2 = Genotype PNR-I_PR 2

ICGR 171238 79.44657515 € ICGR 171206 85.65374 NG

55-437 75.863855 G ICGR 171576 84.313993 A

ICGR 171203  75.67766432
ICGR 171576  72.68400492
ICGR 171394 72.54088333 | G |

ICGR 171426 71.78711676 | G | C
ICGR 171320  70.83048715
ICGR 171433  70.65718535 €
ICGR 171086  69.95357649 | G |

ICGR 171003  80.038183
ICGR 171107  78.623355
ICGR 171128 78.459328
ICGR 171430 78.302441
ICGR 171020 78.181585
ICGR 171084 77.971223
ICGR 171394 77.883113

ICGR 171073  69.083973 ICGR 171382  77.766787
Genotype PNR-I_R Genotype PNR-I_PR

ICGR 171562  11.24771429 ICGR 171567 18.459114[ A |

ICGR 171553 10.94340649 | G | ICGR 171503 17.869024| A |

ICGR 171493  10.82810116 ICGR 171384 16.997862

ICGR 171567 10.02062963 ICGR 171285 16.990387| A |

ICGR 171082 9.428489304 | G
ICGR 171365 9.150037197 | G
ICGR 171060  8.499164415

ICGR 171519  7.678998236 €
ICGR 171594  5.734794894
ICGR 171338~ 4.29685975

ICGR 171365  14.324448
ICGR171338  13.69471 | A |
ICGR 171122 13.095123
ICGR 171594  11.853106
ICGR 171080  10.633653
ICGR 171519 8.6482086| A |

@

Fig.9 Allele distribution pattern of significant Markers associated with A. Pod weight during rainy B. Pod weight during post rainy C. Percent net recovery
of grade-I kernels during rainy D. Percent net recovery of grade-I kernels during post-rainy seasons

(ISO) or the United States Department of Agriculture
(USDA) is essential. Importing countries require kernels
free from contaminants like aflatoxins [36]. Processing
industries benefit from graded kernels as uniform sizes
simplify mechanical shelling. Larger kernels suit con-
fectionery while smaller ones are used for oil extraction.
Grading prevents contaminated kernels from entering
the food chain [37]. This practice enhances quality and
marketability.

BLUP means, variance components and correlation

The high genotypic variance in PW, KW, and PNR-I
across seasons indicate wide variability in the MAGIC
population. MAGIC lines performed better during
post-rainy season than rainy season for yield and ker-
nel gradess, due to lower disease pressure and better
pod filling. During the rainy season, MLs; ICGR 171586
(1381.66 kg/ha) and ICGR 171175 (1374.12 kg/ha)
recorded higher yields than check variety ICGV 03043
(1334.01 kg/ha). This demonstrate their adaptability
under rainfed conditions. In contrast, under post-rainy
conditions, where temperature and moisture regimes
were more favorable and irrigation was controlled, ICGR
171497 (2815.24 kg/ha) and ICGV 03043 (2523.59 kg/
ha), exhibited superior performance compared to check
ICGV 02266 (2494.15 kg/ha). During post-rainy season,
shelling percentage varied from 49% in ICGR 171387 due
to immature pods, to 81% in ICGR 171379. High shelling
percentage upto 78.9% has been reported [38] in breed-
ing lines. A very high shelling percentage is possible for
certain improved genotypes under optimal agronomy,
with correct harvest timing, low moisture and controlled

lab measurement. Spanish bunch types of groundnut
have higher shelling percentage (up to 78%) due to thin-
ner shells than Virginia types [1]. A very high shelling
percentage in ICGR 171379 may be a result of good pro-
duction practices mentioned above. However, owing to
CT scan model prediction error it may vary + 2%. ML,
ICGR 171576 records a grade-I kernel recovery of 84.31%
PR and 72.68% R, with an SHP of 77.20% PR and 72.89%
R in both seasons. These consistent performing line with
better PNR-I kernel and SHP can be used as parent in
breeding programs to simultaneously improve multiple
traits across seasons.

