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A B S T R A C T

Peanut (Arachis hypogaea L.) is an important cash crop with significant yield gaps, especially in developing
countries. Optimizing peanut production could foster economic growth for a significant number of smallholder
farmers across the globe. In this study, we used an in-silico cropping system model to simulate and optimize
genotype × crop management (G × M) across India that would narrow the existing peanut yield gaps. For that,
we simulated diverse G ×M combinations across range of environments (E) in India, considering three irrigation
regimes typical for managing peanut production systems. Covering whole India in a 0.5◦×0.5◦ resolution, we
simulated 60,480 G ×M combinations for each grid, summing up to a total of 2.3 billion simulations and 1.02 TB
output data. This required well-structured high-performance computing (HPC) approaches, data management,
and analytical capacities. For this, we present the concept of a re-usable HPC system with interoperable modules,
which can be readily adapted for different simulation setups. We introduced the novel way of analyzing simu-
lation outputs − “Index of Goodness” (IoG) − that aggregates key peanut production characteristics (grain and
haulm production) and production risk failure. IoG is a simple way to evaluate the suitability of simulated GxM
options from the perspective of end-users, including primary producers and crop improvement programs. The
generated output was used to identify the geographic regions (environmental clusters, EC) with high degree of
similarities within each of the tested irrigation regimes. For each cluster, we identified a specific suite of GxM to
benefit peanut production and prioritize G targets for breeding. In principle, irrigated cropping systems would
benefit from high planting densities, long duration and vigorous crop types. With diminishing water availability
(particularly in the Thar Desert and SE India), the optimal production included shorter duration crop types which
could quickly respond to drought stimuli (i.e. close stomata and conserve soil water upon soil and atmospheric
drought exposure). These traits should also be considered in phenotyping strategies to support context-specific
breeding.

1. Introduction

Sustainable food production for a growing population is one of the

most pressing global challenges (Sustainable Development Goals, SDGs
#1, 2). The latest United Nations report (UN, 2024) highlighted that
current actions are insufficient to meet the SDGs, requiring significant
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investment and acceleration. The socially and environmentally vulner-
able agricultural regions, like the Semi-Arid Tropics (SAT), face esca-
lating climate variability, which is likely to further destabilize these
systems in the future. Peanut crop is an important oilseed, confection-
ery, and livestock feed, powering the income of many small-scale
farmers in these SAT regions of India and Africa. Peanut cultivation in
India makes up to two-thirds of the total rainfed cropland, i.e., more
than 5 million hectares (DLD, 2017; Hajjarpoor et al., 2021). The
dependence of the rural population well-being on peanut production is
evident (Nautiyal and Mejia, 2002) and crucial to the agricultural and
socio-economic development of India (e.g., Domhoefer et al., 2022).
However, peanut productivity remains much below its potential (on
average, including irrigated areas ~1.1 t ha-1; DLD, 2017) with high
inter-seasonal variability. To sustain production in SAT Agrosystem,
location and climate-optimized solutions are required that would reduce
the effect of Genotype by Environment by Management (GxExM) in-
teractions within the target production environment (TPE, Hajjarpoor
et al., 2022).

Accelerating analysis, quantification and solutions design to deal
with GxExM across spatio-temporal scales requires to transcend tradi-
tional approaches that evaluate G (i.e., plant breeding) and M (i.e.,
agronomy) separately (Cooper et al., 2020; George, 2014; Hammer
et al., 2014) or only very limited GxM combinations (e.g. multi-
environment trials; METs, Chenu, 2015; Laidig et al., 2024; Ramirez-
Villegas et al., 2020; Riedesel et al., 2024; Witcombe et al., 1998). The
latter eventually limits the scale of spatio-temporal testing of GxExM
options and, consequently, the selection of optimal GxM interventions
designed for specific E (Kholová et al., 2020).

Currently, process-based Crop Simulation Models (CSM) play a
crucial role in cropping systems design by enabling virtual experimen-
tation (Cooper et al., 2023; Hammer et al., 2014). These models suffi-
ciently represent the main biophysical agrosystem processes and
facilitate the design and prioritization of potential solutions to deal with
GxExM interactions in-silico and at the required scale (Battisti and Sen-
telhas, 2019; Carcedo et al., 2022; Cooper et al., 2020; Hajjarpoor et al.,
2022, 2021; Harrison et al., 2014; Heinemann et al., 2024, 2015;
Ramirez-Villegas et al., 2020; Shawon et al., 2024; Sinclair et al., 2020).
By simulating potential GxExM, CSMs can handle non-experienced
scenarios (Hajjarpoor et al., 2022). This facilitates the prioritization of
GxExM options in-silico with a higher probability of being superior in-
vivo to speed up the development of actual solutions (Heinemann et al.,
2019).

While the models are used to optimize crop’s agronomy with several
commercial solutions available (e.g., Yield Prophet,2 Ypsilon,3 Crop-
win,4 etc), use of models for development of resilient crop varieties
through physiology-led breeding and support climate-smart crop pro-
duction is just emerging (Chenu et al., 2018, 2011; Welcker et al., 2022;
Wu et al., 2019, 2016; Zheng et al., 2018). Outputs from CSMs have also
been employed for environmental characterizations, helping breeders
refine cultivar testing schemes and identify optimal seed production
locations for commercial use (Heinemann et al., 2024). Much of these
works, however, focus on major cereal crops while little has been done
on legume crops (Hajjarpoor et al., 2018; Kaloki et al., 2019; Justino
et al., 2025) and particularly peanut (Hajjarpoor et al., 2021). It is
important to note that the practical use of CSMs for high-resolution
large-scale simulations poses challenges in data management, compu-
tational resources and performance optimization. Some of these
advanced computational systems has been described in different studies
(Fainges, 2015; Jang et al., 2019; Khabarov et al., 2020; Zheng et al.,
2016).

A previous modeling study of Indian peanut systems revealed

substantial yield gaps (Hajjarpoor et al., 2021) and identified production
regions with higher levels of homogeneity and reduced GxExM effects
compared to the conventionally recognized peanut production zones.
Therefore, these regions could be the effective geographical targets for
specific genetic and agronomic designs that would optimize peanut
production. Consequently, here we aim to identify GxM combinations
with high potential to enhance/stabilize peanut production across India.
In particular, we utilize a grid-based application of the Simple Simula-
tion Model (SSM, Hajjarpoor et al., 2021) to examine the combinations
of (i) a range of plant characters (“virtual genotypes” or “ideotypes”, G)
which could be prioritized for breeding region-specific cultivars and ii)
examine the crop management practices (M) which could be combined
with these peanut ideotypes to optimize the production in these specific
regions.

