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Abstract
Background  Kernel grade is a key market trait that significantly influences the market price of groundnut and is 
directly proportional to pod yield. A set of 574 multi-parent advanced generation inter-cross (MAGIC) lines including 
parents and checks was assessed for kernel grade, yield, and component traits in a partially replicated (p-rep) design 
for two seasons (rainy and post-rainy; 2021-22). A genome-wide association study (GWAS) was conducted to identify 
marker-trait associations (MTAs) and potential candidate genes for kernel grades and yield.

Results  MAGIC lines ICGR 171238 (79.45%) and ICGR 171206 (85.65%) showed highest percent net recovery of 
grade-I kernel (PNR_I) in rainy and post-rainy seasons respectively. Twenty-four high confidence SNPs were associated 
with kernel-grades and yield traits across 11 chromosomes. SNPs AX_147226917 (A07) and AX_177643480 (B08) 
showed consistent association with PNR_I and counts per ounce of grade-I kernel (CPO_I) across seasons. Key 
candidate genes for kernel grades include Aradu.6Z78F (RING-H2 finger protein), Aradu.993Q7 (ascorbate peroxidase 1), 
Araip.MKV8R (protein FAR1-RELATED SEQUENCE 3-like isoform X1) and Aradu.S3AS8 (Vacuolar protein-sorting protein BRO1). 
For yield traits, Aradu.Y7AIG (cytochrome P450), Aradu.BD60N (Glucose-1-phosphate adenylyltransferase) and Aradu.
TW8M6 (LEA protein) were identified.

Conclusion  Predominantly these genes are known to regulate growth and development, control cell functions, 
confer disease resistance and stress tolerance, and influence pod size in groundnuts. The validation studies of 
the identified MTAs would facilitate the development of molecular markers for use in marker-assisted selection 
(MAS), enabling efficient selection of progenies with higher percent recovery of grade-I kernels in the segregating 
populations.
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Background
 Groundnut (Arachis hypogaea L.), a self-pollinated 
annual legume crop widely grown in the arid and semi-
arid tropics of Asia and Africa, is highly valued for its 
nutritional composition, comprising 44–56% oil, 22–30% 
protein, and 10–25% carbohydrates [1, 2]. Groundnut 
cultivation spans a global area of 30.53 million hectares, 
yielding a total production of 54.23 million tons with an 
average productivity of 1776.2 kg/ha. India, China, Nige-
ria, and Sudan have the largest cultivated areas (5.70, 
4.45, 3.40, and 3 Mn ha, respectively) (FAOSTAT, 2023). 
Africa produced 17.36 Mn Tn of groundnut, whereas 
Asia produced 31.70 Mn tns. Together, Asia and Africa 
contribute to 90% of global groundnut production. 
Groundnut kernel is composed of high-quality protein, 
which is increasingly used as a concentrated protein 
ingredient in food formulations, meat analogues, bakery 
products, protein bars and animal feed [3]. Consider-
ing the increasing demand for plant-based protein-rich 
foods, it will provide opportunities of higher exports for 
major groundnut producing countries.

There is a shift in the demand for groundnuts in the 
confectionery industry, particularly in developed nations, 
compared to the historical demand for oil extraction due 
to increased usage of roasted nuts, peanut butter, and 
different groundnut-based snack products [4]. This is 
evident from a growth of the confectionery market from 
$206.97 billion in 2023 to a projected $278.36 billion by 
2032 (www.cgiar.org). The characteristics that are desir-
able for confectionery purposes include a higher per-
centage of sound mature kernels (>80% SMK), a creamy 
smooth texture, a rich nutty flavor, a 100 seed weight of 
more than 55 g, sugar content above 5%, protein content 
exceeding 30%, blanchability over 60%, and an oil con-
tent below 45% [5, 6]. The mass of one hundred seeds 
is a crucial factor in determining confectionery quality. 
Studies at ICRISAT have demonstrated that large-seeded 
groundnut genotypes, such as ICGV 90212 and ICGV 
97051, are particularly suitable for confectionery use 
because of their high kernel yield and superior seed mass 
[7, 8].

According to the UNECE (United Nations Economic 
Commission for Europe) standards, peanut kernels are 
graded by size using the counts per ounce method, which 
measures the number of kernels in 28.35 g (1 oz). Grade-I 
kernel in peanuts, with 40–60 kernels per ounce in the 
global market, are preferred by the confectionery indus-
try owing to their superior physical and sensory quali-
ties (www.unece.org). These kernels are large, uniform 
in size, free of defects, and possess desirable textures 
and flavor profiles. These physical and chemical param-
eters make them ideal for value-added products such 
as roasted nuts and peanut butter as they evolve during 
roasting [9]. In addition, international markets place a 

premium on high-quality grade-I kernels because of their 
application to snacks and products. Groundnut exports 
for confectionery often follow strict grading standards, 
emphasizing the need for well-sorted visually appealing 
kernels (https://www.cbi.eu). Considering the increasing 
importance of grade-I kernel in the industry, they have 
been incorporated into breeding program in market seg-
ment II at ICRISAT, which focuses on developing prod-
uct profiles for the confectionary industry. The kernel 
grade is a complex quantitative trait that is affected by 
the environment. To cater to the market demand for con-
fectionery groundnuts and considering the importance of 
large-seeded grade-I kernels, it is important to combine 
yield with a high proportion of grade-I kernel recovery to 
develop suitable market-driven groundnut cultivars.

Grade-I kernel with widths greater than 7.5 mm [10] 
are in high demand in the confectionary industry. Yield 
improvement is always a key breeding objective in most 
crop improvement programs, including groundnuts. To 
develop suitable market-preferred groundnut cultivars, 
it is important that the cultivars have high yields with 
superior kernel grades and a crucial understanding of 
the molecular mechanisms governing this trait to real-
ize their maximum potential. Since the inception of the 
idea of generating and utilizing multi-parent populations, 
such as the multi-parent advanced generation inter-cross 
(MAGIC) in crop improvement, several MAGIC popu-
lations have been generated in different crops, including 
groundnuts, for genomic dissection of complex traits 
[11–13]. Groundnut MAGIC populations have been 
used to dissect and characterize complex traits, such 
as drought tolerance [14], late leaf spot [15], pod-size 
related traits [16], pod weight, seed weight, shelling per-
centage, pod constriction, and pod reticulation [17]. A 
larger number of recombination events in MAGIC popu-
lations provide an opportunity to map genomic regions 
with a higher resolution.

Recent advancements in groundnut genomics and cost-
effective sequencing have enhanced our understanding 
of complex traits. Reference genomes for cultivated tet-
raploid groundnut are available [18–20]. New sequenc-
ing methods like genotyping-by-sequencing [21] and 
“Axiom_Arachis” SNP arrays [22] have reduced costs, 
enabling detailed genetic mapping [23]. Association stud-
ies in multiparent populations help dissect complex traits 
with high resolution. Studies have identified genomic 
regions associated with pod/kernel yield and traits like 
hundred-seed mass and shelling percentage. Thirty sig-
nificant markers explaining 11.22–32.30% phenotypic 
variation were found to be associated with seed-related 
traits through an association analysis by utilizing 104 
peanut accessions and SSR markers [24]. A nested asso-
ciation mapping (NAM) population genotyped with 58 K 
SNP array revealed genomic regions linked to seed and 

http://www.cgiar.org
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pod weights [25]. SSR and SNP array-based maps identi-
fied major regions on chromosome B06 and A07/B07 for 
pod and seed related traits [26]. QTL on chromosome 
A05 showed major effects on seed size in US mini-core 
collection [27]. Two major loci on chromosome A06 and 
A02 [28] and another two on chromosome A08 and B06 
[29] have been identified for yield-related traits.

