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Abstract  Rice crop disease is critical in precision 
agriculture due to various influencing components and 
unstable environments. The current study uses machine 
learning (ML) models to predict rice crop disease in 
Eastern India based on biophysical factors for current 
and future scenarios. The nine biophysical parameters 
are precipitation (Pr), maximum temperature (Tmax), 
minimum temperature (Tmin), soil texture (ST), avail-
able water capacity (AWC), normalized difference 
vegetation index (NDVI), soil-adjusted vegetation 
index (SAVI), normalized difference chlorophyll index 

(NDCI), and normalized difference moisture index 
(NDMI) by Random forest (RF), Gradient Boost-
ing Machine (GBM), Extreme Gradient Boosting 
(XGB), Artificial Neural Net (ANN), and Support vec-
tor Machine (SVM). The multicollinearity test Boruta 
feature selection techniques that assessed interdepend-
ency and prioritized the factors impacting crop disease. 
However, climatic change scenarios were created using 
the most recent Climate Coupled Model Intercompari-
son Project Phase 6 (CMIP6) Shared Socioeconomic 
Pathways (SSP) 2–4.5 and SSP5-8.5 datasets. The rice 
crop disease validation was accomplished using 1105 
field-based farmer observation recordings. Accord-
ing to the current findings, Purba Bardhaman district 
experienced a 96.72% spread of rice brown spot dis-
ease due to weather conditions. In contrast, rice blast 
diseases are prevalent in the north-western region of 
Birbhum district, affecting 72.38% of rice plants due to 
high temperatures, water deficits, and low soil moisture. 
Rice tungro disease affects 63.45% of the rice plants in 
Bankura district due to nitrogen and zinc deficiencies. It 
was discovered that the link between NDMI and NDVI 
is robust and positive, with values ranging from 0.8 to 
1. According to SHAP analysis, Pr, Tmin, and Tmax are 
the top three climatic variables impacting all types of 
disease cases. The study’s findings could have a sub-
stantial impact on precision crop protection and meet-
ing the United Nations Sustainable Development Goals.

Keywords  Food security · Rice disease · ML · 
Remote sensing

S. Sahoo (*) · A. Govind 
International Center for Agricultural Research in the Dry 
Areas (ICARDA), 2 Port Said, Victoria Sq, Ismail 
El‑Shaaer Building, Maadi, Cairo 11728, Egypt
e-mail: satispss@gmail.com

A. Govind 
e-mail: A.Govind@cgiar.org

S. Sahoo 
Prajukti Research Private Limited, Baruipur 743610, 
West Bengal, India

C. Singha 
Department of Agricultural Engineering, Institute 
of Agriculture, Visva-Bharati (A Central University), 
Sriniketan, Birbhum, West Bengal 731236, India
e-mail: singha.chiranjit@gmail.com

M. Sharma 
International Crops Research Institute for the Semi-Arid 
Tropics, Hyderabad, Telangana 502324, India
e-mail: mamta.sharma@icrisat.org

http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-025-13744-w&domain=pdf


	 Environ Monit Assess (2025) 197:366366  Page 2 of 30

Vol:. (1234567890)

Introduction

The global population is expected to exceed nine bil-
lion by 2050, necessitating a 50% increase in food 
production above current levels (Tripathi et  al., 
2019). Maintaining long-term food production with-
out expanding the area under cultivation is a huge 
difficulty. Plant breeding is critical for increasing 
production and resistance to both current and emerg-
ing biotic and abiotic stressors. Cereals are the most 
important staple crops for global food security, 
accounting for approximately 42.5% of total food cal-
ories. Rice and wheat account for over half of cereal 
consumption, with projections of 703 and 503 million 
tons in 2017/2018, respectively.

Rice, one of the world’s most important food 
crops, makes a significant contribution to India’s food 
and nutritional security. Rice production has evolved 
throughout the decades, from simple cultivation pro-
cedures to complex cultivation to boost output. Rice 
yields have increased significantly, particularly since 
the 1960s, owing to the advent of high-yielding semi-
dwarf cultivars, which demand additional inputs such 
as chemical fertilizers, water, and other resources 
(Shivappa et  al., 2021). Disease damage to rice can 
significantly diminish production. Bacteria, viruses, 
and fungus primarily cause them. Planting a disease-
resistant variety is the easiest and, in many cases, the 
least expensive way to manage disease. Rice is grown 
in practically every state in India. Rice plant diseases 
pose a major threat to crops’ quality and quantity. 
Various diseases, such as foot rot and sheath blight, 
can affect rice plants, leading to a decline in agricul-
tural productivity (Prismantoro et  al., 2024). Paddy 
diseases can devastate rice production and farm-
ers’ livelihoods. It is one of India’s most significant 
food crops, accounting for one-quarter of the total 
planted area (Sahoo et  al., 2024). Moreover, half of 
the world’s population relies on rice as their primary 
food source. India is second after China in world rice 
output. The total rice production during 2022–2023 
is 125 million tons and 567 million tonnes by 2030 
(Mohidem et  al., 2022). The overall area under rice 
cultivation in 2022–2023 is 45.5 million hectares, 
with an average production of 4.1 tonnes/ha (USDA, 
2022). Paddy is most farmed in India during the Kha-
rif season. Tropical and subtropical hot and humid 
temperatures are ideal for its growth. Understand-
ing the causes, symptoms, and treatment options for 

paddy diseases is critical for preventing their spread 
and reducing their effect. Changing climatic circum-
stances facilitate the spread of diseases to new areas 
and intensify their impact (Mwangi et  al., 2023). In 
addition to the previously extensively spread rice dis-
eases such as blast, tungro, sheath blight, fake, and 
bacterial leaf blight, new diseases such as false smut 
of rice and wheat blast are becoming increasingly 
dangerous (Azizi & Lau, 2022). To reduce the impact 
of these diseases, environmentally friendly and cost-
effective preventative and control strategies are 
required. The development and use of disease-resist-
ant cultivars is the most successful, cost-effective, 
and environmentally responsible method of managing 
these risks (Li et al., 2023). Thus, the present goal is 
to employ machine learning (ML) algorithms to pre-
dict Kharif rice crop disease in eastern India while 
taking into consideration biophysical and meteorolog-
ical factors. ML models offer several advantages over 
traditional methods. It excels at capturing complex, 
nonlinear relationships among variables, which are 
challenging for conventional approaches, i.e., multi-
criteria decision-making analysis (Sarker, 2021). ML 
models provide higher predictive accuracy by leverag-
ing advanced algorithms and large datasets (Mumuni 
& Mumuni, 2024). These are scalable and automated, 
enabling efficient processing of vast amounts of data, 
and can integrate diverse data types (e.g., spatial, 
temporal, and categorical) for more comprehensive 
analyses. Unlike static traditional methods, ML mod-
els adapt to new data, improving their performance 
over time (Yaqoob et  al., 2023). Additionally, ML 
models demonstrate robustness against noisy or miss-
ing data and are effective in simulating future scenar-
ios, such as climate change impacts, based on histori-
cal and synthetic datasets (Singha et al., 2024).

A few researchers employed ML algorithms to 
predict rice crop disease during changing condi-
tions in the environment. According to Jackulin and 
Murugavalli (2022), a comprehensive assessment of 
the numerous strategies used in plant disease con-
trol has been conducted using ML and deep learn-
ing techniques. Yan et al. (2022) developed an artifi-
cial inoculation technique for the artificial induction 
of bakanae disease that uses mung bean medium 
to accelerate the proliferation of Fusarium fujik-
uroi spores. This approach will allow for the rapid 
assessment of bakanae disease resistance, which 
will be beneficial for rice breeding. Aggarwal et  al. 



Environ Monit Assess (2025) 197:366	 Page 3 of 30  366

Vol.: (0123456789)

(2022) investigated rice disease identification, seed-
ling health, and grain quality utilizing sophisticated 
artificial intelligence and ML approaches, as well 
as better agribusiness, to broaden the notion of rice. 
Xinyue et  al. (2023) presented their findings on the 
features, categorization, and molecular mechanisms 
of necrotic lesion formation. It also overlooked the 
molecular regulatory pathway of genes involved in 
rice disease resistance, summarized the relationship 
between resistance and rice yield using newly devel-
oped gene editing, and discussed the use of molecular 
design technology to better reproduce disease preven-
tion and high-yield varieties. Singh et al. (2023) sug-
gested a custom convolutional neural network (CNN) 
architecture for identifying and categorizing rice 
plant diseases by lowering the number of network 
parameters and including 1400 on-field healthy rice 
leaf image datasets to identify disease-free plants. Lu 
et al. (2023) proposed an enhanced rice disease iden-
tification approach that combines a CNN with a bidi-
rectional gated recurrent unit (BiGRU). This study 
also identified four types of rice disease and offered 
a reliable approach to disease detection. Nayak et al. 
(2023) began processing smartphone photographs of 
rice plant sections into numerous categories, as well 
as real-time validation images, to detect rice disease 
and nutrient shortages. Different image segmentation 
algorithms were used to isolate the affected areas. 
Zheng et  al. (2023) examined current and projected 
trends in remote sensing for rice crop monitoring. 
This paper goes over the mechanics and applications 
of numerous data sources for monitoring rice disease 
and pests, as well as a summary of current monitor-
ing approaches such as statistical discriminant type, 
ML, and deep learning algorithms. It also includes 
a framework for monitoring unknown diseases and 
pests, as well as a discussion of obstacles and pros-
pects in rice disease and pest monitoring using remote 
sensing. Kamarudin et  al. (2024) analyzed whole-
genome resequencing data for blast resistance with 
kernel elongation features in the Mahsuri Mutant, 
mutant line, and parental line in Malaysia.

