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Abstract 

 

Using the potential outcomes framework, we estimate the influence of the adoption gap, adoption 

drivers and impact of adopting improved groundnut varieties (IGVs) on groundnut yield among 

smallholder farmers in Nigeria. The results show a significant 34% adoption gap attributable to the 

lack of exposure of farmers to IGVs. With full exposure, the adoption rate could increase from the 

current 31% to about 65%. To close this adoption gap, policy options that empower agricultural 

extension staff to visit farmers more frequently, engage farmers in the development, testing and 

scaling activities of agricultural technology, and encourage farmers to join farmer groups are 

critical. Similarly, enabling households to access credit and input and output markets will lead to the 

increased probability of adopting IGVs. The study furthermore revealed a significantly positive 

impact of 148 kg/ha on the yield of IGVs, which represents a 20% average treatment effect on the 

treated (ATT) and a 22% average treatment effect on the untreated (ATU). 

 

Key words: adoption gap, groundnut, impact assessment, Nigeria, productivity 
 

1. Introduction 

 

Sub-Saharan Africa (SSA) faces a myriad of development challenges, including high levels of 

poverty, and of food and nutrition insecurity. These problems are more pronounced in rural areas 

where the majority of the population resides, most of whom derive their livelihoods from smallholder 

agriculture that is characterised by a weak technological base and low productivity. This poor 

productivity has been attributed to the inadequate adoption of modern and well-adapted agricultural 

technologies like improved crop varieties (Tufa et al. 2019). Yet the famous “green revolution” in 

Asia has shown that the adoption of improved agricultural technologies can increase productivity and 

transform livelihoods (Pingali 2012). Even within SSA, studies have shown that the adoption of 

improved agricultural technologies, especially improved crop varieties, has positive and significant 

effect on increased productivity and reduced poverty, food and nutrition security (Tufa et al. 2019). 

 

This challenge of low adoption of improved crop varieties in SSA has been studied extensively in 

Africa using different approaches (Pannell & Zilberman 2020). However, most of these past empirical 

studies estimated adoption without accounting for non-exposure and/or selection bias (Diagne & 

Demont 2007). Non-exposure bias stems from the fact that not all potential adopters in the population 

are usually exposed to the evaluated technologies. Therefore, using the sample adoption estimate will 

not be a true reflection of population adoption potential unless exposure to the technology was 

assigned randomly. Since exposure is seldom assigned randomly, this means that sample estimates 

suffer from selection bias. Therefore, the true adoption rate that reflects actual acceptance of the 

technology (adoption potential) should take care of this biasedness (exposure to improved varieties). 

 

Using cross-sectional data collected from smallholder groundnut farmers in Nigeria, we estimated the 

actual and potential adoption rates of improved groundnut varieties (IGVs) and derived the adoption 

gap (difference between actual and potential adoption). We further estimated the impact of adopting 

IGVs on productivity. These results contribute to the limited but growing literature on the estimation 

of actual and potential adoption rates of agricultural technologies that have been conducted for other 

crops like rice (Nguezet et al. 2013), maize (Simtowe et al. 2019) and pigeonpea (Simtowe et al. 

2011). To the best of our knowledge, no empirical study has estimated the groundnut adoption gap 

and the impact of adoption on groundnut productivity in Nigeria. However, knowing the technology 

adoption gap and adoption impacts on selected welfare outcomes like productivity is critical for 
investment decisions by donors, policy makers, researchers and farmers. The rest of the paper is 
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organised as follows: Section 2 highlights the data and methods that have been used. The results and 

discussion are outlined in Section 3, while the summary and conclusions are in Section 4. 

 

2. Data and methods 

 

2.1 Data 

 

This paper is based on household- and plot-level data collected from 1 470 smallholder rural 

groundnut farming households in five states of northern Nigeria (Bauchi, Jigawa, Kano, Katsina and 

Kebbi). A multi-stage sampling procedure was used to select the surveyed households. First, the five 

states were purposively sampled because they were sites for Tropical Legumes (TL) projects1 and the 

USAID Groundnut Scaling project. In each state, three of the most important groundnut-producing 

local government authorities (LGAs) were purposively sampled, and three villages in each LGA were 

also purposively sampled based on the intensity of IGV scaling activities (demonstrations, field days, 

trials, seed production and upscaling). The three villages included two project intervention villages 

and one non-intervention village. From each village, 10 to 35 groundnut-farming households were 

randomly selected to make up 100 sampled households per LGA. Respondent farmers from the 

sampled households were interviewed by trained enumerators using semi-structured questionnaires 

that had been pre-tested. Data collected included household socioeconomic and demographic 

characteristics and groundnut production activities at the plot level, among other variables.  