However, no QTL mapping or association mapping 
studies have identified genomic regions associated with 
the high recovery of grade-I kernels in groundnuts. Con-
sidering the need to develop confectionary purposes high 
yielding groundnut cultivars with high recovery of grade 
I kernels and the unavailability of genomic resources to 
augment the breeding pipeline, we have conducted a 
genome-wide association studies (GWAS) utilizing 574 
MAGIC lines and a high density “48k SNP array” to iden-
tify markers linked to yield attributing traits and kernel 
grades.

Methods
Genotypes and experimental design
A MAGIC population consisting of five hundred and sev-
enty-four lines that includes eight founder parents and 12 
checks, was evaluated [30] (Supplementary Table S1). The 
founder parents viz., used to develop MAGIC popula-
tion were ICGV 91114, ICGV 06040, ICGV 00440, ICGV 
00308, ICGV 05155, ICGV 88145, GPBD 4 and 55–437. 
Among these, ICGV 00440 is a large-seeded, high-yield-
ing variety with a hundred seed weight of 75 g. The trials 
were laid out in a partially replicated design (p-rep) con-
sisting of 722 plots indexed by 19 rows and 38 columns 
ordered as columns within rows. 30% of the test lines 
(148) and checks were replicated twice. While reduc-
ing the total number of experimental plots and optimiz-
ing resources, the replicated plots increased. Each plot 
consisted of four rows of 4 m each, with a row-to-row 
spacing of 30 cm and a plant-to-plant spacing of 10 cm, 
grown on a broad bed. The experiments were conducted 
during two seasons: rainy 2021 and post rainy 2021-22 in 
alfisols at ICRISAT, Patancheru (17053’N, 78027’E, and 
545 m asl), India. The recommended agronomic man-
agement practices such as timely irrigation immediately 
after planting and as required thereafter, the application 
of gypsum at peak flowering, measures to protect against 
insect pests and diseases were implemented to ensure the 
cultivation of a healthy crop.

Traits measured
Yield traits included pod weight per plot (PW), kernel 
weight per plot (KW), hundred kernel weight (HKW), 
and shelling percentage (SHP). Kernel grade traits com-
prised percent net recovery of grade-I kernel (PNR-I), 
hundred kernel weights of grade-I kernel (HKW-I), and 
counts per ounce of grade-I kernel (CPO-I). The PW 

from each plot was recorded after drying the pods using a 
measuring balance. The SHP and HKW values were pre-
dicted using CT scans [31] and the details on the proce-
dure and calibration were described later in this section. 
KW was determined using the PW and SHP data. The 
PNR-I, HKW-I, and CPO-I were manually determined.

Kernel grading
Kernel grading is a replica of industrial seed grading, in 
which seeds are sorted based on commercially defined 
screens. 500 gms of sound mature kernels (SMK) were 
passed through 3 sieves that were of 8.5 mm, 7.5 mm 
and 6.5 mm consecutively (Fig. 1). This method divided 
the entire material into three grades. Kernel weight, 
hundred kernel weight, and counts per ounce for each 
grade were measured using a weighing balance. The per-
cent net recovery of each grade was calculated using the 
formula: %NR = Kernel weight of individual grade

T otal weight (500gm) × 100

Digital trait value prediction of hundred kernel weight and 
shelling percentage using computed tomography
The methodology for a non-destructive analysis of seed 
traits that determines the quality of groundnut traits 
has been comprehensively described in a previous study 
[31]. The main traits of interest, hundred kernel weight 
and shelling percentage, were predicted as part of a pipe-
line that first determined kernel weight and shell weight 
in preliminary steps using X-ray image transformation 
(XRT). A 50 g peanut pod sample, representative of each 
plot harvest (total 722 plots, each with a 4 m×4 m plot 
size), was scanned to extract 2D X-ray image features, 
which were then processed by the XRT model. This 
model demonstrated high predictive accuracy, achieving 
a kernel weight coefficient of determination (R²) of 0.93 
for kernel weight and 0.78 for shell weight, with mean 
absolute errors of 0.17 and 0.08, respectively. These pre-
dictions were then used to calculate the kernel size and 
shelling percentage. These predicted values were sub-
sequently used to calculate the kernel weight and the 
shelling percentage. This robust, statistically validated 
methodology provides a non-destructive, high-through-
put solution for crop evaluation and quality control, 
making it highly effective for breeding programs and 
postharvest assessments.

Single trial analysis
The model for the partially replicated design is described 
as follows.

	 yijk = µ + α i + rj + ck + eijk

Where.
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α i is the variety main effect considered “random,” rj  
and ck (global trend) are the design factors, which are 
random terms, for rows and columns.

eijk (local + extraneous) is the residual corresponding 
to the observational units, which are the plots.

The statistical model is thus given by,
The row and column effects describe the extraneous 

variations that usually arise from the experimental pro-
cedures. Plot-to-plot variability can be split into global 
and local trends. Global trends arise from uneven soil 
moisture, soil depth, and other natural variations. Local 
trends or nuggets are small-scale spatial variations within 
the field, an indicator of how noisy the spatial structure 
is. Thus, the error structure is.

	 R = σ2 (∑
R θ

∑
C

)
+ σ2

ϵ I

	
σ 2 [( SR Θ SC) + σ 2

ϵ

σ 2 I]

where SR and SC indicate the row and column correlation 
matrices, respectively, as the combination of row and col-
umn factors represents unique positions in the spatial 
grid. A separable autoregressive model of order 1 (AR1) 
was fitted for SR and SC. and σ 2

ϵ  is the nugget variance.

Genotyping
DNA was extracted from 574 MAGIC lines including 
eight parent plants using a NucleoSpin 96 Plant II Kit 
from Machery Nagel in Germany. The DNA amount was 
measured with a Nanodrop 8000 spectrophotometer 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). The 

quality of the DNA was checked on a 0.8% agarose gel. 
A 48 K Affymetrix SNP array (‘Axiom_Arachis 2.0’) was 
used to genotype the extracted DNA samples. The out-
put files (Cell Intensity File) from the Affymetrix instru-
ment were analyzed in Axiom Analysis Suite (AAS) v 
5.2 (Thermo Fisher Scientific, Inc.). The Axiom Analysis 
Suite integrates SNP genotyping, indel detection, multi-
allele analysis, off-target variant (OTVs) calling, and copy 
number detection into a graphical interface. The 48 K 
SNP array data for the MAGIC population is provided in 
Supplementary Table S2.

Filtering of genotypic data and genome-wide association 
study (GWAS)
In Axiom Analysis Suite (AAS, Thermo Fisher Scien-
tific) genotyping analysis was executed. AAS followed 
best practices workflow, where it runs genotyping algo-
rithms, allow to view cluster graphs and export of data. 
Best practices workflow controls the quality with a dish 
QC value ≥ 0.82 and QC call rate of ≥ 97%. All markers 
were visually verified to inspect the quality of the clus-
ter pattern. After filtering out 47,837 SNPs based on a 
missing rate exceeding 10%, a minor allele frequency 
(MAF) below 0.05, and heterozygosity greater than 0.3, 
a total of 13,937 high-quality single nucleotide poly-
morphisms (SNPs) were retained and used for further 
GWAS analysis. Previously we have calculated the LD 
decay for the same population and it was 2.02 Mb [15]. 
This information was used in the current study to sup-
port genome-wide association study (GWAS) analysis. 
13,937 high-quality filtered SNPs and best linear unbi-
ased predictor (BLUP) values of kernel grades and yield 

Fig. 1  Schematic diagram illustrating the methodology followed for assessing kernel grading in groundnut
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component traits, such as PW, KW, HKW, SHP, PNR-I, 
HKW-I, and CPO_I were used for GWAS analysis sepa-
rately for the rainy and post-rainy seasons. The BLUP 
values for above mentioned traits were estimated using 
ASREML-R package [32] in R software. GWAS analysis 
was performed using Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK) model 
of “GAPIT 3.0” (Genomic Association and Prediction 
Integrated Tool) package [33] in R v.4.1.2 software [34] 
because of its superiority in computing speed, high statis-
tical power, and fewer false positives in the identification 
of significant MTAs. A Bonferroni-corrected threshold of 
3.58757E-06 was set to reduce Type I and II errors. QQ 
plots, Manhattan plots, and association tables assessed 
the results, to detect high confidence MTAs.