Most prior research has focused on utilizing com-
puter vision technology for classifying various rice dis-
eases (Deng et al., 2020, 2021; Mahadevan et al., 2024; 
Udayananda et al., 2022). However, these studies have 
largely overlooked the integration of geo-environmental 
factors and the impact of climate variability on differ-
ent spatial locations. To address this research gap, the 

study aims to spatially predict Kharif rice crop diseases 
using ML methods that incorporate the effects of cli-
mate change, facilitating the development of both cur-
rent and future scenarios. The peculiarity of this study 
is that it is the first-time rice crop disease prediction 
has been considered considering climate change. How-
ever, nine biophysical and climatic parameters, includ-
ing precipitation (Pr), maximum temperature (Tmax), 
minimum temperature (Tmin), available water capacity 
(AWC), soil texture (ST), normalized difference veg-
etation index (NDVI), normalized difference moisture 
index (NDMI), soil adjusted vegetation index (SAVI), 
and normalized difference chlorophyll index (NDCI), 
were used to predict rice crop diseases. The Model for 
Interdisciplinary Research on Climate 6 (MIROC6) 
SSP2-4.5 and SSP5-8.5 data from the CMIP6 climate 
model were used to estimate climate change scenarios. 
The multicollinearity test and the Boruta algorithm 
were used to identify the influencing biophysical and 
climatic components for rice crop disease prediction.

Study area

The study area in West Bengal, covering 37,836.5 
km2, includes eight districts: Murshidabad, Birbhum, 
Purba Bardhaman, Paschim Bardhaman, Bankura, 
Purulia, Jhargram, and Paschim Medinipur (Fig.  1). 
The district, located in the heart of West Bengal, 
has a humid climate. The Birbhum district, also 
known as “The Land of Red Soil,” has undulating 
topography and strong reddish clay soil in its west-
ern half, “Radh,” and rich alluvial soil in its eastern 
half, “Bagri.” Its rivers include Ajay, Bakreshwar, 
Brahmani, Bansloi, Dwarka, Hinglo, Kopai, and 
Mayurakshi.

Materials and methods

Crop disease sampling

During the survey conducted in October and 
November 2023, data on Kharif rice crop diseases 
were collected from 1105 agricultural fields. In the 
study, a total of seven types of rice diseases were 
identified, including rice brown spot, rice blast, 
rice tungro, bakanae, stem rot, and leaf blight. 
However, only three major diseases—rice brown 
spot, rice blast, and rice tungro—were chosen for 
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analysis due to the availability of data required for 
ML model evaluation. These were geo-tagged using 
a handheld GPS device to map disease areas in 
Eastern India. The field survey also recorded vari-
ous Kharif rice varieties being cultivated, includ-
ing Swarna, Ratna, Lalat, Varam, IR36, IR41, 
MTU7029, Badsha Bhog, Dhanaraj, Chaitali, 
Maharaj, Minikit, Gutka, and Gobindo Bhog. A 
random sampling analysis was conducted using a 
handheld GPS (Garmin Ltd., Olathe, KS, USA) to 
determine the coordinates at each sampling loca-
tion. Random sampling techniques were employed 
to select farms or plots for data collection, minimiz-
ing the risk of systematic biases that could distort 
the results. During the survey, detailed information 
on rice yield was collected, covering aspects such 
as farming methods, fertilizer use, irrigation plans, 
soil conditions, the impact of soil moisture on cli-
matic hazards, market trends, and more, incorporat-
ing the insights and experiences of local farmers for 
a comprehensive analysis. The study involved visit-
ing various locations in the area to gather samples 
and document the experiences and observations 
of local farmers regarding recent changes in their 
crop rotation. This crop disease database was used 

as the dependent variable for the crop disease clas-
sification analysis. The crop diseases classification 
analysis identified three types of diseases: brown 
spot (labeled as 1), rice blast (labeled as 2), and rice 
tungro (labeled as 3). Previous study indicated that 
using 70% of the data for training and 30% for test-
ing in ML classification analyses provided reliable 
model performance, despite potential inconsisten-
cies (Al-Sheriadeh & Daqdouq, 2024; Chowdhury 
et  al., 2024). For the ML tenfold cross-validation 
analysis, the disease samples of each label were 
randomly divided in a 70:30 ratio, with brown spot 
comprising approximately 260 training instances 
and 112 testing instances out of a total of 372, rice 
blast including around 320 training instances and 
138 testing instances out of 458, and rice tungro 
consisting of 192 training instances, and 83 testing 
instances out of 275.

Crop diseases contributing factors

In this study, 9 crop disease conditioning factors 
(CDCFs) were chosen, encompassing climatologi-
cal, soil, and vegetation indices elements. These 
selections were based on a review of existing 

Fig. 1   Location of the study research
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literature, data availability, and the specific char-
acteristics of the study area under examination (Lu 
et al., 2023; Nayak et al., 2023; Singh et al., 2023). 
The climatological CDCFs included Pr, Tmax, and 
Tmin. The soil-related CDCFs include ST and AWC. 
The NDVI, SAVI, NDCI, and NDMI were the 
selected vegetation indices CDCFs (Table  1). The 
future prediction of rice crop diseases is generated 
through the coupled model intercomparison pro-
ject-6 (CMIP-6) future projections of Pr, Tmax, and 
Tmin data. We downloaded the climatic parameters 
to a daily scale from Coupled Model Intercompari-
son Project-6 CMIP-6 Global Circulation Models 
(GCMs) through the Google Earth Engine cloud 
(GEE). Finally, each of these CDCFs was converted 
into a raster format with a 30 m × 30 m spatial reso-
lution using the bilinear resampling technique in R 
software v4.3.2 (Fig 2).

In this study, the average annual Pr, Tmax, and Tmin 
were calculated based on meteorological data span-
ning 40 years (1990–2030) sourced from Terra:Climate 
database (spatial resolution of 4638.3 m). All the cli-
matological dataset was mapped using the Inverse 
Distance Weighted (IDW) interpolation algorithm in 
ArcGIS software v10.7. In the study area, the precipi-
tation (mm) value ranges between 967.04 and 1351.92 
mm. However, the Tmax and Tmin (°C) values var-
ied from 30.11 to 32.39 (°C) and 19.10 to 22.13 (°C) 
respectively.

This research utilized Sentinel-2 optical satel-
lite imagery to generate spectral indicators for 
rice crop disease mapping analysis. Sentinel-2 
is a European multispectral satellite developed 
through the European Space Agency (ESA). All 
the vegetation indices are derived from the mosai-
cking cloud-free Sentinel 2 images (10-m spatial 

resolution) during the peak growing season of kha-
rif rice (October–November 2023). Accordingly, 
157 images were filter preprocessed (cloud mask, 
radiometric, geometric correction, median com-
posite, and layer stacking) through the GEE cloud 
in the peak rice growing season. Additionally, four 
vegetation indices, including the NDVI, NDMI, 
SAVI, and NDCI were computed with the follow-
ing Table  2. In this study, the NDVI values range 
between − 0.273 and 0.682. The NDMI value var-
ies from − 0.387 to 0.439. The SAVI value ranges 
between − 1.103 and 0.092. While the NDCI value 
varies between − 0.021 and 0.310 (Table 3).

The ST vector layer was obtained from the 
National Bureau of Soil Survey & Land Use Planning 
(NBSS & LUP, India) and imported into ArcGIS for 
ST layer mapping. Subsequently, the ST maps were 
classified into eight major categories, including clay, 
silt clay loam, clay loam, loam, sandy clay loam, silt 
clay, silt loam, and sandy loam. The GEE extracted 
the AWC factor from Soil Grids 250 m ISRIC World 
Soil Information data (15–30-m depth). In the study 
area, the AWC value ranges from 5 to 15.63 (Fig. 2).

