

8th International Farming System Design Conference Palaiseau – 25-29 August 2025

Session: Session B2: Systems Science for Sustainable Agri-Food Futures

Agricultural systems by design

ENHANCING FARMING SYSTEMS IN VULNERABLE REGIONS OF MAHARASHTRA, INDIA: EVALUATING INNOVATION BUNDLES FOR SUSTAINABLE INTENSIFICATION

Shalander Kumar¹,

Soumitra Pramanik¹, Elias Khan Patan¹, Israr Reshi Majeed¹, Kaushal Garg¹, Ramesh Singh¹, M.L. Jat¹

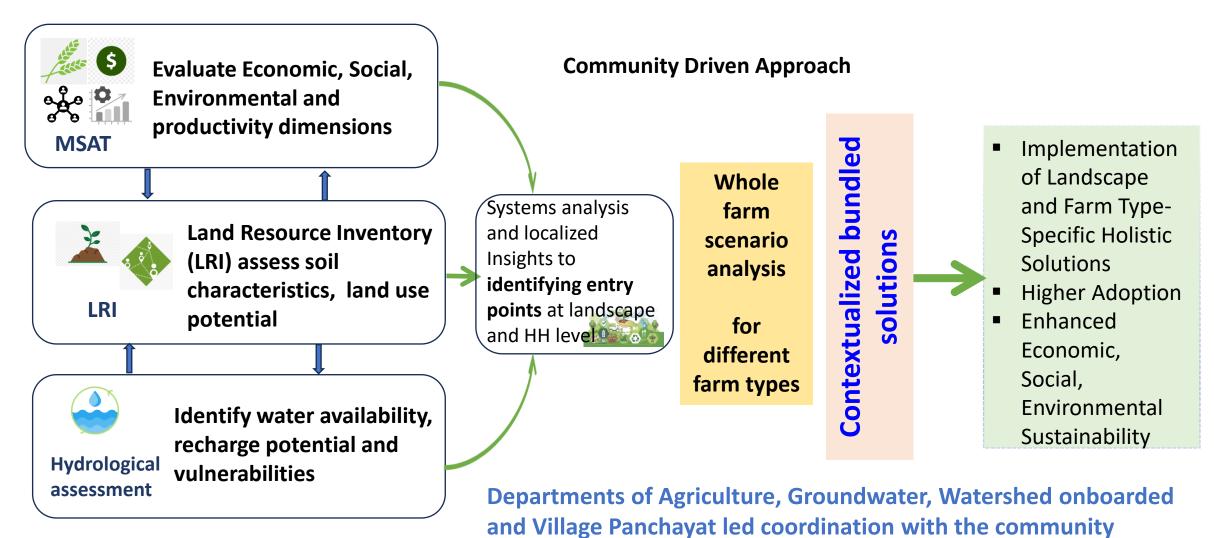
¹International Crops Research Institute for the Semi-Arid Tropics, India

Background and Objectives

Region and Challenges in Rainfed Farming in vulnerable region of Latur

'Water Train' To Maharashtra's Drought-Hit Latur Completes 100 Trips

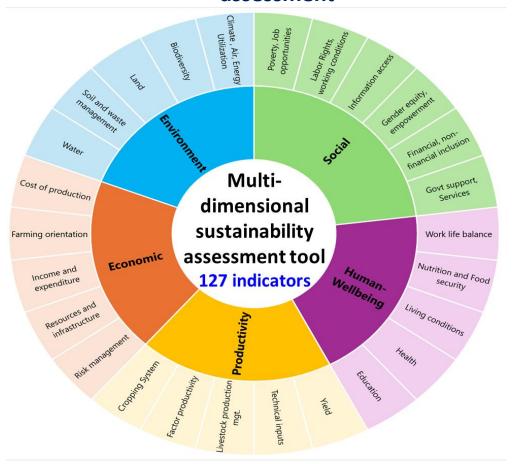
- Increasing water scarcity and crop failure risk due to increasing extreme weather events- droughts, heat waves, flash floods
- Open well- water is drying up
- Land degradation, low SOC, erosion, nutrient depletion
- Resource limitation- low investments
- Poor access to technologies
- Poor access to market- input and output
- High risk, low productivity and income
- Disadvantaged women, childrendrudgery, water, nutrition, schooling, etc
- Scope of optimizing water and land resources is limited at the farm scale- landscape-watershed perspective