Kernel grade as a trait per se has received little atten-
tion in groundnut breeding programs. A previous study
assessed two cultivars, GG-20 and TG-37 A for their
kernel width and reported that 71% kernel were hav-
ing a width of >8.19 mm in GG-20 whereas in TG-37A,
29% kernels were having width of >8.62 mm [39]. Out of
the large set of ML assessed for kernel grade, only seven
MLs (ICGR 171238, ICGR 171203, ICGR 171576, ICGR
171394, ICGR 171426, ICGR 171320 and ICGR 171433)
had a PNR-I value more than 70% during rainy season.
During post rainy season, three MLs (ICGR 171206,
ICGR 171576 and ICGR 171003) had PNR-I kernel value
>80% and forty-five MLs had PNR-I kernel value >70%.
Higher recovery of grade-I kernel during post rainy can
be attributed to cooler night temperatures, wider diur-
nal variation, reduced disease and waterlogging, and
controlled irrigation that together favor kernel develop-
ment and better yield [40]. Positive correlations between
PNR-I and HKW suggest bold-seeded varieties contrib-
ute more to grade-I kernel PNR. PW and KW positively
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correlated with PNR-I in post-rainy season only, likely
due to extended maturity allowing better pod filling and
kernel development.

Suitability of the MAGIC population for this study

MAGIC populations enable studying genomic architec-
ture and discovering genomic regions governing complex
traits with precision by integrating genetic diversity and
high recombination rates [41]. MAGIC population used
in the current study showed wide variability in yield, dis-
ease, kernel grades, and quality traits due to recombina-
tion events creating diverse allele combinations. MAGIC
populations derived from multiple founders showed
increased allelic diversity [42]. Enhanced genetic diversity
augments GWAS power by providing more genetic varia-
tion for association testing. MAGIC populations undergo
numerous recombination events during multiple genera-
tions of intercrossing, creating smaller linkage disequilib-
rium (LD) blocks [43, 44]. Self-pollinating crops, such as
groundnut, typically exhibit larger LD blocks and dem-
onstrate slower LD decay due to limited recombination
events [45]. Numerous studies have reported extensive
LD in various groundnut breeding populations [46, 47].
For instance, in a previous GWAS experiment, an LD
decay of up to 4.8 MB, more than the LD reported in the
current study has been estimated [48]. Although a high
LD block was estimated for the current MAGIC popula-
tion due to the tetraploid nature and genome complexity
of groundnut, still significant associations were identified
through the GWAS with a high p-value. Manhattan plots
showed distinct peaks for various yield and kernel grade
component traits, and Q-Q Plots exhibited inflation only
at the tail of the distribution, reflecting true associations.
All of these factors validated the suitability of the MAGIC
population for association studies.

Genome-wide association study

Association analysis was conducted separately for rainy
and post rainy seasons, as these two are different seasons
where one has protected irrigation. Rainy and post-rainy
season adaptation is needed in India, as commodity pro-
duction occurs largely in the rainy season, but seed pro-
duction occurs in the post-rainy season. A comprehensive
literature search was carried out for a comparative analy-
sis of yield and kernel-grade associated genomic regions
in previous and the current study. Yield traits in ground-
nut are influenced by multiple genes and key QTLs were
mapped on chromosome A03 for breeding purposes [49].
QTLs for seed size were reported on chromosomes A05
and A07 through QTL mapping studies using RIL pop-
ulations [50]. Through GWAS, we have also identified
genomic regions associated with hundred kernel weight
(HKW) on chromosome AQ7. Several genomic regions
associated with hundred seed and pod weight were
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identified utilizing a NAM population and SNP array
through GWAS on chromosome A03, A05, A06, A07,
A07, A09, B06, B07, BO8 and B09 [25]. In this previous
study, significant MTAs were co-localized for pod weight
and hundred kernel weight on chromosomes A05, A06,
B05, and BO06. This study supports results from our study,
where we have also identified significant SNPs for HKW
on chromosomes A03, A05, A07, BO7 and B08. QTLs for
hundred kernel weight (HKW) on chromosomes A02
and A06, at loci A02-86439145 and A06-108577126 were
identified through QTL mapping in another study [28].
Overlapping QTLs for shelling percentage and HSW
were identified on chromosomes A05, A08, B10, B06 and
A08 [51]. But in the current study, we have found asso-
ciations with shelling percentage only on chromosome
B03. In the current study, all SNPs associated with yield
traits like pod and kernel weight are mapped on different
chromosomes of A genome, suggesting a significant role
of A genome compared to B genome. In our study, three
component traits of grade-I kernel revealed nine signifi-
cant SNPs. SNP AX 147226917 on chromosome AQ7
was detected for PNR-I across two seasons, indicating
a stable genetic determinant. PVE by the detected SNPs
ranged broadly from 5.3% up to 32.9%, which suggests a
mixture of major and minor effect loci underpinning ker-
nel-grade traits. SNP AX_177638905 on B07 accounted
for more than 30% PVE for HKW-I in post-rainy season,
which is a major effect SNP. Overlapping SNPs associ-
ated with HKW-I and CPO-I suggest pleiotropy or linked
loci controlling kernel grade trait. These findings support
polygenic architecture for kernel grade traits. Though
several GWAS were conducted previously for seed size,
the current study is the first attempt, specifically to iden-
tify genomic regions for kernel grades in groundnut.

