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Influence of Bidirectional Reflectance Distribution
Function in Estimating Basic Soil Properties
Using Airborne Hyperspectral Data
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Lokesh Kumar Sinha, and Bhabani Sankar Das

Abstract— Recent studies on hyperspectral remote sensing
(HSR) have shown that the estimation accuracy of different
vegetation characteristics improves when the HSR data are
corrected for the bidirectional reflectance distribution function
(BRDF) effects. Similar studies involving soil parameters are
limited. Here, we used the BRDF-corrected HSR data collected
using the airborne visible-infrared imaging spectrometer-next
generation (AVIRIS-NG) sensor to estimate soil parameters over
a 138-km? agricultural catchment. Surface soil samples were
collected from 173 ground reference locations (GRLs) from this
catchment to measure clay and sand contents, pH, electrical
conductivity (EC), and soil organic carbon (SOC) contents.
The BRDF correction was applied using the flexible BRDF
(FlexBRDF) algorithm, and a polynomial unmixing approach was
used to extract soil spectra from the corrected image. The BRDF
correction successfully removed the shading effects and produced
smooth transitions along the overlapping regions when multiple
AVIRIS-NG images were mosaicked. Upon unmixing, soil spectra
could be extracted at 140 GRLs when BRDF-corrected spectra
were used, while uncorrected spectra produced soil spectra only
for 114 GRLs. Chemometric models were validated using
109 common GRLs to compare estimation accuracy across
laboratory-measured soil spectra (SSp,,) and those obtained
from unmixing of BRDF-corrected and uncorrected spectra.
The coefficient of determination (R2) values in the validation
datasets ranged from 0.40 to 0.83 for both the BRDF-corrected
and SS;,, data, while the uncorrected spectra showed poor
estimation accuracy (R?*: 0.25-0.56). The resulting root-mean-
squared error (RMSE) was reduced by 10% and 47% for the
BRDF-corrected soil spectra compared to their uncorrected data.
The BRDF-corrected and unmixed soil spectra were used to
map soil properties at ~5-m spatial resolution for the entire
catchment. Low SOC contents in the resulting maps adjoining
the Ganges river flowing through our study site captured the
topsoil loss typically observed from river banks. Thus, the
BRDF-corrected HSR data not only improved the accuracy of
soil estimates but also showed potential to identify vulnerable
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areas needing precision management measures with high spatial
resolution.

Index Terms— Memory-based learning (MBL), nonlinear poly-
nomial unmixing, precision agriculture, soil erosion.

I. INTRODUCTION

YPERSPECTRAL remote sensing (HSR) is an emerging

alternative for testing soils and soil quality in large
agricultural catchments [1], [2], [3]. Inspection of some of
the key research publications on soil assessment via HSR
approach (Table S1, supplementary materials) shows the wide
range of conditions, under which HSR approach has been
evaluated starting from small sampling densities [1] and small
area of coverage [4] to as many as 325 soil samples collected
over 420-km? study area [5], resulting in the coefficient of
determination (R?) values ranging from <0.20 to as large as
0.90. Several studies have data acquisition coinciding with
bare soil (BS) conditions, while others have unmixing done
to separate soil spectra from other prevailing endmembers
such that the target soil property may be mapped for the
whole study area [1]. Table S1 also shows that only a few
studies implemented key preprocessing algorithms to enhance
the image quality before any of the major data analytics, such
as unmixing and chemometric modeling.

Restoration and denoising of hyperspectral imagery are
increasingly emphasized in HSR data analysis [6]. Specifi-
cally, denoising and removal of stripping errors are needed
to enhance HSR image quality. Sahadevan et al. [7] showed
that the classification accuracy of an HSR image significantly
improved when an edge-preserving bilateral filter was applied
before classifying the image using a support vector machine
(SVM). The filter preserved image details while smoothing
each pixel, even in areas that were relatively homogenous.
Similarly, the spectral reflectance of a pixel is also influenced
by the bidirectional reflectance distribution function (BRDF),
which arises from the variations in solar-surface-sensor geom-
etry [8] in addition to the natural spectral variability of
its endmembers. The BRDF effects may cause cross-track
illumination gradients or reflectance inconsistencies, leading
to the distortion of the spectral signatures of surface materials.
These distortions significantly impact spectral analysis, reduc-
ing the accuracy of classification or regression models [9]. This
challenge is particularly pronounced in agricultural landscapes,
which are often partially or fully covered with photosynthetic
and nonphotosynthetic vegetation. It is crucial to address
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BRDF effects to improve the accuracy of HSR-based soil
property assessment.

The BRDF effects are generally considered either by train-
ing a classification or regression model on each flight line
(a single scene) and subsequently mosaicking resulting scenes
into a single data product [1], [10] or by removing the
BRDF effects from mosaicked scenes through preprocessing
steps and then subjecting the whole hypercube for classi-
fication or regression analysis. Although the first approach
can produce reasonable outcomes, a significant volume of
training data is required, making large-scale applications chal-
lenging [11]. In contrast, the BRDF correction approach is
more efficient and has gained widespread adoption due to its
computational efficiency and ability to normalize reflectance
across flight lines. The BRDF correction algorithms are
generally either physical, empirical, or semi-empirical in
nature. Both physical and empirical algorithms [12], [13],
[14], [15] are computationally complex [16]. However, semi-
empirical correction algorithms achieve a balance between
computational complexity and operational feasibility [17];
and widely used semi-empirical BRDF correction algorithms,
such as BREFCOR [18], aNBAR [19], RT-BRDF [20], and
flexible BRDF (FlexBRDF) [21], use kernel-driven models
(e.g., Ross-Thick and Li-Sparse) to normalize reflectance to
nadir or bi-hemispherical geometries. These algorithms are
shown to significantly improve the quality of HSR data
across diverse land cover types [20], [22], although the model
coefficients need to be estimated for specific land cover
conditions [23].

Another challenge in using HSR for estimating soil prop-
erties is the presence of mixed pixels, which frequently occur
in agricultural landscapes. After crop harvesting, pixels often
contain a mix of BS, nonphotosynthetic vegetation (NPV)
(e.g., crop residues), and green photosynthetic vegetation
(GPV) (e.g., weeds) [1], [24], [25]. The spectral signatures
of such mixed pixels complicate soil property estimation.
Traditional methods often rely on thresholding to isolate BS
spectra, which may lead to losing valuable data. Advances in
spectral mixture analysis, including algorithms for estimating
material abundances and their spectra [1], [26], [27], have
partially addressed this issue. Few studies have attempted
to apply either BRDF correction before spectral analysis or
unmixing mixed pixels (Table S1). However, studies have
rarely explored these two effects together to improve soil
property estimation, especially in scenarios with multiple flight
lines. The absence of readily available HSR data and the
necessity for intricate preprocessing workflows pose additional
barriers to the application of HSR in agricultural landscapes.
Addressing these challenges may improve the utility of HSR
for soil property mapping, especially for smallholder farms
where accurate soil information is crucial for sustainable man-
agement. We hypothesize that integrating BRDF correction
with spectral unmixing may enhance the utility of HSR data
for mapping soil properties in mixed-pixel and multiflight-line
scenarios. Thus, the main objective of this study is to evaluate
how BRDF correction influences the estimation accuracy of
soil properties in agricultural landscapes.
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Fig. 1. Locations of soil samples collected from the Buxar region overlaid
on the true color composite (B: 472 nm, G: 552 nm, and R: 642 nm) of the
AVIRIS-NG BRDF-uncorrected image.