Study Objective

- □ Design and evaluate sociotechnical innovation bundles for rainfed mixed farming systems in vulnerable regions of Maharashtra (Latur)
- ☐ Targeting and evaluating impact on multidimensional sustainability:
- > Farm household cashflows
- > Environmental sustainability
- > Economic sustainability
- Social sustainability (resilience)

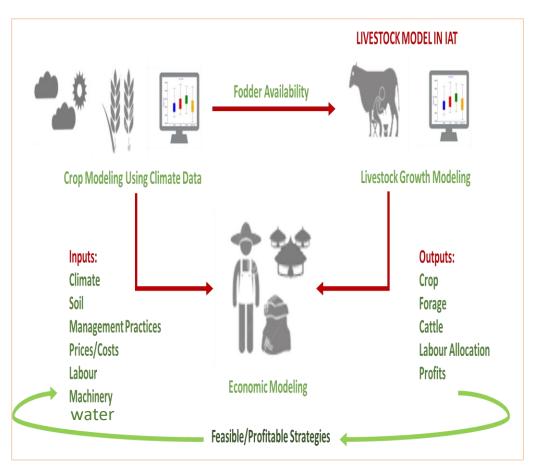
he first 'water train' started on April 11 from Miraj to Latur with 10 tanker wagons.

Integrated Systems Assessments for designing Bundled Solutions for Systems Transformation under Drylands: Optimizing resources and opportunities from farm to landscape scale



Assessment Framework and Tools

Multidimensional sustainability assessment


Land Resource Inventory

&

Hydrological Assessment

at the Landscape Scale

Whole-farm modeling: Crop-Livestock Enterprise Modelling

WHOLE FARM BIO-ECONOMIC MODELING

MSAT framework

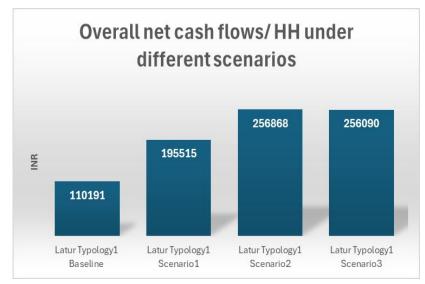
Entry points and interventions

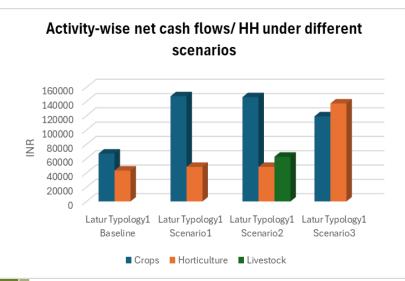
Landscape and Community Scale Interventions

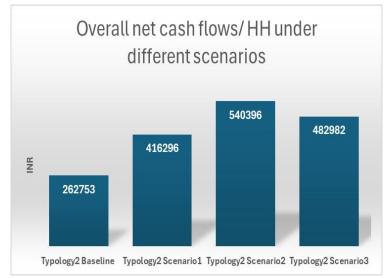
- NRM interventions at watershed scale- bunding, Check dams, Nala plugs, Farm pond (new/rejuvenation), Deepening and widening of drainage channels
- Water budget-based crop planning
- Community level farm machinery custom hiring center
- Awareness on regenerative agriculture, organics, kitchen gardening and nutrition