Phenotypic variance explained by the associated SNPs
for PW (3.37-10.89%), KW (7.43-12.48%), HKW (3.20-
12.94.20.94%), SHP (22.52%) appeared to be modest in
the current study. Previous linkage mapping studies for
yield related traits have also identified QTLs for pod yield
(6.27-6.87%), hundred seed weight (5.89-13.87%) and
shelling percentage (10.98-11.65%) with less PVEs [52].
Similar studies have attributed less PVE to the complex
and quantitative nature of the yield attributing traits and
GxE interactions, which reduces the detectable PVE per
marker [29]. In the current study, sufficient number of
SNPs (13,937) from a high-density SNP array and a sta-
tistically powerful model (BLINK) were used for GWAS
analysis to identify causal loci with smaller effects.

Both positive and negative allelic effects were found for
identified SNPs, with alleles increasing or decreasing trait
values. A positive effect suggests that the reference allele
enhances the phenotypic value, whereas a negative effect
denotes a reduction. For PW, SNP AX 176822892 on
chromosome AO1 showed a positive effect, while three
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SNPs had negative effects. All SNPs associated with KW
showed negative effects. For HKW, five SNPs had positive
effects and two had negative effects. SNP AX_147246094
on B03 showed a positive effect on SHP. For PNR-I ker-
nel, three SNPs had positive effects and one had negative
effect. HKW-I showed both positive and negative effects,
while all CPO-I SNPs had negative effects.

Potential candidate genes for yield and kernel grades

The candidate genes are categorized into various func-
tional groups. Gene Ontology (GO) enrichment analy-
sis, literature search and expression analysis indicate
that these genes are implicated in oxidoreductase activ-
ity (including Cytochrome P450 superfamily protein,
ascorbate peroxidase 1, cytochrome c oxidase assem-
bly protein), photosynthesis and pigment biosynthesis
(such as chlorophyll synthase and zeaxanthin epoxidase),
metabolism (enolase, glucose-1-phosphate adenylyltrans-
ferase), ion transport (ATP-binding ABC transporters,
sodium/calcium exchanger, vacuolar protein-sorting pro-
tein BROI), signal transduction (serine/threonine-pro-
tein phosphatase 7, protein kinase superfamily protein),
regulatory proteins (B3-DNA-binding domain protein,
FARI-RELATED SEQUENCE 3-like isoform XI), and
stress-related proteins (LEA protein, Dnaj-domain
protein).

Oxidoreductase activity, mediated by Cytochrome P450
protein, regulates yield by influencing the biosynthesis
of gibberellic acid and brassinosteroids [53], which are
critical for cell division, seed development, and nutri-
ent transport. The cytochrome c oxidase assembly pro-
tein is essential for pollen development and growth in
Arabidopsis [54]. Chlorophyll synthase catalyzes the bio-
synthesis of chlorophyll a, thereby enhancing photosyn-
thetic efficiency [55-57]. Increased chlorophyll content
is associated with improved photosynthetic rates, leading
to a higher number of pods and increased kernel weight
[58]. Zeaxanthin epoxidase regulates yield by mediat-
ing abscisic acid (ABA) biosynthesis, which is crucial for
stress tolerance and development. In groundnuts, ZEP
activity maintains ABA levels, facilitating seed matura-
tion and germination, thereby contributing to higher
yields [59]. Phosphopyruvate hydratase (enolase) is a piv-
otal glycolytic enzyme that supports carbon and energy
supply for seed development. Mutations in this enzyme
can restrict carbohydrate flux, resulting in smaller seeds
in Arabidopsis [60]. Glucose-1-phosphate adenyltransfer-
ase proteins (AGPase) are involved in starch biosynthesis,
and their downregulation leads to reduced starch content
in groundnut leaves [61].