II. MATERIALS AND METHODS

A. Study Area and Soil Sampling

The study area (25.49°-25.64°N and 83.86°-84.03°E)
covers two parallel strips of land (area: 138 km?) adjoining
the Ganges river flowing through the Buxar district in the state
of Bihar, India (Fig. 1). Geomorphologically, the Buxar region
comprises low lying northern plains and flat southern regions
comprising diverse soil types ranging from recent alluvium
to old alluvium [28]. Being a part of the southern Gangetic
Plain, this site has a tropical climate with distinct seasonal
variations with summer (from May to June) temperatures
rising to as high 45 °C while cooler winter (from January
to February) temperatures dropping down to as low as 4 °C.
Monsoon rains prevail from June to September contributing to
the district’s annual precipitation of approximately 1021 mm
with nearly 85% attributed to the southwest monsoon [28].
Agriculture forms the vital aspect of the region’s landscape
with crops such as paddy (Oryza sativa), maize (Zea mays),
wheat (Triticum aestivum), lentils, and vegetables cultivated
across three distinct seasons (kharif, rabi, and zaid).

Surface soil samples (depth: 0-15 cm) were collected from
173 ground reference locations (GRLs) during December
21-27, 2018. These sampling locations were primarily located
in agricultural fields, which may also be visible from the land
use and land cover (LULC) classification map of the study
site (Fig. S1; supplementary materials). Each sample was air-
dried, ground, and passed through a 2-mm sieve to obtain
soil fractions for determining soil texture, soil organic carbon
(SOC) content, pH, and electrical conductivity (EC). Soil
textural fractions (clay and sand contents) were determined
using the pipette method [29]. The chromic acid digestion
method was followed to measure SOC content [30]. Soil pH
and EC were measured in soil:water slurries (1:2 for pH and
1:2.5 for EC).
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B. Collection of Airborne and Laboratory Spectra

During Phase 1 of the airborne visible-infrared imag-
ing spectrometer-next generation (AVIRIS-NG) campaign,
HSR data were collected over the Buxar region (site 150)
on February 23, 2016, with the objective to map water
constituents in the Ganges river. Three flight sorties were
conducted using the ISRO B200 aircraft over this site between
11:39 AM and 12:00 PM IST to cover both the waterbody and
the adjoining catchments on both sides of the Ganges river
passing through this site. The AVIRIS-NG images contain
spectral reflectance data at ~5-nm spectral resolution over
the 380-2510-nm (total 425 bands) wavelength region [31],
[32]. The signal-to-noise ratio (SNR) ranged from more than
2000 at 600 nm to more than 100 at 2200 nm (95% accuracy)
with 34° field of view (FOV) and 1-mrad instantaneous FOV.
The flight altitude for B200 at this site ranged from 4 to
8 km, resulting in the ground sampling distance (GSD) varying
from 4 to 8 m and swaths ranging from 3 to 6 km [33].
Unfortunately, no ground truth data were collected for soils
during this campaign. Anticipating a similar campaign during
Phase 2, we collected soil samples from this site during the
scheduled campaign (December 21-27, 2018), although the
campaign was not conducted during this period. With no
AVIRIS-NG data available for this site during Phase 2 and with
the premise that basic soil properties may change minimally
over a three-year period [34], we used L2 HSR data collected
during Phase 1 for estimating basic soil properties. Thus,
we downloaded L2 data (atmospherically and geometrically
corrected spectral reflectance data) collected during Phase 1
from the NASA site (https://avirisng.jpl.nasa.gov/dataportal)
for our study site and considered it for estimating soil prop-
erties following BRDF correction. Before applying BRDF
correction, spectral data for each pixel were extracted, and both
the noisy bands (376.44-396.47 nm and 2404.95-2500.12 nm)
and water vapor absorption bands (1348.12-1498.38 nm and
1803.91-1999.25 nm) were removed from each spectrum. This
resulted in AVIRIS-NG spectra over 321 bands for each pixel,
which we refer to as the raw AVS spectra.

In addition to raw AVS spectra, soil spectra were also
collected in a dark room (Fig. S2; supplementary materials)
in proximal sensing mode using a turntable fit with a halogen
bulb and a spectroradiometer (Model: FieldSpec'4 Hi-Res
NG; Malvern Panalytical Ltd., USA). This spectroradiometer
collects spectra over the 350-2500-nm spectral range with a
spectral resolution of 3 nm over the visible- and near-infrared
region and 6 nm over the shortwave infrared region. Soil
samples were uniformly packed into a glass petri dish, and
a thin glass plate was used to level the resulting soil surface
to avoid soil compaction while packing [35], [36]. Each petri
dish was then placed on the rotating turntable to collect
spatially averaged reflectance spectra for each soil sample.
A Spectralon' white reference panel (Labsphere, USA) was
used to calibrate the spectroradiometer. Before the collection
of soil spectra, the radiometer was warmed for a period of 1 h.
The light source was optimized, and the white reference panel
data were collected before starting the measurement and after
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collecting soil spectra for every 30 samples. The 30 scans
of spectral data were averaged for each sample to obtain a
representative soil spectrum, which is referred to as laboratory
soil spectra (SSpap)-

C. BRDF Correction of AVIRIS-NG Data

For the BRDF correction, we used the FlexBRDF
algorithm [21], which may be automated for correcting
HSR data collected using AVIRIS-Classic, AVIRIS-NG, and
National Ecological Observatory Network (NEON) over
diverse land cover conditions. The FlexBRDF algorithm
is integrated as a module within the Python (ver. 3.12.7)
library HyTools (ver. 1.4.2) for processing hyperspectral image
cubes [37]. The HyTools library consists of three submodules
for correcting surface reflectance of HSR data, such as topo-
graphic illumination, BRDF, and sunlight glint corrections.
Being part of the Indo-Gangetic Plain, the study site does
not have much elevational variation (Fig. 1). Hence, we did
not apply any topographic illumination correction, which is
generally applied for HSR data collected from mountainous
regions [38]. With sunlight glint correction applied to HSR
data from waterbodies, we also did not use this for our image
hypercubes. The FlexBRDF algorithm within the HyTools
library uses a semi-empirical BRDF [21]

Rgror(0y, 05, @)
= fiso + fgengeo(evs Qs, ¢) + fvolKvol(ev» 9Sv ¢) (1)

where Rprpr is the BRDF-corrected reflectance value, 6, is
the sensor zenith angle, 6 is the solar zenith angle, and ¢
is the relative azimuth angle between the sun and the sensor.
The weight fractions for isotropic, geometric, and volumetric
components in (1) are represented by fiso, feco» and fiol,
respectively. As proposed by Queally et al. [21], the Li-Sparse
kernel was used for the geometric kernel function K, [39],
while the Ross-Thick kernel was used for the volumetric
kernel function K, [40]. Kernel values were estimated using
ancillary datasets for 6,, 6;, and ¢, which provide geometric
measurements at the same pixel resolution as their reflectance
products. Because both solar and viewing geometries can
change depending on the type of vegetation structure [9],
we applied individual BRDF models to respective land cover
conditions, which required grouping of consistent vegetation
structures in specific areas [41]. The FlexBRDF module
stratifies vegetation into different groups with similar BRDF
assumptions based on the normalized difference vegetation
index (NDVI) and independently optimizes BRDF coefficients
for each NDVI bin. The module also allows a user to set the
number of bins, but the bin boundaries are dynamically set,
and smoothing is applied at intermediate values of NDVI [41].
We tested 3, 9, 12, 15, and 18 NDVI bins to estimate BRDF
coefficients. For our data, 18 NDVI bins offered the best
classifications of the vegetation structure. As recommended
by Queally et al. [21], all three flight scenes were grouped
and mosaicked using the seamless mosaic feature of the
mosaicking toolbox in the ENVI software (Exelis Visual
Information Solutions, Boulder, Colorado) before doing the
BRDF correction.
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D. Ground Cover Condition and Unmixing of AVIRIS-NG
Data

Our sampling locations at the selected GRLs contained
varying levels of BS, GPV, and NPV fractions. Because our
HSR data acquisition and soil sampling dates did not coincide
and we did not directly quantify these three fractions, we relied
on the AVIRIS-NG data for evaluating BS fractions such that
soil spectra for each GRL may be extracted through unmixing.
To estimate different soil cover fractions, we first estimated
NDVI and cellulose absorption index (CAI) using AVIRIS-NG
data. Fig. S3 (supplementary materials) shows estimated CAI
and NDVI values for the three mosaicked AVIRIS-NG scenes
of the study area. This figure clearly shows that several patches
in our study site had NDVI values > 0.4 with wide variations
in both NDVI and CAI values. Estimated CAI and NDVI
values for the GRLs ranged from —3.2 to 1.5 and from 0.11 to
0.83, respectively; 97 out of 173 GRLs had NDVI values >
0.4 and 38 GRLs had CAI values > 0. These results suggest
that almost half of the GRL containing pixels had either
standing crops and/or a mix of green and dry vegetation when
HSR data were collected. Thus, a three-endmember system
(BS, NPV, and GPV) may be needed for the unmixing of
AVS spectra before soil properties may be estimated.