Identification and gene ontology (GO) analysis of the 
potential candidate genes
Due to the extensive linkage disequilibrium (LD) and 
the computational challenges involved in identify-
ing candidate genes within the LD region of significant 
SNPs, a 50 kb range both upstream and downstream of 
significant SNPs (100 kb window) was utilized as a con-
fidence interval to locate candidate genes linked to the 
traits of interest. Data on candidate genes within SNPs’ 
confidence interval was sourced from the Peanut Base 
(https://peanutbase.org/home), using the genome of the 
diploid ancestors of cultivated peanut, A. duranensis and 
A. ipaensis. Gene Ontology (GO) enrichment analysis 
was performed using the PlantRegMap platform (​h​t​t​p​​:​/​/​​
p​l​a​n​​t​r​​e​g​m​​a​p​.​​g​a​o​-​​l​a​​b​.​o​r​g) which implements a Gene Set 
Enrichment Analysis (GSEA)-based statistical frame-
work. The list of candidate genes identified from Pea-
nutBase was used as input for Arachis duranensis and 
Arachis ipaensis. The analysis categorized significantly 
enriched GO terms into three functional domains; bio-
logical process (BP), molecular function (MF), and cel-
lular component (CC) based on hypergeometric testing 
and false discovery rate (FDR) correction. Enriched GO 
terms were further visualized and interpreted to iden-
tify the predominant biological processes and molecular 
functions associated with the candidate genes.

In-silico expression profiling of candidate genes and allele 
distribution pattern
Expression profiles of the candidate genes were analyzed 
in-silico using publicly available transcriptome data-
sets of Arachis hypogaea. The normalized expression 
data (FPKM >1) across 20 developmental tissues and 
stages were retrieved from the PeanutBase expression 
atlas and compiled into an expression matrix [35]. Each 
gene’s expression pattern was compared across tissues 
such as cotyledon, embryo, flower, leaves, nodules, roots, 
seeds, and stems. Data processing was performed using 

Microsoft Excel and R (v4.x) for normalization and visu-
alization. Genes with the highest mean expression values 
were considered top-ranked candidates. The expression 
data were visualized using heatmaps to determine tissue- 
or stage-specific expression trends. This computational 
workflow enabled the identification of genes with distinct 
or constitutive expression profiles without the need for 
experimental validation, thereby providing an efficient 
in-silico strategy for expression analysis. Fold-change was 
computed using Root_veg as the reference tissue, follow-
ing the formula:

Fold Change = (Expression in target tissue/Expression 
in Root_veg).

Zero values were adjusted by adding 1 to avoid division 
by zero.

Favorable and unfavorable alleles were identified for 
significant SNPs associated with high and low yield-
attributing traits and kernel grades.

Results
BLUP estimates and assessment of yield contributing traits 
in the MAGIC population
PW, KW, and HKW(g) were higher during the post-
rainy season, whereas HKW (GRADE I) and counts per 
ounce (C GRADE I) had overlapping distributions (Fig. 
2, Supplementary Table S3). The row and column effects 
were not significant for any trait. The autocorrelations 
were positive in both directions for yield traits HKW 
and SHP, indicating that trait values in plots are influ-
enced by neighboring plots. However, PNR-I showed a 
significant negative autocorrelation in the row direction 
during the post-rainy season, indicating dissimilar neigh-
boring plots. The MAGIC population exhibited highly 
significant genetic variation (p < 0.01) for all traits across 
both seasons (Tabs. 1 and 2). Among the genotypes rep-
licated twice, ICGR 171175 and ICGR 171497 performed 
best for pod and kernel yields in the rainy and post-rainy 
seasons. ICGR 171058 and ICGR 171259 excelled in the 
shelling percentage in both seasons, with ICGR 171379 
being the best in the post-rainy season. ICGR 171582 and 
ICGR 171532 had the highest HKW in the post-rainy and 
rainy seasons, whereas ICGR 171497 maintained good 
HKW across seasons (Tab. 3). Among the genotypes 
tested once, ICGR 171070 had the highest pod and ker-
nel yields in the post-rainy season, whereas ICGR 171280 
and ICGR 171437 had the highest pod and kernel yields 
in the rainy season. GG 20 performed well for both traits 
across all seasons. ICGR 171437 and ICGR 171005 were 
the best for shelling % in the rainy and post-rainy sea-
sons. ICGV00440 ranked high for HKW in both seasons, 
with ICGR 171238 and ICGR 171588 performing best in 
the rainy and post-rainy seasons, respectively (Supple-
mentary Table S4) .

https://peanutbase.org/home
http://plantregmap.gao-lab.org
http://plantregmap.gao-lab.org
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BLUP estimates and assessment of kernel grade 
contributing traits in the MAGIC population
The PNR-I kernel (kernel width > 7.5 mm) was better in 
the post rainy season than in the rainy season, while the 
HKW and CPO of grade I kernels (40–60 kernels/ounce) 
were comparable during both seasons. Among the rep-
licated genotypes, ICGR 171433 (70.66%) and ICGR 
171206 (85.65%) recorded the highest PNR-I in the rainy 
and post-rainy seasons, respectively. ICGR 171476 (57.28 
gm) and M 335 (59.06 gm) recorded the highest HKW-I 
during the rainy and post-rainy seasons, respectively. 
Conversely, ICGR 171260 (51) and M 335 (48) exhib-
ited the lowest CPO-I value in the rainy and post-rainy 
seasons, respectively. Among the genotypes replicated 
once, ICGR 171,238 (79.45) and ICGR 171,576 (84.31) 
recorded the maximum PNR-I kernel in the rainy and 
post-rainy seasons, respectively. Additionally, genotypes 
ICGR 171196 (64.27) and ICGR 171430 (62.34) recorded 
the highest HKW-I during the rainy and post-rainy sea-
sons, respectively. Meanwhile, ICGR 171268 (41) and 

ICGR 171519 (41) registered the lowest CPO-I value in 
the rainy and post-rainy seasons, respectively.

Table 3 and Supplementary Table S4 provide detailed 
information on the performance of the top twenty MLs, 
replicated twice and once, including checks for pod yield 
and net recovery of grade-I kernels, respectively dur-
ing rainy and post rainy season. ICGR 171410, a Span-
ish bunch type ML, shows excellent yield potential with 
2033.88 kg/ha during Rainy (R) and 1296.91 kg/ha dur-
ing post rainy (PR), and high recovery of grade-I kernels 
at 66.84% PR and 63.96% R during both seasons. ICGR 
171044 demonstrated good yield with 2003 kg/ha PR 
and 1291.27 kg/ha R, and a good shelling percentage of 
78.63% during PR and 72.05% during R. ICGR 171376 
recorded 2345.18 kg/ha during PR and 1283.60 kg/ha R, 
with bold seed size and high HKW of 40.85 gm PR and 
32.96 gm R across seasons. ICGR 171260 shows high 
recovery of grade-I kernels at 70.68% PR and 52.18% 
R, with HKW of 37.96 gm PR and 31.83 gm R. ICGR 
171576 records a grade-I kernel recovery of 84.31% PR 

Fig. 2   Variability in pod weight (PW; kg/ha), kernel weight (KW; kg/ha), shelling percentage (SH; %), hundred-kernel weight (HKW; g), percent net re-
covery of grade-I kernel (PNR GRADE I; %), HKW of grade I kernels (HKW GRADE I; g), and counts per ounce of grade I kernels (C Grade I) in the MAGIC 
population during the rainy season of 2021 and post-rainy season of 2021–22
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Table 1  Likelihood ratio test (LRT) for yield and kernel grade component traits during the rainy season of 2021
Trait-Season Variance 

components
Row Column Nugget Genotype Row 

autocorrelation
Column 
autocorrelation

Error

PW-R Estimate 0.0037 899.37 0.059 23387.36 −0.059 0.052 36970.24
p-LRT 0.1269 0.000000069*** 0.5558 0.30038
Model Action Boundary Dropped Absent Retained Swapped Swapped