Membrane transport proteins are crucial for nutri-
ent partitioning towards developing seeds, promoting
higher seed-filling rates and kernel mass [62]. The vacu-
olar protein-sorting protein BROI confers bacterial wilt
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resistance in groundnuts [63]. Serine/threonine-protein
phosphatases regulate cell division in Arabidopsis [64]
and influence yield-related traits in groundnuts [65, 66].
Phosphatases balance growth and defense mechanisms,
while protein kinases regulate cell growth through pro-
tein phosphorylation. PSWI regulates pod size, with
PSW1 Hapll enhancing seed size [67]. B3-DNA-binding
proteins modulate auxin-responsive genes affecting yield
[59]. FARI transcription factors and RING-type E3 ligases
control hormonal signaling in developing kernels [68].
Late embryogenesis abundant (LEA) protein is involved
in abiotic stress responses in peanuts, including drought
and low temperature [69]. Chaperone Dnaj-domain
superfamily proteins are critical for drought tolerance
and seed weight in groundnuts [65, 66, 70]. The tran-
scriptional regulator STERILE APETALA-like influences
pod and seed size variation during peanut evolution [71].

Conclusion

Considering the increasing demand of groundnut for
confectionary industry, it is high time to include traits
like kernel grades in the breeding programs. ML ICGR
171238 (79.45%) and ICGR 171206 (85.65%) with highest
percent net recovery of grade-I kernel (PNR-I) in rainy
and post-rainy seasons respectively can serve as par-
ents in breeding programs. Another ML, ICGR 171576
with a grade-I kernel recovery of 84.31% PR and 72.68%
R, with an SHP of 77.20% PR and 72.89% R can also be
used in crossing programs to improve these traits simul-
taneously. Consistent SNP AX_147226917 (A07) and
AX_177643480 (B08) associated with PNR_I and counts
per ounce of grade-I kernel (CPO-I) across seasons, and
SNP AX_177638905 on B07 with highest PVE associated
with HKW-I can be further validated and developed in
to KASP assay that can augment rapid selection of prog-
enies in early generations to develop groundnut cultivars
with high recovery of grade-I kernels. Candidate genes
identified for kernel grades in the current study include
Aradu.6Z78F (RING-H2 finger protein), Aradu.993Q7
(ascorbate peroxidase 1), Araip. MKV8R (protein FARI-
RELATED SEQUENCE 3-like isoform X1) and Aradu.
S3AS8 (Vacuolar protein-sorting protein BROI). For yield
traits, Aradu.Y7AIG (cytochrome P450), Aradu.BD60N
(Glucose-1-phosphate adenylyltransferase) and Aradu.
TW8M6 (LEA protein). These are potential/putative in
nature and can be targeted for improving kernel grades
once functionally validated.

Abbreviations

ALIX ALG-2 interacting protein X-like [Glycine max]
APX1 Ascorbate peroxidase 1

B3 or B3-DBP Plant-specific B3-DNA-binding domain protein
bHLH10 Basic helix-loop-helix 10

BRO1 Vacuolar protein-sorting protein BRO1

CHLG Chlorophyll synthase

CCCH-ZFP CCCH- zing finger protein
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CcYp Cytochrome P450 superfamily protein

DNAH ATP-dependent DNA helicase

DnaJor HSP40 ~ Chaperone Dnal-domain superfamily protein (DnaJ
domain)

ENO Phosphopyruvate hydratase (Enolase)

FRS3 Protein FART-RELATED SEQUENCE 3-like isoform X1 [Glycine
max]

GPT Glucose-6-phosphate

LEA Late embryogenesis abundant (LEA) protein

PK or KIN Protein kinase superfamily protein

PPP Phosphoprotein Phosphatase

PP7 Serine/threonine-protein phosphatase 7 long form
homolog

NCX Sodium/calcium exchanger family protein

RHF2BorRING  RING-H2 finger protein 2B

ZEP Zeaxanthin epoxidase
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