The linear polynomial mixing (LPM) approach [1], [42]
was used to unmix HSR data. Specifically, the linear extended
algorithm [43] was utilized to unmix the AVS spectra (x;) at
the ith pixel. With three endmembers, x; may be written as the
sum of three linear terms (s, sp, and s3 representing spectra
for BS, GPYV, and NPV, respectively) and their four polynomial
mixture terms [1], [42]

x; = a1(i)sy +ax(i)sy + az(i)s3 + a1 2(i)s152
+a13()s153 + ax3(i)s253 + a12,3(0)s15283

2)

where i ranges from 1 to N pixels in the HSR image.
Equation (2) with the first three terms constitutes the
three-endmember linear mixture (LM) model. With the addi-
tional four terms, the spectral signature of each AVIRIS-NG
pixel is considered to be a linear polynomial mixture of the
spectral signatures of individual endmembers. In the matrix
form, (2) may be written to implement the nonnegative matrix
factorization (NMF) methods

X=AS=A,8,+ ApSp + A.S,. 3)

The matrix X in (3) represents the collection of AVS spectra
(x;) for different pixels, A represents the mixing coefficient
matrix containing respective abundance values (a;, a,, and
as), and S represents the source matrix of endmember spectra

A=[A, Ay Al
Sa

S=18%
S.

The coefficient matrix containing A,, Ap, and A, is defined
as

a(l)  ax(l)  as(l)

Aq

a(N)  a(N)  ay(N)
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[aip(D) a3 ax3(D)
Ap = : : :
La12(N)  a13(N)  ax3(N)
[ ai23(1)
A= :
L a1.2,3(N)

Similarly, the
be defined as

source matrix containing S,, Sp, and S, may

Sa 53]T
Sp=[5105 5105
S, =[51 05 Os3]"

=[s1 5

520 531"

where (© represents the element-wise multiplication.
Equation (3) was solved by minimizing the Frobenius
norm [43]
1 2
J=§IIX—ASIIF “)
along with the condition that the abundance fractions are
nonnegative and sum to one for each pixel. More details about
the LPM algorithm and the pseudocode may be found in
Majeed et al. [1] and Majeed and Das [3].

Although the LPM algorithm was originally created for the
blind source separation of potential endmembers from the
HSR data [42], we supervised the algorithm by providing
reference spectra for the three endmembers of BS, GPV, and
NPV and along with their corresponding initial abundance
values, instead of random initialization of the algorithm. For
the BS, SSp,, values for soil samples collected from all
the GRLs were averaged to obtain the reference BS spectra.
Because we did not directly measure GPV or NPV spectra,
the NPV reference spectra from Majeed et al. [1] were
used in our study; we assumed that the paddy stubbles at
both our sites would have similar spectral characteristics. For
the reference GPV spectra, we first selected locations with
dense vegetation based on the true color composite of the
AVIRIS-NG image [1]. The AVS spectra of these pixels were
then averaged to obtain the reference GPV spectra. Initial
abundance values of each endmember were obtained from the
linear unmixing algorithm [26] using the hyperspectral image
processing toolbox in MATLAB [44]. Equation (3) was then
solved to extract soil spectra from BRDF-corrected and uncor-
rected AVS spectra through the LPM algorithm. Hereinafter,
unmixed soil spectra derived from BRDF-corrected and uncor-
rected AVS spectra are referred to as SSB. and SSB,,
respectively.

E. Soil Spectral Preprocessing and Chemometric Modeling

We estimated five soil parameters using three spectral data
sources. Soil spectra measured in laboratory condition (SSy ,p)
served as the spectral data source having the highest SNR
and spectral resolution. Unmixing of BRDF-corrected and
uncorrected AVIRIS-NG data provided the other two sources
of soil spectra: SSB, and SSB,.. Before chemometric mod-
eling, several preprocessing techniques were applied to each
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spectrum for capturing significant spectral features. First, spec-
tral reflectance values were converted to spectral absorbance
values. Resulting absorption spectra were then smoothed using
the second-order Savitzky—Golay smoothing method [45]; the
span length was set to 11 nm to improve SNR for each
absorption spectrum [46]. Similarly, the effects of light scat-
tering were minimized by transforming absorption values into
standard normal variates for each spectrum [47]. These prepro-
cessing steps were implemented using the prospectr package
(ver. 0.2.6) [48] from RStudio software (ver. 4.3.1) [49].

For the chemometric modeling, soil spectra and corre-
sponding soil property datasets were first divided into 75%
calibration and 25% validation datasets using the caret
package (ver. 6.0-94) [50] in RStudio. Four commonly
used chemometric models were then evaluated for their
ability to estimate each soil property. These include the
partial-least-squares regression (PLSR), cubist [51], support
vector regression [52], and memory-based learning (MBL)
algorithm [53]. We chose to present only the results of the
MBL algorithm because of its superior performance compared
to other considered models in what follows. A flowchart show-
ing the modeling steps is shown in Fig. S4 (supplementary
materials).

The MBL algorithm is a spectrum-based learner approach
and is associated with case-based reasoning processes [53].
Generally, a local model is developed for each soil separately
in the MBL approach instead of constructing a general or
global model. In this approach, a set of k-nearest neighbors
to each soil is first selected from the calibration dataset
(i.e., reference library) based on the Mahalanobis distances in
the principal component (PC) space. A local model is then
fit using the selected dataset using a specific chemometric
model. For our MBL approach, we used the weighted average
PLSR model [54]. Briefly, multiple models are first built by
considering a minimum of three PCs to a maximum of 20 PCs.
The predicted value for a given soil parameter for the selected
soil is then obtained as the weighted average of all the
predicted values from multiple models generated for different
sets of PCs [54], [55]. The sequence of k-nearest neighbors
ranged from 5 to the total number of observations in the
calibration dataset in steps of 5. The MBL algorithm generally
outperformed all other competitive models, with three out of
five soil properties showing close alignment with the observed
data, as may also be seen in the Taylor diagram of Fig. 2.

The accuracy of the chemometric models was evaluated
using both the root-mean-squared error (RMSE) and R? values

N
RMSE = %Z(Y,» ~7) 5)
i=1
2 _Z?=1(Yi_?i)2
R =1 ST o e (6)

where Y; and Y; are the measured and predicted response
variables, respectively, at the ith location; Y is the mean value
of Y;; and N is the number of GRLs. We also estimated
the bias values as the difference between the mean value of
predicted and measured soil properties. The MBL modeling

5514211

05 10 15 20 25

EC.pSlem

25 ;

20
= 15
o0
]
£ 10
E
S 05
<
c
S
s
-
@
-
2
o
=
c
]
[

—
05 10 15 20 25
standard deviation (normalised)
Fig. 2. Taylor diagram for selected soil properties estimated by different

chemometric models using the AVIRIS-NG BRDF-uncorrected spectra.

work was carried out in RStudio version 4.3.1 software [49]
using the resemble package [55].

