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Abstract 

Our current agricultural system faces a perfect storm—climate change, a burgeoning population, and unpredictable 
outbreaks such as COVID-19 which disrupt food production, particularly for vulnerable populations in developing 
countries. A paradigm shift in agriculture practices is needed to tackle these issues. One solution is the diversifica-
tion of crop production. While ~56% of the plant-based protein stems from  three major cereal crops (rice, wheat, 
and maize), underutilized crops such as millets, legumes, and other cereals are highly neglected by farmers and 
the research community. Millets are one of the most ancient and versatile orphan crops with attributes such as fast 
growing, high yielding, withstanding harsh environments, and rich in micronutrients such as iron and zinc, making 
them appealing to achieve agronomic sustainability. Here, we highlight the contribution of millet to agriculture and 
focus on the genetic diversity of millet, genomic resources, and next-generation omics and their applications under 
various stress conditions. Additionally, integrative omics technologies could identify and develop millets with desir-
able phenotypes having high agronomic value and mitigating climate change. We emphasize that biotechnological 
interventions, such as genome-wide association, genomic selection, genome editing, and artificial intelligence/ma-
chine learning, can improve and breed millets more effectively.

Keywords:  Breeding, climate resilience, integrated omics, millets, multiomics, PANOMICS, stress tolerance, sustainable 
development goals.
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Introduction

Climate change and the rise in the global population pose a 
severe threat to food security. Globally, to meet the demands 
of a rapidly increasing population, which is projected to reach 
9–10 billion by 2050, there is a pressing need to boost food 
production by 60–110% while simultaneously addressing the 
alarming climatic fluctuations which are complex and unpre-
dictable (Rockström et al., 2017). The limited variety of crops 
supplying global food makes our agricultural system more 
susceptible to climate hazards. Currently, >50% of consumed 
calories come from just three staple crops (rice, maize, and 
wheat), neglecting the wide variety of nutrient-rich plants his-
torically utilized by humanity (Hunter et al., 2019). Expanding 
our knowledge about underutilized and neglected food crops 
that can provide nutrition and support sustainable agriculture 
is essential.

Millets collectively form a group of small-grained cereals 
that are broadly classified into major and minor millets; major 
millets include pearl millet (Cenchrus americanus), finger millet 
(Eleusine coracana), and sorghum [Sorghum bicolor (L.) Moench], 
whereas minor millets consist of foxtail millet (Setaria italica), 
little millet (Panicum sumatrense), proso (broomcorn) millet 
(Panicum miliaceum), kodo millet (Paspalum scrobiculatum), barn-
yard millet (Echinochloa esculenta), tef (Eragrostis tef), guinea 
millet (Brachiaria deflexa), fonio (Digitaria exilis), browntop 
millet (Urochloa ramosa), and Job’s tears (Coix lacryma-jobi) 
(Ajeesh Krishna et al., 2022; Antony Ceasar and Maharajan, 

2022). Millets are the oldest ancient crops, cultivated >8000 
years ago. Millets have C4 photosynthetic physiology and be-
long to a family of the Poaceae and subfamily Panicoideae and 
Chloridoideae, which enables them to thrive under harsh cli-
matic conditions. For instance, sorghum outperforms other 
cereals in rainfed and drought conditions (Chaturvedi et al., 
2022; Banshidhar et al., 2023). Similarly, pearl millet, foxtail 
millet, proso millet, and kodo millet are well suited to extreme 
drought, high temperatures, low soil fertility, salinity, and acidic 
soils (Das and Rakshit, 2016; Ghatak et al., 2017). They also 
demonstrate better water use efficiency, nitrogen use efficiency 
(NUE) (see Box 1), a short life cycle, and require fewer ag-
ricultural inputs compared with other popular cereal crops, 
prompting farmers to reintroduce millet cultivation and bring 
them back to the market (Satyavathi et al., 2021).

Although millets are less popular than major cereal crops, 
they are highly nutritious due to their rich content of proteins, 
minerals, flavonoids, polyphenols, and vitamins, offering mul-
tiple health benefits (such as being gluten-free and having a 
low glycemic index), and have a long shelf life (Muthamilarasan 
and Prasad, 2021; Chaturvedi et al., 2022, 2023; Kudapa et al., 
2023). Recognizing their nutritional and ecological advan-
tages, the United Nations (UN) designated the year 2023 as 
the International Year of Millets (IYM; https://www.fao.org/
millets-2023/en) to raise awareness and promote the cultiva-
tion of millets, supporting the UN’s sustainable development 