KW-R Estimate 0.0013 524.14 0.030 12032.41 −0.038 0.064 18791.46
p-LRT 0.1067 0.000000071*** 0.870 0.220
Model Action Boundary Dropped Absent Retained Swapped Swapped

HKW-R Estimate 0.0000006 0.0000003 6.929 10.196 0.840 0.840 4.411
p-LRT 0.00000000002*** 0.00000001*** 0.000000000002***
Model Action Boundary Boundary Absent Retained Unswapped Unswapped

SHP-R Estimate 0.244 0.0000026 9.494 10.204 0.773 0.719 3.401
p-LRT 0.1935 0.0000000004*** 0.00006** 0.0000044***
Model Action Dropped Boundary Absent Retained Unswapped Unswapped

PNR-I-R Estimate 0.0000049 0.0000018 32.612 240.176 0.575 0.729 17.133
p-LRT < 2.2e-16 *** 0.0294* 0.0005**
Model Action Boundary boundary Absent Retained Unswapped Unswapped

HKW-I-R Estimate 0.0000003 0.858 17.81 31.811 0.945 0.980 3.261
p-LRT 0.0975 0.000000000000001*** 0.0004**
Model Action Boundary Dropped Absent Retained Unswapped Fixed, Unswapped

CPO-I-R Estimate 0.0000001 0.0053 0.501 1.281 0.973 0.980 0.10
p-LRT 0.3974 0*** 0.0015**
Model Action Boundary Dropped Absent Retained Unswapped Fixed, Unswapped

Retained: model term retained; Absent: model term excluded; Fixed: autocorrelation fixed at boundary (≤ 1); Unswapped: residual structure unchanged due to significant 
autocorrelation; Swapped: residual structure modified to exclude non-significant autocorrelation

Table 2  Likelihood ratio test (LRT) for yield and kernel grade component traits during the post- rainy season of 2021-22
Trait-Season Variance 

components
Row Column Nugget Genotype Row 

correlation
Column correlation Error

PW-PR Estimate 165.0393 4073.81 27937.22 62913.82 0.935 0.980 36101.41
p-LRT 0.4698817 0.0083 0.00000000 0.0000
Action Dropped Retained Absent Retained Unswapped Fixed, Unswapped

KW-PR Estimate 142.5337 1922.652 14176.460 37783.93 0.917 0.964 15514.01
p-LRT 0.453 0.018* 0*** 0*** 0***
Model Action Dropped Retained Absent Retained Unswapped Unswapped

HKW-PR Estimate 0.0000006 0.0000010 4.961 15.727 0.961 0.898 2.396
p-LRT < 2.2e-16*** 0.0000005*** 0.000002***
Model Action Boundary Boundary Absent Retained Unswapped Unswapped

SHP-PR Estimate 0.020 0.0753634 3.379 15.874 0.874 0.952 3.892
p-LRT 0.469 0.355 < 2.2e-16*** 0.00000003*** 0.0000000000007***
Model Action Dropped Dropped Absent Retained Unswapped Unswapped

PNR-I-PR Estimate 0.0000007 4.954 32.125 250.233 −0.782 0.634 8.896
p-LRT 0.0095 < 2.2e-16 *** 0.035* 0.3864
Model Action Boundary Retained Absent Retained Unswapped Swapped

HKW-I-PR Estimate 0.0000025 0.236 0.000009 29.872 −0.070 0.129 20.778
p-LRT 0.344 0.000000000000006*** 0.4166 0.09648
Model Action Boundary Dropped Absent Retained Swapped

CPO-I-PR Estimate 0.0000000 0.0000 0.047 0.258 0.022 0.385 0.072
p-LRT 0.000 0.8685 0.0431
Model Action Boundary Boundary Absent Retained Unswapped Swapped

Retained: model term retained; Absent: model term excluded; Fixed: autocorrelation fixed at boundary (≤ 1); Unswapped: residual structure unchanged due to significant 
autocorrelation; Swapped: residual structure modified to exclude non-significant autocorrelation
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and 72.68% R, with an SHP of 77.20% PR and 72.89% R in 
both seasons.

Correlation between yield and kernel grade contributing 
traits
A correlation study was conducted to examine the rela-
tionship between yield-contributing traits and kernel-
grade traits during the rainy and post-rainy seasons. The 
percent net recovery of grade-I kernels was positively and 
significantly associated with HKW and HKW-I during 

both seasons, whereas the counts per ounce of grade-I 
kernels (CPO-I) were negatively and significantly associ-
ated with PNR-I. PW and KW showed a significant posi-
tive association with PNR-I during the post-rainy season 
but a non-significant association during the rainy season. 
(Fig. 3).

Genomic regions associated with yield contributing traits
PW, KW, HKW, and SHP are the yield-contributing 
traits. A total of fifteen SNPs identified to be associated 

Table 3  Top twenty groundnut MAGIC lines/checks based on pod weight (PW) and percent net recovery of grade I kernel (PNR_I) 
tested in two replications
PW (Kg/ha) PNR_I (%)
Genotype Rainy Genotype post Rainy Genotype Rainy Genotype Post rainy
ICGR 171586 1381.66 ICGR 171497 2815.24 ICGR 171433 70.66 ICGR 171206 85.65
ICGR 171175 1374.12 ICGV03043 2523.59 ICGR 171073 69.08 ICGR 171223 77.69
ICGV03043 1334.01 ICGV02266 2494.15 M 335 68.35 ICGR 171188 74.81
ICGR 171172 1297.39 ICGR 171138 2398.62 ICGR 171018 65.73 ICGR 171277 74.38
ICGR 171410 1296.91 ICGR 171276 2364.39 ICGR 171172 64.87 ICGR 171476 73.41
ICGR 171228 1291.95 ICGV6040 2359.77 ICGR 171033 64.39 ICGR 171433 71.35
ICGR 171044 1291.27 ICGR 171376 2345.18 ICGR 171410 63.96 ICGR 171254 70.99
ICGR 171376 1283.60 ICGR 171528 2311.79 ICGR 171376 63.53 ICGR 171545 70.90
ICGR 171315 1281.23 ICGR 171477 2194.13 ICGR 171442 62.52 ICGR 171260 70.68
ICGR 171101 1257.87 ICGR 171282 2173.94 ICGV 88145 54.03 ICGR 171278 69.75
ICGR 171087 1243.46 ICGR 171228 2162.06 ICGR 171383 53.67 ICGR 171118 69.51
ICGR 171580 1238.28 ICGR 171582 2148.42 ICGR 171191 53.66 ICGR 171305 69.39
ICGR 171491 1220.37 ICGR 171318 2144.43 ICGR 171068 52.90 ICGR 171563 69.37
ICGR 171427 1220.25 ICGR 171251 2068.10 ICGR 171254 52.72 ICGR 171076 68.56
ICGR 171157 1217.72 ICGR 171540 2061.03 ICGR 171079 52.61 ICGR 171105 68.35
ICGR 171260 1207.54 ICGR 171580 2042.21 ICGR 171260 52.18 ICGR 171379 67.84
ICGR 171379 1188.08 ICGR 171410 2033.88 ICGR 171223 51.84 ICGR 171073 67.76
ICGR 171532 1184.22 ICGR 171044 2003.00 ICGR 171499 48.44 ICGR 171383 67.39
ICGR 171600 1181.65 ICGR 171324 1942.08 ICGR 171315 47.98 ICGR 171018 67.07
ICGR 171276 1176.87 ICGR 171349 1936.25 ICGR 171427 46.50 ICGR 171410 66.84