2. Methodology

2.1. Overview

Fig. 1 visualizes the methodological approaches and workflow. To
prioritize crop ideotypes for peanut production environments in India,
we created 320 virtual genotypes with contrasting but realistic ranges of
crop characters (G: phenology, vigor, and crop responsiveness to soil
and atmospheric drought). To optimize the production practices for
these virtual genotypes, we analyzed these in the context of agronomy
practices feasible in the target production regions in India (M: sowing
dates, planting density and irrigation levels across relevant soil types).
We conducted a genotype (G) by environment (E) by management (M)
factorial system analysis using gridded-based weather data distributed
across India. We used a simple simulation model (SSM, Hajjarpoor et al.,
2021; Soltani and Sinclair, 2012a), to simulate potential GxM combi-
nations relevant to peanut cropping systems in India (60480 factorial
GxM combinations spanning across 40 years within each of 1173 grids
resulting in over 2.3 billion simulations;1.02 TB of raw output data). The
goodness of the GxExM simulation outputs for the intended end-use was
evaluated using Index of Goodness (IoG). The simulations attaining the
best IoG were clustered and visualized on the map and the simulation
parameters were analyzed within each cluster.

2.2. Data used for model input

The SSM model (2.3) requires crop parameters (G: coefficients
defining the crop growth and development functions (2.2.1)), the input
to define the environmental context (E; meteorological parameters
(2.2.2) and soil (2.2.3)), and crop management practices (M; sowing
date, irrigation, fertilization, etc. (2.2.4)):

2.2.1. Crop characteristics (G component)
To capture the biological variability of peanut crop into the crop

model, we used combinations of crop model coefficients (G) reflecting
observed ranges of phenological development, different rates of above-
and below-ground organs development (biomass accumulation, canopy
and root growth) and organs functionalities, (stomata closure upon soil
and atmospheric drying). These G combinations resulted in virtual crops
with variable maturity, vigor, and different capacities to conduct water
(details in Table 1). Altogether, we created 320 virtual cultivars span-
ning the documented ranges of biological variability (Devi et al., 2009;
Halilou et al., 2016; Sivasakthi et al., 2018; Vadez et al., 2012).

2.2.2. Meteorological information inputs (E component)
India has a general lack of quality weather information and open-

source databases (Hajjarpoor et al., 2021, 2018; Kholová et al., 2013;
Ronanki et al., 2022). Therefore, enhancing the spatio-temporal reso-
lution of relevant weather information was necessary for our study. In
our previous studies, several sets of gridded weather data (GWD) were
tested for their suitability to simulate chickpea (Hajjarpoor et al., 2018)

2 https://www.yieldprophet.com.au/yp/Home.aspx.
3 https://ypsilon.services/.
4 https://www.itk.fr/en/cropwin/.

A. Hajjarpoor et al.

https://www.yieldprophet.com.au/yp/Home.aspx
https://ypsilon.services/
https://www.itk.fr/en/cropwin/


Computers and Electronics in Agriculture 235 (2025) 110383

3

and peanut (Hajjarpoor et al., 2021) production systems in India (i.e.,
IMD (Indian meteorological department), including AgMERRA (both
0.5◦x0.5◦ and 1◦x1◦ resolution, Ruane et al., 2015)), NASAPOWER5 and
MarkSim (Jones et al., 2002; Jones and Thornton, 2000)) by comparing
them to available observed weather data (IMD6). Using the same
approach we found the most relevant data source for our study was
AgMERRA 0.5◦x0.5◦, which, however, contains the weather information
only upto in 2010. Therefore, our study combined 31 years of AgMERRA
data (1980–2010) with 9 years of NASAPOWER data (2011–2019, the
next “best” weather data source) for the modeling analysis (all data are
available at Pavlik et al., 2025).

2.2.3. Soil information (E component)
Gridded soil data at a spatial resolution of 250 m are available for

India.7 However, these data only include generic soil profiles and do not
adequately represent peanut production conditions. Given the scale of
our study (entire Indian subcontinent) and size of the grids (0.5◦x0.5◦),
where each grid can contain different soil types, we decided to simulate
all possible combinations of soil types and effective rooting depths
typical for peanut cultivation. In this way, the simulated results of all
other GxM combinations can be further contextualized for local soil
conditions based on local experts’ and farmers’ knowledge. To reflect
the soil heterogeneity of peanut cultivation systems in India, we referred
to literature and reconstructed the parameters of all relevant soil types
for peanut production systems in India, using sources such as the
Handbook of Agriculture (Trivedi, 2011), ISRIC, NBSS-LUP, and expert
knowledge from NBPGR and ICRISAT (details in Hajjarpoor et al, 2021).
We used combinations ofsoil textures and effective rooting depths,
resulting in six different soil types (details in Table 2). We simulated all
soil types in each grid to gain a comprehensive view of the soil’s effect.

2.2.4. Crop management information (M component)
In India, peanut is produced in all three main cropping seasons; rainy

(“Kharif”, sowing ~ May-September, ~82 % of total production), post-
rainy (“Rabi”, sowing ~ October-January, ~10 % of total production)
and summer (sowing ~ January-February, ~8% of total production).
Therefore, in the current study, we focused on the major season −

Kharif.
Since sowing window in Kharif season can vary from May to

September across India (Hajjarpoor et al., 2021; Trivedi, 2011), a range
of sowing windows was set accordingly from mid of May to end of
August with two-week intervals. The criteria for sowing was inspired by
the regular management practices and was set to be initiated when a
moisture content would likely support successful germination, i.e., when
a minimum of 20 mm water in the soil profile would have accumulated
since the beginning of sowing window. As the dry season precedes
peanut sowing, it was also assumed that there was little or no tran-
spirable water in the soil profile early in the season. This is a valid

assumption since around 80 % of annual rainfall is received over the
Indian subcontinent during Kharif (June to September; Parthasarathy
et al., 1994). If these conditions were not met, sowing was forced at the
last day of two-week intervals with 20 mm irrigation to establish the
crop, at minimum.

The recommended sowing density for peanut cultivation in India is
33 plants m− 2 (ICAR-DGR, 2016). Based on that, three sowing densities
were chosen for simulations as standard with 33 plants m− 2, lower and
higher densities, respectively, with 22 and 44 plants m− 2 as alternatives.

Being capable of fixing atmospheric nitrogen through rhizobial
symbiosis, peanut requires only a small amount of basal N application
for establishment prior to the formation of nodules and this is well-
captured by the SSM model (Soltani and Sinclair, 2011). This require-
ment was accounted for in simulations by reflecting the recommended
basal fertilizer dose of 20 kg N ha− 1 (Rachaputi et al., 2021; Trivedi,
2011) as the initial soil nitrogen content.