 

2.2 Empirical strategy 

 

2.2.1 The average treatment effect (ATE) estimation of adoption 

 

From the descriptive statistics (Table 1), only 55% of the sampled farmers were aware of IGVs and 

not all of them had adopted these varieties. We therefore estimated actual and potential adoption rates 

of IGVs using the potential outcomes framework proposed by Diagne and Demont (2007). In this 

approach, ATE is the average probability of adopting the target technology when the study unit (farm 

household) is randomly picked from the population, assuming that the whole population is exposed 

to the technology. Therefore, this approach measures the intrinsic value of the technology as 

perceived by the population. On the other hand, the observed sample adoption statistic is premised 

on a strong assumption that the whole population is exposed to the technology – an assumption that 

seldom holds in SSA, especially for agricultural technologies like improved crop varieties. The 

difference between the ATE adoption rate and the observed sample adoption rate (joint exposure and 

adoption rate) is the adoption gap due to technology exposure bias or incomplete technology diffusion 

bias (Diagne & Demont 2007). The adoption rate computed from the sub-sample that is aware of 

IGVs is what is referred to as the average treatment effect on the treated (ATT). The difference 

between the ATT and ATE is attributed to population selection bias (PSB). Similarly, the potential 

adoption rate computed from the sub-sample that is not aware of IGVs is called the treatment effect 

on the untreated (ATU). 

 

Unlike the classical computation of population adoption from the sample, the ATE approach enables 

the estimation of consistent population adoption parameters conditional on a vector of observed 

covariates (𝑥), such that  

 

 

 
1 TL II and TL III (later in the paper) refer to phases 2 and 3, respectively of a project funded by the Bill and Melinda 

Gades Foundation (BMGF) called Tropical Legumes (TL). The project is aimed at the development and dissemination of 

improved varieties of selected legume crops, including groundnut. 
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𝐸(𝑦𝑖|𝑥),             (1) 

 

where 𝐸(𝑦𝑖) is the expected adoption outcome or conditional ATE; and 𝑥 is a vector of observed 

covariates. The identification of Equation (1) is based on the conditional independence assumption 

(CIA), which states that exposure to technology (𝑤) is independent of adoption outcome (𝑦𝑖), 

condictional on observed covariates of exposure (𝑧). We therefore estimate ATE from a random 

sample of observed 𝑦𝑖, 𝑤𝑖, 𝑥𝑖 and 𝑧𝑖 (Equation (2)). 

 

𝐴𝑇𝐸 = 𝐸(𝑦𝑖|𝑥)  = 𝐸(𝑦|𝑥, 𝑤 = 1)         (2) 

 

The second equality of Equation (2), i.e. 𝑔(𝑥, 𝛽), is parametrically estimated based on the observed 

values of 𝑦𝑖 and  𝑥𝑖 from the sample that is exposed to improved technology only (𝑤 = 1). After 

estimating the parameter �̂� from 𝑔(𝑥, 𝛽), i.e. 𝑔(𝑥𝑖 , �̂�), the predicted values of the ATE from 𝑔(𝑥𝑖 , �̂�) 

are computed for the whole sample (exposed and non-exposed). Thereafter, ATE (Equation (3)), ATT 

(Equation (4)) and ATU (Equation (5)) are computed by obtaining the predicted values of the full 

sample, exposed sub-sample and non-exposed sub-sample, respectively. 

 

𝐴𝑇�̂� =
1

𝑛
∑ 𝑔(𝑥𝑖 , �̂�)𝑛

𝑖=1           (3) 

 

𝐴𝑇�̂� =
1

𝑛𝑒
∑ 𝑤𝑖𝑔(𝑥𝑖 , �̂�)𝑛

𝑖=1           (4) 

 

𝐴𝑇�̂� =
1

𝑛𝑒
∑ (1 − 𝑤𝑖)𝑔(𝑥𝑖 , �̂�)𝑛

𝑖=1          (5) 

 

From Equations (3), Equation (4) and Equation (5), the population adoption gap and the population 

selection bias can be estimated parametrically, as follows:  

 

𝑃𝐴�̂� = 𝐽𝐸�̂� − 𝐴𝑇�̂�, and          (6) 

 

𝑃𝑆�̂� = 𝐴𝑇�̂� − 𝐴𝑇�̂�,            (7) 

 

where 𝐽𝐸�̂� in Equation (6) is the joint exposure and adoption parameter that is consistently estimated 

by the sample average of the observed adoption rate, given by Equation (8). 

 

𝐽𝐸�̂� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑛=1            (8) 

 

Beside estimating adoption using the ATE approach, the classic probit adoption model is also 

estimated, using the same explanatory variables and results compared across the two approaches. In 

the two models of exposure and adoption, variables used in past agricultural technology adoption 

studies were controlled for. 