Box 1. Nitrogen use efficiency in millets

C4 plant physiology renders millets with higher NUE due to their compartmentalized CO2-concentrating mechanism 
around Rubisco, a major N-storing enzyme crucial for photosynthesis (Evans and von Caemmerer, 1996). Dissection 
and integration of complex traits such as NUE requires a transition from a gene-centric view of crop bioengineering 
to a PANOMICS perspective (Weckwerth et al., 2020; Ghatak et al., 2023). Genetic engineering efforts identified the 
Dof1 transcription factor (TF) (Gupta et al., 2014) and the PII signalling superfamily (Hsieh et al., 1998) as potential 
candidates for NUE in millets. Recently, Bandyopadhyay and co-workers found potential regulation of NUE in contrasting 
N-responsive pearl millet genotypes by APETALA2 (AP2) TFs (Bandyopadhyay et al., 2024). By the use of 15N/13C isotope 
labeling, the N-responsive genotype allocated more biomass to nodes and roots, more N to grains, and more effective 
N remobilization in the flag leaf (Bandyopadhyay et al., 2024). Furthermore, soil microbes and their interactions with host 
plant species mediated by root exudates influence the N cycle in the rhizosphere (Ghatak et al., 2023). Various symbionts 
release secondary metabolites that induce N-fixing bacteria to enter roots. Biological nitrification inhibition (BNI) by plant 
exudates reduces microbe nitrification, release of N2O and potentially increase NUE. Ghatak and co-workers detected 
enhanced BNI in contrasting drought-stressed pearl millet genotypes by control of microbial community activity through 
altered root exudation (Ghatak et al., 2022). Wang and co-workers identified genome-wide associations of 827 foxtail 
millet cultivars to rhizoplane microbiota composition by a combined GWAS, microbiome-wide association studies 
(MWAS), and microbiome genome-wide association studies (mGWAS) analysis. Their analysis unraveled SNP-associated 
rhizoplane operational taxonomic units (OTUs) that had high correlations with plant growth traits, suggesting a genotype-
dependent influence of root microbiome composition that affects agronomic traits of foxtail millet (Wang et al., 2022). 
This methodology can also be applied to find key millet genetic variants that influence mircobiome composition with 
downstream effects on NUE. Advanced machine learning methods have been used to test the causal effect of selected 
genomic variants on NUE in Arabidopsis and in maize (Cheng et al., 2021), and should also be applied in millets as a 
genome-wide pre-selection step before functional validation using CRISPR/Cas9.
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goals, particularly the goal of ‘attaining zero hunger’ (Goal 2) 
(UN General Assembly; https://www.un.org/sustainablede-
velopment/hunger/). Despite their climate resilience, millet 
production suffers from issues related to domestication, such as 
seed shattering, low yield, lodging, and poor agronomic prac-
tices. These unfavorable traits have hindered their globalization.

However, the broad resilience characteristics of millets will 
be difficult to reproduce in other cereals because of the in-
tricate genetic basis of abiotic stress tolerance. Hence, efforts 
should focus on improving yield traits in millets and shifting 
global production toward these important underutilized 
crops. Furthermore, understanding the unique traits of millet 
and their full potential in terms of productivity and climate 
resilience is still in its early stages due to the lack of well- 
characterized molecular information, which has limited yield 
improvement (Fig. 1). With the recent development of ge-
nomic information and advances in omics tools, there is poten-
tial to improve millets through marker-assisted breeding and 
exploiting trait-specific variations, leading to the expansion of 
existing germplasm (Weckwerth et al. 2020). We can use data-
driven crop improvement to explore and combine useful var-
iations to target specific traits and produce high nutrient value 
cultivars. This approach can also shorten the selection cycle and 
reduce the time to release new varieties, particularly important 
in changing climatic conditions. This review provides a com-
prehensive overview of modern genome sequencing in millet 

and summarizes the efforts undertaken for millet improvement 
using high-throughput molecular analysis and genotyping 
technologies.