III. RESULTS AND DISCUSSION

A. Characteristics of the Soil Properties and Their
Correlation Structure

Table I shows the summary statistics for the five soil
parameters measured at different GRLs. Soil samples col-
lected at different sampling locations showed medium to
coarse-textured soils (Fig. S5; supplementary materials) with
the average clay and sand contents of 20.5% and 50.4%,
respectively. About 43% of collected samples had loamy
texture, followed by sandy loam (27% of samples) and clay
loam (14% of samples) textures. Such textural variations in
the study area may be because of the deposition of alluvium
from the Ganges river [28]. Soil samples also had medium
to high SOC contents with the first and third quartile values
of 0.49% and 0.78%, respectively. Soil pH varied between
6.63 and 7.51, with the average value of 7.51 (Table I). The
recent alluvial soils from the tributary of the Ganges river of
the Buxar region generally show medium to high soil fertility
with neutral soil pH [28]. Generally, the study area remains
nonsaline with EC values <2000 xS cm~' with a range of
61-743 S cm~!. Overall, the soils of the study area show a
wide range of coefficient of variation (CV), with the lowest
CV of 4% for soil pH to the highest CV of 40% for EC.

The Pearson correlation coefficient (r) between different
soil properties (Table S2) showed a strong positive correlation
between SOC and clay contents (»r = 0.50), which is typically
observed for the Indian soils [56]. All three soil chromophores
(spectrally active soil parameters), such as sand, clay, and SOC
contents, were highly correlated with each other. Among soil
nonchromophores (spectrally inactive soil parameters), soil pH
showed a moderate and strong negative correlation with SOC
(r = —-0.34) and clay contents (r = —0.53), respectively. This
shows that the soil pH may be efficiently estimated using HSR
data. However, there was only a moderate correlation between
soil chromophores and EC, which would make its estimation
difficult using HSR data.
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TABLE I
DESCRIPTIVE STATISTICS FOR MEASURED BASIC SOIL PROPERTIES OF BUXAR

Soil Properties Min Max Ql Q3 Mean CV, %
Sand content, % 233 82.1 41.0 59.2 50.4 26
Clay content, % 7.47 40.4 14.6 26.2 20.5 38
SOC content, % 0.12 2.13 0.49 0.78 0.66 37

pH 5.38 8.17 6.63 7.51 7.04 9

EC, uS cm’! 61 743 139 248 206 46

CV: Coefficient of variation; Min: Minimum; Max: Maximum; SD: Standard Deviation; SOC: soil organic carbon; EC: electrical conductivity

@

(b)

Fig. 3. True color composite images (B: 472 nm, G: 552 nm, and R: 642 nm)
over the Buxar region for BRDF (a) uncorrected and (b) corrected AVIRIS-NG
image.

B. Performance of BRDF Correction Algorithm

Fig. 3 shows the true color composited AVIRIS-NG images
before and after BRDF correction. The BRDF-uncorrected and
mosaicked images [Fig. 3(a)] show the effects of BRDF in the
form of cross-track brightness gradients along the overlapping
regions between adjacent flight lines. The BRDF-corrected
image [Fig. 3(b)] minimizes these effects and shows mini-
mum discontinuity between two mosaicked hypercubes. Fig. 4
shows the mean reflectance values as a function of view
zenith angles (VZAs) ranging from 0° (nadir view) to +20°
estimated at specific wavelengths of different soil constituents:
420, 480, and 660 nm for goethite [57], [58], [59]; 682 nm
for hematite [58], [60]; 2169 nm for organic matter [61];
and 2200 nm for clay minerals [62], [63]. The differences
in mean reflectance values estimated from the uncorrected
and BRDF-corrected data were minimal up to about 6° VZA
but increased significantly at higher zenith angles (Fig. 4).
Specifically, a significant BRDF effect may be seen at 420 nm
(goethite), where the relative change in reflectance between the
nadir view and maximum VZA reached 75%. Other selected
wavelengths show variations ranging from 33% to 51%. After
applying the BRDF correction algorithm, these differences
were reduced to 59% at 420 nm and to less than 33% for
other wavelengths. Colgan et al. [64] also reported stronger
BRDF effects over the visible region than the NIR region.
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Fig. 4. Average spectral reflectance versus VZA for BRDF-corrected (filled
symbols) and uncorrected (unfilled symbols) AVIRIS-NG data at wavelengths
specific to goethite (420, 480, and 660 nm), hematite (550 and 682 nm),
organic matter (OM: 2169 nm), and clay minerals (2200 nm). (a) Goethite.
(b) Hematite. (¢) OM (2169 nm). (d) Clay minerals (2200 nm).

C. Unmixing of AVS Spectra

Unmixing of AVS spectra extracted for the 173 GRLs
yielded soil spectra at 140 GRLs when the BRDF-corrected
hypercube was considered for unmixing. However,
only 114 GRLs showed nonzero BS fractions, yielding
114 unmixed soil spectra. Interestingly, five of these GRLs
did not show any BS component when the BRDF-corrected
AVIRIS-NG image was used for unmixing. All of these
five GRLs showed BS fractions ranging from 1.7 to 3.7%;
however, resulting unmixed soil spectra had vegetation-linked
spectral features. When BRDF-corrected mixed spectra
were unmixed, all these five locations showed no BS
fractions. Therefore, we considered unmixed soil spectra for
109 common GRLs for analyzing how BRDF correction
influences the estimation accuracy of soil properties in the
HSR approach.

To assess the accuracy of the unmixing approach, we esti-
mated spectral angle mapper (SAM) values between the
unmixed soil spectra and the SSp,,-derived reference soil
spectra. The estimated mean (u) and standard deviation (o)
of the SAM values (Table II) suggest that the unmixed
soil spectra extracted from the BRDF-corrected image have
lower p (0.121) and o (0.188) values than those extracted
from the uncorrected image (u = 0.157 and o = 0.218).
Thus, the unmixed soil spectra extracted from the BRDF-
corrected AVIRIS-NG image were more similar to the
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TABLE I

MEAN () AND STANDARD DEVIATION OF SAM VALUES FOR SOIL
SPECTRAL EXTRACTED USING UNMIXING METHOD FROM BOTH
UNCORRECTED AND BRDF-CORRECTED AVIRIS-NG IMAGES

Parameters  Uncorrected BRDF corrected
u 0.157 0.121
c 0.215 0.188
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Fig. 5. Raw AVIRIS-NG spectra (circles) and soil spectra extracted using
the nonlinear unmixing method (dots) for selected (a) and (b) locations with
high and (c) and (d) low GPV fractions from uncorrected and BRDF-corrected
images.

reference soil spectra compared to their uncorrected coun-
terparts. This may be because the shading and other BRDF
effects influenced both the shape and magnitude of resulting
soil spectra upon unmixing when correction measures were not
implemented.