 

2.2.2 The local average treatment effect (LATE) estimation of impact 

 

Following the potential outcome framework developed by Rubin (1974) and adopted by Nguezet et 

al. (2011), each study unit has two likely outcomes, 𝑌𝑑, where the subscript 𝑑 denotes adoption status 

(𝑑 =1 if an adopter and 𝑑 = 0 if a non-adopter). The study unit could be a household, a plot, etc. In 

this paper, the study unit was a groundnut plot that could have been planted with an improved 

groundnut variety (adopter) or a local groundnut variety (non-adopter). On the other hand, potential 
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outcome could be any welfare outcome, such as poverty, income, food security, etc. In the current 

study, potential outcome (impacted variable) was groundnut productivity (yield). Therefore, the 

impacted variable could be represented as a function of two potential outcomes:  

 

𝑌 = 𝑑𝑌1 + (1 − 𝑑)𝑌0           (9) 

 

The implication of Equation (9) above is that the impact of the treatment (𝑑) on the outcome (𝑌) is 

the difference between the observed outcome (𝑌𝑑) under 𝑑 = 1 and 𝑑 = 0, i.e. 𝑌1 − 𝑌0. However, 

since 𝑌1 and 𝑌0 cannot be observed at the same time ex post (the two outcomes are mutually 

exclusive), several approaches have been developed to model the average impact of the treatment on 

the outcome among the treated and the untreated units. In impact assessment literature, the actual 

impact of the treatment on the treated units, 𝐸(𝑌1 − 𝑌0/𝑑 = 1), is called the average treatment effect 

on the treated (ATT), while the potential impact of the treatment on the untreated, 𝐸(𝑌1 − 𝑌0/𝑑 = 0), 

is referred to as average treatment effect on the untreated (ATU). Overall, the estimated population 

average treatment effect (ATE) is the summation of ATT and ATU at their means. The challenge in 

the literature has been to disentangle the effect of the treatment on the outcome variable. Innovative 

approaches have been proposed and applied in the empirical literature to isolate the part of the 

outcome variable that is attributable to the treatment by controlling for treatment biases due to 

observed and/or unobservable characteristics (Lee 2006). Therefore, to control for observed bias, we 

first computed ATT (Equation 10), ATU (Equation 11) and ATE (Equation 12) using the inverse 

propensity score weighting (IPSW) estimator that is based on the conditional independence 

assumption. In this IPSW estimation approach, the ATT, ATU and ATE were computed following 

Imbens (2004), and as adopted by Nguezet et al. (2011) and Awotide et al. (2013), as follows: 

 

𝐴�̂�𝑇 =
1

𝑛1
∑

(𝑑𝑖−𝑝(𝑥𝑖))𝑦𝑖

(1−�̂�(𝑥𝑖))

𝑛
𝑖=1 ,                  (10) 

 

𝐴�̂�𝑈 =
1

1− 𝑛1
∑

(𝑑𝑖−𝑝(𝑥𝑖))𝑦𝑖

𝑝(𝑥𝑖)
𝑛
𝑖=1 , and                 (11) 

 

𝐴𝑇�̂� =
1

𝑛
∑

(𝑑𝑖−𝑝(𝑥𝑖))𝑦𝑖

𝑝(𝑥𝑖)(1−𝑝(𝑥𝑖))

𝑛
𝑖=1 ,                  (12) 

 

where 𝑛 is the sample size; 𝑛1 = ∑ 𝑑𝑖
𝑛
𝑛=1  is the number of the treated (adopters of IGVs); and �̂�(𝑥𝑖) 

is the adoption propensity score estimated using a probit model with 𝑥 covariates. Secondly, to control 

for unobserved bias, we adopted the instrumental variable (IV) approach to estimate the impact of 

adopting improved groundnut varieties on yield in a local average treatment effect (LATE) 

framework (Imbens & Angrist 1994).  

 

LATE is the average effect of the treatment on adopters who adopted after exposure to the treatment, 

and potential adopters who did not adopt due to a lack of exposure to the treatment. In this IV 

approach, two LATE estimators can be generated based on assumptions about the treatment 

instrument, i.e. exposure to IGVs (𝑤). First, when the instrument is assumed to be random, we use 

the Wald estimator (Imbens & Angrist 1994). The Wald estimator is non-parametric and needs only 

the outcome variable (𝑌), the treatment variable (𝑑) and the instrument (𝑤) to be computed: 

 

𝐿𝐴𝑇𝐸 = 𝐸(𝑌1𝑖 −  𝑌0𝑖|𝑑1 = 1) =
𝐸(𝑌|𝑤 = 1)−𝐸(𝑌|𝑤=0)

𝐸(𝑑|𝑤 = 1)−𝐸(𝑑|𝑤=0)
               (13) 

 

  



AfJARE Vol 19 No 3 (2024) pp 246–259  Muricho et al. 

 
 

251 

From Equation (13), the LATE parameter can consistently estimate the Wald estimator, as follows: 

 

𝐿𝐴𝑇�̂� = [
∑ 𝑌𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

−
∑ 𝑌𝑖(1−𝑤𝑖)𝑛

𝑖=1

∑ (1−𝑤𝑖)𝑛
𝑖=1

] × [
∑ 𝑑𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

−
∑ 𝑑𝑖(1−𝑤𝑖)𝑛

𝑖=1

∑ (1−𝑤𝑖)𝑛
𝑖=1

]
−1

              (14) 

 

Second, since in most non-experimental observational data cases the instrument is not random – like 

the current study, where awareness of IGVs is unlikely to be random – we generate LATE using the 

local average response function (LARF) estimator. The LARF estimator is a Wald estimator, but 

generalised by Abadie (2003) to cases where the instrument becomes random only after controlling 

for 𝑥 covariates that determine the observed outcome 𝑌 (Diagne 2012; Nguezet et al. 2011). 