Genomic interventions for millet 
improvement

Significant advances have been made in developing climate-
resilient crops by improving grain yields in major cereals 
such as rice, maize, and wheat. A pioneering effort to gen-
erate necessary genomic resources for enhancing breeding 
programs in pearl millet led to the formation of the interna-
tional consortium that includes various organizations such as 
CGIAR, ICRISAT, and others, resulting in the assembly of 
the reference genome of the inbred line, Tift23D2B1-P1-P5, 
the first draft genome for pearl millet (Varshney et al., 2017). 
This analysis resulted in the annotation of 27 893 (72.30%) 
protein-coding genes, with the expansion in gene families 
associated with terpenoid biosynthesis, which might explain 
the high heat and drought tolerance level in pearl millet com-
pared with other cereals. The Tift 23D2B1-P1-P5 (BioSample 
identifier: SAMN04124419) pearl millet reference assembly 
is available in the NCBI (ASM217483v1) and the European 
Nucleotide Archive (GCA_002174835.1). More advanced, 
long-read sequencing was recently performed to improve 
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Fig. 1. Millets for sustainable agriculture and relevant traits for target improvement.
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the quality of the Tift 23D2B1-P1-P5 genome by generat-
ing Bionano Genomics optical maps and long reads obtained 
by Oxford Nanopore Technologies (ONT) sequencing (Salson 
et al., 2023). This resulted in better continuity in the order of 
the contigs and the scaffolds of the new assembly, especially 
in the centromeric regions (Salson et al., 2023), compared 
with bacterial artificial chromosome (BAC) sequencing. The 
genome sequences of other millets are also available, namely 
foxtail millet (Bennetzen et al., 2012), tef (Cannarozzi et al., 
2014; VanBuren et al., 2020), finger millet (Hittalmani et al., 
2017), and proso millet (broomcorn) (Zou et al., 2019), further 
expanding the available resources for genetic improvement of 
various millets and enabling their use as model crop plants (see 
Box 2).

Pangenome sequencing significantly improves the unravel-
ing of the large genetic diversity within a species compared 
with long-read sequencing. It can also capture genomic di-
versity from multiple representative genomes, especially with 
the advent of variation graphs and Giraffe tools that further 
promote the use of the graph-based pangenome (Raza et al., 
2023). Furthermore, it can rediscover lost diversity during do-
mestication and reintroduce selected variation associated with 
valuable traits. Selective sweep regions were found in the do-
mesticated relative to wild pearl millet accessions, containing 
structural variants that overlap with genes of improved culti-
vars that might have contributed to heat adaptation during do-
mestication (Yan et al., 2023). Additionally, utilizing crop wild 
relatives for the identification of novel genes to improve the 

Box 2. Key developments in understanding millet research for better adaptation to climate change

He et al. (2023a) provided the first graph-based pan-genome of foxtail millet (Setaria italica), consisting of 110 diverse 
Setaria accessions (35 wild, 40 landraces, and 35 modern cultivars). Large-scale genetic studies across 13 different 
environments were performed, which can be crucial for accelerating marker-assisted breeding, gene editing, and 
developing improved breeding programs.
Chen et al. (2023) investigated the first pan-genome of 516 broomcorn millet to identify the genetic basis of agronomic 
traits such as nutrient content, salt, drought tolerance, disease, and pest resistance.
Lu et al. (2024) provided large-scale genomic variation in broomcorn millet. In total, 1904 accessions were sequenced. 
Genome-wide association studies (GWAS) pinpointed candidate genes for 12 agronomic traits. For example, accessions 
with higher expression of PmGW8 demonstrated larger grain size, and the expression of PmLG1 showed loose panicles.
Kuijer et al. (2024) determined Striga susceptibility in two contrasting lines of pear millet, Aw and P10. The presence 
of CLAMT1b in P10 made it more susceptible to Striga, and its absence in the Aw accession demonstrated higher 
resistance. This gene can play an important role in pearl millet lines and can be useful in marker-assisted breeding and 
genome editing.
Zhang et al. (2024) reconstructed a Poaceae phylogeny with nuclear genes from genomic/transcriptomic datasets of >360 
grasses. This provided an excellent opportunity to investigate whole-genome duplication (WGD) in multiple subfamilies to 
identify potential WGDs across Poaceae. For example, a WGD identified as the rho gene is shared among the Poaceae 
members.
Li et al. (2022) provided multiomics datasets encompassing the genomes, transcriptomes, metabolomes, and anti-
inflammatory indices from 398 foxtail millet accessions. In total, 83 metabolites were identified in the millet grains with 
anti-inflammatory effects, such as naringenin chalcone (wh1094) and 5-O-p-coumaroylquinic acid (wh1526). The function 
of the PHYTOENE SYNTHASE 1 (PSY1) gene in affecting millet grain color and quality was validated using CRISPR-
mediated genome editing.
Bandyopadhyay et al. (2024) evaluated the physiological and genetic basis of nitrogen responsiveness in foxtail millet 
(Setaria italica L.). The study provides insight into the functioning of contrasting NRp and NNRp accessions at the whole 
plant and flag leaf levels. Understanding the drivers of biomass and N allocation changes at an earlier developmental 
stage would provide additional useful information on the molecular basis for N responsiveness in S. italica, which is of 
wider relevance for developing more N-responsive cereal crops.
Jaiswal et al. (2023) evaluated 104 foxtail millet accessions for 11 nutrients in three different environments, and 67 high-
confidence marker–trait associations (MTAs) were identified. Six SNPs showed a pleiotropic effect and were associated 
with two or more nutrients, whereas 24 candidate genes were identified for 28 MTAs involving seven traits.
Kumar et al. (2024) explored the genome-wide distribution of H3K9ac and gene expression in dehydration-tolerant ‘IC 
403579’ (IC4) and sensitive ‘IC-480117’ (IC41) cultivars of foxtail millet in response to dehydration stress, emphasizing 
the functional role of SiHDA9.
Ramu et al. (2023) provided de novo genome assemblies with high-quality annotation using high-coverage long- and 
short-read data for three pearl millet genotypes. Gene annotation and enrichment analyses revealed that the millet 
genome is enriched with cysteine- and methionine-coding genes.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/76/6/1534/7933095 by International C