Fig. 5 shows AVS spectra before BRDF correction (black
circles) and after correction (pink circles), and their corre-
sponding unmixed soil spectra: SSB,,. (black dots) and SSB.
(pink dots) for four selected GRLs; corresponding endmember
abundance fractions for both the BRDF-corrected and uncor-
rected spectra are shown in Table S3. For the nonoverlapping
regions [Fig. 5(a) and (c)], the AVS spectra before and after
BRDF correction were relatively more similar to each other
than their counterparts in the overlapping regions [Fig. 5(b)
and (d)]. The presence of a high GPV fraction accentuated this
difference. Specifically, the shape of the BRDF-corrected AVS
spectra was identical to its uncorrected AVS spectra over the
visible region [Fig. 5(a)] for the nonoverlapping region, while
the BRDF correction resulted in higher reflectance values than
its uncorrected AVS spectra for the entire visible to near-
infrared (VNIR) region (400-2400 nm) in the overlapping
case [Fig. 5(b)]. Unmixed soil spectra showed contrasting
characteristics. For the scenarios where BRDF effects are less
pronounced (e.g., the nonoverlapping regions in the mosaicked
hypercubes), the unmixed soil spectra showed greater reflec-
tivity when the AVS spectra were corrected for the BRDF
effects (i.e., SSB. represented with pink dots in Fig. 5) than
the uncorrected ones (i.e., SSB,,. represented with black dots
in Fig. 5) for both high [Fig. 5(a)] and low [Fig. 5(c)]
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vegetation areas. With increased reflectivity in the AVS spectra
upon BRDF correction in the overlapped region, SSB. also
showed increased reflectivity over the entire VNIR wavelength
region [Fig. 5(b)]. Moreover, the characteristic red edge effect
over the visible part is also no longer visible in SSB. [pink
dots in Fig. 5(b)]. Increase in the overall reflectance values
after BRDF correction at high GPV location indicates the
removal of the shading effects known for high vegetation
areas [64]. Inspection of resulting unmixed soil spectra sug-
gests that the magnitude of soil reflectance decreased with
the increase in soil pH, as expected [65]. The unmixed soil
spectra at location 3 [Fig. 5(c)] with a soil pH of 5.58 was
most reflective, while the spectra from location 1 [Fig. 5(a)]
showed less reflection values with the soil pH of 7.95. Soil
textural fractions were similar across all these sites, with clay
contents ranging from 12.1% [location 4, Fig. 5(d)] to 22.3%
[location 3, Fig. 5(c)]. The SOC contents for the high GPV
locations [Fig. 5(a) and (b)] were similar (0.3-0.4%) and were
higher than those at the low GPV locations (SOC contents:
0.6-0.66%). Even with high SOC contents, the sites having
low GPV fractions showed high reflectance values because
of high Fe and Al oxides and hydroxides typically found
in low pH soils [66]. The unmixed soil spectra for both the
GRLs showed characteristic metal-OH stretching observed for
Si—OH at 2200 nm [62], [67] as expected.

Fig. S6 (supplementary materials) shows the fractional
abundance maps for BS, NPV, and GPV from the
BRDF-corrected image along with a ternary plot of the
extracted fractional abundance values for all GRLs. Abun-
dance maps show a typical inverse relationship between BS
and vegetation cover. Specifically, greenish patches (high BS
fraction) in the BS fraction map, white patches (no green veg-
etation) in the GPV abundance map, and light greenish brown
patches (moderate dry crop residue) in the NPV abundance
map indicate the presence of a mix of BS and rice stubble,
as seen in rice-growing areas. The ternary plot shows that
the BS fractional abundance for GRLs ranges from 0 to 0.80.
Overall, the unmixing approach helped in extracting BS.

To summarize, the unmixed soil spectra derived from the
BRDF-corrected mixed spectra showed greater similarity to
the reference soil spectra, had limited vegetation-linked fea-
tures, and were consistent with the typical behavior expected
because of the presence or absence of specific soil chro-
mophores. The BRDF correction also yielded unmixed soil
spectra for more GRLs than their uncorrected counterparts.
This suggests that there is a need to make BRDF correction
for obtaining different endmember spectra through unmixing
approaches, specifically when vegetation is present in the FOV
of the sensor.

D. HSR-Based Soil Property Estimation and Mapping

Table III lists performance statistics when the MBL
approach was used to estimate soil properties using three
spectral data sources (SSpap, SSB,¢, and SSB.). Soil pH, clay,
and SOC contents showed a higher estimation accuracy in the
SSprap data (R? = 0.83), followed by sand content (R? = 0.63).
In contrast, the SSB,,. data showed low to moderate estimation
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TABLE III

PERFORMANCE OF THE MBL APPROACH IN THE VALIDATION DATASETS FOR DIFFERENT SOIL PARAMETERS USING SOIL SPECTRA COLLECTED UNDER
LABORATORY CONDITION (SSya) AND SOIL SPECTRA DERIVED FROM UNMIXING OF AVIRIS-NG SPECTRA BEFORE BRDF CORRECTION
(SSB,) AND AFTER BRDF CORRECTION (SSB,.)

Data sources Metrices Sand content, %  Clay content, %  SOC content, % pH EC, uS cm’!
R? 0.63 0.83 0.83 0.83 0.40
SStab RMSE 8.10 3.19 0.10 0.28 61.6
Bias 0.78 -0.35 0.01 -0.02 -14.0
R? 0.56 0.46 0.30 0.18 0.25
SSByc RMSE 9.52 6.21 0.16 0.70 59.3
Bias -0.07 1.03 -0.01 -0.08 9.54
R? 0.72 0.83 0.43 0.80 0.41
SSB¢ RMSE 7.50 3.70 0.14 0.37 53.3
Bias 0.07 -0.20 -0.01 -0.12 6.30
% decrease in RMSE 21 41 10 47 10

SOC: soil organic carbon; EC: electrical conductivity; R?: coefficient of determination; RMSE: root-mean-squared error; BRDF: bidirectional reflectance
distribution function; AVIRIS-NG: airborne visible-infrared imaging spectrometer-next generation.

accuracy for these properties (R? range: 0.18-0.56), while
the SSB. data showed moderate to high estimation accuracy
with R? values ranging from 0.43 to 0.83. Specifically, soil
properties such as pH, clay, and sand contents showed a high
estimation accuracy with R? values > 0.72. Moreover, the
SSB, spectra showed 10%—47% decrease in the RMSE values
as compared to SSB,,. spectra (Table III). The performance of
the chemometric models for estimating the soil EC parameter
was generally poor across all the spectral data sources. This
may be because of its poor correlation with soil chromophores
(Table S2). Moreover, the estimation of SOC content based
on the AVS data sources showed lower accuracy than the
SSiap data, with R? values decreasing from 0.83 (SSp.) to
0.30 (SSB,.). This discrepancy may have resulted from the
mismatch between the soil sampling and the AVIRIS-NG data
acquisition dates.

Fig. 6 shows scatter plots of observed versus predicted
values for soil parameters. The data points for soil pH and clay
and sand contents from the SSB, data closely align with the
1:1 line, similar to the SSy 4 data, indicating improvements in
the estimation accuracy of these soil properties. A significant
improvement is also seen for SOC content in the SSB,. spectra,
as shown in Fig. 6(c). These chemometric modeling results
suggest that BRDF correction is a crucial preprocessing step
for the airborne-based or satellite-based HSR data, particularly
when estimating soil properties across multiple flight line
scenes.

Validated MBL models were then applied to estimate
selected soil parameters across the entire study area using
pixel-wise SSB, spectra. Maps for clay and SOC contents
over the 138-km? study area at a 5-m spatial resolution
are shown in Fig. 7; corresponding maps of sand content
and pH are presented in Fig. S7 (supplementary materials).
As expected, typical inverse relationships between clay and
sand contents are observed with pink patches in the sand
content map coinciding with greenish patches in the clay
content map. Notably, most agricultural fields near the banks
of the Ganges river show low SOC contents (<0.36%). This
may be attributed to runoff from agricultural lands, possibly
eroding the top fertile organic soil layer. Low (pinkish patches)
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Fig. 6. Observed and estimated soil properties using different spectral data
sources [laboratory soil spectra (SSpap), soil spectra derived from unmixing
of AVIRIS-NG spectra before BRDF correction (SSB,.) and after BRDF
correction (SSB.)]. (a) Sand content, (b) clay content, (¢) SOC content,
(d) pH, and (e) EC, uS-cm~.

to medium (light yellowish patches) SOC content in these
agricultural landscapes highlights the need for better nutrient
management practices to sustain crop production. Thus, these
HSR-derived soil property maps yield spatially continuous
measures for mapped parameters across a large agricultural
landscape with high spatial resolution (~5 m) and estimation
accuracies relevant for agricultural management.
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Fig. 7. Estimation maps of (a) clay and (b) SOC contents developed using
the BRDF-corrected unmixed AVIRIS-NG image across the Buxar region.