Therefore, we estimated LATE using the more generalised LARF estimator, as follows:  

 

𝐿𝐴𝑇𝐸𝐿𝐴𝑅𝐹 =
1

�̂�(𝑑1=1)
∑ 𝑘�̂�

𝑛
𝑖=1

̂
⦁ℎ(𝑌𝑖 , 𝑥𝑖 , 𝜃)̂                 (15) 

 

Following Nguezet et al. (2011), the natural candidate for the treatment instrument in this study was 

a binary variable (𝑤) describing whether the household that operated the groundnut plot was aware 

of any IGV or not (𝑤 = 1 if aware; 𝑤 = 0 if otherwise). This is a natural instrument because 

awareness is a necessary condition for adoption, and awareness of IGVs can only affect groundnut 

yield through the adoption of those improved varieties.  

 

3. Results and discussion 

 

3.1 Adoption of improved groundnut varieties (IGVs) 

 

3.1.1 Descriptive results of adoption 

 

The sampled households were found to have been aware of about 14 different groundnut varieties, of 

which eight were improved (Table 1). Among the IGVs, SAMNUT24 was the most widely known 

(38%) and widely adopted (25%). Overall, about 55% of the sampled households were aware of at 

least one IGV, and about 31% had adopted at least one of the IGVs (Table 1). Therefore, not all 

households that were aware of IGVs had adopted them. The 31% adoption rate was based on the 

whole sample and is likely to be an underestimation or overestimation of adoption potential, unless 

the whole population from which the sample was drawn had been exposed to IGVs or exposure was 

randomly assigned. But it is already clear that not all households were exposed to IGVs, and neither 

was exposure randomly assigned. Households in the sampled villages selected themselves into the 

group that was aware and not aware of IGVs based on their observed and unobserved characteristics. 

Therefore, there is a need to control for exposure. 

 

Following this exposure argument, the descriptive statistics of adoption by the sub-sample that had 

been exposed to IGVs showed an adoption rate of about 56% (Table 1). This means that there is an 

adoption gap of about 25% due to a lack of exposure/awareness. Since no causal inference can be 
drawn based on these descriptive statistics, there is a compelling need to parametrically analyse the 

factors limiting exposure to IGVs and eventual adoption. 
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Table 1: Awareness and adoption of improved groundnut varieties 

Groundnut variety 
Variety 

category 

Year of 

release 

Aware (%)  

(N = 1 470) 

Unconditional 

adoption (N = 1 470) 

Adoption among 

exposed (N = 809) 

SAMNUT 10 Improved 1988 3.5 0.5 1.0 

SAMNUT 11 Improved 1988 1.5 0.2 0.4 

SAMNUT 21 Improved 2001 4.6 2.2 4.0 

SAMNUT 22 Improved 2001 2.4 0.2 0.4 

SAMNUT 23 Improved 2001 5.4 1.4 2.6 

SAMNUT 24 Improved 2011 37.8 24.6 44.6 

SAMNUT 25 Improved 2013 10.2 0.8 1.5 

SAMNUT 26 Improved 2013 9.5 2.4 4.4 

Maiborgo Local n/a 29.7 7.1 n/a 

Yardakar Local n/a 35.0 7.4 n/a 

Kampala Local n/a 7.1 2.3 n/a 

Manipinta Local n/a 0.1 0.0 n/a 

Kwankwaso Local n/a 27.0 15.4 n/a 

Burguwa Local n/a 4.4 3.0 n/a 

Improved varieties Improved n/a 55.0 30.5 55.5 

 

Further descriptive statistics showed that about 35% of non-adopters were already aware of IGVs 

(Table 2). About 65% of the sampled households were from villages involved in the TL III/USAID 

Groundnut Scaling Project, and a significantly higher proportion of adopters (86%) compared to non-

adopters (56%) were from these villages. This higher proportion of adopters coming from TL 

III/USAID Groundnut Scaling Project villages could be attributed to the robust promotional activities 

that were undertaken by the two projects to create awareness of and improve access by the households 

in these villages to seeds of the promoted IGVs. This assertion is consistent with the descriptive 

results, showing that a significantly higher proportion of adopting households had been engaged in 

groundnut technology-upscaling activities (trials, demonstrations, field days) compared to non-

adopting households. While about 21% of the sampled households were engaged in IGV technology- 

scaling activities, about 32% and 16% of adopters and non-adopters, respectively were involved in 

these technology-scaling activities (Table 2). 