rops R
esearch Institute for the Sem

i-Arid Tropics user on 18 June 2025



Copyedited by: OUP

1538 | Ghatak et al.

allelic richness of the cultivated germplasm can be exploited by 
the genomic tools for mapping precise traits and introgressions 
(Rocha et al., 2021). Moving forward, a super-pangenome 
strategy that extends to the inclusion of accessions beyond the 
species level (Khan et al., 2020) can deliver a more compre-
hensive list of genetic variations that have not yet been been 
applied to millets and can enhance the power of pangenome 
studies to understand better evolutionary selection sweeps 
for the reintroduction of advantageous variants in breeding 
practices.

Molecular markers, genetic linkage maps, and other sequenc-
ing information are vital for developing genome-assisted 
breeding. In pearl millet, one of the first DNA markers to be 
used for genetic mapping were restriction fragment length pol-
ymorphism (RFLP) markers, resulting in the generation of the 
shortest linkage map (Liu et al., 1994). Various other efforts fol-
lowed using amplified fragment length polymorphism (AFLP) 
markers, genomic simple sequence repeats (gSSRs), diversity 
array technology (DarT), and quantitative trait locus (QTL) 
mapping. Later, thousands of single nucleotiode polymorphism 
(SNP) markers were identified using genotyping-by-sequencing  
(GBS) in global germplasm collections of pearl millet lines 
(Serba et al., 2019; Kanfany et al., 2020). Improved denser 
linkage maps with higher coverage were created, making satu-
rated genetic maps available and thousands of SNPs facilitating 
genetic studies across multiple millet lines (Kumar et al., 2018).

Densely connected genetic linkage maps are used in associ-
ation mapping studies such as genome-wide association studies 
(GWAS), genetic selection, or QTL mapping, which are associated 
with various stress tolerance traits. GWAS in pearl millet identified 
genetic factors responsible for the variations in flowering time at 
the phytochrome C (PHYC) (866 bp) locus (Saïdou et al., 2014), 
significant association with PgMADS11 alleles (Mariac et al., 
2011), as well as the PgPb11603 DArT marker (Gemenet et al., 
2015). In addition, SNPs associated with acetyl-CoA carboxylase 
genes were found to be linked to panicle and grain yield (Sehgal 
et al., 2015), such as the PgPb12954 and Xibmsp11/AP6.1 mark-
ers (Gemenet et al., 2015). Similarly, key alleles were found for 
grain iron and zinc (Anuradha et al., 2017). Later, a total of 188 
inbred lines were evaluated under drought for identifying QTLs 
associated with agronomic traits using GBS (Debieu et al., 2018), 
revealing two SNPs to be significantly associated with biomass 
production. Finally, multienvironmental QTL analysis was carried 
out on 210 recombinant inbred lines in three diverse pearl millet 
growing regions in India for three consecutive years. Stable QTLs 
were identified across environments associated with thousand seed 
weights and yields per plant (Singhal et al., 2022).