IV. CONCLUSION

Although HSR data have the potential to produce soil maps
for large agricultural catchments, raw HSR data often contain
BRDF effects in the form of cross-track brightness gradients
and shading effects, specifically when multiple images need
to be mosaicked. To correct for such effects, we applied the
recently developed FlexBRDF algorithm on the AVIRIS-NG
data to improve the estimation accuracy of selected soil
properties for a 138-km? agricultural catchment adjoining the
Ganges river in Bihar. The BRDF correction algorithm pro-
duced HSR data with minimal cross-track brightness gradients
and completely removed shading effects from the mosaicked
images. Moreover, a greater number of GRLs showed BS frac-
tions when BRDF-corrected spectra were used for unmixing.
Because soil spectra could be unmixed for 140 GRLs using the
BRDF-corrected images and 114 GRLs using the uncorrected
images, we considered only 109 GRLs for which soil spectra
were available from all three sources: lab-measured soil spec-
tra and unmixed soil spectra from both BRDF-corrected and
uncorrected mixed spectra for chemometric modeling. Results
showed that the MBL model calibrated with BRDF-corrected
data achieved significantly improved accuracy with R? values
as high as 0.83 and RMSE reductions of 10%—47% relative
to uncorrected data. High estimation accuracy was observed
for clay and sand contents and soil pH with R?> values
exceeding 0.72. Spatial maps generated at a high spatial
resolution (~5 m) revealed patches of vulnerable soil zones,
such as those having low SOC contents, along both sides of
the Ganges river. With elevational gradients, topsoil erosion
frequently reduced SOC contents along river banks, which
could be captured with high spatial resolution maps derived
from HSR data. Therefore, a correct preprocessing step such
as the BRDF approach not only improves the performance of
both the unmixing and chemometric algorithms to accurately
estimate soil properties but also indirectly assists in identifying
vulnerable areas that may require immediate management
interventions. High spatial resolution soil maps from HSR data
yield soil parameter maps vital for precision agriculture and
sustainable land management. While the results highlight the
importance of BRDF correction, there is significant potential
for further improvement by addressing other confounding
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factors such as soil moisture. Future research can also focus
on developing integrated correction frameworks and leveraging
advancements in machine learning to enhance the scalability of
hyperspectral data. With continued innovation, this approach
has the potential to generate soil property maps across diverse
and dynamic agricultural landscapes, which is much needed
for implementing precision agricultural practices.

ACKNOWLEDGMENT

Bhabani Sankar Das thankfully acknowledges the erstwhile
Defence Terrain Research Laboratory, Defence Research and
Development Organization (DRDO), New Delhi, for facil-
itating soil collection at their study site. Naveen Kumar
Purushothaman acknowledges the Prime Minister’s Research
Fellowship for his Ph.D. research.

REFERENCES

[1] I. Majeed, N. K. Purushothaman, P. Chakraborty, N. Panigrahi,
H. B. Vasava, and B. S. Das, “Estimation of soil and crop residue
parameters using AVIRIS-NG hyperspectral data,” Int. J. Remote Sens.,
vol. 44, no. 6, pp. 2005-2038, Mar. 2023.

[2] T. Paz-Kagan et al., “Mapping the spectral soil quality index (SSQI)
using airborne imaging spectroscopy,” Remote Sens., vol. 7, no. 11,
pp. 15748-15781, Nov. 2015.

[3] I. Majeed and B. S. Das, “Large-scale mapping of soil quality
index in different land uses using airborne hyperspectral data,” IEEE
Trans. Geosci. Remote Sens., vol. 62, 2024, Art. no. 5507812, doi:
10.1109/TGRS.2024.3360334.

[4] H. Bartholomeus, G. Epema, and M. Schaepman, “Determining iron
content in Mediterranean soils in partly vegetated areas, using spectral
reflectance and imaging spectroscopy,” Int. J. Appl. Earth Observ.
Geoinf., vol. 9, no. 2, pp. 194-203, May 2007.

[5] A. Stevens et al., “Measuring soil organic carbon in croplands at regional
scale using airborne imaging spectroscopy,” Geoderma, vol. 158,
nos. 1-2, pp. 32-45, Aug. 2010.

[6] P. Ghamisi et al., “Advances in hyperspectral image and signal process-
ing: A comprehensive overview of the state of the art,” IEEE Geosci.
Remote Sens. Mag., vol. 5, no. 4, pp. 37-78, Dec. 2017.

[71 A.S. Sahadevan, A. Routray, B. S. Das, and S. Ahmad, “Hyperspectral
image preprocessing with bilateral filter for improving the classification
accuracy of support vector machines,” J. Appl. Remote Sens., vol. 10,
no. 2, Apr. 2016, Art. no. 025004.

[8] D.P. Roy etal., “A general method to normalize Landsat reflectance data
to nadir BRDF adjusted reflectance,” Remote Sens. Environ., vol. 176,
pp. 255-271, Apr. 2016.

[9] D.J.Jensen, M. Simard, K. C. Cavanaugh, and D. R. Thompson, “Imag-

ing spectroscopy BRDF correction for mapping Louisiana’s coastal

ecosystems,” [EEE Trans. Geosci. Remote Sens., vol. 56, no. 3,

pp. 1739-1748, Mar. 2018.

M. Wietecha, L. Jetowicki, K. Mitelsztedt, S. Miscicki, and

K. Stereficzak, “The capability of species-related forest stand charac-

teristics determination with the use of hyperspectral data,” Remote Sens.

Environ., vol. 231, Sep. 2019, Art. no. 111232.

W. Jia, Y. Pang, and R. Tortini, “The influence of BRDF effects and

representativeness of training data on tree species classification using

multi-flightline airborne hyperspectral imagery,” ISPRS J. Photogramm.

Remote Sens., vol. 207, pp. 245-263, Jan. 2024.

C. Walthall, “A study of reflectance anisotropy and canopy structure

using a simple empirical model,” Remote Sens. Environ., vol. 61, no. 1,

pp. 118-128, Jul. 1997.

[13] M. I Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and

N. T. Zakharova, “Bidirectional reflectance of flat, optically thick par-

ticulate layers: An efficient radiative transfer solution and applications

to snow and soil surfaces,” J. Quant. Spectrosc. Radiat. Transf., vol. 63,

nos. 2-6, pp. 409-432, Sep. 1999.

G. Roberts, “A review of the application of BRDF models to infer land

cover parameters at regional and global scales,” Prog. Phys. Geography:

Earth Environ., vol. 25, no. 4, pp. 483-511, Dec. 2001.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy.

Cambridge, UK. Cambridge  Univ. Press, 2012, doi:

10.1017/CB0O9781139025683.

[10]

(11]

[12]

(14]

[15]


http://dx.doi.org/10.1109/TGRS.2024.3360334
http://dx.doi.org/10.1017/CBO9781139025683

5514211

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

F. Kizel and Y. Vidro, “Bidirectional reflectance distribution function
(BRDF) of mixed pixels,” Int. Arch. Photogramm., Remote Sens. Spatial
Inf. Sci., vol. 3, pp. 195-200, Jun. 2021.