Despite we study the Kharif (rainy) season, its well documented the
rains themselves are not sufficient to support the crop in some parts of
India (e.g. North-West and Southern semi-arid regions) and farmers do
provide additional irrigation (DLD, 2017; Hajjarpoor et al., 2021; Raju
et al., 2018). To investigate the irrigation management practices, we
simulated rainfed, partial-irrigated, and fully irrigated systems (details
in Table 3). We used the three modes in the SSMmodules which allow to
simulate rainfed crop, partial irrigation (40 mm water at the beginning
of flowering and another 40mmwater at the beginning of seed set which
is broadly representative of farmer practice across the regions) and full
irrigation module (using the fraction of transpirable soil water (FTSW)
threshold of 0.5 to trigger irrigation as used by Vadez et al. (2017) and
Hajjarpoor et al. (2021).

2.3. Model setup, computational architecture and preparation for large
scale simulation

SSM model, originally written in VisualBasic (VBA) programming
language (which is the embedded version in Excel known as “Macros”,
Soltani and Sinclair, 2012a), was developed to capture the mechanistic
nature of the key plant processes, i.e., the concepts of resource capture,
resource use efficiency, and mass partitioning to the grain. SSM simu-
lates phenological development, leaf development and senescence, dry
matter production and partitioning, plant nitrogen balance, yield for-
mation and soil water balance. Responses of crop processes to envi-
ronmental factors of solar radiation, CO2, photoperiod, temperature,
nitrogen and water availability, and genotype differences are included
in the model (For more details on relational diagrams refer to Figs. 9.3,
12.2 and 14.2 of Soltani and Sinclair, 2012a). The model arbitrates the
outputs of simulated interactions of the crop (G) with environmental (E)
and crop management (M) in a daily time step, thus reproducing the
system dynamics in the daily steps.

The model was rewritten in C# programming language to automate,
speed-up, and effectively process large number of GxExM factorial
simulations. This allowed optimization of the model performance by
allowing automated batch processing as well as multithreaded parallel
processing. In developing the C# processing program, a lot of focus was

Fig. 1. Process flow used in the methodology of presented work.

5 https://power.larc.nasa.gov/.
6 https://dsp.imdpune.gov.in/.
7 https://www.isric.org.
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put into areas of optimization and reusability. Therefore, the tool fol-
lows a modular architecture with a high degree of independence of in-
dividual modules (Fig. 2).

The modular architecture allowed for adjusting or improving the
simulation processing individually and ensured high performance of the
developed software tool. The software was run on a high-power pro-
cessing PC for simulations. The computer had two AMD EPYC 7281 16-
core processors, with 128 GB of RAM and a 1 TB SSD hard disk drive for
storage. This processing capacity made it possible to execute the simu-
lations in parallel by utilizing multithreading. The overall processing
took approximately two days and generated 1.02 TB of output data.
Considering the total number of 1173 grid locations and 60,480 simu-
lations on each grid, this averages to a speed of approximately 400
simulations per second.

2.4. Raw simulations output and its analysis

Each of the 60,480 simulated GxExM combinations consisted of raw
simulation output in 41 rows of data (i.e. 41 simulation seasons) within

the single csv file (one file per grid). This data contained the summary of
the simulated production output (yield, biomass etc.) as well as speci-
fication of each particular GxExM simulation setup, which enabled
further output sorting, filtering and analysis.

2.4.1. Evaluation of simulations based on the anticipated crop value and
production risks for end-users; Index of Goodness “IoG”

To evaluate simulated GxExM combinations, we designed a custom
index (“Index of Goodness”, further as IoG) which represented the
overall performance of each combination based on the crop value as per
our understanding of farmer’s requirements; In India, peanut is pri-
marily used for grain production (Rachaputi et al., 2021; Rathnakumar
et al., 2013; Trivedi, 2011), however, non-negligible crop value relates
to haulm production which is used as the livestock fodder (Blümmel
et al., 2012; Rachaputi et al., 2021; Rathnakumar et al., 2013). Impor-
tantly, majority of peanut producers in India are small-holder farmers
(Nautiyal and Mejia, 2002; Rathnakumar et al., 2013), whose livelihood
might be at considerable risk in the case of peanut crop failure. These
ground-realities were reflected in the single IoG number.

Table 1
Overview of simulated genetic (G) factors and their levels in the SSM model set-up. These crop characteristics combinations resulted in 320 virtual crops with variable
maturity, vigor, and different capacities to conduct water.

Crop characteristics Corresponding SSM
coefficient

Range of
coefficients tested

Relevance/references

Crop duration [biological days, bd]   
Emergence to flowering bdEMRR1 15.66 The coefficient specifies the number of biological days with optimal photoperiod,

temperature, and soil water required for the crop to complete a specific phenological
phase (Soltani and Sinclair, 2012a).
These range of parameters reflects the duration of three main peanut product profiles
for India at ICRISAT; short, medium and long duration (internal documents, expert
knowledge).

17.4
19.14
20.88

First pod to first seed bdR3R5 9.45
10.5
11.55
12.6

Duration of seed filling bdR5R7 55.8
62
68.2
74.4

FTSW and VPD response   
The fraction of transpirable soil water
(FTSW) that triggers stomata closure

WSSG 0.2 WSSG coefficient specifies the level of soil dryness when plant starts closing the
stomata (measured as FTSW threshold). Higher WSSG, means that stomata starts
closing in wetter soil. The reported range of FTSW in peanut is between 0.22 and 0.71
(Devi et al., 2009).

0.35
0.45
0.55

The vapor pressure deficit (VPD)
threshold that triggers stomata closure

vpd_resp No response Plant increases transpiration linearly with increasing VPD (vpd_resp − no response).
1.5 kPa Plant stops increasing transpiration at specific VPD level. Plants limiting their

transpiration produce less biomass with higher transpiration efficiency (Sinclair et al.,
2010; Soltani and Sinclair, 2012b).

2.2 kPa
2.9 kPa
3.6 kPa

Vigor related   
Max Root depth MEED 1000 mm Plant allometry is, upto certain extent, regulated from same genetic regions (

Sivasakthi et al., 2018; Vadez et al., 2012). Vigorous cultivar is expected to grow and
expand their organs faster (root and shoot). Accordingly, vigorous crop type linked
together the roots that expanded faster and reached deeper , with leaves that emerged
and expanded faster.