Future projections of Tmax, Tmin, and precipita-
tion data, from the CMIP-6 were utilized to fore-
cast the area affected by crop diseases in the study 

Table 1   Description of data sources crop disease susceptibility

Parameters Description Source

Precipitation (mm), Tmax (°C), Tmin (°C) IDAHO_EPSCOR/TERRACLIMATE, 
4638.3 m (1958–2023)

Abatzoglou et al., 2018

Soil texture NBSS & LUP, India, RF 1:10,000 URL: http://​14.​139.​123.​73/​bhoom​igeop​
ortal

Available water capacity (AWC) (volumet-
ric fraction) with FC = pF 2.3

ISRIC — World Soil Information, Soil-
Grids250m, (15–30 cm depth)

URL: https://​data.​isric.​org

NDVI, NDMI, SAVI, NDCI COPERNICUS/S2_SR, 10 m (2023) URL:https://​scihub.​coper​nicus.​eu/
Future precipitation (mm), Tmax (°C), Tmin 

(°C)
NASA/GDDP-CMIP6, 27,830 m, (1990–

2030), (ssp245, ssp585)
(URL: https://​regis​try.​opend​ata.​aws/​nex-​

gddp-​cmip6/)

Table 2   Vegetation indices formulas employed in the research

Index Formula Source

NDVI (NIR−RED)

(NIR+RED)
Rouse et al., 1973

NDMI (NIR−SWIR1)

(NIR+SWIR1)

SAVI (NIR−RED)

(NIR+RED+0.5)
× (1 + 0.5) Huete, 1988

NDCI (Red Edge 1−RED)

(Red Edge 1+RED)
Mishra et al., 2012

http://14.139.123.73/bhoomigeoportal
http://14.139.123.73/bhoomigeoportal
https://data.isric.org
https://scihub.copernicus.eu/
https://registry.opendata.aws/nex-gddp-cmip6/
https://registry.opendata.aws/nex-gddp-cmip6/
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area. Specifically, we utilized two combined Shared 
Socioeconomic Pathway (SSP) scenarios, namely 
SSP-245 and SSP-585. To ensure consistency in 
the projected climatic data, we averaged the data-
sets derived from the MIROC6 GCMs spanning 40 
years from 1990 to 2030.

Methodology

The overall methodology deployed in this study is 
as follows (Fig. 3). Primarily, crop disease inventory 
data and nine CDCFs were applied to generate train-
ing, validation, and testing datasets for the ML model 
system, after performing Pearson’s correlation and 
multicollinearity analysis. The feature selection of the 
CDCFs is selected through the Boruta analysis. Next, 
crop disease susceptibility maps were developed for 
the study area based on the spatial intra-association 
between CDCFs and crop disease inventory data, and 
the ML model’s performance was assessed using cer-
tain performance indicators. In addition, the future 
crop disease susceptibility maps expanded through 
the CMIP6 datasets. Subsequently, an evaluation was 
carried out to ascertain the trained model’s capacity 
to forecast crop disease susceptibility in the study 
area. Ultimately, the model results and the signifi-
cance of CDCFs were analyzed using the most effec-
tive model, employing the explainable artificial intel-
ligence (XAI) technique known as SHapley Additive 
exPlanations (SHAP).

Multicollinearity test

An analysis for multicollinearity was performed 
using the Variance Inflation Factor (VIF) technique 

to evaluate the interdependencies among the CDCFs. 
Multicollinearity presents a challenge in accurately 
estimating model outputs, potentially misrepresent-
ing the importance of variables within statistical 
models due to high inter-correlations (Chang et  al., 
2019). Factors exhibiting a VIF greater than 5 or a 
Tolerance (TOL) less than 0.1 are affected by multi-
collinearity and are recommended for exclusion. The 
formula for independent variables was represented as 
x = {× 1, × 2,…, xn}, with R2j signifying the coeffi-
cient of determination that quantifies the linear corre-
lation of the ith independent variable with the others. 
The formula for calculating VIF is as described (Eq. 
(1)).

Boruta feature selection

The Boruta algorithm was implemented to prioritize 
the identified factors influencing crop disease. Utiliz-
ing the combined dataset, the algorithm, integrated 
within the R statistical package, extends the princi-
ples of the Random Forest classifier. By introducing 
additional randomness into the system and aggregat-
ing outcomes from a collection of randomized sam-
ples, Boruta mitigates the influence of incidental vari-
ations and correlations. This augmented randomness 
offers a more discernible perspective on the genuine 
significance of each property. Notably, the Boruta 
algorithm has previously demonstrated efficacy in 
predicting apple yield prediction in India (Singha 
et al., 2023).

(1)VIF =
1

1 − R2
i

=
1

Tolerance

Table 3   Details statistics 
of the crop diseases’ 
contributing factors

Parameters Min Max Mean Standard 
Deviation

Precipitation (mm) 967.04 1351.92 1090.0 5.92
Tmax (°C) 30.11 32.39 31.81 2.58
Tmin (°C) 19.10 22.13 21.06 3.93
Available water capacity (AWC) 5 15.63 9.88 0.67
Normalized Difference Vegetation Index (NDVI)  − 0.273 0.682 0.40 0.09
Normalized Difference Moisture Index (NDMI)  − 0.387 0.439 0.15 0.09
Soil Adjusted Vegetation Index (SAVI)  − 1.103 0.092  − 0.75 0.12
Normalized Difference Chlorophyll Index (NDCI)  − 0.021 0.31 0.15 0.03
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ML Methods

Random Forest (RF)

Random Forest (RF) stands as a prominent algorithm 
within ML for both regression and classification 

tasks, introduced by Breiman in 2001. This method 
leverages bagging to diminish variance, particu-
larly effective for models like decision trees that 
tend to have high variance but low bias. Essentially, 
RF enhances the bagging approach by incorporat-
ing numerous decision trees. Each tree within the RF 

Fig. 2   Crop diseases contributing factors
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model, which acts as its foundational element, under-
goes training with a distinct subset of the data. For 
classification objectives, the prediction is determined 
by the consensus among the trees and the collabora-
tive nature of RF in decision-making processes. In the 
current study, accuracy was used to select the optimal 
model using the largest value and mtry is 5, the num-
ber of trees 500, the number of variables tried at each 
split is 5, and additional sampling using up-sampling 
respectively.

Gradient Boosting Machine (GBM)

GBM stands as a powerful supervised ML method 
rooted in decision tree ensembles, initially presented 
by Jerome H. Friedman in 2001. This technique aims 
to bolster the predictive accuracy of basic classifiers 
by iteratively building decision trees. Each tree in the 
sequence is crafted to correct the mistakes of its pre-
decessor, effectively learning from refined residual 
data. A notable feature of GBM is its application of 

Fig. 3   Flowchart of this 
study’s disease susceptibil-
ity modeling process
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differentiable loss functions during the boosting pro-
cess, significantly improving its robustness against 
outlier data. Here a gradient-boosted model with 
multinomial loss function is employed for disease 
classification in the study area. The present study 
was performed with the final values of the model 
where shrinkage was 0.1, “n.minobsinnode” was 10, 
n. Trees were 100, interaction. Depth was 3, and the 
number of iterations was 100 respectively.

Extreme Gradient Boosting (XGB)

XGB stands as a high-performance ensemble, scal-
able tree-boosting system, engineered for efficiency, 
and rapid processing (Chen & Guestrin, 2016). 
Diverging from methods that aggregate independent 
trees, XGB sequentially constructs decision trees. 
Each tree in the sequence is built based on the pre-
diction residuals from its predecessor, thereby hom-
ing in on instances with greater prediction error or 
uncertainty. This iterative refinement ensures that the 
algorithm adaptively focuses on challenging samples. 
The culmination of these models, through successive 
addition, yields the ultimate prediction result. In this 
study, there are many adaptable parameters in the 
XGB algorithm, including “gamma” was 0.1, min_
child_weight was 1, nrounds was 50, max_depth was 
3, eta was 0.4,colsample_bytree was 0.8, min_child_
weight was 1, and subsample was 1 respectively.

Artificial Neural net (ANN)

ANN are advanced computational models that mimic 
the human brain’s structure and function, using a back-
propagation technique for adjusting weights to learn 
from training data (Hecht-Nielsen, 1992). Structured 
with three primary layers—input, hidden, and output—
ANNs process data through neurons in each layer, uti-
lizing forward and backpropagation algorithms to make 
and refine predictions. Each layer is comprised of neu-
rons, each endowed with multiple weights that influ-
ence data processing. These are powerful tools for solv-
ing complex classification and regression challenges 
but face limitations, particularly when training data dis-
tribution is uneven, which can affect their ability to gen-
eralize to new data effectively. In this study the ANN 
model performed with a hidden layer of 9–5-3 network 
with 68 weights, the model was sized with 5, and soft-
max modeling decay was 0.1 respectively.

Support vector Machine (SVM)

The principle of SVM involves detecting an ideal sepa-
rating hyperplane in the dataset that maximally distin-
guishes between two categories, ensuring the widest 
possible margin between the hyperplane and the nearest 
data points from each category, known as support vec-
tors due to their pivotal role in defining the hyperplane 
(Hearst et al., 1998). SVM employs kernel functions (i.e., 
radial, linear) to project low-dimensional input data into 
a higher-dimensional space, thus transforming non-line-
arly separable datasets into linearly separable ones within 
this new space. Despite its advantages, SVM faces chal-
lenges, including stringent demands on data selection 
and the necessity for data normalization. Moreover, the 
application of SVMs to vast datasets can lead to signifi-
cantly increased requirements for computational time 
and memory usage. In this study for SVM adaptable 
parameters are included, namely, kernel function was 
radial basis, “sigma” was 0.1076459, number of support 
vectors was 606, objective function Value are − 314.5845
, − 285.6889, − 258.128, and C parameters was 1.

Model validation

In this study, all ML tenfold cross-validation analy-
sis is evaluated with various statistical metrics like 
kappa coefficient, overall accuracy, producers’ accu-
racy, users’ accuracy, omission, and commission were 
employed to assess the performance of the models 
(Eqs. (2)–(5)) (Bai & Feng,  2018). These metrics are 
commonly utilized in disease susceptibility modeling 
research for evaluation purposes.