Next-generation genomics and machine 
learning tools for millet improvement

Next-generation genomic tools for improving small millets 
could be part of the ‘Next Green Revolution’—a term used 

to coin novel methods for crop improvement (Weckwerth 
et al., 2020). Classical breeding strategies such as mutation and 
transgenic breeding are laborious and pose many challenges. 
New breeding techniques such as genetic editing, epigenetic 
modifications, and heritable targeted mutations can speed up 
the breeding process and make it more efficient. Techniques 
such as CRIPSR/Cas9 [clustered regularly interspaced palin-
dromic repeats (CRISPR)/CRISPR-associated protein 9] and 
genome-wide editing such as virus-induced gene silencing 
(VIGS), the super-pangenome approach, generation of double 
haploids, resequencing, and transformation methods such 
as the nanoparticle-based delivery system (Choudhary et al., 
2023) or the Agrobacterium-based system (Antony Ceasar and 
Ignacimuthu, 2011; Satish et al., 2017), will all aid in acheiv-
ing this end. More advanced sequencing approaches could be 
used for complete genome sequencing of several small millets, 
including kodo millet, Job’s tears, and little millet, to increase 
the genetic pool for mining of genomic markers as well as 
the development of C4 model systems with shorter genera-
tion times, such as Xiaomi (foxtail millet), to speed up breeding 
(Yang et al., 2020).

Novel machine learning-assisted phenomics approaches 
could accelerate genetic diversity information. With the 
advent of more omics analyses, big data from transcrip-
tomics, proteomics, and metabolomics require novel tools 
for useful data mining and retrieval of mechanisms regu-
lating various agronomic traits. Conventional statistical 
methods fail to capture and model the complex non-linear 
relationships between molecular and phenomic datasets 
(Niazian and Niedbała, 2020). Machine learning, as a subset 
of artificial intelligence (AI), can be used to train neural 
networks to learn these non-deterministic, highly non- 
linear associations and to predict high-yielding traits. In the 
process, features of high predictive accuracy are extracted 
from omics data and can be used as markers for genomic 
editing for breeding purposes.

Various deep-learning methods have been applied for ge-
nomic selection in several crops (Montesinos-López et al., 
2021). In millets, artificial neural networks (ANNs) have 
been used for production forecasting of pearl millet in 
Karnataka, India (Vijay and Mishra, 2018). Deep learning 
convolutional neural networks have been used to detect 
mildew resistance in pearl millet (Coulibaly et al., 2019). A 
quality testing system, MCSCQT, was used to classify dis-
eased and normal pearl millet seeds (Kundu et al., 2022). 
Furthermore, another ANN algorithm was developed to 
input soil and climatic parameters to aid farmers in select-
ing the best crop to grow in the current cropping season 
(Madhuri and Indiramma, 2021). With the recent advent of 
machine learning tools, data-driven methods, and ANNs, 
research in small millet is still lacking. Therefore, it presents 
a major opportunity for progress and integration into suc-
cessful next-generation breeding strategies.
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Integrated multi-omics and artificial 
intelligence are crucial for millet 
improvement - a PANOMICS framework

While the genome and transcriptome layers are rich sources of 
information for making causal inferences on how genetic ar-
chitecture influences a phenotypic response, these would not be 
complete without functional information from the proteome 
and metabolome layers. We recently introduced the concept of 
panomics which combines natural genetic variation of large 
germplasm collections with multiomics analysis, machine and 
deep learning techniques to exploit the large intraspecific phe-
notypic and molecular variation for the identification of novel 
breeding targets (Weckwerth et al. 2020). This concept goes 
beyond classical pangenomics by integrating not only genomic 
information of genotype panels but also RNAseq, metabol-
omics, proteomics and phenomics (Weckwerth et al., 2020; 
Mishra et al., 2024). Proteome and metabolome refer to the 
whole set of proteins and metabolites, respectively, measured 
via LC-MS and GC-MS techniques (Weckwerth et al., 2020; 
Chaturvedi et al., 2024b). Together, integrating big omics data 
using advanced bioinformatics tools has revolutionized the 
mechanistic understanding and in-depth knowledge of gene 
function, pathways, and regulation of stress responses in many 
underutilized crop species (Muthamilarasan et al., 2019). This 
holistic multi-omics integrative approach has not shown sig-
nificant advances for millets, with cases limited to proteomics 
and metabolomics studies for some species (Singh et al., 2021). 
One of the first comparative proteomic studies in foxtail millet 
identified 29 proteins differentially expressed under salt stress 
(Veeranagamallaiah et al., 2008). Later, the shotgun proteomics 
approach quantified 2281 proteins under drought, showing 
significant changes within leaf tissue compared with roots and 
seeds (Ghatak et al., 2016). MALDI-TOF/TOF (matrix-assisted 
laser desorption ionization-tandem time of flight)-MS anal-
ysis of finger millet (Sen et al., 2016) identified 21 jasmonate- 
interacting proteins, extending the understanding of jasmonate 
signaling during stress. Furthermore, a tissue-specific proteome 
analysis identified a stay-green proteome signature in pearl 
millet genotypes not identified in wheat (Ghatak et al., 2021). 
This highlighted the superiority of a neglected crop compared 
with conventional major crops, and revealed proteome signa-
tures of drought tolerance, which are not predictable from ge-
nome sequencing alone.