1200 mm

Root extension rate GRTDP 35 mm/day 
38.5 mm/day 

Phyllochron phyl 56 ◦C/leaf 
50.4 ◦C/leaf 

Leaf area development rate PLAPOW 2.75 (e.g. Halilou et al., 2016)
3.025

Table 2
Soil characterizes used in themodel set-up and corresponding SSM parameters. Soil sAturation Limit (SAT, m3m-3), soil Drained Upper Limit (DUL, m3m-3), volumetric
EXTRactable water content (EXTR, m3 m-3), and Soil effective rooting DEPth (SOLDEP, mm).

SOLTEX SAT DUL EXTR SOLDEP Relevance/references

Alfisol 0.40 0.25 0.09 600
900
1200

Based on Handbook of Agriculture (Trivedi, 2011), ISRIC, NBSS-LUP, and expert knowledge from NBPGR
and ICRISAT (details in Hajjarpoor et al, 2021).

Vertisol 0.45 0.38 0.13 600
900
1200

A. Hajjarpoor et al.
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The simulations were separated into groups (Table 4). That repre-
sented major environmental drivers of production and unlikely to vary
within the production system (e.g., access to irrigation or soil properties
are “fixed” for the farmer, details in Table 4).

The process of IoG calculation was conducted in the following steps
(Fig. 3):

(i). To account for the frequency of crop failure, instead of calcu-
lating average yield/biomass we opted to select the value corre-
sponding to the 10th percentile. In our respective dataset, this
meant using the 5th smallest value from the 40 years for each
GxExM simulation setup.

We choose the 10th percentile over the average because 1) unlike the
average, the 10th percentile captures the absolute level of the simulation
output, as well as the variance of the results (i.e., a dataset with higher
variance results in the 10th percentile being lower than average). 2) the
10th percentile is unaffected by any abnormally high simulated values in
“good years” (top outliers). From the point of view of small-holder
farmers who would likely prefer a stable output, this choice would
essentially represent a 90 % guarantee of those minimum production
outputs compared to average, where crop production failures can be
“hidden” (i.e. balanced by high yields in non-failure years).

(ii). We normalized the results from i) by converting from absolute to
relative values within a particular simulation group (see Table 4).
For this, we calculated average for the 10th percentile and its
standard deviation for each group

Average: μ =
1
n

Σx;

where n is the number of simulations in the group and x is the 10th

percentile result.

Standard deviation: σ=
̅̅̅̅̅̅̅̅̅̅̅̅̅
Σ(x− μ)2

n

√

;
Consequently, two z-score values to represent the rank of each

simulation within its group for grain and haulm yield were calculated:
Z-score =

x− μ
σ

This z-score value therefore represents how many standard de-
viations each simulation is above or below the average (withing the
same group as per Table 4).

(iii). Finally, to express the IoG as a single number, the z-scores for
grain and haulm yields were weighted by a factor of 70 % for
yield / 30 % for biomass and combined to reflect the crop value
anticipated by farmers:

IoG = 0.7 × z-scoreyield + 0.3 × z-scorehaulm biomass
The resulting IoG tended to follow normal distribution, and the

values were within the range typical for z-scores (approx. − 3 to +3,
which would capture 99.7 % of the data).

2.4.2. De-risked and weighted IoG
IoG is conceptualized to guide the decisions of two types of end-

users:

• Primary producers (farmers, farmer associations and advisory ser-
vices) to optimize the crop production practices based on their
context: i) location ii) soil conditions and iii) capacity to provide
irrigation

• Crop improvement programs (breeding, phenotyping) to breed
context-specific peanut using the simulated ideotypes as a
“blueprint”

Nevertheless, both of these end-user groups might be facing several
risks by trying to adopt the optimal G and M based on the IoG calculated
above. After the discussions with these two groups of stakeholders, we
have accounted for enhanced IoG calculations further:

• De-risked IoG for primary producers Crop producers might face
logistical / resource-related difficulties in adhering to the recom-
mendations. In some instances, farmers cannot adhere to sowing
within the optimal sowing window (due to previous crop logistics or
socio-ethnic context). In other cases, optimal crop density cannot be
achieved (e.g. because of seed viability issues). For these anticipated
reasons we calculated “de-risked IoG”. De-risked IoG extends IoG
calculated in 2.4.1 and incorporates a weightage factor of similar
simulations to de-risk the uncertainty that farmers might deviate
from the recommended optimal practices;

For sowing date, the “de-risked” IoG considers the simulations with
directly preceding or following sowing window as its neighbors and
incorporates them with a total weightage of 30 %. This means that any
particular simulation would contribute 70 % of its own IoG and 30 % of
IoG calculated for the preceding or following sowing window [15 % /
70 % / 15 %]. For simulations with only one neighbor, the weightage
will be 30 % / 70 %. Unlike the IoG, which assumes that producers will
follow the recommendations perfectly, the “de-risked” IoG in-builds 30
% uncertainty that farmer misses the optimal sowing window and de-
prioritizes simulations with “bad neighboring simulations”.

In the case of planting density, there is uncertainty that farmers
might not be able to procure sufficient seeding material to achieve the
desired plating density or that the seed is of low quality. Here, we
considered that the optimal simulation itself contributes 60 % to the

Table 3
Overview of simulated agronomy management (M) factors and their modified levels in the model set-up.

Modified factor Corresponding SSM
coefficient

Range of M variation
tested

Relevance/references

Sowing window
(within Kharif
season)

Pdoy 16th May − 31th May
1st June − 15th June
16th June-30th June
1st July-15th July
16th July-31st July
1st Aug-15th Aug
16th Aug-31st Aug

Details on Kharif season in India in Hajjarpoor et al., 2021; Trivedi, 2011

Planting density
[plant m− 2]

PDEN 22 (Low)
33 (Optimum)
44 (High)

Details on recommended planting density in the Handbook of Agriculture (Trivedi, 2011) and
Annual Report 2015–16 (ICAR-DGR, 2016).

Irrigation level IRGW Rainfed: No irrigation
Partial irrigation
Full irrigation

Partial irrigation rule in SSM: 40 mm water at the beginning of flowering and beginning of seed
growth
Full irrigation rule in SSM: irrigate before soil moisture limits the crop growth (i.e. irrigate when
FTSW < 0.5)
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“derisked IoG” with 40 % chance that the density will be lower than
recommended. With three possible optimal planting density levels (44,
33 and 22), we accounted for that the planting density 22 would con-
tributes 100 % its own IoG (as it has no neighbor), planting density 33
would contribute 60 % its own IoG + 40 % IoG of neighbor simulation
with density 22, planting density 44 would contribute 60 % its own IoG
+ 30 % IoG of simulation with density 33 + 10 % of IoG of simulation
with density 22.