Fig. 3  Pearson correlation matrix showing relationships among yield-attributing traits and kernel grade components in the MAGIC population across 
seasons
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with yield-contributing traits; out of which twelve were 
unique, significant SNPs above the Bonferroni corrected 
threshold of 3.58757E-06. Three SNPs (AX_176822892, 
AX_176805020, and AX_147234427) were identified 
for pod yield on chromosomes A01, A04, and A09 dur-
ing the rainy season, with PVE of 3.37–4.97%, SNP 
AX_176803444 was detected on A03 during the post-
rainy season, with a PVE of 10.88%. Three SNPs associ-
ated with kernel yield were identified: AX_176805020 
and AX_147234427 on chromosomes A04 and A09 dur-
ing the rainy season, explaining 7.42 and 7.11% of phe-
notypic variance, respectively, and AX_176803444 on 
A03 during the post-rainy season, explaining 12.48% of 
phenotypic variance. Three SNPs, namely AX_176805020 
and AX_147234427, identified during the rainy season, 
and AX_176803444, identified during the post-rainy sea-
son, were found to be common loci associated with both 
pod and kernel yield traits. Four SNPs were associated 
with HKW during the rainy season on chromosomes 
A03, A05, B07, and B08, with a PVE of 2.13–7.90%. Three 
SNPs were identified for HKW during the post-rainy 
season on A07 and B08, with PVE of 2.83–12.94%. One 
significant SNP was identified on B03 for SHP during the 

rainy season, with a PVE of 22.52% (Fig. 4, Supplemen-
tary Table S5, Supplementary Table S6, Supplementary 
Figure S1).

Genomic regions associated with grade-I kernel
Three component traits, namely PNR-I, HKW-I, and 
CPO-I, constitute grade-I kernel traits. A total of fif-
teen SNPs were identified to be associated with the 
kernel-grade component traits. Out of which, nine were 
unique significant SNPs above the Bonferroni corrected 
threshold. Three SNPs (AX_147226917, AX_177642221, 
and AX_176803178) were identified on chromosomes 
A07 and B09 for PNR-I, which explained a PVE of 5.32 
to 11.90%. SNP AX_147226917 was consistently asso-
ciated with PNR-I on chromosome A07 during both 
seasons. Five SNPs (AX_147226949, AX_177637658, 
AX_176812240, AX_176820983, and AX_177643480) 
were associated with HKW-I on chromosomes A07, 
B09, A04, B05, and B08, respectively, during the rainy 
season with a PVE range of 1.68–7.58%, while one 
SNP, AX_177638905, on chromosome B07 was associ-
ated with HKW-I during the post-rainy season, which 
explained a PVE of 30.04%. Four SNPs, AX_147226949, 

Fig. 4  Manhattan and Q-Q plot for kernel grade component traits such as a. PNR_I (Percent net recovery of grade-I kernel) during rainy 2021 b. PNR_I 
during post rainy 2021-22 c. HKW_I (Hundred kernel weight of grade-I kernel) during post rainy 2021-22 in 574 MAGIC lines. The significant associations 
are represented above the threshold lines
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AX_176817367, AX_177643480, and AX_176818356, on 
chromosomes A07, B05, B08, and A03, were associated 
with CPO-I during the rainy season, which explained 
a PVE of 1.55–9.52%. Two SNPs, AX_177643480 and 
AX_147226917 on chromosomes B08 and A07, respec-
tively, were associated with CPO-I during the post-rainy 
season, with a PVE of 16.53–32.94% (Supplementary 
Table S5, Supplementary Table S6).

Three SNPs, AX_147226917, AX_177643480, and 
AX_147226949, were pleiotropic in nature. The SNP 
AX_147226917 controlled HKW, PNR-I, and CPO-I, 
whereas SNP AX_177643480 was associated with HKW, 
HKW-I, and CPO-I. SNP AX_147226949 was associated 
with HKW-I and CPO-I (Supplementary Table S6). Out 
of these three SNPs, AX_147226917 on chromosome 
A07 was associated with PNR-I during both rainy and 
post rainy seasons. Similarly, AX_177643480 on chromo-
some B08 was associated with CPO-I during both rainy 
and post rainy seasons. Allele effect box plots of three 
important SNPs; AX_176803178, AX_147226949, and 
AX_177643480 were tested and found to be significant 
(Fig. 5). A chromosome map is given in Fig. 6 for clear 
visualization.

Potential candidate genes for yield and kernel grade traits
Potential candidate genes linked to yield and kernel grade 
traits were identified in PeanutBase ​(​​​h​t​t​p​s​:​/​/​P​e​a​n​u​t​b​a​
s​e​.​o​r​g​/​​​​​) within a 100 kb window of significant SNPs (50 
kb upstream and 50 kb downstream) using their physi-
cal locations and reference genome sequences. A total 
of fifty-six genes were identified for yield-related traits 
(PW, KW, HKW, and SHP) and another thirty-eight 
genes were identified for kernel grades (Supplementary 
Table S7). In order to prioritize candidate genes, GO 
analysis was performed for all these identified genes. The 
GO analysis identified significantly enriched GO terms 
across the three principal categories: Biological Process 
(BP), Molecular Function (MF), and Cellular Component 

(CC). Among the identified candidate genes from A-sub 
genome (Arachis duranensis), the most prominent 
enrichment was observed for the oxidation–reduction 
process (GO:0055114; p = 0.0021) under the Biological 
Process category, involving eight genes (Aradu.3YG82, 
Aradu.993Q7, Aradu.BD60N, Aradu.D1YZ0, Aradu.
SFU0J, Aradu.T9TSZ, Aradu.Y7AIG, and Aradu.YHK80). 
In the Cellular Component category, the nucleolus 
(GO:0005730; p = 0.0023) was significantly enriched, sug-
gesting a role in ribosomal biogenesis and nuclear orga-
nization. Within the Molecular Function category, NAD 
binding (GO:0051287; p = 0.0093) was enriched, implying 
that several genes are involved in enzymatic redox reac-
tions and dehydrogenase activity (Supplementary Table 
S9).

Similarly, the GO analysis of Arachis ipaensis candi-
date genes revealed multiple enriched GO terms. Under 
the Biological Process category, several ion-related pro-
cesses were significantly overrepresented, including 
metal ion homeostasis (GO:0055065; p = 0.0033), cation 
homeostasis (GO:0055080; p = 0.0042), and inorganic 
ion homeostasis (GO:0098771; p = 0.0052), represented 
by genes such as Araip.7Q1HT and Araip.U0AUG. In 
the Cellular Component category, the integral compo-
nent of membrane (GO:0016021; p = 0.0031) and intrin-
sic component of membrane (GO:0031224; p = 0.0038) 
were enriched, highlighting that several genes encode 
membrane-associated proteins possibly involved in 
transport and signal transduction. In the Molecular 
Function category, enrichment of oxidoreductase activity 
(GO:0016705; p = 0.0016), iron ion binding (GO:0005506; 
p = 0.0021), and heme binding (GO:0020037; p = 0.0028) 
was observed, represented by genes including Araip.
C78LH, Araip.CLW9Z, Araip.F3W88, and Araip.L96AH. 
These categories reflect a strong association with redox 
regulation and electron transfer. Furthermore, gen-
eral molecular function such as metal ion binding 
(GO:0046872; p = 0.006) and (GO:0005488; p = 0.0094) 

Fig. 5  Allelic effect box plots for SNP markers associated with kernel grade traits: a AX_176803178, b AX_147226949, and (c) AX_177643480
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was also significantly enriched, suggesting the involve-
ment of these genes in a variety of enzymatic and regula-
tory activities (Supplementary Table S9).