 

Table 2: Descriptive statistics for household-level variables 

Variable 
Pooled 

(N = 1 470) 

Adopter 

(N = 449) 

Non-adopter 

(N = 1 021) 

Mean 

difference 

Aware of improved groundnut varieties (1 = Yes; 

0 = No) 

0.55 

(0.50) 

1.00 

(0.00) 

0.35 

(0.48) 
0.65*** 

TL III Project village (1 = Yes; 0 = No) 
0.65 

(0.48) 

0.86 

(0.35) 

0.56 

(0.50) 
0.30*** 

Household head age (years) 
45.34 

(11.96) 

45.47 

(11.19) 

45.29 

(12.28) 
0.18 

Household head sex (1 = Male; 0 = Female) 
0.92 

(0.27) 

0.91 

(0.29) 

0.93 

(0.26) 
-0.02 

Household head marital status (1 = Married; 

0 = Otherwise) 

0.96 

(0.20) 

0.96 

(0.20) 

0.96 

(0.19) 
-0.00 

Household head main occupation (1 = Farming; 

0 = Otherwise) 

0.85 

(0.36) 

0.86 

(0.35) 

0.84 

(0.36) 
0.02 

Household head education (years) 
3.35 

(6.86) 

3.00 

(6.18) 

3.50 

(7.14) 
-0.50 

Household size (number of members) 
9.60 

(7.65) 

9.84 

(9.16) 

9.50 

(6.88) 
0.35 

Household membership of a farmer group 

(1 = Yes; 0 = No) 

0.33 

(0.47) 

0.41 

(0.49) 

0.29 

(0.45) 
0.12*** 

Household visited by agricultural extension agent 

(1 = Yes; 0 = No) 

0.60 

(0.49) 

0.77 

(0.42) 

0.53 

(0.50) 
0.25*** 
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Variable 
Pooled 

(N = 1 470) 

Adopter 

(N = 449) 

Non-adopter 

(N = 1 021) 

Mean 

difference 

Household accessed credit (1 = Yes; 0 = No) 
0.09 

(0.29) 

0.13 

(0.34) 

0.08 

(0.26) 
0.06*** 

Household engaged in technology-upscaling 

activities (1 = Yes; 0 = No) 

0.21 

(0.41) 

0.32 

(0.47) 

0.16 

(0.37) 
0.16*** 

Household had problems in accessing input/ 

output markets (1 = Yes; 0 = No) 

0.19 

(0.39) 

0.17 

(0.38) 

0.19 

(0.39) 
-0.02 

Bauchi State (1 = Yes; 0 = No) 
0.21 

(0.40) 

0.18 

(0.38) 

0.22 

(0.41) 
-0.04* 

Jigawa State (1 = Yes; 0 = No) 
0.20 

(0.40) 

0.31 

(0.47) 

0.15 

(0.36) 
0.16*** 

Kano State (1 = Yes; 0 = No) 
0.20 

(0.40) 

0.11 

(0.31) 

0.25 

(0.43) 
-0.14*** 

Katsina State (1 = Yes; 0 = No) 
0.20 

(0.40) 

0.27 

(0.45) 

0.17 

(0.38) 
0.10*** 

Kebbi State (1 = Yes; 0 = No) 
0.19 

(0.39) 

0.13 

(0.34) 

0.21 

(0.41) 
-0.08*** 

Notes: *** = p < 0.01, ** = p < 0.05, * = p < 0.1; values in parenthesis are standard deviations 

 

Also, there was a significant difference between adopting and non-adopting households in the 

proportion of households that were visited by an agricultural extension agent and had membership of 

farmer groups. While about 60% of the sampled households had been visited by agricultural extension 

officers, a significantly higher proportion of adopting households (77%) were visited compared to 

non-adopting households (53%). These findings emphasise the importance of exposure to 

technologies in influencing adoption. Visits by agricultural extension agents and involvement in 

agricultural technology testing and scaling activities, like trials, demonstrations and field days, give 

households an opportunity to be exposed to improved agricultural technologies. Further, a 

significantly higher proportion of households adopting improved varieties were members of farmer 

groups compared to non-adopters (Table 2). Farmer groups are social capital institutions, and they 

are likely to enhance the exchange of information and social learning about new technologies (Uaeieni 

2011). Lastly, a significantly higher proportion of households that had adopted improved groundnut 

varieties had accessed credit (13%) compared to those who had not adopted (8%). This statistic 

emphasises the importance of credit in enabling households to adopt improved agricultural 

technologies and is consistent with past empirical findings (Hu et al. 2019). 

 

3.1.2 Determinants of exposure to and adoption of improved groundnut varieties 

 

About 55% of the sampled households were exposed to at least one of the eight IGVs (Table 1). The 

unconditional sample adoption rate was about 31%. The results show that some variables were 

significant in determining exposure to IGVs, but insignificant in influencing adoption and vice versa. 

Similarly, there were variables that significantly determined both exposure and adoption. The age of 

the household head was found to significantly affect the exposure of households to IGVs, but not 

adoption (Table 3). Households headed by older people were more likely to be exposed to improved 

varieties compared to those headed by younger people. This finding could be attributed to the 

possibility that older household heads – compared to younger household heads – have more 

experience in farming and also have wider social networks from which they can easily get information 

about new varieties compared. In fact, we found that membership of farmer groups had a positive and 

highly significant effect on the probability of household exposure to IGVs. Interestingly, while we 

found a significant effect of membership of farmer groups on exposure to IGVs and an insignificant 

effect on adoption (Table 3), Wossen et al. (2017) find a positive and significant effect of membership 
of farmer groups on the adoption of improved agricultural technologies. However, unlike in the 

current study, where we used the ATE framework to assess adoption, Wossen et al. (2017) used the 
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classical probit model that is likely to generate inconsistent and biased estimates, as outlined in the 

methodology section above. In fact, we also obtained similar results to those of Wossen et al. (2017) 

when we used the classical probit model to assess adoption (Table 3). The positive and significant 

effect of membership of farmer groups on exposure to IGVs is a clear demonstration of the importance 

of social networks in enabling farmers to have access information about improved agricultural 

technologies. Social learning achieved through social networks/capital has been demonstrated 

empirically to be critical for enhancing access to agricultural productivity-enhancing technologies 

(Simtowe et al. 2019; Norton & Alwang 2020). 