(2)Kappa coefficient =
Pobs − Pexp

1 − Pexp

(3)UA(k) =
S(kk)

∑9

p=1
S(kp)

(4)PA(k) =
S(kk)

∑9

p=1
S(pk)

(5)OA =

∑9

p=1
S(pp)

∑9

k=1

∑9

p=1
S(kp)
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where UA(k) and PA(k) represent the user and pro-
ducer accuracies of disease type k in the disease sam-
ples, respectively; OA denotes the overall accuracy of 
the disease samples; S(kk) represents the location of 
appropriately labeled k; and S(kp) is the location of k 
that is imperfectly labeled into the disease type p.

Model explainability and feature importance

The concept of making ML  models understandable 
falls within the realm of XAI, which underscores the 
significance of various factors in influencing the mod-
el’s predictions, particularly in disease susceptibility 
evaluations. This research adopts a specific local XAI 
technique, known as the SHAP method, to delve into 
the key determinants affecting prediction accuracy and 
their respective impacts at an individual prediction 
level. Unlike other methodologies, SHAP not only iden-
tifies the importance of each feature but also discerns 
the direction of their impact—whether they contribute 
positively or negatively to the predicted outcomes. The 
computation of SHAP values involves determining the 
average incremental effect of each feature by consider-
ing all possible combinations and permutations of the 
features involved with Eq. 6.

where ϕi denotes the influence of factor i,N is the 
group of all factors, n is the number of factors in N, 
S is the subgroup of N comprising factor i, and v N is 
the reference value. The model results for each sam-
ple point are controlled by summing the SHAP scores 
for all the factors related to that sample point. Conse-
quently, the instructive model is matched as follows:

Where z� ∈ {0, 1}M is the number of features.
A SHAP force plot is a visualization that illus-

trates the importance of each feature to the model’s 
prediction for an individual sample. It indicates the 
base value estimated by the regression model and 
highlights the contribution of features to the mod-
el’s prediction for that specific sample, integrating 
these effects at the end of the summation. The shap.
force_plot() function is used to determine the direc-
tion (positive or negative) of the relationship between 
each predictive feature and the target feature. This 

(6)𝜙i =
∑

S⊆N⧵{i}

|S|!(n − |S| − 1)!

n!
[v(S ∪ {i} − v(S))]

(7)g
(
z�
)
= �0 + Σi=1M�iz

�

type of plot effectively shows how features influence 
the model’s prediction for a given sample, making it a 
valuable tool for understanding model predictions and 
their alignment with individual observations.

Perturbation sensitivity analysis

The perturbation approach is widely utilized for con-
ducting sensitivity analysis in multiclass classifica-
tion tasks (Franceschini et al., 2018). This method is 
extended to identify the most influential features for a 
specific class and measure the impact of feature per-
turbations on the model’s performance. It involves 
systematically altering one feature at a time while 
keeping all other features constant, leveraging the 
predict_proba function. The multiclass perturbation 
sensitivity was calculated using the equation provided 
below (Eq. (8)). The sensitivity of the feature Pi to a 
specific class C can be expressed as (Scardi & Hard-
ing, 1999):

where Xoriginal

C

(
Pj

)
 is predicted probability of class C 

for sample j before perturbation, Pperturbed

C

(
Pj

)
 is the 

predicted probability of class C for sample j after per-
turbing Pi

Results

Correlation

The correlation between AWC, NDCI, NDMI, 
and Tmax is weakly negative, with values ranging 
from − 0.1 to − 0.2. The link between AWC and NDVI 
is weakly negative, with values ranging from − 0.2 
to − 0.4. In contrast, the relationship between AWC 
and Pr is weakly positive, with values ranging from 
0.2 to 0.4. Two individual variables, AWC and SAVI, 
have a weakly negative relationship to values rang-
ing from 0 to − 0.1. The connection between AWC 
and Tmin is moderately negative, with a value of − 0.4. 
The moderately favorable link between NDCI and 
NDMI ranges from 0.4 to 0.6, whereas the positive 
relationship between NDCI and NDVI ranges from 
0.6 to 0.8. The link between NDCI and Pr is weakly 
positive, with values ranging from 0 to 0.2. The rela-
tionship between NDCI and SAVI is weakly positive, 

(8)SC
(
Pi

)
=

1

N

∑N

j=1

|||X
original

C

(
Pj

)
− P

perturbed

C

(
Pj

)|||
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whereas NDCI and ST have no relationship (value 
0). The relationship between NDCI, Tmax, and Tmin is 
also weakly positive. The relationship between NDCI 
and Tmax is 0 to 0.1, while NDCI and Tmin are 0.1 to 
0.2. The relationship between NDMI and NDVI is 
strong and favorable, with values ranging from 0.8 to 
1. The negative correlation between NDMI and Pr is 
minimal, with values ranging from 0 to − 0.1. A slight 
negative association exists between NDMI, SAVI, 
and ST, with measured values ranging from − 0.2 
to − 0.4. The data shows a weak negative relation-
ship between NDMI and Tmax, with values ranging 
from − 0.1 to − 0.2, and a weak positive relationship 
between NDMI and Tmin (values ranging from 0.2 to 
0.4).

There is no correlation between NDVI and Pr. 
The relationship between NDVI with SAVI and ST 
ranges from − 0.1 to − 0.2, whereas NDVI with Tmax 
ranges from 0 to − 0.1. However, NDVI with Tmin has 
a moderately favorable relationship (0.4 to 0.5). The 
association between Pr and SAVI and ST is weakly 
negative, with values ranging from − 0.2 to − 0.3 
and − 0.3 to − 0.4, respectively. However, Pr and Tmin 
have a slightly positive relationship, with values rang-
ing from 0 to 0.1. It was observed that SAVI and ST 
have a strong positive association when the value is 
1. SAVI has a modest positive correlation with Tmax 
(0.4–0.5) and a very poor positive correlation with 
Tmin (0–0.2). ST and Tmax have a moderately posi-
tive association (0.4–0.5), while ST and Tmin have a 
slightly positive relationship (0–0.2). Tmax and Tmin 
show a marginally positive connection with values 
under 0.2 to 0.3. Rapidly rising temperatures have 
been linked to less precipitation. As a result, soil has 
become gritty and dry, resulting in decreased mois-
ture, limited vegetation coverage, and lower chloro-
phyll-a content in plants. As a result of the ideal con-
ditions, various plant viruses emerged, causing rice 
diseases to spread over the region.

Multicollinearity test

Multicollinearity testing is one type of statistical anal-
ysis to avoid model overfitting through VIF. In the 
present research, this testing method has been applied 
for many parameters direct and indirect impact of 
rice disease prediction purposes. As a result, eight 
parameters finally selected the best-fit ML methods 
before tuning for crop disease identification purposes 

(Narmilan et al., 2022). It was observed that the high-
est VIF values of 4.620 and 3.517 from NDMI and 
NDVI compared to other parameters and the mini-
mum VIF value shown in AWC. It was also observed 
that no significant collinearity issues were coming 
during analysis periods. The details of VIF results 
for predicting rice diseases are shown in Table 4. The 
tolerance values ranged from 0.216 (NDMI) to 0.843 
(AWC).

Boruta feature selection

The Boruta algorithm is a wrapper for the random 
forest classification technique in the R package, offer-
ing a fast, parameter-free, and numerical feature rele-
vance assessment. Using ML approaches, it was used 
for feature selection to predict kharif rice crop dis-
ease. It was also discovered that all selected param-
eters complied with modeling requirements. Boruta 
completed 203 iterations in 1.457303 min, confirm-
ing 9 attributes as important: AWC, NDCI, NDMI, 
NDVI, Pr, and four others. No attributes were found 
to be unimportant. The highest mean, median, min, 
and max were recorded in precipitation, maximum, 
and minimum temperature (Table  5). As a result, 
it was determined that three factors are significant 
for detecting kharif rice crop disease. The minimal 
impact on crop diseases was observed with the lowest 
mean importance value, specifically AWC (3.106). In 
this study, all nine factors under consideration were 
deemed more important than the shadow factor, as 
confirmed in crop disease prediction analysis. This 
means that duplicates of the original attributes were 
generated by randomly mixing the features, referred 
to as Shadow Attributes.

Analysis of rice disease predictions

Diseases are the most significant biotic limitations to 
rice yields, reducing them by 20–100% depending on 
severity. Major diseases including blast, brown spot, 
bacterial blight, sheath blight, and tungro continue to 
cause increasing damage, as well as new minor dis-
eases. Thus, the current study focuses on employing 
ML approaches (RF, GBM, SVM, XGB, and ANN) 
to forecast rice disease using biophysical and mete-
orological characteristics (Fig. 4). However, three rice 
diseases, namely brown spot, rice blast, and tungro, 
have been found through large farmer surveys. The 
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fungus Helminthosporium Oryzae causes brown spot-
on rice. It is a disease that is transmitted by seeds. 
This disease can occur in rice crops at any time, from 
seedling to grain production stage. This disease is 
more widespread in soils with low potash levels. This 
disease targets plant leaves and grains, however, the 
symptoms are more obvious on the leaves. The specks 
form a golden circle with a yellowish-brown center. 
Magnaporthe Grisea is a fungal infection that causes 
rice blasts. Rice fever and rotting neck are other 
names for rice blast disease. This disease was initially 
discovered in India in 1918. This disease is wide-
spread in around 80 rice-growing countries. Crop loss 
might reach 70–80% in the event of a major infesta-
tion of this disease. The disease affects the plant’s 
leaves, nodes, and neck, with symptoms being more 
noticeable on the leaves. Tungro disease is caused by 
two viruses: Rice Tungro Bacilliform Virus (RTBV) 
and Rice Tungro Spherical Virus (RTSV). Leafhop-
pers spread this disease in paddy fields. The majority 
of diseases are spread by green leafhoppers. Tungro 
disease impacts crops at all phases of growth, how-
ever, it is most common during vegetative growth. 
The disease-affected plants’ growth is stunted, and 
tillering is diminished.