M. Vogtli, D. Schldpfer, M. C. Schuman, M. E. Schaepman,
M. Kneubiihler, and A. Damm, “Effects of atmospheric, topographic,
and BRDF correction on imaging spectroscopy-derived data products,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 17,
pp. 109-126, 2024.

D. Schldpfer, R. Richter, and T. Feingersh, “Operational BRDF
effects correction for wide-field-of-view optical scanners (BREFCOR),”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1855-1864,
Apr. 2015.

J. Weyermann, A. Damm, M. Kneubiihler, and M. E. Schaepman,
“Correction of reflectance anisotropy effects of vegetation on airborne
spectroscopy data and derived products,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 1, pp. 616-627, Jan. 2014.

W. Jia, Y. Pang, R. Tortini, D. Schlépfer, Z. Li, and J.-L. Roujean, “A
kernel-driven BRDF approach to correct airborne hyperspectral imagery
over forested areas with rugged topography,” Remote Sens., vol. 12,
no. 3, p. 432, Jan. 2020.

N. Queally et al., “FlexBRDF: A flexible BRDF correction for grouped
processing of airborne imaging spectroscopy flightlines,” J. Geophys.
Res., Biogeosci., vol. 127, no. 1, Jan. 2022, Art. no. JG006622, doi:
10.1029/2021JG006622.

J.-L. Roujean, M. Leroy, and P-Y. Deschamps, “A bidirectional
reflectance model of the Earth’s surface for the correction of
remote sensing data,” J. Geophys. Res., Atmos., vol. 97, no. D18,
pp. 20455-20468, Dec. 1992.

Z. Wang and L. Liu, “Correcting bidirectional effect for multiple-
flightline aerial images using a semiempirical kernel-based model,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 9,
pp. 4450-4463, Sep. 2016.

D. A. Roberts, M. O. Smith, and J. B. Adams, “Green vegetation,
nonphotosynthetic vegetation, and soils in AVIRIS data,” Remote Sens.
Environ., vol. 44, nos. 2-3, pp. 255-269, May 1993.

J. P. Guerschman, M. J. Hill, L. J. Renzullo, D. J. Barrett, A. S. Marks,
and E. J. Botha, “Estimating fractional cover of photosynthetic vege-
tation, non-photosynthetic vegetation and bare soil in the Australian
tropical savanna region upscaling the EO-1 hyperion and MODIS
sensors,” Remote Sens. Environ., vol. 113, no. 5, pp. 928-945,
May 2009.

N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal
Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002.

F. Kizel and J. A. Benediktsson, “Hyperspectral and spatially
adaptive unmixing for an analytical reconstruction of fraction sur-
faces from data with corrupted pixels,” in Handbook of Pattern
Recognition and Computer Vision, C. H. Chen, L. F. Pau, and
P. S. Wang, Eds., Singapore: World Scientific, 2020, pp. 209-230, doi:
10.1142/9789811211072_0011.

Central Ground Water Board. (2013). Ground Water Information
Booklet Buxar District, Bihar State. Accessed: Feb. 12,
2024. [Online]. Available: https://www.cgwb.gov.in/old_website/
District_Profile/Bihar/Buxar.pdf

G. W. Gee and J. W. Bauder, “Particle size analysis,” Methods Soil Anal.
1 Phys. Mineralogical Methods, vol. 5, pp. 383—411, Jan. 1986.

A. Walkley and 1. A. Black, “An examination of the degtjareff method
for determining soil organic matter, and a proposed modification of the
chromic acid titration method,” Soil Sci., vol. 37, no. 1, pp. 29-38, 1934.
L. Hamlin et al., “Imaging spectrometer science measurements for ter-
restrial ecology: AVIRIS and new developments,” in Proc. Aerosp. Conf.,
Big Sky, MT, USA, Mar. 2011, pp. 1-7.

A. K. Thorpe et al., “Mapping methane concentrations from a controlled
release experiment using the next generation airborne visible/infrared
imaging spectrometer (AVIRIS-NG),” Remote Sens. Environ., vol. 179,
pp. 104115, Jun. 2016.

B. K. Bhattacharya et al., “An overview of AVIRIS-NG airborne
hyperspectral science campaign over India,” Current Sci., vol. 116, no. 7,
p. 1082, Apr. 2019.

A. A. Berhe, “Drivers of soil change,” in Developments in Soil Science,
M. Busse, C. P. Giardina, D. M. Morris, and D. S. Page-Dumroese, Eds.,
Elsevier, 2019, pp. 27-42, doi: 10.1016/b978-0-444-63998-1.00003-3.
A. M. Mouazen, B. Kuang, J. De Baerdemaeker, and H. Ramon,
“Comparison among principal component, partial least squares and
back propagation neural network analyses for accuracy of mea-
surement of selected soil properties with visible and near infrared
spectroscopy,” Geoderma, vol. 158, nos. 1-2, pp. 23-31, Aug. 2010,
doi: 10.1016/j.geoderma.2010.03.001.

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

N. M. Dhawale, V. I. Adamchuk, S. O. Prasher, R. A. V. Rossel, and
A. A. Ismail, “Evaluation of two portable hyperspectral-sensor-based
instruments to predict key soil properties in Canadian soils,” Sensors,
vol. 22, no. 7, p. 2556, Mar. 2022.

Chlus, Queally, and Townsend. (2021).
Spectroscopy Lab. Accessed: May 5, 2023.
https://github.com/EnSpec/hytools

C. Wang et al.,, “Quantification of wetland vegetation communities
features with airborne AVIRIS-NG, UAVSAR, and UAV LiDAR data
in peace-athabasca delta,” Remote Sens. Environ., vol. 294, Jun. 2023,
Art. no. 113646.

X. Li, F. Gao, L. Chen, and A. H. Strahler, “Derivation and validation of
a new kernel for kernel-driven BRDF models,” Proc. SPIE, vol. 3868,
pp. 368-379, Dec. 1999.

F. Maignan, F.-M. Bréon, and R. Lacaze, “Bidirectional reflectance
of Earth targets: Evaluation of analytical models using a large set of
spaceborne measurements with emphasis on the hot spot,” Remote Sens.
Environ., vol. 90, no. 2, pp. 210-220, Feb. 2004.

E. Greenberg et al., “An improved scheme for correcting remote spectral
surface reflectance simultaneously for terrestrial BRDF and water-
surface sunglint in coastal environments,” J. Geophys. Res., Biogeosci.,
vol. 127, no. 3, Mar. 2022, Art. no. e2021JG006712.

I. Meganem, Y. Deville, S. Hosseini, P. Déliot, X. Briottet, and
L. T. Duarte, “Linear-quadratic and polynomial non-negative matrix
factorization; application to spectral unmixing,” in Proc. 19th Eur. Signal
Process. Conf., Aug. 2011, pp. 1859-1863.

I. Meganem, Y. Deville, S. Hosseini, P. Déliot, and X. Briottet,
“Linear-quadratic blind source separation using NMF to unmix urban
hyperspectral images,” IEEE Trans. Signal Process., vol. 62, no. 7,
pp. 1822-1833, Apr. 2014.

The MathWorks, document R2021b, Natick, MA, USA, 2021.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures,” Anal. Chem., vol. 36, no. 8,
pp- 1627-1639, Jul. 1964.

W. Ng et al., “Convolutional neural network for simultaneous predic-
tion of several soil properties using visible/near-infrared, mid-infrared,
and their combined spectra,” Geoderma, vol. 352, pp. 251-267,
Oct. 2019.

R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal vari-
ate transformation and de-trending of near-infrared diffuse reflectance
spectra,” Appl. Spectrosc., vol. 43, no. 5, pp. 772-777, Jul. 1989.