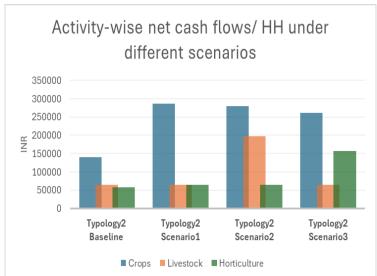
Household Level Interventions

- Improved crop varieties
- Soil test-based application of nutrient and micronutrient
- Appropriate integration of low-water-requiring crops
- Livestock intensification through quality fodder
- Productive use of fallowland increased production
- Expanded livestock ownership
- > Fish farming in **farm ponds**
- Agroforestry- fruit tree


Innovations Bundles


	_		HH type 2
	Scenari o	HH type 1 (Older age, smaller holder, less educated, mostly rainfed)	(Younger age, relatively large holding, more educated, partial irrigated, higher bank credit)
	S1	 Improved access to water Access to small machinery Improved varieties Crop diversification Fallow land under crops 	 Improved access to water Access to small machinery Improved varieties Crop diversification Sprinkler in Sugarcane Fallow land under crops
	S 2	 Improved access to water Access to small machinery Improved varieties Adding 1 milch animal 	 Improved access to water Access to small machinery Improved varieties Sprinkler in Sugarcane Introducing fodder crop Adding 2 milch animal
	\$3	 Improved access to water Access to small machinery Improved varieties Crop diversification Fallow land under crops Sapota fruit production (increased) 	 Improved access to water Access to small machinery Improved varieties Crop diversification Sprinkler in Sugarcane Fallow land under crops Sapota fruit production (increased)


Whole Farm Modelling Scenarios: Impact of different innovation bundles on HH net returns


HH Typology 1

HH Typology 2

% increase in net returns across HH types

Scenarios	Farm type 1	Farm type 2
1. Scenario1	77%	58%
2. Scenario2	133%	106%
3. Scenario3	132%	84%

Water deficit

Baseline	After interventions
40%	14%

This can be addressed by shifting from the sugarcane crop to Soyabean-Chickpea or Soyabean-sorghum, Sapota, MIS

by design

From Struggle to Sustainability: Improvement in multidimensional sustainability

Outcomes

Enhance agro-biodiversity

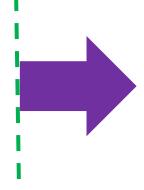
Reduced women drudgery

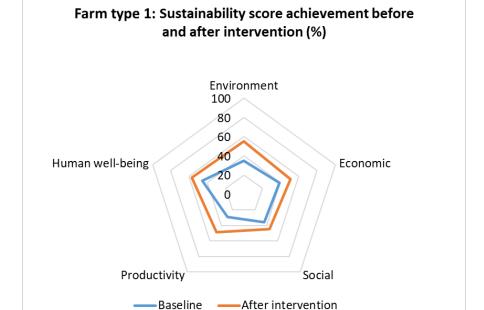
Improved household food and nutrition security

Groundwater in open wells increased by 4 meters

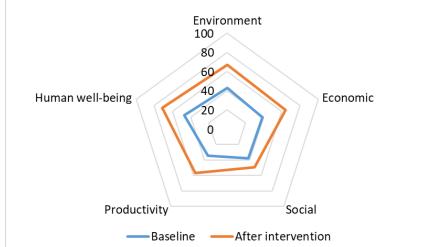
Productive use of fallow land leads to Increased production

Crop yields increased by 25 -45%


Improved access and quality of drinking water



Increased school attendance



Increased milch animals and milk yield by 10 – 25%

Farm type 2: Sustainability score achievement before and after intervention (%)

Way Forward

- Encouraging farmers to shift from sugarcane to soybean-based cropping systems or Sapota and micro-irrigation systems
- Based on this system science-driven approach and demonstrated success, the bundled innovations scenarios can be developed for other dryland landscapes for large-scale transformation of farming systems in vulnerable regions
- Develop a 'Digital twin' landscape model for suitability mapping to guide planning and investment towards sustainable farming systems on a large scale
- Integrating this system science approach with national programs and policies
- Capacity building of NARES through hands-on training and developing suitability maps

Thank You