Rice brown spot diseases were detected in Purba 
Bardhaman district, northern Paschim Bardha-
man, south-eastern Paschim Medinipur, and western 
Purulia district using various techniques (RF, GBM, 
SVM, XGB, ANN) in 2023. Purba Bardhaman, 
also known as West Bengal’s rice bowl, is a signifi-
cant rice farming district. However, the rice brown 
spot fungus heavily afflicts the district’s rice plants. 
Bipolaris Oryzae is responsible for rice brown spot, 
a fungal disease. The Purba Bardhaman district had a 
96.72% rice brown spot disease spread due to weather 
circumstances. Diseases may develop in areas with 
high relative humidity (86–100%) and temperatures 
ranging from 16 to 36 °C. In the Purba Bardhaman 
district, farmers have limited access to nitrogen-based 
fertilizers, despite their importance in soil fertility 
and availability in organic forms. The western sec-
tion of the Purulia district has 56.86% rice brown 
spot disease due to water stress, high temperatures, 
and nutrient-deficient soil. In the Paschim Medinipur 
district’s south-east region, rice brown spot disease 
affected 44.79% of crops due to N, P, or K deficien-
cies, poor soil drainage, temperatures ranging from 
20 to – 30 °C for 2 months, and gloomy weather. 

Magnaporthe Oryzae causes rice blast, a devastating 
fungal disease of rice. Rice blast diseases are preva-
lent in the north-western region of Birbhum district, 
affecting 72.38% of rice plants. The disease thrives in 
agroclimatic conditions such as high rainfall, 20–24 
°C temperature, water deficit, and low soil mois-
ture. Rice blast infections have been identified in the 
southern regions of Jhargram and Paschim Medinipur 
District, as well as the northern part of Murshidabad 
District, using the ANN approach. Rice blast disease 
was observed at 51.02% in Paschim Medinipur dis-
trict’s north-western region, attributed to dew devel-
opment on leaves and temperature changes between 
day and night. Rice tungro diseases cause significant 
yield loss in Bankura district, Murshidabad district 
(excluding ANN techniques), and western Purulia 
district. Rice tungro disease is caused by RTBV and 
RTSV, a combination of viruses. Bankura district’s 
rice plant suffers from rice tungro disease at 63.45% 
due to nitrogen and zinc deficits and rising ground-
water levels. Murshidabad district has 53.17% rice 
tungro disease due to water scarcity and insect infes-
tation, whereas Purulia district’s northern region has 
35.64% due to high water poverty, dry weather, plant 
nutrient insufficiency, and rat damage (Table 6).

The RF model outperformed other ML models 
regarding crop disease detection. It was stated that 
several ML models, including RF, GBM, ANN, XGB, 
and SVM, are used to identify three types of rice dis-
eases: brown spot, rice blast, and tungro disease. The 
RF model had the highest overall accuracy (0.70) 
and kappa value (0.53). The GBM model’s overall 
accuracy rate is 0.683, with a kappa value of 0.52. 
The ANN model’s overall accuracy is 0.680, with 
a kappa value rate of 0.51. The XGB model has an 
overall accuracy of 0.67 and a kappa of 0.50, whereas 

Table 4   VIF results for rice disease prediction

Variables Tolerance VIF

AWC​ 0.843 1.186
NDCI 0.380 2.629
NDMI 0.216 4.620
NDVI 0.284 3.517
Pr 0.806 1.240
ST 0.749 1.335
Tmax 0.685 1.460
Tmin 0.691 1.448



Environ Monit Assess (2025) 197:366	 Page 13 of 30  366

Vol.: (0123456789)

the SVM model has an overall accuracy of 0.66 and a 
kappa of 0.49. However, the RF model outperforms 
conventional algorithms for rice disease detection and 
classification in the research area. Thus, the RF model 
results investigate the many viewpoints for breakdown 
patterns and aspects relevant to three forms of rice 
crop disease. Break-down (BD) plots offer a potential 
solution by showcasing “variable attributions.” These 
plots break down the model’s prediction into con-
tributions from various explanatory variables. This 
technique is implemented in the Explain Prediction R 
package (Robnik-Sikonja & Kononenko, 2008). How-
ever, the breakdown profile shows how the contribu-
tion of distinct explanatory variables affects the mean 
(Fig. 5). This profile depicts the variable contribution 
in a clear graphical format for the three-rice crop dis-
ease evaluation objectives. The green bars represent 
positive changes, while the red bars indicate nega-
tive changes in the mean predictions, showing the 
contributions attributed to the explanatory variables. 
The breakdown profile for brown spot disease shows 
significant positive contributions from Tmin (+ 0.09), 
Tmax (+ 0.009), SAVI (+ 0.035), ST (+ 0 0.033), 
NDVI (+ 0.017), NDCI (+ 0.122), and AWC (+ 0.03), 
while Pr (−0.008) and NDMI (− 0.032) contribute 
significantly negative effects. For rice blast disease, 
all factors have significantly negative effects, with 
Tmin showing the greatest negative impact at −0.096. 
Similarly, for tungro disease, the factors Pr (+ 0.074), 
Tmin (+ 0.006), Tmax (+ 0.023), and NDMI (+ 0.047) 
show positive contributions, while SAVI (− 0.029), 
ST (− 0.032), NDVI (− 0.011), NDCI (− 0.061), 
and AWC (− 0.063) exhibit negative contributions. 
In this profile, the highest predicted probability 
was observed for rice brown spot at 0.698. Figure 6 
depicts calculating the score for all input features in 

a model by RF model to determine the significance 
of each feature in the decision-making process for 
detecting rice brown spot, rice blast, and rice tungro 
rice crop disease. The top five factors, i.e., Pr, Tmin, 
Tmax, NDCI, and NDMI—are the most important 
for all three types of disease instances. Conversely, 
NDVI, AWC, ST, and SAVI are the least important 
for all disease instances in the study area. Finally, a 
district-by-district farmer field survey including field 
images was conducted to validate actual rice crop 
production conditions (Fig. 7).

Furthermore, it was shown that rice brown spot 
disease is most prevalent in Purba Bardhaman, 
Purulia, and Paschim Medinipur. It was also noted 
that the highest regions covered by rice blast and 
tungro disease in Murshidabad, Birbhum, Paschim 
Medinipur, and Jhragram and Murshidabad, Bankura, 
and Purulia validated by field survey photographs.

Analysis of future rice disease predictions

Analysis of future SSP2‑4.5 predictions

It was discovered that many sorts of rice diseases 
were specified using SSP2-4.5 in 2030 as prospects 
(Fig.  8). Rice brown spot was identified in Purba 
Bardhaman and Paschim Bardhaman districts using 
RF, GBM, SVM, and XGB techniques, but not ANN. 
This is due to high rainfall intensity, relative humid-
ity, wind speed, and increased sodium ions in the 
soil. In this study area, it was observed that certain 
percentage of randomly distributed rice brown spot 
infections in Purulia, Bankura district excluding ANN 
technique caused in these districts had faced very 
high temperatures and excessive heat that is blowing 
in these areas and lacks of essential nutrients in this 

Table 5   Boruta results 
for rice disease sensitivity 
analysis

Variable meanImp medianImp minImp maxImp normHits Decision

AWC​ 3.106 3.118 −0.298 6.126 0.611 Confirmed
NDCI 3.905 3.916 0.231 6.673 0.798 Confirmed
NDMI 7.702 7.599 4.223 10.806 0.995 Confirmed
NDVI 8.153 8.091 4.637 11.686 0.990 Confirmed
Pr 17.189 17.135 14.349 20.663 1.000 Confirmed
SAVI 10.962 10.913 8.497 14.172 1.000 Confirmed
ST 10.931 11.010 8.859 12.973 1.000 Confirmed
Tmax 18.556 18.517 15.846 22.331 1.000 Confirmed
Tmin 20.311 20.318 16.491 23.571 1.000 Confirmed
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district’s soil like nitrogen, phosphorus, and lime, etc. 
and experienced water stress problem, on the other 
way, due to abundant rainfall, humidity and saliniza-
tion is a burning problem in the Paschim Medinipur 
district that occurs rice brown spot diseases.