Sixteen genes for yield and seven genes for kernel 
grades were prioritized based on literature review, gene 
ontology study, and in silico expression analysis for 
their roles in biological processes and yield regulation 
(Tab. 4). The loci Aradu.6262P (CHLG), Aradu.Y7AIG 
(CYP), and Aradu.Z67WQ (CCCH-ZFP) were identified 
on chromosome A01. The locus Aradu.V14167 (PP7) 
was located on chromosome A04. Additionally, the loci 
Aradu.7P3Q2 (B3-DBP) and Aradu.D1YZ0 (ZEP) were 
situated on chromosome A09, while Aradu.TW8M6 
(LEA) was found on chromosome A03.These loci were 
associated with pod yield. SNPs and candidate genes 

associated with kernel yield were also linked to pod 
yield. Four loci around SNP AX_176815442 on chromo-
some A03 include Aradu.45HCQ (DnaJ), Aradu.A28JW 
(DNAH), Aradu.F9ZRP (PP7), and Aradu.HP9LA (PPP). 
Three loci on chromosome B07 were Araip.2TN3Y 
(COX11), Araip.8E63N (KIN), and Araip.C78LH (CYP). 
Loci on chromosome A07 include Aradu.188J4 (DNAH), 
Aradu.8G9XJ (ENO), and Aradu.BD60N (GPT). Addi-
tionally, potential candidate genes Araip.CLW9Z (CYP) 
and Araip.UT46I (bHLH10) for shelling percentage were 
associated with SNP AX_147246094 on chromosome 
B03. A total of thirty-eight genes were identified for 
kernel grades (Supplementary Table S8). Of these, only 
seven were prioritized as potential candidate genes based 
on a literature search. Key genes regulating kernel grades 

Fig. 6  distribution of yield (YIELD)and kernel grades (KERNEL) SNPs identified through GWAS in groundnut MAGIC population
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include Aradu.6Z78F (RHF2B), Aradu.993Q7 (APX1), 
Aradu.HR82P (ALIX), Araip.MKV8R (FRS3), and Aradu.
S3AS8 (BRO1) (Table 5).

In-silico gene expression analysis and allelic distribution 
pattern
The tissue-specific expression of the identified candidate 
genes was examined using the A. hypogaea gene expres-
sion atlas (AhGEA) for the fastigiata subspecies. Among 
the potential candidate genes identified for yield, only 
13 genes exhibited differential expression in at least one 
tissue during critical developmental stages, as observed 
across 20 tissues in the gene expression atlas (Figs. 7 and 
8). Fold-change expression analysis was carried out to 
compare the relative expression levels of the top-ranked 
genes across different tissues. Mean expression values 
(FPKM) were calculated for all tissues, and the top five 
highly expressed genes (XLOC_075642, XLOC_075639, 
XLOC_075638, XLOC_075637, and XLOC_077872) 

Table 4  Gene description of SNPs associated with yield attributing and kernel grade component traits
Trait SNP ID Chr Diploid Gene ID Tetraploid 

Gene ID
Sart End Length Gene description

PW_R AX_176822892 A01 Aradu.6262P Arahy.44A4XL 3,398,298 3,399,687 1389 chlorophyll synthase
Aradu.7L5GB Arahy.00G2U6 3,377,240 3,383,903 6663 ATP-binding ABC transporter
Aradu.Y7AIG Arahy.08738Y 3,416,192 3,417,702 1510 Cytochrome P450 superfamily protein

AX_176805020 A04 Aradu.V14167 Arahy.6VZ2KG 97,104,284 97,106,562 2278 serine/threonine-protein phospha-
tase 7 long form homolog

AX_147234427 A09 Aradu.7P3Q2 Arahy.108MS0 115,055,440 115,077,534 22,094 plant-specific B3-DNA-binding 
domain protein

Aradu.D1YZ0 Arahy.MS9EFZ 115,143,020 115,147,880 4860 zeaxanthin epoxidase
PW_PR AX_176803444 A03 Aradu.TW8M6 Arahy.FE1PUB 25,790,840 25,792,591 1751 Late embryogenesis abundant (LEA) 

protein-related (Root cap)
KW_R AX_147234427 A09 Aradu.7P3Q2 Arahy.108MS0 115,055,440 115,077,534 22,094 plant-specific B3-DNA-binding 

domain protein
HKW_R AX_176815442 A03 Aradu.45HCQ Arahy.1B470G 13,135,235 13,138,969 3734 Chaperone DnaJ-domain superfam-

ily protein, (DnaJ domain)
Aradu.A28JW Arahy.JS7C8X 13,170,555 13,174,493 3938 large subunit GTPase 1 homolog

AX_177638855 B07 Araip.2TN3Y Arahy.87SQNY 114,655 117,664 3009 cytochrome c oxidase assembly 
protein CtaG/Cox11 family

Araip.8E63N Arahy.07YELL 66,887 73,309 6422 Protein kinase superfamily protein
Araip.C78LH Arahy.05IA5I 109,894 111,123 1229 Cytochrome P450 superfamily protein

AX_176822338 B08 Araip.U0AUG Arahy.44QEU2 26,178,326 26,183,214 4888 sodium/calcium exchanger family 
protein

AX_147226917 A07 Aradu.188J4 Arahy.TSR8I7 1,225,601 1,228,083 2482 ATP-dependent DNA helicase,
(P-loop containing nucleoside 
triphosphate hydrolase)

Aradu.8G9XJ Arahy.86EPEX 1,210,713 1,215,639 4926 phosphopyruvate hydratase (Enolase)
PNR_R AX_176803178 A07 Aradu.6Z78F Arahy.08TDR6 9,722,343 9,723,004 661 RING-H2 finger protein 2B, (Zinc 

finger, RING/FYVE/PHD-type)
Aradu.993Q7 Arahy.5D1G3K 9,730,990 9,733,378 2389 ascorbate peroxidase 1

PNR-PR AX_147226949 A07 Aradu.HR82P Arahy.1PBH7D 1,472,710 1,473,414 705 ALG-2 interacting protein X-like 
[Glycine max]

Aradu.S3AS8 Arahy.1NQ2CM 1,454,176 1,456,622 2447 Vacuolar protein-sorting protein 
BRO1

AX_177643480 B08 Araip.MKV8R Arahy.29S8ZW 8,698,068 8,699,400 1333 protein FAR1-RELATED SEQUENCE 
3-like isoform X1 [Glycine max]

HKW_I_PR AX_147226949 A07 Aradu.HR82P Arahy.10Y6YW 1,472,710 1,473,414 705 ALG-2 interacting protein X-like 
[Glycine max]

Aradu.S3AS8 Arahy.17Q87X 1,454,176 1,456,622 2447 Vacuolar protein-sorting protein 
BRO1

Table 5  Fold-change analysis of top-ranked candidate genes
Gene ID Nearest Ref 

ID
Mean Ex-
pression 
(FPKM)

Highest Fold 
Change (vs. 
Root_veg)

Tissue of 
Maximum 
Expres-
sion

XLOC_075642 AH19G43450, 
AH19G43460

7.57 × 10⁶ ~ 6.4-fold Seeds_25

XLOC_075639 AH19G43420 7.57 × 10⁶ ~ 6.2-fold Flower
XLOC_075638 AH19G43410 7.57 × 10⁶ ~ 5.9-fold PodWall_

mature
XLOC_075637 AH19G43400 7.57 × 10⁶ ~ 5.7-fold Seeds_15
XLOC_077872 AH19G43370 7.57 × 10⁶ ~ 5.5-fold Seeds_25
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Fig. 7  Workflow for tissue-specific expression analysis of identified candidate genes in Arachis hypogaea. The pipeline involves retrieval of expression 
data from public repositories, normalization and matrix compilation, followed by statistical interpretation and visualization to identify tissue-preferentially 
expressed genes
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were selected based on their average expression across 
the dataset. A list of top ranked candidate genes across 
different tissues is given in Tab. 5. The results revealed 
that these genes were highly upregulated in reproductive 
tissues (flower, seeds, pod wall) compared with vegeta-
tive tissues (root and stem). For example, XLOC_075642 
and XLOC_075639 exhibited > 5-fold higher expres-
sion in seeds and flower compared with roots, suggest-
ing their potential roles in reproductive development. 
These findings confirm strong transcriptional activity of 
the top-ranked candidate genes in reproductive organs, 
emphasizing their potential biological significance in pod 
and seed development. The phenotypic data of the top 
ten MAGIC lines (MLs) with high and low pod yields and 
percent net recovery of grade-I kernels from the 2021-22 
rainy and post-rainy seasons were analyzed to assess SNP 
utility and efficiency (Fig.9). MLs with high yield and per-
cent net recovery of grade-I kernels mostly carried favor-
able alleles, whereas MLs with low yield and percent net 

recovery of grade-I kernels predominantly carried unfa-
vorable alleles.