 

Table 3: Determinants of exposure to and adoption of improved groundnut varieties 

Variable label 
Model 1: 

Exposure 

Model 2: Adoption 

among exposed 

Model 3: Classical 

probit model 

Household head age (years) 
0.01** 

(0.00) 

-0.00 

(0.00) 

0.00 

(0.00) 

Household head sex (1 = Male; 0 = Female) 
0.13 

(0.14) 

0.03 

(0.18) 

0.07 

(0.14) 

Household head marital status (1 = Married; 

0 = Otherwise) 

-0.42** 

(0.20) 

0.06 

(0.25) 

-0.06 

(0.20) 

Household head main occupation 

(1 = Farming; 0 = Otherwise) 

-0.27** 

(0.11) 

0.32** 

(0.13) 

0.12 

(0.11) 

Household head education (years) 
-0.02** 

(0.01) 

0.00 

(0.01) 

-0.00 

(0.01) 

TL III Project village (1 = Yes; 0 = No) 
0.57*** 

(0.08) 

0.47*** 

(0.12) 

0.68*** 

(0.10) 

Household visited by agricultural extension 

agent (1 = Yes; 0 = No) 

0.26*** 

(0.08) 

0.52*** 

(0.12) 

0.47*** 

(0.09) 

Household size (number of members) 
-0.01* 

(0.01) 

-0.01 

(0.01) 

-0.02** 

(0.01) 

Household engaged in technology-upscaling 

activities (1 = Yes; 0 = No) 

0.24** 

(0.10) 

0.36*** 

(0.12) 

0.39*** 

(0.10) 

Household membership of a farmer group 

(1 = Yes; 0 = No) 

0.34*** 

(0.08) 

-0.01 

(0.11) 

0.16* 

(0.09) 

Household accessed credit (1 = Yes; 0 = No) 
0.08 

(0.13) 

0.49*** 

(0.18) 

0.36*** 

(0.12) 

Household had problems in accessing input/ 

output markets (1 = Yes; 0 = No) 

-0.21** 

(0.10) 

-0.30** 

(0.13) 

-0.27** 

(0.11) 

State Yes Yes Yes 

Constant 
-0.05 

(0.24) 

-0.48* 

(0.29) 

-1.23*** 

(0.25) 

Number of observations 1 470 809 1 470 

Wald chi2(16) 307.85 104.47 256.15 

Prob > chi2 0.00 0.00 0.00 

Pseudo R2 0.15 0.10 0.16 

Log pseudolikelihood -857.54 -498.27 -759.84 

Notes: *** = p < 0.01, ** = p < 0.05, * = p < 0.1; values in parenthesis are standard errors 

 

Other variables that significantly affected exposure but not the probability of adopting IGVs were 

marital status and education of the household head, together with household size. These variables 

were negatively and significantly related to the probability of exposure to IGVs (Table 3). Households 

with heads who were not married had a higher probability of being exposed to IGVs, probably 

because most research and development projects in SSA normally target vulnerable households like 

those headed by widows, widowers, divorced and single parents. On the other hand, the negative and 

significant effect of education on probability of exposure to IGVs could be explained by the 

possibility that more educated household heads derive their livelihoods outside agriculture, and 

therefore they are less motivated to find out about new agricultural technologies compared to less 
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educated household heads, who are mainly dependent on agriculture. Similarly, large household size 

reduced the probability of exposure to IGVs (Table 3). This latter finding could be driven by the 

possibility that large household sizes are synonymous with a high dependence ratio, thereby limiting 

the ability for interaction with other farmers, such as in farmer groups, where information about 

improved varieties could be shared (Sheahan & Barrett 2014). 

 

As expected, households in project villages had a higher and more significant probability of exposure 

to and adoption of IGVs than others (Table 3). Therefore, interventions by research and development 

projects to promote and popularise modern technologies are critical for raising awareness and 

increasing the probability of adoption. Similarly, visits to households by agricultural extension staff 

and involving households in technology-upscaling activities (trials, demonstrations, field days, etc.) 

increases the likelihood of exposure to and adoption of IGVs (Table 3). These visits by extension 

staff and participation in technology-scaling activities tend to provide more information about new 

technologies, thereby reducing ambiguity and perceived risks. Therefore, empowering extension 

agents to visit/contact farmers and involving households in agricultural technology-scaling activities 

will not only expose these households to improved technologies like IGVs, but will also increase their 

probability of adoption. These findings are consistent with Wossen et al. (2017) in Nigeria and Norton 

and Alwang (2020) in their literature review of overall adoption. 