The most severe rice blast disease has been 
detected in the majority of Birbhum district using 
RF, GBM, SVM, ANN  and XGB approaches, 
owing to the district’s high rainfall intensity from 
June to October, increased wind speed and humid-
ity, and the progressive impact of climate change. 
Groundwater in Birbhum is overexploited, and 
groundwater levels are fast falling. It was discov-
ered that soil salinity occurs in Murshidabad, hence 
this disease has been observed in several areas of 
the Murshidabad district. Nutrient loss is the main 

Fig. 4   Rice disease map-
ping by five ML techniques 
of 2023

Table 6   Percentage changes of rice disease mapping by the 
RF model

Districts name Rice brown spot Rice blast Rice tungro

Murshidabad 16.09 30.72 53.17
Birbhum 15.58 72.38 12.03
Paschim Bardha-

man
14.74 0.85 3.29

Purba Bardhaman 96.72 14.19 9.99
Bankura 24.11 12.43 63.45
Purulia 56.86 19.22 35.64
Paschim Medin-

ipur
44.79 51.02 1.89

Jhargram 2.60 32.10 2.37
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cause of heavy rainfall in the middle of Jhargram, 
northern and southern Paschim Medinipur districts, 
with maximum temperatures reaching 40 °C and 
heatwave conditions in only a few areas of Purulia 
district, except for the SVM technique. As a result, 
rice blast disease continues to spread alarmingly. 
However, in the ANN technique, rice blast disease 
is viewed in the north-western region, such as the 
western part of Birbhum, Paschim Bardhaman, and 
Purulia district, as well as the south-eastern region, 
such as the extreme southern portion of Purba Bard-
haman, the eastern part of Bankura, and the north-
ern part of Paschim Medinipur. Rice tungro disease 
has increased in Bankura, Purulia, and Murshidabad 
districts using RF, GBM, and XGB techniques due 
to hardpan and heavy metal soil types. These soils 

restrict water infiltration, leading to waterlogging 
and poor drainage, causing water stress in plants 
and deficiencies in essential elements for plant 
growth. Additionally, water shortage variability is 
severe in the Murshi dabad district. Rice tungro dis-
ease was found in several districts, including Purba 
Bardhaman, which was excluded from the SVM 
approach due to infrastructure concerns. However, 
in the ANN technique, the disease remained in the 
northern to south-western regions. As a result, this 
region encompassed the majority of Murshidabad 
district, the eastern part of Birbhum, the entire 
Purba Bardhaman, the eastern part of Paschim 
Bardhaman, the majority of Bankura district, the 
southern part of Purulia district, and the northern 
half of Jhargram and Paschim Medinipur districts.

Fig. 5   Break down the profile of the three rice disease for the best model of RF
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Fig. 6   Biophysical influencing features important of rice crop disease for RF model
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Analysis of future SSP5‑8.5 predictions

The study region discovered various rice diseases in 
the 2030 edition of SSP5-8.5. The majority of rice 
brown spot disease was detected in the Purba Bard-
haman district as a result of anthropogenic climate 
change, which had an impact on rice harvests. Rice 

brown spot disease was caused by increased rainfall 
intensity, a lack of nitrogen-based fertilizers, and other 
factors. The present study spread rice brown spot dis-
ease to Purulia, Paschim Bardhaman, and Paschim 
Medinipur districts. In the Purulia district has warmer 
temperatures, heat waves are expected to become more 
frequent, affected moisture stress can produce this rice 

Fig. 7   Validation of the best ML model of RF with field observation photographs
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brown spot disease and in Paschim Bardhaman and 
Paschim Medinipur districts have noticed that high 
rainfall intensity with increasing wind speed and the 
exposure of high humidity, lack of nutrient in the soil 
and suspected to others is that to be responsible for 
these diseases. Rice brown spot infections were found 
to be widely distributed in Murshidabad, Bankura dis-
trict, as well as a small area of Birbhum, Jhargram dis-
trict, utilizing RF, GBM, SVM, and XGB approaches, 
but not ANN. Rice brown spot disease has been 
detected in a small area in southern Purba Bardhaman, 
the border area of Bankura and Paschim Medinipur 

district, south-eastern Paschim Medinipur, and north-
ern Jhargram using the ANN approach (Fig. 9).

Rice blast disease affected all the districts in the 
research area, but Birbhum was the most vulnerable, 
and it spread throughout the district by 2030 utiliz-
ing the RF, GBM, SVM, ANN and XGB approaches. 
Birbhum district has arid conditions with high tem-
peratures, strong wind speed, increasing relative 
humidity, and rainfall intensity, as well as a scarcity of 
water for irrigation and poor soil water content, which 
can contribute to rice blast disease. Rice blast dis-
ease is prevalent in Jhargram and Paschim Medinipur 

Fig. 8   Future rice disease 
mapping by five ML 
techniques of 2030 under 
SSP2-4.5 of the MIROC6 
model
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districts, caused by saline-sodic soils, water shortage, 
wind velocity, and high relative humidity. It was also 
showed that scattered distributed in Murshidabad, 
Purulia, Bankura, the northern part of Paschim Bard-
haman, and the north-western part of Purba Bardha-
man district except SVM technique but in ANN tech-
nique, rice blast disease notably that north-western 
regions like a maximum portion of Birbhum, Paschim 
Bardhaman, north-western part of Bankura and north-
ern part of Purulia districts and south-eastern region 
like the extreme southern part of Purba Bardhaman, 
extreme eastern part of Bankura, and maximum por-
tion of Paschim Medinipur, Jhargram districts.

Rice tungro is one of the most common viral infec-
tions affecting rice. Climate change, nutrient loss 
from heat waves, decreased zinc and nitrogen con-
centrations in rice plants, and hardpan and heavy 
metal soil types all contribute to the prevalence of 
rice tungro disease in the Bankura district. The dis-
ease spread across Murshidabad and Purulia dis-
tricts. In Purulia district, the disease was caused by 
groundwater depletion, rising temperatures, and heat 
waves. In Murshidabad district, rice tungro disease 
was linked to extreme weather, pest infestations, and 
soil salinity. This disease is also found in a scattered 
area in Paschim Bardhaman district using RF, GBM, 

Fig. 9   Future rice disease 
mapping by five ML 
techniques of 2030 under 
SSP5-8.5 of the MIROC6 
model
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SVM, ANN and XGB approaches, as well as Purba 
Bardhaman district, except for the SVM methodology. 
Rice tungro disease has been found to spread from 
the north-east to the south-west, affecting the major-
ity of Murshidabad, Purba Bardhaman, Bankura, and 
Purulia districts, as well as a small portion of the 
north-east and south-west parts of Birbhum, the east-
ern part of Paschim Bardhaman, and the northern part 
of Jhargram district, according to the ANN technique.

SHAP analysis

SHAP values represent each feature’s contribution to 
the target’s expected value, which aids in identifying 
the most important features for prediction. The green 
bars represent positive impact, while the red bars indi-
cate negative impact in the mean predictions, showing 
the contributions attributed to the explanatory vari-
ables. In the context of brown spot disease, Tmin, Pr, 
Tmax, SAVI, and NDVI are identified as the top five 
influential variables. In contrast, NDMI and ST show 
moderate influence, while NDCI and AWC contribute 
less significantly. The Shapley results indicate that all 
input predictors for rice blast disease contribute nega-
tively. In this analysis, Tmin and Pr emerge as the most 
critical factors in predicting rice blast. Conversely, 
NDMI, NDCI, and AWC are of lesser importance. The 
analysis reveals that Tmin, Pr, Tmax, SAVI, and NDVI 
factors make notable negative contributions to Tungro 
disease prediction, while NDMI and ST show moder-
ate importance. NDCI and AWC, however, rank low-
est with minimal contributions. Tmin, Tmax, and Pr were 
determined to be the most useful metrics for detecting 
rice crop illnesses using ML approaches. Figure  10 
depicts the detailed shapely data for the best RF model.

SHAP summary plot

Figure 11a displays the SHAP value feature summary 
plots positively and negatively, where each point rep-
resents the SHAP value for a specific feature across 
individual samples. The color gradient, ranging from 
purple to blue, indicates the feature values from high 
to low. The horizontal axis represents the SHAP val-
ues, while the vertical axis lists the features, arranged 
in descending order of their importance. Climatic fac-
tors play a significant role in influencing the spatial 
variability of rice crop diseases (Ansari et  al., 2021). 

Figure  11a  highlights that Pr, Tmin, and Tmax are key 
features with substantial impacts on all three rice dis-
eases, although their effects vary across different dis-
tricts. Increasing temperatures and shifting rainfall pat-
terns can result in conditions of flooding and drought, 
which are highly susceptible to pest and disease out-
breaks, ultimately impacting crop productivity (Ansari 
et al., 2023). ST, and SAVI make moderate contribu-
tions to brown spot and rice blast, whereas their influ-
ence is minimal in cases of tungro diseases. All the 
vegetation indices such as NDMI, NDCI, and NDVI 
demonstrated a positive influence on the classification 
analysis of rice crop diseases. These satellite-derived 
indices have shown significant potential in assessing 
crop health, monitoring phenology, and identifying 
crop stress conditions at the field scale.

SHAP force plot

SHAP force plots illustrate model explanations based 
on test samples for brown spot, rice blast, and tungro 
diseases, as shown in Fig. 11b. For brown spot, the Pr 
value of 1079.12 and the value of 20.917 contributed 
most positively to the model’s output, whereas SAVI, 
NDMI, NDCI, ST, AWC, Tmax, and NDVI had nega-
tive impacts. In the case of Rice Blast, climatic factors 
such as Tmin (20.867), Tmax (31.84), and Pr (1113.98) 
provided the most significant positive contributions, 
while soil features and vegetation indices negatively 
influenced the model. For tungro, the force plots indi-
cated a close positive prediction with a value of 0.23. 
Features like SAVI (4.0) and Pr (1047.64) contributed 
positively, whereas Tmin, NDCI, NDMI, and NDVI 
were identified as the most negative influencers.