Metabolomics studies in millets have seen a rise in recent 
years (Pan et al., 2020; Ghatak et al., 2022), establishing mil-
lets as great sources of phenolic compounds, flavonoids, and 
antioxidants. A targeted metabolomics analysis identified 330 
annotated metabolites (Wei et al., 2021) in 150 foxtail millet 
genotypes. Using an LC-MS/MS approach, 2082 differential 
metabolic signals were detected which are essential for drought 
tolerance in proso millet and related to energy metabolism, 
photosynthesis, and anthocyanin production (Cao et al., 2022). 

Similarly, 627 metabolic signals were detected and linked to 
grain color in proso millet (Li et al., 2021). Stage-specific met-
abolic properties were elucidated through the finding of the 
regulation of 2014 metabolic signals during the grain-filling 
process in foxtail millet (Wang et al., 2023).

The integration of multi-omics datasets to derive useful 
clusters from networks or features related to a phenotypic out-
come has yet to be highly explored in millets. A study integrated 
transcriptomics and metabolomics during seed germination of 
foxtail millet (Pan et al., 2020) and identified flavonoid, lignin, 
and phenylpropanoid pathways enabling salinity tolerance. The 
rise of AI-assisted omics techniques has experienced evident 
advances within the field of plant defense (Murmu et al., 2024). 
Supervised and unsupervised machine learning algorithms, as 
well as deep learning architectures have been shown to be su-
perior and can handle high dimensional datasets such as big 
omics data while being able to discern and prioritize the most 
relevant features and excel in prediction and classification tasks 
(Murmu et al., 2024). We have recently developed a novel tool 
box for the transition of genomic prediction to panomic pre-
diction integrating various levels of omics data such as genome 
and metabolome data (Schwarzerova et al., 2024). This toolbox 
integrates different machine learning and deep learning meth-
ods to improved prediction accuracy for phenotypic traits and is 
the basic approach for future panomics applications.The highly 
exploratory nature of AI models can uncover hidden patterns 
and associations in the data that are crucial in omics research. 
Within crop abiotic stress tolerance research, various machine 
learning methods have achieved >70% accuracy in identifying 
important abiotic stress genes (Meher et al., 2022). A random 
forest model was used to predict plant–pathogen protein–pro-
tein interactions incorporating sequence data within a network 
setting (Yang et al., 2019). Arabidopsis thaliana mutant lines were 
classified under control and stress conditions after training a 
machine learning algorithm using quantified changes in me-
tabolome and proteome data (Fürtauer et al., 2018). This ap-
proach successfully identified 23 proteins highly regulated 
under heat and high-light stress conditions. In another recent 
study the metabolome of 241 A. thaliana lines was investigated 
with respect to its natural variation and prediction capacity of 
evolutionary cold stress adaptation processes (Weiszmann et al., 
2023). Machine learning and genomic prediction algorithms 
identified sets of metabolic markers involved in these adapta-
tion processes. An AI based algorithm identified fumarate me-
tabolism as a checkpoint of evolutionary cold stress adaptation 
in A. thaliana.

Another innovation, ‘evolutionarily informed machine 
learning’ trained on A. thaliana transcriptomic data, predicted 
NUE-related genes in maize (Cheng et al., 2021), showcas-
ing the power of transfer learning from model plant organisms 
to other crop systems. Transfer learning could also be applied 
to millets, where the application of new AI tools remains to 
be explored and has plenty of opportunity for innovation. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/76/6/1534/7933095 by International C

rops R
esearch Institute for the Sem

i-Arid Tropics user on 18 June 2025



Copyedited by: OUP

1540 | Ghatak et al.