A. Stevens and L. Ramirez-Lopez. (2022). An Introduction
to the Prospectr Package. [Online]. Available: https:/cran.r-
project.org/web/packages/prospectr/vignettes/prospectr.html

R Core Team. (2023). R: A Language and Environment for Statistical
Computing. [Online]. Available: https://www.R-project.org/

M. Kuhn, “Building predictive models in R using the caret pack-
age,” J. Stat. Softw., vol. 28, no. 5, pp. 1-26, Jan. 2008, doi:
10.18637/js5.v028.105.

R. A. Viscarra Rossel et al., “A global spectral library to characterize
the world’s soil,” Earth-Sci. Rev., vol. 155, pp. 198-230, Apr. 1, 2016.
A. Ahmadi, M. Emami, A. Daccache, and L. He, “Soil properties
prediction for precision agriculture using visible and near-infrared spec-
troscopy: A systematic review and meta-analysis,” Agronomy, vol. 11,
no. 3, p. 433, Feb. 2021.

L. Ramirez-Lopez, T. Behrens, K. Schmidt, A. Stevens,
J. A. M. Dematté, and T. Scholten, “The spectrum-based learner:
A new local approach for modeling soil VIS-NIR spectra of complex
datasets,” Geoderma, vols. 195-196, pp. 268-279, Mar. 2013.

J. S. Shenk, M. O. Westerhaus, and P. Berzaghi, “Investigation of a
LOCAL calibration procedure for near infrared instruments,” J. Near
Infr. Spectrosc., vol. 5, no. 4, pp. 223-232, 1997.

L. Ramirez-Lopez et al. (2024). Resemble: Regression and Similar-
ity Evaluation for Memory-based Learning in Spectral Chemomet-
rics.: R Package Version 2.2.3. [Online]. Available: https://CRAN.R-
project.org/package=resemble

N. N. Reddy et al.,, “Legacy data-based national-scale digital map-
ping of key soil properties in India,” Geoderma, vol. 381, Jan. 2021,
Art. no. 114684.

D. M. Sherman and T. D. Waite, “Electronic spectra of Fe3+ oxides
and oxide hydroxides in the near IR to near UV,” Am. Mineral., vol. 70,
pp. 1262-1269, Dec. 1985.

A. C. Scheinost, A. Chavernas, V. Barrén, and J. Torrent, “Use and
limitations of second-derivative diffuse reflectance spectroscopy in the
visible to near-infrared range to identify and quantify fe oxide min-
erals in soils,” Clays Clay Minerals, vol. 46, no. 5, pp. 528-536,
Oct. 1998.

Python, Environmental
[Online]. Available:


http://dx.doi.org/10.1029/2021JG006622
http://dx.doi.org/10.1142/9789811211072_0011
http://dx.doi.org/10.1016/b978-0-444-63998-1.00003-3
http://dx.doi.org/10.1016/j.geoderma.2010.03.001
http://dx.doi.org/10.18637/jss.v028.i05

PURUSHOTHAMAN et al.: INFLUENCE OF BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

B. Stenberg, R. A. V. Rossel, A. M. Mouazen, and J. Wetterlind,
“Visible and near infrared spectroscopy in soil science,” Adv. Agronomy,
vol. 2010, pp. 163-215, Jan. 2010, doi: 10.1016/S0065-2113(10)07005-
7

J. A. M. Dematté¢ and F. da Silva Terra, “Spectral pedology: A new
perspective on evaluation of soils along pedogenetic alterations,” Geo-
derma, vols. 217-218, pp. 190-200, Apr. 2014.

K. W. Daniel, N. K. Tripathi, and K. Honda, “Artificial neural net-
work analysis of laboratory and in situ spectra for the estimation of
macronutrients in soils of lop buri (Thailand),” Soil Res., vol. 41, no. 1,
p. 47, 2003.

R. N. Clark, A. J. Gallagher, and G. A. Swayze, “Material absorption
band depth mapping of imaging spectrometer data using a complete
band shape least-squares fit with library reference spectra,” in Proc. 3rd
Annu. JPL Airborne Geosci. Workshop, vol. 54, 1990, pp. 176-186.

J. L. Post and P. N. Noble, “The near-infrared combination band
frequencies of dioctahedral smectites, micas, and illites,” Clays Clay
Minerals, vol. 41, no. 6, pp. 639-644, 1993.

M. Colgan, C. Baldeck, J.-B. Féret, and G. Asner, “Mapping savanna tree
species at ecosystem scales using support vector machine classification
and BRDF correction on airborne hyperspectral and LiDAR data,”
Remote Sens., vol. 4, no. 11, pp. 3462-3480, Nov. 2012.

M. Wan et al., “Estimation of soil pH using PXRF spectrometry and
vis-NIR spectroscopy for rapid environmental risk assessment of soil
heavy metals,” Process Saf. Environ. Protection, vol. 132, pp. 73-81,
Sep. 2019.

E. Ben-Dor, “Quantitative remote sensing of soil properties,” in
Advances in Agronomy, vol. 75. New York, NY, USA: Academic,
Jan. 2002, pp. 173-243.

L. Vaculikové and E. Plevovd, “Identification of clay minerals and micas
in sedimentary rocks,” Acta Geodynamica et Geomaterialia, vol. 2, no. 2,
p. 163, Apr. 2005.

Naveen Kumar Purushothaman received the
M.Tech. degree in agricultural systems and man-
agement from the Department of Agricultural and
Food Engineering, IIT Kharagpur, Kharagpur, India,
in 2022, where he is currently pursuing the Ph.D.
degree.

His research interests include multispectral and
hyperspectral remote sensing and digital soil

mapping.

Amanjit Premsagar received the M.Tech. degree
in agricultural systems and management from the
Department of Agricultural and Food Engineering,
IIT Kharagpur, Kharagpur, India, in 2024. She
is currently pursuing the Ph.D. degree with the
Department of Geological Sciences, University of
Alabama, Tuscaloosa, AL, USA.

Her research focuses on water quality assessment
using remote sensing techniques.

Mayank Raj received the B.Tech. degree in agricul-
tural engineering from the University of Agricultural
Science, Raichur, Karnataka, India, in 2021, and the
M.Tech. degree in agricultural systems and man-
agement from the Department of Agricultural and
Food Engineering, IIT Kharagpur, Kharagpur, India,
in 2023.

5514211

Israr Majeed received the Ph.D. degree in agri-
cultural and food engineering from IIT Kharagpur,
Kharagpur, India, in 2024.

Currently, he is an Associate Scientist at the Inter-
national Crops Research Institute for the Semi-Arid
Tropics, Patancheru, India. His research is focused
on improving agricultural production using proximal
and remote sensing approaches.

N. Nagarjuna Reddy received the Ph.D. degree in
agricultural and food engineering from IIT Kharag-
pur, Kharagpur, India, in 2024.

Currently, he is an Associate Scientist at the
International Crops Research Institute for the Semi-
Arid Tropics, Patancheru, India. He works on
digital soil mapping, remote sensing, and landscape
management.

Lokesh Kumar Sinha received the Ph.D. degree in
structural geology from the Banaras Hindu Univer-
sity, Varanasi, Uttar Pradesh, India, in 1988.

He is the former Director of Defence Terrain
Research Laboratory (DTRL) and Snow and
Avalanche Study Establishment (SASE), New Delhi,
India. He works on satellite image processing, digital
terrain analysis, and deformation monitoring.

Bhabani Sankar Das received the Ph.D. degree in
agronomy from Kansas State University, Manhattan,
KS, USA, in 1996.

He works as a Professor at the Department of
Agricultural and Food Engineering, IIT Kharagpur,
Kharagpur, India. He uses proximal and remote
sensing approaches and geohydrological modeling
for agricultural decision making.


http://dx.doi.org/10.1016/S0065-2113(10)07005-7
http://dx.doi.org/10.1016/S0065-2113(10)07005-7