Discussion
Uniqueness of kernel grades in groundnut and need of 
marker development for this trait
The kernel grade is highly influenced by environment. 
With increasing confectionary groundnut demand versus 
oil markets, there is demand for developing high-yield-
ing cultivars with better grade-I kernel recovery. Studies 
show bold seed size contributes to grade-I kernel recov-
ery percentage. Kernel grading ensures product qual-
ity and market value, benefiting processing and exports. 
Well-graded groundnuts meet standards for consumer 
acceptance and safety. Quality kernels with uniform sizes 
enhance their use in food products and confectionery 
[4]. Premium grades command higher prices for their 
quality. In exports, adherence to international standards 
like the International Organization for Standardization 

Fig. 8  In-silico gene expression analysis heat map for kernel grades and yield traits

 



Page 15 of 20Purohit et al. BMC Genomics            (2026) 27:3 

(ISO) or the United States Department of Agriculture 
(USDA) is essential. Importing countries require kernels 
free from contaminants like aflatoxins [36]. Processing 
industries benefit from graded kernels as uniform sizes 
simplify mechanical shelling. Larger kernels suit con-
fectionery while smaller ones are used for oil extraction. 
Grading prevents contaminated kernels from entering 
the food chain [37]. This practice enhances quality and 
marketability.

BLUP means, variance components and correlation
The high genotypic variance in PW, KW, and PNR-I 
across seasons indicate wide variability in the MAGIC 
population. MAGIC lines performed better during 
post-rainy season than rainy season for yield and ker-
nel gradess, due to lower disease pressure and better 
pod filling. During the rainy season, MLs; ICGR 171586 
(1381.66 kg/ha) and ICGR 171175 (1374.12 kg/ha) 
recorded higher yields than check variety ICGV 03043 
(1334.01 kg/ha). This demonstrate their adaptability 
under rainfed conditions. In contrast, under post-rainy 
conditions, where temperature and moisture regimes 
were more favorable and irrigation was controlled, ICGR 
171497 (2815.24 kg/ha) and ICGV 03043 (2523.59 kg/
ha), exhibited superior performance compared to check 
ICGV 02266 (2494.15 kg/ha). During post-rainy season, 
shelling percentage varied from 49% in ICGR 171387 due 
to immature pods, to 81% in ICGR 171379. High shelling 
percentage upto 78.9% has been reported [38] in breed-
ing lines. A very high shelling percentage is possible for 
certain improved genotypes under optimal agronomy, 
with correct harvest timing, low moisture and controlled 

lab measurement. Spanish bunch types of groundnut 
have higher shelling percentage (up to 78%) due to thin-
ner shells than Virginia types [1]. A very high shelling 
percentage in ICGR 171379 may be a result of good pro-
duction practices mentioned above. However, owing to 
CT scan model prediction error it may vary ± 2%. ML, 
ICGR 171576 records a grade-I kernel recovery of 84.31% 
PR and 72.68% R, with an SHP of 77.20% PR and 72.89% 
R in both seasons. These consistent performing line with 
better PNR-I kernel and SHP can be used as parent in 
breeding programs to simultaneously improve multiple 
traits across seasons.

Kernel grade as a trait per se has received little atten-
tion in groundnut breeding programs. A previous study 
assessed two cultivars, GG-20 and TG-37 A for their 
kernel width and reported that 71% kernel were hav-
ing a width of >8.19 mm in GG-20 whereas in TG-37A, 
29% kernels were having width of >8.62 mm [39]. Out of 
the large set of ML assessed for kernel grade, only seven 
MLs (ICGR 171238, ICGR 171203, ICGR 171576, ICGR 
171394, ICGR 171426, ICGR 171320 and ICGR 171433) 
had a PNR-I value more than 70% during rainy season. 
During post rainy season, three MLs (ICGR 171206, 
ICGR 171576 and ICGR 171003) had PNR-I kernel value 
>80% and forty-five MLs had PNR-I kernel value >70%. 
Higher recovery of grade-I kernel during post rainy can 
be attributed to cooler night temperatures, wider diur-
nal variation, reduced disease and waterlogging, and 
controlled irrigation that together favor kernel develop-
ment and better yield [40]. Positive correlations between 
PNR-I and HKW suggest bold-seeded varieties contrib-
ute more to grade-I kernel PNR. PW and KW positively 

Fig. 9  Allele distribution pattern of significant Markers associated with A. Pod weight during rainy B. Pod weight during post rainy C. Percent net recovery 
of grade-I kernels during rainy D. Percent net recovery of grade-I kernels during post-rainy seasons
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correlated with PNR-I in post-rainy season only, likely 
due to extended maturity allowing better pod filling and 
kernel development.

Suitability of the MAGIC population for this study
MAGIC populations enable studying genomic architec-
ture and discovering genomic regions governing complex 
traits with precision by integrating genetic diversity and 
high recombination rates [41]. MAGIC population used 
in the current study showed wide variability in yield, dis-
ease, kernel grades, and quality traits due to recombina-
tion events creating diverse allele combinations. MAGIC 
populations derived from multiple founders showed 
increased allelic diversity [42]. Enhanced genetic diversity 
augments GWAS power by providing more genetic varia-
tion for association testing. MAGIC populations undergo 
numerous recombination events during multiple genera-
tions of intercrossing, creating smaller linkage disequilib-
rium (LD) blocks [43, 44]. Self-pollinating crops, such as 
groundnut, typically exhibit larger LD blocks and dem-
onstrate slower LD decay due to limited recombination 
events [45]. Numerous studies have reported extensive 
LD in various groundnut breeding populations [46, 47]. 
For instance, in a previous GWAS experiment, an LD 
decay of up to 4.8 MB, more than the LD reported in the 
current study has been estimated [48]. Although a high 
LD block was estimated for the current MAGIC popula-
tion due to the tetraploid nature and genome complexity 
of groundnut, still significant associations were identified 
through the GWAS with a high p-value. Manhattan plots 
showed distinct peaks for various yield and kernel grade 
component traits, and Q-Q Plots exhibited inflation only 
at the tail of the distribution, reflecting true associations. 
All of these factors validated the suitability of the MAGIC 
population for association studies.

Genome-wide association study
Association analysis was conducted separately for rainy 
and post rainy seasons, as these two are different seasons 
where one has protected irrigation. Rainy and post-rainy 
season adaptation is needed in India, as commodity pro-
duction occurs largely in the rainy season, but seed pro-
duction occurs in the post-rainy season. A comprehensive 
literature search was carried out for a comparative analy-
sis of yield and kernel-grade associated genomic regions 
in previous and the current study. Yield traits in ground-
nut are influenced by multiple genes and key QTLs were 
mapped on chromosome A03 for breeding purposes [49]. 
QTLs for seed size were reported on chromosomes A05 
and A07 through QTL mapping studies using RIL pop-
ulations [50]. Through GWAS, we have also identified 
genomic regions associated with hundred kernel weight 
(HKW) on chromosome A07. Several genomic regions 
associated with hundred seed and pod weight were 