In principle, the “de-risked” IoG accounts for the IoG value of the
neighboring simulations to prioritize GxExM combinations that do not
exhibit a sharp decline in production due to slight shifts in the

simulation multi-dimensional space. In practice, this should account for
the situations where we anticipated the stakeholders would face diffi-
culties to adhere to recommendations while still realizing the “next best”
options with higher probability.

• Weighted IoG for crop improvement programs accounts for the un-
certainty of crop phenotyping accuracy − i.e., breeders may not be
able to select varieties with the optimal G parameter (e.g., pheno-
typing tools are not available). For these anticipated reasons, we
calculated a weighted version of IoG for four simulated G parameters
(crop duration, vigor, crop responsiveness to soil and atmospheric
drought, Table 1).

That means four additional values were calculated in each of these
dimensions, and weighted (Table 5). By comparing these weighted
versions to the base IoG, we could compare the “sensitivity” of IoG to
changes in each of the G parameter dimensions. In this way, the
magnitude of the difference between the original IoG and weighted IoG
determines which of the genetic parameters is the most important to
breed for to enhance production in a given ExM context (see 2.4.3).

2.4.3. Cluster analysis and visualization
The main idea of the clustering was to identify the geographic

Fig. 2. Modular architecture of the SSM processing software tool, simplified to show the main task performed by each module, the sequence in which the modules
are used and the flow of main data sets between modules.

Table 4
Environmental (E, Table 2) and management (M, Table 3) parameters deter-
mining fixed “simulation groups”, i.e., the parameters that are of major influence
on production and/or cannot be altered within the production system. Index of
Goodness (IoG) was calculated separately within these 18 ExM groups.

E/M parameter defining the simulation
group

Simulation group description (# of
groups)

Irrigation Irrigated, partially irrigated, rainfed (3)
Soil depth Shallow, medium, deep (3)
Soil texture Alfisol, vertisol (2)
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regions (E) with similar production drivers/limitations, for the “fixed”
situations with maximum effect on production – i.e., irrigation (Table 4).
Within clusters we could expect less GxExM effects on production and
more homogeneous crop responses to the system intervention (G × M).
For this, we assessed the simulations within each of the grids in the
following steps (note: grids with a yield less than 100 kg ha-1 at 90th

percentile were excluded. This was mostly the case of high-altitude lo-
cations in Himalayan regions):

• We selected the simulations within different irrigated conditions
(average across six groups of soils, see Table 4) that attained
maximum de-risked IoG value. For all 28 input-output parameters of
these simulations, a correlation matrix was first generated. Then we
utilized the findCorrelation function from the caret package (Clas-
sification And REgression Training) in R to select the unique and the
most influential parameters driving the variability in the given
dataset (Kuhn, 2008). This narrowed down the selection to 13–14
variables within different irrigation regimes.

• Consequently, we ran principle component analysis (PCA) only with
these selected parameters (incl. latitude and longitude). The loadings
of the first number of PCs (~3–4), which explained >85 % of the
dataset, were analyzed by Partitioning Around Medoids (PAM)
clustering methods (Kaufman and Rousseeuw, 1990).

• For each of three different irrigated systems, the range of clusters was
visualized on the map (ggplot2 R package) and the results were
summarized for the most sensible number of clusters (Nbclust R
package). The significance of the differences in G, E and M

parameters between these clusters was evaluated by ANOVA and
mean comparison tests.

3. Results

3.1. High performance computing and simulation outputs analyses

3.1.1. HPC and computational architecture
For our work, it was required to generate, process and analyze

60,480 factorial GxM combinations of simulations (>2.3 billion simu-
lations; 1.02 TB of raw output data). Therefore, while developing the C#
tool for simulation and processing program, optimization and reus-
ability elements were focused. For that, we developed a modular ar-
chitecture that allowed for easy adjusting or improving individual
elements of the simulations’ processing independently. In our case, this
modular system became particularly advantageous, for iterating the
analyses and flexible hypothesis testing using the generated simulation
outputs for which the statistical module was frequently altered and
changed. The input and simulation generation module used object
abstraction, which allowed processing of different GxExM setups
without change in the actual source code. The multithreading module
managed input data sources so that these could be shared between
simulations without unnecessary duplication for each processing thread,
thereby increasing processing efficiency. Altogether, this system ach-
ieved a computation speed between 400 and 500 simulations per second
(~40 h to generate all required simulations). This fast turnaround
allowed for more experimentation and fine-tuning of the methodology.

3.1.2. Inputs setup for effective simulation management
Simulation for each of the grid locations required the weather files

and the settings file specifying the combination of GxExM parameters.
The factorial GxExM simulations needed to take into account that
reflecting one specific system condition (e.g., soil or genotype) requires
a combination of several specific variables (e.g., alfisol was achieved by
a combination of 3 soil variables of SSM: SAT, DUL and EXTR; Table 2).
These sub-variables were linked together and generated one factor in the
combination. The second specificity is that certain parameters deter-
mined the simulation group (Table 4). Since it was required to evaluate
outputs belonging to particular simulation group (Table 4, section

Fig. 3. Process of calculation of IoG, “de-risked” IoG (end-user target, primary producers) and “weighted” IoG (end-user target, crop improvement programs).

Table 5
Genotype parameters (G), the number of their simulated levels (from Table 1)
and the weightage factor used for calculating the IoG sensitivity to a single G
dimension (“weighted IoG”).

G # of simulated
levels

Weightage of each level for
IoG

Crop duration 4 25 %
Vigor 2 50 %
VPD responsiveness 5 20 %
Responsiveness to soil
drought

4 25 %
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2.4.1), it was necessary for the simulations to be calculated in a specific
order to make sure simulations from the same group formed a contin-
uous block of memory. That way the statistical processing did not
require any sorting or reorganizing of the data.

3.1.3. Simulation output data analysis
The outputs for each simulation were stored in RAM until all simu-

lations for the grid were concluded. Then the statistical module

performed further analyses (averages, medians, variances for selected
output columns within each simulation group), including the calculation
of the base IoG for each simulation. This was done so that the utilization
of RAM as a processing resource could be predicted (it scales linearly
with the number of simulations) and, accordingly, the processing could
be optimized and split into the appropriate number of parallel threads to
utilize memory in an efficient manner. The ability for statistical evalu-
ation to occur immediately after finishing the simulation reduced the

Fig. 4. Visualization of Index of Goodness (IoG, a) and de-risked IoG (b) example data. On the charts is IoG/de-risked IoG (y-axis) based on the combination of
sowing day (x-axis) and planting density (z-axis). The weightage used during the “de-risking” process considers neighboring simulations, so any high IoG values (Dark
green bars in chart a) with low-value neighbors are reduced (Pale green bars in chart b). This adjustment is only one example of 21,114 separate values (18 groups in
each of 1173 grid locations) helping primary producers in choosing options with lower risk when when comparing all adjustment values. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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amount of read / write operations as well as time needed for simula-
tion’s evaluation.