 

Although not important for determining exposure to IGVs, access to credit was positively and 

significantly associated with the adoption of IGVs (Table 3). Access to credit has been found to be a 

wealth and risk-mitigation indicator in previous literature. Those who access credit are considered 

relatively better off (wealthier) than those who do not, and access to credit has been shown to mitigate 

the risk aversiveness of rural farming households. On the other hand, those households that had 

constraints in accessing input and/or output markets were unlikely to be exposed to IGVs, and 

similarly were unlikely to adopt them (Table 3). Poor market access reduces the likelihood of 

accessing information about improved agricultural technologies and dampens adoption probability 

(Mujeyi et al. 2019). Remoteness (poor access to markets) is associated with higher transaction costs 

of accessing information and physical technologies, and thus poses less of a likelihood of adoption. 

 

The unexpected finding was the effect of the main occupation of the household head on the probability 

of exposure to IGVs. The results showed that households headed by individuals whose main 

occupation was farming were unlikely to be exposed to IGVs compared to others (Table 3). The 

expectation was that, if the main occupation of the household head was farming, there was a 

motivation to find out about new farming technologies that could boost household income. However, 

this unexpected finding could be driven by the possibility that full-time farmers spend most of their 

time on the farm, thus missing out on interacting with other people who could share information and 

expose them to new technologies (Awotide et al. 2013). However, once exposed to IGVs, household 

heads whose main occupation is farming are more likely to adopt than others. Therefore, technology 

awareness and promotional activities targeted at household heads whose main occupation is farming 

are critical for increased adoption and the eventual desired genetic gains from agricultural research. 

 

3.1.3 Actual and potential adoption rates of improved groundnut varieties 

 

The descriptive statistics and ATE results consistently showed a statistically significant joint exposure 

and adoption rate (JEA) of the sample of about 31% (Table 1 and Table 4). However, as already 

mentioned, this 31% does not reflect the true adoption potential, unless the whole population is either 

exposed to IGVs or exposure is assigned randomly to the target population. Consequently, a 

parametric estimation of IGV adoption among sampled households that had been exposed to IGVs 

(ATT) showed an adoption rate of about 67%. However, this 67% adoption rate could still be 
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inconsistent, because the same propensity to adopt cannot be assumed to exist among the sub-sample 

that was not exposed to IGVs. Therefore, estimating the probability of adopting IGVs among those 

households that were not exposed to them (ATU) showed an adoption rate of about 63% (Table 4). 

 

On the other hand, the estimated ATE for the population adoption rate conditional on full exposure 

was about 65%. This is the probability of adopting IGVs in northern Nigeria if all groundnut-farming 

households were exposed to IGVs. Comparing the observed sample adoption rate of 31% (JEA row 

in Table 4) and the potential population adoption rate of 65% (ATE row in Table 4) therefore showed 

that there is a significant adoption gap of about 34% (GAP row in Table 4). This finding indicates 

that there is potential to significantly increase the adoption of IGVs if the whole population would be 

exposed to them. Similar findings of a significant adoption gap due to incomplete exposure have been 

documented in Tanzania for pigeonpea (Simtowe et al. 2011) and rice in Nigeria (Diagne 2010). The 

need for increased activities to create awareness of technology among smallholder groundnut farmers 

in northern Nigeria is backed up by the fact that the population selection bias (PSB) parameter from 

the parametric analysis was positive and significant (PSB row in Table 4). This implies that 

households that were exposed to IGVs have a higher probability of adoption than those that had not 

been exposed. Therefore, as noted by Diagne (2010), the low adoption of improved agricultural 

technologies in SSA is significantly due to a lack of awareness. 

 

Table 4: Parametric estimates of average treatment effect (ATE) of population adoption rates 
Estimator Parameter 

ATE 
0.65*** 

(0.02) 

ATT 
0.67*** 

(0.02) 

ATU 
0.63*** 

(0.03) 

JEA 
0.31*** 

(0.01) 

GAP 
-0.34*** 

(0.02) 

PSB 
0.03** 

(0.01) 

Notes: *** = p < 0.01, ** = p < 0.05; values in parenthesis are standard errors 

 

3.2 Impact assessment of improved groundnut varieties (IGVs) on groundnut productivity 

 

While the assessment of the adoption of IGVs was conducted at the household level, the impact 

assessment of IGVs on yield was analysed using plot-level data. The sampled households were found 

to be cultivating about 1 654 groundnut plots, and the observed average yield for IGVs was about 741 

kg/ha compared to 679 kg/ha for local groundnut varieties (LGVs). This yield difference (62 kg/ha) 

was statistically significant (Table 5). In addition to these results, which are based on a simple t-test, 

the impact of IGVs on yield was estimated using two ATE estimators, i.e. the non-parametric ATE 

inverse propensity score weighting (IPSW) and the parametric ATE with interaction terms (Table 5). 