identified utilizing a NAM population and SNP array 
through GWAS on chromosome A03, A05, A06, A07, 
A07, A09, B06, B07, B08 and B09 [25]. In this previous 
study, significant MTAs were co-localized for pod weight 
and hundred kernel weight on chromosomes A05, A06, 
B05, and B06. This study supports results from our study, 
where we have also identified significant SNPs for HKW 
on chromosomes A03, A05, A07, B07 and B08. QTLs for 
hundred kernel weight (HKW) on chromosomes A02 
and A06, at loci A02-86439145 and A06-108577126 were 
identified through QTL mapping in another study [28]. 
Overlapping QTLs for shelling percentage and HSW 
were identified on chromosomes A05, A08, B10, B06 and 
A08 [51]. But in the current study, we have found asso-
ciations with shelling percentage only on chromosome 
B03. In the current study, all SNPs associated with yield 
traits like pod and kernel weight are mapped on different 
chromosomes of A genome, suggesting a significant role 
of A genome compared to B genome. In our study, three 
component traits of grade-I kernel revealed nine signifi-
cant SNPs. SNP AX_147226917 on chromosome A07 
was detected for PNR-I across two seasons, indicating 
a stable genetic determinant. PVE by the detected SNPs 
ranged broadly from 5.3% up to 32.9%, which suggests a 
mixture of major and minor effect loci underpinning ker-
nel-grade traits. SNP AX_177638905 on B07 accounted 
for more than 30% PVE for HKW-I in post-rainy season, 
which is a major effect SNP. Overlapping SNPs associ-
ated with HKW-I and CPO-I suggest pleiotropy or linked 
loci controlling kernel grade trait. These findings support 
polygenic architecture for kernel grade traits. Though 
several GWAS were conducted previously for seed size, 
the current study is the first attempt, specifically to iden-
tify genomic regions for kernel grades in groundnut.

Phenotypic variance explained by the associated SNPs 
for PW (3.37–10.89%), KW (7.43–12.48%), HKW (3.20–
12.94.20.94%), SHP (22.52%) appeared to be modest in 
the current study. Previous linkage mapping studies for 
yield related traits have also identified QTLs for pod yield 
(6.27–6.87%), hundred seed weight (5.89–13.87%) and 
shelling percentage (10.98–11.65%) with less PVEs [52]. 
Similar studies have attributed less PVE to the complex 
and quantitative nature of the yield attributing traits and 
G×E interactions, which reduces the detectable PVE per 
marker [29]. In the current study, sufficient number of 
SNPs (13,937) from a high-density SNP array and a sta-
tistically powerful model (BLINK) were used for GWAS 
analysis to identify causal loci with smaller effects.

Both positive and negative allelic effects were found for 
identified SNPs, with alleles increasing or decreasing trait 
values. A positive effect suggests that the reference allele 
enhances the phenotypic value, whereas a negative effect 
denotes a reduction. For PW, SNP AX_176822892 on 
chromosome A01 showed a positive effect, while three 
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SNPs had negative effects. All SNPs associated with KW 
showed negative effects. For HKW, five SNPs had positive 
effects and two had negative effects. SNP AX_147246094 
on B03 showed a positive effect on SHP. For PNR-I ker-
nel, three SNPs had positive effects and one had negative 
effect. HKW-I showed both positive and negative effects, 
while all CPO-I SNPs had negative effects.

Potential candidate genes for yield and kernel grades
The candidate genes are categorized into various func-
tional groups. Gene Ontology (GO) enrichment analy-
sis, literature search and expression analysis indicate 
that these genes are implicated in oxidoreductase activ-
ity (including Cytochrome P450 superfamily protein, 
ascorbate peroxidase 1, cytochrome c oxidase assem-
bly protein), photosynthesis and pigment biosynthesis 
(such as chlorophyll synthase and zeaxanthin epoxidase), 
metabolism (enolase, glucose-1-phosphate adenylyltrans-
ferase), ion transport (ATP-binding ABC transporters, 
sodium/calcium exchanger, vacuolar protein-sorting pro-
tein BRO1), signal transduction (serine/threonine-pro-
tein phosphatase 7, protein kinase superfamily protein), 
regulatory proteins (B3-DNA-binding domain protein, 
FAR1-RELATED SEQUENCE 3-like isoform X1), and 
stress-related proteins (LEA protein, DnaJ-domain 
protein).

Oxidoreductase activity, mediated by Cytochrome P450 
protein, regulates yield by influencing the biosynthesis 
of gibberellic acid and brassinosteroids [53], which are 
critical for cell division, seed development, and nutri-
ent transport. The cytochrome c oxidase assembly pro-
tein is essential for pollen development and growth in 
Arabidopsis [54]. Chlorophyll synthase catalyzes the bio-
synthesis of chlorophyll a, thereby enhancing photosyn-
thetic efficiency [55–57]. Increased chlorophyll content 
is associated with improved photosynthetic rates, leading 
to a higher number of pods and increased kernel weight 
[58]. Zeaxanthin epoxidase regulates yield by mediat-
ing abscisic acid (ABA) biosynthesis, which is crucial for 
stress tolerance and development. In groundnuts, ZEP 
activity maintains ABA levels, facilitating seed matura-
tion and germination, thereby contributing to higher 
yields [59]. Phosphopyruvate hydratase (enolase) is a piv-
otal glycolytic enzyme that supports carbon and energy 
supply for seed development. Mutations in this enzyme 
can restrict carbohydrate flux, resulting in smaller seeds 
in Arabidopsis [60]. Glucose-1-phosphate adenyltransfer-
ase proteins (AGPase) are involved in starch biosynthesis, 
and their downregulation leads to reduced starch content 
in groundnut leaves [61].

Membrane transport proteins are crucial for nutri-
ent partitioning towards developing seeds, promoting 
higher seed-filling rates and kernel mass [62]. The vacu-
olar protein-sorting protein BRO1 confers bacterial wilt 

resistance in groundnuts [63]. Serine/threonine-protein 
phosphatases regulate cell division in Arabidopsis [64] 
and influence yield-related traits in groundnuts [65, 66]. 
Phosphatases balance growth and defense mechanisms, 
while protein kinases regulate cell growth through pro-
tein phosphorylation. PSW1 regulates pod size, with 
PSW1 HapII enhancing seed size [67]. B3-DNA-binding 
proteins modulate auxin-responsive genes affecting yield 
[59]. FAR1 transcription factors and RING-type E3 ligases 
control hormonal signaling in developing kernels [68]. 
Late embryogenesis abundant (LEA) protein is involved 
in abiotic stress responses in peanuts, including drought 
and low temperature [69]. Chaperone DnaJ-domain 
superfamily proteins are critical for drought tolerance 
and seed weight in groundnuts [65, 66, 70]. The tran-
scriptional regulator STERILE APETALA-like influences 
pod and seed size variation during peanut evolution [71].

Conclusion
Considering the increasing demand of groundnut for 
confectionary industry, it is high time to include traits 
like kernel grades in the breeding programs. ML ICGR 
171238 (79.45%) and ICGR 171206 (85.65%) with highest 
percent net recovery of grade-I kernel (PNR-I) in rainy 
and post-rainy seasons respectively can serve as par-
ents in breeding programs. Another ML, ICGR 171576 
with a grade-I kernel recovery of 84.31% PR and 72.68% 
R, with an SHP of 77.20% PR and 72.89% R can also be 
used in crossing programs to improve these traits simul-
taneously. Consistent SNP AX_147226917 (A07) and 
AX_177643480 (B08) associated with PNR_I and counts 
per ounce of grade-I kernel (CPO-I) across seasons, and 
SNP AX_177638905 on B07 with highest PVE associated 
with HKW-I can be further validated and developed in 
to KASP assay that can augment rapid selection of prog-
enies in early generations to develop groundnut cultivars 
with high recovery of grade-I kernels. Candidate genes 
identified for kernel grades in the current study include 
Aradu.6Z78F (RING-H2 finger protein), Aradu.993Q7 
(ascorbate peroxidase 1), Araip.MKV8R (protein FAR1-
RELATED SEQUENCE 3-like isoform X1) and Aradu.
S3AS8 (Vacuolar protein-sorting protein BRO1). For yield 
traits, Aradu.Y7AIG (cytochrome P450), Aradu.BD60N 
(Glucose-1-phosphate adenylyltransferase) and Aradu.
TW8M6 (LEA protein). These are potential/putative in 
nature and can be targeted for improving kernel grades 
once functionally validated.
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