3.2. Evaluation metrics for simulations

Second part of the simulation output evaluation was done separately
(not as part of the simulation software) by a custom-made Python script
in order to calculate the “de-risked” and “weighted” version of IoG. This
multidimensional re-calculation eliminated situations where a single
simulation would have high IoG but would be at an extreme value
within its simulation neighborhood. Fig. 4 shows an example of the ef-
fect of “de-risking” the IoG in a 3D bar chart. Because the weightage used
during the “de-risking” process takes into account neighboring simula-
tions, any high IoG values with low-value neighbors are being reduced.
Therefore, the “de-risking” process prioritizes such GxExM combina-
tions, where a slight deviation from the optimal parameter value does
not cause a sharp decline in production. This “de-risked IoG” was then
used to compare the importance of particular GxExM for farmers (for
Section 3.3.1).

Weightage of IoG (“weighted IoG”) was introduced to quantify the
importance of the G factors for peanut production (for section 3.3.2).
The magnitude of the difference between IoG and the weighted IoG is
proportionate to the production loss due to the deviation from identified
optimum G level. Therefore, the maximum difference between IoG and

weighted IoG signified that the particular genetic factor is more
important for the optimized productions in target ExM context. Conse-
quently the G factors with comparatively larger drop when weighted
were considered more important for peanut crop “ideotype” as the
diversion from that particular level of genetic factor would affect the
production comparatively more. Weighted IoG can then be seen as a way
to quantify and compare the consequences of deviating from this ideo-
type in particular context (Section 3.3.2, Table 7) and thus used to
prioritize selection for peanut genetic features specific for ExM breeding
programs.

3.3. Environmental clusters and their characters

Irrigated system with the highest yield potential (~5 t ha-1) resulted
in the most relatively homogeneous peanut production (Fig. 5). The
production decreased and became increasingly heterogeneous in
partially irrigated and, moreover, in the rainfed systems (Fig. 5). The
optimal number of clusters increased alongside environmental hetero-
geneity with 4 clusters identified under irrigated conditions, and 5 and 7
clusters in partially irrigated and rainfed conditions, respectively
(Fig. 5).

The transition of the systems from full to partial irrigation resulted in
the disaggregation of the Northern (sub-Himalayan) environmental unit
(cluster #2 transformed into #2 and #5, Fig. 5). The transition from

Fig. 5. Environmental clustering (above) and the associated yield potential (below, t ha-1) for different irrigation scenarios. Grids yielding less than 0.1 t ha-1 were
excluded from clustering to prevent misleading results with unreal conditions of growing peanut (mostly the case of high altitude locations in Himalayan regions).
Heterogeneity is increased by water limitation resulting in more clusters from irrigated to partially irrigated and rainfed systems.
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partial irrigation to rainfed systems further separated the North-West
regions (Rajasthan and N Gujarat) into two distinct clusters (cluster
#1 transformed into #1 and #6, Fig. 5) and separated the”dispersed”
cluster #4 influenced by the ocean proximity into two distinct cluster
(cluster #1 transformed into #4 and #7, Fig. 5). Table 6 provides the
overview of the identified environmental clusters, peanut production (P)
and the underlying optimal G, andM characters for prevailing E (aligned
with the states in India).

3.3.1. Characters of peanut system clusters within different irrigation
management scenarios

Our modeling analysis indicated that irrigated peanut systems
(Table 6a, Table S1a) would benefit from intensified production meth-
odologies. These would include production management practices that
maximize planting density (~44 plants m− 2) combined with long-
duration genotypes (>73bd) with high vigor. The identified clusters
mostly differed in climatic variables, resulting in different lengths of
growing seasons (139–164 days) and amount of intercepted radiation
(Clusters #4 and #2 had comparatively low intercepted radiation).

Our model representation of partially irrigated systems could be still
considered as high-production environments (Clusters #2, 3, 4, 5) with
the exception of cluster #1 where a decline in production due to irri-
gation deficit was apparent (from yield 5.50, haulm 3.62 [t ha− 1] in
irrigated system to yield 3.71, haulm 2.86 [t ha− 1]; compare Table 6a, b
and Table S1a, b). The clustering analysis discriminated the sub-
Himalayan region (cluster #5), which had early sowing dates (159
DOY) and higher in-season rainfall (1132 mm/season). The optimal
suite of intensified M and G for clusters #2, 3, and 4 was similar to
irrigated systems (high planting densities, crop duration, and vigor)
except that the optimal crop type (G) included early crop responsiveness
to drying atmospheric and soil. These G factors were rather similar to
cluster #1 (and all clusters in rainfed systems, below) with the occur-
rence of droughts.

Some of the clusters identified in rainfed systems retained the
characteristics of well-endowed environments (clusters # 2, 4, 5, 7) and
so followed the suite of optimal M and G (high planting densities, longer
crop duration and vigorous crop types). Nevertheless, even with the
optimized GxM, the production decline from irrigated and partially
irrigated conditions within clusters #1, 6 was very apparent (>1t ha− 1

of yield loss; compare Table 6 a and b with c). Cluster #6 was more
vulnerable to early and, to some extent, late droughts, whereas cluster
#1 experienced frequent early and severe terminal droughts and the
effective growing seasons were shorter compared to other clusters
(96–125 days). In all clusters, the drought adaptive G factors gained
importance compared to irrigated and partially irrigated systems. In
clusters #1, 2, 3, 5, and 6 a crop ideotype would include both early
responsiveness to soil and atmospheric drought, while in clusters #4 and
7, the crop ideotype would include mostly atmospheric drought
responsiveness.

3.3.2. Cluster-specific crop ideotypes
Within the differently irrigated systems and individual clusters

(3.3.1), we analyzed the importance of each tested G parameter for the
production quantified as the proportional change in IoG and weighted
IoG (Table 7). This aimed to assess the importance of the deviation from
the “ideal” G value (i.e., crop ideotype) measured as the proportional
drop in the value of weighted IoG. The analysis highlighted the
comparative importance of crop duration (phenology) and vigor over
crop responsiveness to soil and atmospheric drying in irrigated systems.
In partially irrigated systems, the crop responsiveness to atmospheric
drying was the most important of all tested G parameters. The crop
responsiveness to atmospheric drying remained the most important G
factor in rainfed systems, along with the crop responsiveness to soil
drying which became the second most important parameter across most
of the clusters.