Feature sensitivity analysis

Figure  12 illustrates the sensitivity of each feature 
for individual disease classes using the “perturba-
tion” sensitivity analysis method. AWC and SAVI 
input features exhibited negative sensitivity for brown 
spot and rice blast but showed positive sensitivity 
for tungro disease. Rice blast disease showed nega-
tive sensitivity, reaching up to − 0.0015, while NDCI, 
ST, and Tmin demonstrated positive sensitivity in the 
classification analysis for brown spot and tungro dis-
eases. Vegetation indices such as NDVI and NDMI 
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displayed a positive average sensitivity of up to 0.015 
for brown spot disease, while exhibiting negative sen-
sitivity of up to − 0.011 for rice blast and tungro dis-
eases. The Pr feature exhibited positive sensitivity for 
rice blast, while demonstrating negative sensitivity of 
up to − 0.0033 for brown spot and tungro diseases.

The Tmax feature exhibited an average positive sen-
sitivity of 0.006 for brown spot, whereas rice blast and 
tungro diseases showed negative average sensitivity.

Discussions

The current study focuses on utilizing ML models 
to identify rice disease in existing and future sce-
narios while taking biophysical aspects into account. 

It is critical for the food and nutritional security of 
India. Rice disease has been validated using farmers’ 
field survey data from eight districts in West Bengal 
by several enumerators. To accomplish the United 
Nations Sustainable Development Goals, exist-
ing research relies entirely on primary data. Xinyue 
et  al. (2023) introduced their research on necrotic 
lesion formation’s characteristics, classification, and 
molecular mechanism. They reviewed the molecular 
regulatory pathway of genes involved in rice disease 
resistance and summarized the relationship between 
resistance and yield using newly developed gene 
editing. They also discussed a rational and accurate 
breeding strategy that uses molecular design tech-
nology to breed disease-resistant rice varieties. This 
study examined the relationship between rice disease 

Fig. 10   SHAP summary of influencing factors for rice disease mapping
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Fig. 11   a Local SHAP 
summary for rice disease 
classification and b SHAP 
force plot for rice disease 
classification of different 
samples
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dispersion and favorable growing conditions. In this 
study, we summarized the criteria (AWC, NDCI, 
NDMI, NDVI, Pr, SAVI, ST, Tmax, and Tmin) that 
contribute to rice disease development for sustainable 
agriculture production. The SHAP analysis revealed 
that the three primary climatic factors—Pr, Tmin, and 
Tmax—are crucial for all instances of the three dis-
ease types. A similar study indicated that climatic 
factors play a significant role in the development of 
rice diseases (Mousumi et  al., 2023). Singh et  al. 
(2023) developed a Custom CNN design to identify 
and classify rice plant disease by decreasing network 
parameters. The present study used RF, GBM, SVM, 
XGB, and ANN algorithms to detect rice diseases 
and predict the future using SSP2-4.5 and SSP5-8.5 
climate data for 2030. Kamarudin et  al. (2024) ana-
lyzed whole genome re-sequencing data for blast 
resistance and kernel elongation features in the Mah-
suri Mutant rice variety and its parental line. The 
researchers collected data in Malaysia for validation 
purposes. The present research uses ML models to 
analyze the prevalence of rice brown spot, rice blast, 
and rice tungro disease in eight West Bengal, India 
districts. Rice brown spot and rice blast disease were 
found to have the highest area coverage in eight dis-
tricts. Lu et al. (2023) identified four types of rice dis-
eases: rice blast, sheath blight, brown spot, and leaf 
blight, and developed an effective method for disease 
detection. We discovered three forms of rice diseases: 

rice brown spot, rice blast, and rice tungro, which 
were diagnosed using various methodologies in cur-
rent and future scenarios in Murshidabad, Birbhum, 
Purba, and Paschim Bardhaman, Purulia, Bankura, 
Paschim Medinipur, and Jhargram.

Jackulin and Murugavalli (2022) researched iden-
tifying and classifying plant leaf diseases. Nayak et al. 
(2023) investigated on-field detection of complications 
such as crop disease incidences, macro-nutrient defi-
cits, and diseases associated with nutrient deficiencies. 
Our study focused on rice diseases such as brown spot, 
blast, and tungro, which can be caused by high relative 
humidity, high temperature, water stress, nutrient-defi-
cient soil, low soil moisture, cloudy weather, and inad-
equate input management. Yan et al. (2022) analyzed a 
simple and cost-effective system for artificially inducing 
bakanae disease, which is crucial for breeding resistant 
rice varieties. The system focuses on rapid propagation 
of Fusarium fujikuroi pathogenic spores, efficient inoc-
ulation of rice seeds with spore solution, and growth 
conditions of rice seedlings after inoculation. Our study 
examines the current distribution of rice brown spot, 
rice blast, and rice tungro disease in 2023 and predicts 
their future spread in the region by 2030. Aggarwal 
et al. (2022) analyzed articles from 2012 to 2019 using 
various ML methods, including Integrated Pest Man-
agement, SVM, CNN, and k-nearest neighbor (kNN), 
to identify and detect rice diseases. The present study 
used RF, GBM, SVM, XGB, and ANN technologies 

Fig. 11   (continued)
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to model rice disease distribution in 2023 and estimate 
future development patterns of agriculture activities. 
Zheng et  al. (2023) discuss remote sensing monitor-
ing of rice diseases and pests, covering several data 
sources such as hyperspectral, multispectral, thermal 
infrared, fluorescence, and multi-source data fusion. 
Furthermore, historical and current studies are com-
prehensively compared in terms of materials, methods, 
outcomes, and limits to improve the agricultural system 
and solve global food security challenges (Fig. 13). Fig-
ure 14 showed a weak negative correlation (-0.1 to -0.2) 
between AWC, NDCI, NDMI, and Tmax.

Adaptation strategies and policy recommendations

Climate change significantly impacts sustainable 
agriculture, affecting crop development, growth, and 

paddy production. Adaptability is crucial to mitigate 
risks and maintain crop output, while solutions like 
high temperatures can help overcome challenges, 
especially disease-related issues. Rice’s water-use 
efficiency is low, and water-saving irrigation tech-
nology could shift land from anaerobic to aerobic, 
impacting sustainability, weed, insect, disease ecol-
ogy, and nutrient and soil organic matter dynamics. 
Rice growers in the research area primarily use con-
ventional paddy farming, focusing on field prepara-
tion and water conservation through bund creation 
and leveling, and building channels for excess water 
drainage. Farmers grow multiple paddy crops on the 
same field using a monocropping system but opt for 
zero tillage due to time constraints. Farmers often 
avoid crop insurance on rainfed and irrigated land due 
to a lack of understanding and information about the 
insurance procedure and claiming processes, which 

Fig. 12   Perturbation sensitivity analysis for rice disease classification
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can be complicated due to time constraints and unex-
pected expenses. Paddy growers often use medium-
level adaptation solutions to climate change, largely 
due to a lack of simple strategies like direct seed-
ing or varied cropping systems. The study identifies 
major barriers to agricultural adaptation strategies in 
the area, including a lack of climate change knowl-
edge, specific institutions, and a better institutional 
framework.

Diseases management strategies

Rice brown spot diseases

This disease is more prevalent in soils with low levels 
of potash. In the Purba Bardhaman and Purulia dis-
tricts, farmers face limited access to nitrogen-based 
fertilizers, despite their crucial role in maintaining 
soil fertility and their availability in organic forms. In 
the south-east region of Paschim Medinipur district, 
rice brown spot disease impacted 44.79% of crops, 

primarily due to deficiencies in nitrogen, potassium, 
or phosphorus, as well as poor soil drainage. To mon-
itor and manage the spread of rice brown spot in this 
region, several strategies were implemented, includ-
ing the use of disease-free seeds and the planting of 
resistant rice varieties such as PY 4, ADT 44, CO 44, 
CORH 1, Cauvery, TPS 4, Dhanu, and Bhavani. Sili-
con, combined with calcium silicate slag, was applied 
before planting, and regular irrigation scheduling 
was maintained in areas experiencing water stress. 
For chemical control methods, Mancozeb (2.0 g/L) 
was sprayed two to three times at intervals of 11 to 
16 days. Additionally, seed treatment with Ceresan/
Agrosan at 2.5 g/kg was performed to prevent seed-
ling blight during the early stages of growth.