Box 3. Functionally characterized genes from major and minor millets in response to abiotic stress and metal 
toxicity (based on research performed in the last 4 years)

Sorghum bicolor

SbYS1 and SbWRKY72: transgenic Arabidopsis overexpressing SbYS1 accumulated less cadmium, while overexpression 
of SbWRKY72 led to cadmium sensitivity (Jia et al., 2024).
SbMYC2: overexpression enhanced drought tolerance in Arabidopsis, rice, and sorghum (Wang et al., 2024).
SbMYBHv33: overexpression reduced biomass accumulation and salinity tolerance in transgenic sorghum (Zheng et al., 
2023).
SbEXPA11: overexpression in transgenic sorghum led to enhanced photosynthesis and tolerance to cadmium stress  
(Wang et al., 2023).
miR-6225-5p: overexpression in sorghum inhibited plant growth under salt stress (Sun et al., 2023).
SbNAC9: overexpression in sorghum seedlings led to enhanced drought tolerance while silencing resulted in drought 
sensitivity (Jin et al., 2023).
SbWRKY55: negatively regulated salinity stress responses in transgenic sorghum and Arabidopsis (Song et al., 2022).
SbHDT701: overexpression in Escherichia coli resulted in increased acetylation modification levels and provided tolerance 
to salinity and dehydration (Du et al., 2021).
SbMATE: transgenic sugarcane overexpression led to enhanced aluminum tolerance (Ribeiro et al., 2021).

Pearl millet

PgWRKY74: overexpression in Arabidopsis resulted in delayed shoot growth under dehydration and salinity stress (Qazi 
et al., 2024).
PgP5CS: expression in transgenic tobacco conferred improved abiotic stress tolerance (Sellamuthu et al., 2024).
PgRWP-RK: overexpression led to enhanced heat tolerance in rice (Yan et al., 2023).
PgDREB2A: Arabidopsis expression resulted in enhanced heat, drought, and salinity tolerance (Meena et al., 2022).
PgGPx: overexpression in transgenic rice led to enhanced tolerance to Cd2+ stress (Islam and Reddy, 2022).
PgPIP2;6: overexpression improved drought and heat stress tolerance (Reddy et al., 2022).
PgLEAPC: transgenic tobacco overexpressing this gene displayed improved tolerance to various abiotic stresses (Divya 
et al., 2021).

Foxtail millet

SiCYP19-a and SiCYP19-b: overexpression conferred salt tolerance in foxtail millet (Zhang et al., 2024).
SiHDA9: virus-induced gene silencing (VIGS) of SiHDA9 conferred dehydration tolerance to foxtail millet (Kumar et al., 
2024).
SiSnRK2.6: overexpression in foxtail millet enhanced the resistance to low potassium stress (Ma et al., 2024).
SiMYB30: conferred tolerance to low nitrogen stress in transgenic rice (Zhang et al., 2023a).
SiATG8a: overexpression in transgenic wheat conferred tolerance to phosphorus starvation (He et al., 2023b).
SiGRF1: overexpression in foxtail millet led to reduced sensitivity to drought stress (Zhang et al., 2023b).
SiDi19-3: overexpression provided salt tolerance to transgenic foxtail millet and Arabidopsis (Xiao et al., 2023).
SisHSP21.9: transgenic rice overexpression resulted in improved tolerance to high temperature stress (Singh et al., 2022).
SiMYB19: expression in transgenic rice provided tolerance to salinity stress (Xu et al., 2022).
SiNRX1: overexpression in Arabidopsis resulted in tolerance to drought and salt stress (Zhang et al., 2022).

Finger millet

EcCAX3: overexpression conferred tolerance to metal and ions stress in yeast and Arabidopsis (Jamra et al., 2024).
EcDREB2A: overexpression in tobacco enhanced tolerance to heat stress through ROS scavenging (Singh et al., 2021).
EcCaM: transgenic Arabidopsis expression conferred tolerance to drought and salinity (Jamra et al., 2021).

Broomcorn millet

PmABI5: overexpression in Arabidopsis enhanced abiotic stress (An et al., 2022).

Tef

EtSD-1: CRISPR/Cas9-mediated mutation of EtSD-1 improved lodging resistance in tef (Beyene et al., 2022).
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Multi-omics databases for millets, such as MDSi (Li et al., 
2023) or Milletdb (Sun et al., 2023), provide readily available 
resources for immediate exploitation by AI tools to speed up 
advance predictions related to agriculturally useful traits. A 
limitation of such large-scale AI tools is their black-box nature, 
where the underlying model of the data is not known previ-
ously and may result in overfitting due to the many unknown 
variables and parameters.