4. Discussion

4.1. Utilization of the HPC system architecture

Simulation software such as SSM or APSIM was primarily built for
biologists to test hypotheses on small-scale datasets (Hammer et al.,
2010; Soltani and Sinclair, 2012a), so the single PC suffices the com-
putations. Such scales are sufficient when the simulation software is
used to evaluate and extrapolate field experimentation that typically
involves thousands of different options at most (e.g. Chenu et al., 2018;
Collins and Chenu, 2021; Diancoumba et al., 2024; Hajjarpoor et al.,
2021, 2018; Holzworth et al., 2014; Kholova et al., 2014; Sinclair et al.,
2010; Vadez et al., 2017). For many simulation scenarios, a single PC
can process such a number of simulations in a matter of minutes (hours
at most), and some software have provision to organize factorial simu-
lation runs of that order of magnitude. The fact that the computation
time and utilization of hardware resources was not considered an issue
in such type of applications can be corroborated by the fact that even the
publications of the global leaders in model development rarely mention
the IT aspects of the calculations (e.g. SSM, DSSAT, APSIM, ECO-
MERISTEM development teams). However, computational demands of
simulation models can vary based on their complexity (Boote et al.,
2021; Tardieu et al., 2020). For instance, models that operate on hourly
time steps (e.g. to simulate photosynthesis, Wu et al., 2019) or
functional-structural plant models (FSPMs) require considerably higher
computational resources. Large-scale applications of CSM are compu-
tation intensive and we could trace only a few literature sources where
data processing efficiency was systematically examined (Fainges, 2015;
Zheng et al., 2016). However, it is clear that the efficiency, throughput
and optimization of computation systems remain a key challenge for
applications of CSMs in agriculture (Holzworth et al., 2018; Jang et al.,
2019; Khabarov et al., 2020; Montañana et al., 2020).

For a large-scale computation presented hereby (2.3 billion simula-
tions, 1.02 TB of raw output data), the optimization and efficient use of
hardware resources was an issue. At the presented scale, a one-order
magnitude increase in computational efficiency would turn years of
simulation processing into weeks and is a new type of interdisciplinary
research that requires the cooperation of biologists and IT experts in “Big
Data” (which is traditionally difficult). Therefore, one of the novelties of
our work is the architecture for big data management and processing.
Particularly emphasizing the C# tool using modular simulation and
processing programs focusing on flexible optimization and reusability.
Such modular architecture allowed effective simulation output analysis
in our work and could be used in the future, for example, to swap out the
SSM core simulation module with a different crop growth model while
utilizing the surrounding modules for data processing. The architecture
ease further development – e.g. to suit other end-users requirements
considering a real-time simulation.

4.2. Index of Goodness (IoG) emerges as a key innovation, providing a
more intuitive and relevant framework for assessing simulation guided by
end-users needs

Another hurdle inherently linked to “big data’” relates to their
evaluation and interpretation. In our case, the data analytics was
inspired by the anticipated end-users (primary peanut producers and
peanut improvement programs) and co-designed with their participa-
tion and feedback. Primary producers (e.g. farmers, farmer associations
and advisory services) need to optimize the crop production practices
specific to their production context while crop improvement programs
(breeding, phenotyping) need to identify context-specific peanut ideo-
types which can be further realized by “physiology-assisted breeding” or
“trait-specific breeding” (Welcker et al., 2022). In the literature, very
few analytical approaches are available to inspire the analysis for such
specific user needs however, maximizing average yield is a common
practice in selecting optimal scenarios within crop adaptation strategies
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Table 6
Description of main clusters for three irrigation scenarios (fully irrigated (a), partially irrigated (b), rainfed (c)). Alongside, the optimal crop characteristics (G) by
management (M) options among different clusters with their environment characters (E), and production potential (P). The statistical analysis of GxExM factors within
clusters is in Suppl. Material Table S1a, b, c.

(continued on next page)
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(Zheng et al., 2018). To advance this approach, we developed an “Index
of Goodness” (IoG) which is a single number that encompasses the key
production parameters important for the primary producers (peanut
grain for consumption and sale, haulm to feed animals, probability of

crop failure). IoGwas then used to evaluate and compare the simulations
to find out the optimal suite of production practices specific to farmer
conditions (“derisked IoG”) and to identify and compare the key features
of ideotypes to prioritize genetic factors for effective context-specific

Table 6 (continued )
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crop improvement (“weighted IoG”). Moreover, the IoG can be readily
re-calculated to test different hypotheses from the available data
(available at Pavlik et al., 2025).

4.3. Environmental clusters for targeted production optimization and
ideotype breeding

De-risked IoG was used to find the best combination of GxM pa-
rameters, which were consequently used to identify the geographical
units (E) that have higher levels of homogeneity and are expected to
respond to changes in G and M factors similarly (environmental clus-
ters). The intention was not only to re-investigate the zoning systems (as
in Hajjarpoor et al. 2021) but also to provide quantitative decision-
making support to optimize the suite of peanut production practices
(G and M) within the identified environmental clusters. The result could
minimize peanut productivity gaps caused by a lack of crop and man-
agement adaptation and prevent resource waste on varieties that might
underperform in particular regions (Heinemann et al., 2019). The
detailed summary of the identified clusters within each tested irrigation
regime is in Table 6 and Table S1. In general, the simulated peanut
production reflected well the expected system heterogeneity (e.g. Haj-
jarpoor et al., 2021; Trivedi, 2011; Witcombe et al., 1998) and was, as
expected, on the higher end of crop production potential; The average
current grain yield was 1.1 t ha-1 across India (IndiaStat, last five years),
average simulated grain yield was 2.6–4.76 t ha-1 in irrigated and
rainfed conditions across India (Hajjarpoor et al 2021), and potential
optimized grain yield in this study was 4.1, 4.7 and 5.5 t ha-1 for rainfed,
partially irrigated and irrigated systems, respectively.