On the other hand, the LATE estimation results can be based on Wald or LARF estimators. In this 

study, we present and discuss results from the LARF estimator, because the Wald estimator of LATE 

relies on the strong assumption that the instrument should be completely random, while LARF relaxes 

this assumption.2 

 

 
2 The instrument used in this study, i.e. awareness of IGVs, is not random, since farmers self-selected themselves into the 

group that is aware of the IGVs and into the group that is not aware of IGVs, conditional on some observed and unobserved 

covariates. 
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The results from the non-parametric IPSW method show that ATE was about 182 kg/ha. This is the 

average yield advantage that any plot picked randomly from the population in which the sampled 

groundnut growers were drawn would have if it were to be planted with IGVs. However, the estimated 

average impact of IGVs in plots that were planted with IGVs (ATT) was about 155 kg/ha. The 

implication of this latter finding is that, had these plots with IGVs been planted with LGVs, then their 

yields could have been 155 kg/ha less than what was observed on these plots at the time of this study. 

Therefore, IGV adoption resulted in a 26% yield increase on plots with IGVs. Similarly, a significant 

ATE of IGVs was observed among LGVs plots (ATU). Had LGV plots been planted with IGVs, the 

yield could have been increased significantly, by about 201 kg/ha (Table 5), and this represents an 

ATU impact of about 30%. Similarly, parametric estimates showed a significant IGV impact on ATE, 

ATT and ATU (Table 5). The estimated ATE was 173 kg/ha, ATT was 132 kg/ha and ATU was 204 

kg/ha, representing positive impacts of 25%, 18% and 30%, respectively. Since the impact of IGVs 

is more pronounced on plots that are currently under LGVs, this calls for concerted efforts to enable 

more groundnut plots to be planted with IGVs for increased production. 

 

Table 5: Econometric estimation of the impact of improved groundnut varieties (IGVs) on 

productivity 
Parameter Parameter estimate Robust std err z 

Observed difference 61.95** 27.64 2.24 

Improved varieties 741.20*** 20.63 35.92 

Local varieties 679.24*** 18.40 36.92 

Non-parametric ATE estimator (IPSW) 

ATE 181.84*** 36.97 4.92 

ATT 154.69*** 30.01 5.15 

ATU 201.48*** 49.37 4.08 

PSB -27.15 24.26 -1.12 

Parametric ATE estimator (with interaction terms) 

ATE 173.43*** 29.29 5.92 

ATT 131.63*** 30.43 4.33 

ATU 203.66*** 32.89 6.19 

PSB -41.79*** 14.80 -2.82 

LATE LARF estimator 

LATE 148.21*** 0.00 9.30E+08 

Note: *** = p < 0.01, ** = p < 0.05, * = p < 0.01 

 

On the other hand, the LARF estimator of LATE showed that IGVs have a significantly positive 

impact on productivity (Table 5). IGVs were found to have a significant LATE, of about 148 kg/ha. 

This implies that any plot picked randomly among the groundnut-growing farmers could yield almost 

148 kg/ha more if it was planted with IGVs compared to LGVs. Therefore, the ATT of the LARF 

estimator is about 20%, i.e. the yield of the IGV plot could have dropped from 741 kg/ha to about 

593 kg/ha if the same plot was under LGVs. On the other hand, the ATU from the LARF estimator 

was about 22%, which means that the yield of the LGV plot could have increased from the observed 

679 kg/ha to about 827 kg/ha. Therefore, these results demonstrate the importance of awareness of 

IGVs in determining adoption, along with the significant impact of IGV adoption, on boosting 

groundnut productivity in Nigeria. Whether this increased productivity stemming from the adoption 

of IGVs will lead to an improvement in key welfare outcomes, such as reduced poverty and improved 

food and nutrition security, is an area worth exploring in future research.  

 

4. Conclusion and implications 

 

Sub-Saharan Africa (SSA) has disproportionately high poverty, food and nutrition insecurity 

challenges compared to other regions of the world. These challenges are more pronounced among 
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rural farming households, which continue to use archaic technologies like local crop varieties that are 

less productive. The reasons for this low adoption have been studied using different approaches that 

make generalisation of the results across different geographies within this region difficult. Therefore, 

using household- and plot-level data collected in northern Nigeria, we analysed the adoption and 

impact of improved groundnut varieties (IGVs) on productivity (yield). We applied the potential 

outcomes framework to estimate the adoption gap and analyse adoption drivers. Subsequently, the 

average treatment effect (ATE) and local average treatment effect (LATE) models were used to assess 

the impact of IGVs on groundnut yield. The results showed a significant adoption gap of 34% 

attributable to a lack of exposure to IGVs. With full exposure, the adoption rate would have the 

potential to increase from the current 31% to almost 65%. Furthermore, the results showed that 

addressing agricultural extension constraints, engaging farmers in technology development, testing 

and promotion, and encouraging farmers to join farmer groups are critical for exposing them to IGVs. 

Also, relaxing agricultural extension constraints and engaging households in technology 

development, testing and promotion will increase their exposure to and adoption of IGVs. Credit and 

market access are also critical in increasing the adoption of IGVs. This study furthermore found a 

positive and significant impact of IGVs on groundnut productivity. 
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