A solution would be to use data-driven mathematical 
tools that are hypothesis-driven (i.e. assume basic properties 
and dynamic trajectories in the data) (Weckwerth, 2019). In 
this direction, the Jacobian matrix has been used to model 
linear dynamics in molecular systems (Sun and Weckwerth, 
2012; Li et al., 2023; Weiszmann et al., 2023; Chaturvedi et al., 
2024a). The differential Jacobian matrix can discern differen-
tial fluxes which targets for control of abiotic tolerance traits 
(Nägele et al., 2014) and has recently been applied on chickpea 
(Chaturvedi et al., 2024a) to elucidate drought responses on 
yield at three different time points. Data-driven tools are easily 
applied methods that are only waiting to be used to enhance 
the value and potential of millets within agriculture. They do 

not require an explicit model, making them suitable for use 
in biological systems where model parameters are unknown. 
They can be easily integrated with neural networks for feature 
prediction and network integration with improved accuracy.

Designing millets for precision breeding

Genome editing has emerged as a useful toolbox for plant 
breeders to improve crop yield by targeting specific functional 
genes identified through sequencing and structural genomic 
dissection efforts. Techniques include zinc finger nucle-
ases (ZFNs), transcription activator-like effector nucleases 
(TALENs), and the most popular, the CRISPR/Cas system 
(Weckwerth et al., 2020). However, high-resolution functional 
genomic studies involving these advanced tools need complete 
and fully annotated genome sequences to precisely target the 
genes and reduce off-target effects (Ceasar, 2022).

Genetic editing has been implemented in many crops, re-
ported mostly in rice, followed by wheat, maize, and barley 
(Ceasar, 2022), but limited in millets, possibly due to a lack 

Fig. 2. Comprehensive PANOMICS and system driven approach for future breeding programs focused on millet improvement and precision breeding. AI, 
artificial intelligence.
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of complete and annotated genome sequence or funding and 
less market consumption. The first genome editing study using 
CRISPR/Cas9 was reported in foxtail millet (Lin et al., 2018) 
due to the availability of high resolution of the fully annotated 
genome. More recently, single- and multi-gene knockouts 
for base editing of SiALS and SiACC genes in foxtail millet 
(Liang et al., 2021) resulted in the production of a homozygous  
herbicide-tolerant mutant plant with no off-target effects. 
Further, the function of the PHYTOENE SYNTHASE 1 
(PSY1) gene was validated in its effect on grain color and 
quality in foxtail millet after a multi-omics association anal-
ysis of genetic variants (Li et al., 2022). Functionally evalu-
ated genes belonging to abscisc acid signaling, transcription 
factorsand signaling gene families were verified for their con-
tribution to drought tolerance mechanisms in pearl millet 
(Chakraborty et al., 2022). Various SiLBD genes were found 
to be involved in abiotic stresses in foxtail millet and func-
tionally validated by ectopic expression in Arabidopsis and rice 
(Li et al., 2023). Functional characterization of AtROXY19  
(glutaredoxin-encoding gene homolog) revealed a novel role 
for this glutaredoxin gene clade in regulating cell elongation 
(de la Fuente Cantó et al., 2024). In addition, foxtail mosaic 
virus (FoMV)-based gene silencing was first reported for fox-
tail millet as a VIGS system for high-throughput functional 
genomics in monocots that resulted in silencing of phytoene 
desaturase and magnesium chelatase genes (Liu et al., 2016). 
Even higher editing efficiency was observed for FoMV-
targeted SvCA2 of millet, with 60% in systemic leaves (Mei 
et al., 2019). To enhance reverse genetic studies in millets, ef-
ficient transformation and regeneration protocols are essential, 
potentially replacing the need for transforming millets with 
CRISPR and other gene constructs. Genes of different millets 
that have been functionally characterized for their role in abi-
otic stress and metal toxicity are summarized in Box 3.

Future perspectives

Millets were once considered orphan crops due to the 
low amount of attention they received during the Green 
Revolution. However, they are now receiving more attention 
in the modern genetic era. The lack of complete and anno-
tated genome sequences and efficient regeneration and trans-
formation systems may hinder high-resolution millet research. 
Therefore, it is crucial to explore the genetic resources of millet 
further to identify key molecular markers for trait association 
mapping. This can lead to marker-associated improvement in 
millet, and similar markers can also be studied in other related 
crops. Additionally, applying an advanced PANOMICS ap-
proach combined with advanced AI tools can help unravel nat-
ural genetic variation and enable the functional interpretation 
and characterization of genes, opening up new opportunities 
for millet improvement (Fig. 2). Furthermore, using the genome 
editing (CRISPR/Cas) toolkit can facilitate sequence-specific 

targeted genome editing to achieve desired traits in the gen-
otype, which could revolutionize millet breeding. The prog-
ress in millet research and the information generated can play 
a crucial role in achieving the sustainable development goal 
of the UN, which is to promote sustainable agriculture, end 
hunger, achieve food security, and improve nutrition.
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