Rice blast diseases

Rice blast disease is widely prevalent in the north-
western region of Birbhum district, impacting 72.38% 
of rice plants. Additionally, rice blast infections have 

Fig. 13   Representation of 
sustainable development 
goals correlated with our 
present research work
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been reported in the southern areas of Jhargram and 
Paschim Medinipur districts, as well as in the north-
ern portion of Murshidabad district. The north-west-
ern part of Paschim Medinipur district is particularly 
vulnerable, likely due to dew formation on rice leaves 
and fluctuations in temperature between day and 
night. To manage rice blast disease in this region, it is 
recommended to maintain appropriate doses of nitro-
gen fertilizer and regularly remove weed hosts. Dis-
ease management can also involve the use of tolerant 
rice cultivars, such as CO 50, CO 47, TPS 3, White 
Ponni, CORH, BPT 5204, Swarnamukhi, Swathi, Pal-
ghuna, Prabhat, IR-36, IR-64, Jaya ADT 37, ADT 36, 
ADT 16, ADT 20, ADT 39, ADT 19, and ADT 44, 
to limit disease spread. Preventive strategies include 
delayed planting and minimum tillage, the proper 
management of straw and stubble. For chemical 

control, spraying Carbendazim and Edifenphos at a 
concentration of 1 g/L during the flowering stage is 
effective (Source: http://​www.​agrit​ech.​tnau.​ac.​in).

Tungro diseases

Rice tungro disease has caused considerable yield 
losses in Bankura district, Murshidabad district, and 
western Purulia district. In Murshidabad district, 
53.17% of rice tungro disease cases are attributed to 
water scarcity, while in the northern region of Purulia 
district, 35.64% of cases are linked to water shortages, 
dry weather, insufficient plant nutrients, and rat dam-
age. Management strategies include the use of light 
traps to control the rice tungro population. Cultural 
methods such as regular maintenance of fallow lands 
to eliminate weed hosts updated the planting date, and 

Fig. 14   Correlation analysis of influencing factors for rice disease mapping

http://www.agritech.tnau.ac.in
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the promotion of effective crop rotation, inter crop-
ping, were also adopted. Additionally, oilseed crops 
and resistant rice varieties—IR 50, IR 36, ADT 37, 
Co 45, Ponmani, Co 48, Vikramarya, Surekha, White 
Ponni, and Bharani—were implemented as part of 
disease management strategies. The recommended 
application rates for nitrogen, zinc, and organic fer-
tilizers, along with neem cake at 12.5 kg/20, were 
applied effectively, and optimal use of groundwater 
was ensured. In this region, rice tungro disease can be 
controlled by using a recommended dose of 2% urea 
combined with Mancozeb at 2.5 gm/liter, along with 
treatments such as Carbofuran, Phorate, and spray-
ing combinations of Urea + Mancozeb. Additionally, 
foliar spraying of Multi-K and other chemical meth-
ods were utilized to manage the disease.

Local stakeholders can adopt bio-control agents 
like Bacillus, Pseudomonas, and Trichoderma as 
effective methods to control brown spot disease 
(Mondal et  al., 2024). According to Carvalho et  al. 
(2010), consistent and efficient nutrient management 
is an effective strategy to lower the risk of brown spot 
disease in the affected region. Surendhar et al. (2022) 
noted that silicon improves the immune responses 
of host plants to various biotic stressors while also 
reducing the incidence of brown spot disease. Addi-
tionally, they recommended the use of biofungicides, 
specifically Hexaconazole (0.2%) and Propiconazole 
(0.1%), which have shown high levels of effective-
ness in managing this disease. To combat rice blast 
disease, Skamnioti and Gurr (2009) proposed a col-
laborative approach in which farmers prune infected 
areas and maintain regular field cleaning to prevent 
the disease’s spread. Furthermore, Saha et al. (2008) 
highlighted that farmer in Purulia, Bankura, and Birb-
hum implemented plant protection strategies, includ-
ing applying Edifenphos fungicide at a concentration 
of 2 ml per liter of water, as a targeted approach to 
manage the disease.

Recommendations and a participatory approach 
are suggested to help local farmers and the com-
munity manage rice crop diseases in the study area. 
Weather information services should be accurate, 
timely, and location-specific to manage disease out-
breaks effectively (Rengalakshmi et  al., 2018). Rice 
farmers need training on using weather forecasts, 
identifying diseases and pests, managing diseases, 
applying pesticides, and understanding weather con-
ditions for rice diseases. Weather information should 

also be provided in the local language with clear 
interpretations (Mousumi et al., 2023). Farmers need 
to be trained on utilizing weather information ser-
vices for making agricultural decisions. While most 
farmers own mobile phones and smartphones, many 
are unfamiliar with accessing these services. ICT 
specialists should collaborate with the meteorology 
department, University teacher, academician, agricul-
tural extension agents, Krishi Vigyan Kendra (KVK) 
managers, and rice disease experts to create custom-
ized Weather and Climate Information Services for 
climate-resilient rice disease management. NGOs and 
private organizations could support rice farmers by 
distributing timely, location-specific weather infor-
mation, addressing the shortage of extension agents 
and limited funding. Farmers in the study region are 
implementing adaptive measures due to knowledge, 
experience, resource availability, and lack of institu-
tional framework. Specialized interventions, technol-
ogy demonstrations, training, research, and institu-
tional frameworks are being implemented. Education, 
outreach, and extension activities can enhance human 
capital, decision-making capability, and collective 
adaptability. Strengthening grassroots extension bod-
ies is crucial. Paddy producers adopt monocropping, 
promoting integrated farming systems for long-term 
income and productivity. Crop insurance helps farm-
ers weather climate change effects, promoting policy 
initiatives.

Limitation and future scope

The Survey limits its capacity to cover and accu-
rately portray information. Because each district has 
a set budget and sample size, the survey may miss 
important details in places that are not covered by the 
available resources. Some areas, particularly those 
with large forests and conservative tribal nations, 
are difficult to reach, creating challenges and poten-
tially painting an incorrect picture of precision agri-
cultural techniques. Limited road access also makes 
it difficult for surveyors to reach specific field plots, 
reducing overall coverage. Many farmers may be 
ignorant of the reason for the poll survey or inter-
view, which may impact their responses since they 
are anxious about its potential political implications. 
Farmers’ lack of awareness, training, and education 
is critical for understanding rice disease patterns. A 
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lack of knowledge about suitable crops and growing 
approaches exacerbates the underutilization of these 
significant agricultural resources. However, while 
accuracy is a useful indicator for assessing a model’s 
overall performance, it can be misleading in some cir-
cumstances, especially when the dataset is skewed, or 
the misclassification costs are unequal. A key limi-
tation of this study is the analysis of only three rice 
diseases due to the unavailability of extensive field 
survey data. Variability in rice planting durations 
complicates disease classification, while small land-
holdings and coarse-resolution data further contribute 
to uncertainty. Additionally, inconsistencies in irriga-
tion, pesticide, insecticide, and fertilizer application 
rates among farmers make it challenging to accurately 
determine the causes and timing of disease outbreaks.

Future research should expand field surveys to 
include a broader range of rice diseases while con-
sidering the effects of climate change. It will include 
recommendations for machines that use sophisticated 
computer vision-reliant deep learning and artificial intel-
ligence methodologies for rice disease identification. 
These strategies produce abnormally fruitful results for 
the detection of diseases involving images of leaves, 
harvest fields, or seeds. The future effort will focus on a 
more in-depth examination of the accuracy of agribusi-
ness to broaden the understanding of rice, which is one 
of the world’s most important crops. It is recommended 
to systematically store a database focused on specific 
crop diseases associated with particular crops. Addition-
ally, it is important to compile a synthetic data-driven 
and user-driven system that considers various treatment 
conditions for the respective crops. These conditions 
include tailored service practices such as planting dates, 
irrigation schedules, real time weather forecasting apps, 
soil health status, fertilizer application rates, seed rates, 
levels of farm mechanization, tillage practices, crop resi-
due management, farmer socioeconomic conditions, and 
the use of farmyard manure.

Conclusions

This study employs five machine learning models to 
predict Kharif rice crop diseases in both current and 
future geospatial scenarios in Eastern India. Various 
vegetation indices were analyzed to assess crop health, 
though early disease symptoms may not be immediately 

detectable. Future climate projections for disease detec-
tion were generated using CMIP6 global climate mod-
els under SSP2-4.5 and SSP5-8.5 scenarios. In the 
region high humidity, water scarcity, nutrient-deficient 
soil, and poor management contribute to the preva-
lence of diseases like brown spot, blast, and tungro. 
This study examined three rice diseases for 2023 and 
2030 using RF, GBM, SVM, XGB, and ANN models. 
Among these, the RF model performed best, achieving 
a maximum test accuracy of 0.70. The findings reveal 
that rice brown spot disease has spread by 96.72% in 
Purba Bardhaman. Rice blast disease affects 72.38% 
of rice plants in northwestern Birbhum, driven by 
high temperatures, water deficits, and low soil mois-
ture. Meanwhile, due to nitrogen and zinc deficiencies, 
rice tungro disease impacts 63.45% of rice crops in 
Bankura. SHAP analysis identified Pr, Tmin, and Tmax 
as the key climatic factors influencing all three rice dis-
eases. The perturbation sensitivity analysis showed that 
AWC and SAVI negatively affected brown spot and rice 
blast but positively influenced tungro disease. NDVI, 
NDMI, and Tmax exhibited varying sensitivities, with 
Tmax positively impacting brown spot but negatively 
affecting rice blast and tungro. This approach enhances 
crop production optimization, aiding in doubling farmer 
income and supporting decision-makers in monitoring 
crop disease disasters. It also contributes to achieving 
the United Nations Sustainable Development Goals.
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