The common M and G components to optimize production in irri-
gated systems included high planting densities (~44 plants m− 2) with
long duration (>73bd) and vigorous crop types. The production was also
found to be the most sensitive to crop phenology- and vigor-related G
parameters, signifying that the ideotype bred for irrigated systems needs
to primarily focus on these traits. Based on environmental clustering,
most irrigated clusters, particularly clusters #4 and #2, were radiation-
limited. In these conditions, it might be pertinent to further investigate
use of higher radiation-use efficient cultivars (in-vivo or in-silico, using
models simulating detailed photosynthetic processes (e.g., Abshenas
et al., 2022; Wu et al., 2019). With declining water availability in
partially irrigated and rainfed systems, the optimized production started
to decline (similarly reported by Rathore et al., 2021). The environ-
mental clusters of rainfed regime most affected by drought stress were
clusters #1, 6 (arid regions of Thar Desert; experiencing early and late
season water deficit). Despite the regions belonging to cluster #3 are
reportedly affected by droughts (e.g. Hajjarpoor et. al. 2021), we did not
detect the drought stress when the GxM was optimized. This might
signify the droughts could be, at least up to a certain extent, avoided
with relevant suit of practices; In these clusters # 1, 3, 6, the production
benefited from conservative agronomic practices and crop capacity to
regulate water transfer pathways (e.g. early stomata closure upon soil
(FTSW > 0.4) and atmospheric drought (VPD ~ 1.5 kPa)). Both of these
physiological processes allowed for conservative soil water use and
benefiting the grain filling period under terminal type of drought stress
in in-vivo experiments (Kholová et al., 2010a, 2010b; Sinclair et al.,
2005) and is well reflected in simulations (e.g. Kholová et al., 2013;
Sinclair et al., 2010; Soltani and Sinclair, 2012b). Hot and dry conditions

Table 7
The importance of genetic factors over each other for the clusters’ contexts in different irrigated peanut production systems. Each number represents the proportional
importance of each tested G factor: phenology, vigor, responsiveness to soil drying (Res_Soil), and atmospheric drying (Res_Atm); [all in %]. This table uses a color-
coded heatmap to visualize the data. The higher the value, the greener the cell representing the importance of the G factor for the production success (measured as %
change in IoG) of that optimal ideotype in the respective cluster and system.
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during reproduction phase increase the risk of preharvest aflatoxin
contamination (Rachaputi et al., 2021), although the GxM optimization
of this study may reduce this risk in a prone area of cluster #3. Worth to
note is that, currently, cluster #3 (SE-India) encompasses the major
peanut producing area (details in Hajjarpoor et al., 2021), thus an
important target area for breeders and agronomists. With depleting
ground-water irrigation availability, development of drought-adapted
ideotypes for these specific geographies might be a priority target.
This agrees with our analysis that showed the production in these water-
limited systems (1, 6, and, up to a certain extent, clusters 3 and 7) was
also the most sensitive to deviation from the genetic parameters that
support crop adaptation to drought (Table 7). These water-saving
physiological functions should be considered a priority in breeding
“climate-ready” crops for such a context.

We would like to mention the analysis of the geographies not
currently cultivated with peanut that might be of some interest to ex-
perts. Interestingly, with GxM optimization, the model predicted
favorable production environments in the Eastern Plains of India
(clusters #4 and #7), where peanut production diminished decades ago.
The decline in peanut production in Eastern India can be attributed to
the Green Revolution’s emphasis on high-yielding varieties of wheat and
rice, leading to reduced groundnut cultivation (Talawar, 2004). Addi-
tionally, we also simulated peanut crop in the regions with high rainfall
and humidity and high incidences of pest and diseases where peanut is
not grown – the Northern sub-Himalayan region (Janila et al., 2016;
Rathnakumar et al., 2013). Pest and diseases are not captured by the
current version of the model (see section 4.4.) but provide a hint of
production potential provided the pest and disease resistant crop would
be developed. These estimates might provide the basis to investigate the
economic benefits related to integrating this cash crop into these
systems.

4.4. Limitations of the study and directions for further development

There are several limitations that need to be considered while
interpreting and, particularly, adopting the presented research;

1) Crop simulation modeling tools are only an imperfect reflection of
reality biased by the gaps in our current knowledge. In our case, we
need to consider that the modeling tool used in this study (SSM,
Sinclair and Soltani, 2012a) does not include the algorithms to
reproduce crop responses to extreme temperatures and salinity
stresses nor responses to biotic stresses (also see Hajjarpoor et al
2021).

2) There is always a “dilemma of scales” involved when choosing the
level of the model inputs appropriate to capturing the trends for
target geographies (e.g. Kholová et al., 2020; Tardieu et al., 2020).
For our study, we chose the sensible balance between the available
data, data quality and resolution, and end-user needs (e.g., breeders/
farm advisory services). Upon further end-user requests and data
availability, the resolution of simulations might be increased for the
specific geographies. Some of the analyses might also expand, for
example, with seasonal forecasts (e.g., IMD forecast services).

3) This study identified Optimal GxM combinations based on past
weather records. Ultimately, conducting similar analyses for future
climatic scenarios (e.g., using GCM scenarios, Ruane et al., 2015) is
important to understand the shifts in optimal GxM in changing
climates.

4) For seamless use of the generated outputs by different type of end
users, we plan to develop a common platform for generated data
browsing and visualization (co-designed with a key pool of end
users). This might, eventually, involve the actual simulation runs so
the end-users could test their own specific hypotheses beyond the
hereby simulated options.

5) We generated a similar simulation series not only for Kharif but also
for rabi (post-rainy) and summer seasons. These should also be

analyzed and will be important to advise farmers and guide breeders’
interventions beyond the Kharif season.

5. Conclusion

The presented peanut production system analysis was intended as a
step toward context-specific system optimization and environment-
specific breeding. We used an in-silico crop growth model (SSM) and
generated large-scale simulations to test the suitability of factorial
combination of crop type and crop management practices (G and M; 2.3
billion simulations, 1.02 TB output data) for peanut production systems
with different irrigation management across India (resolution
0.5◦x0.5◦). This necessitated the use of advanced HPC and data man-
agement/analytical methods. For this, we developed a re-usable HPC
system with interoperable modules that can be readily adapted for
different simulation setups. Up to our knowledge, this is the first intro-
duction of the “Index of Goodness” (IoG, grain and haulm production
and production failure risk) – a simple index to evaluate the simulated
GxM options from the perspective anticipated by end-users (primary
producers and crop improvement programs). From the generated
output, we identified environmental clusters (ECs) for systems with
different irrigation management. Within each EC we identified a specific
suite of GxM to optimize production and prioritized G targets for
breeding. Our analysis highlighted the importance of crop duration and
vigor traits in development of ideotypes for irrigated systems, while
prioritizing ideotypes that show and early response to soil and atmo-
spheric drought for water-limited systems. These, for the first time,
provide quantitative, context specific GxM options for primary pro-
ducers and phenotyping targets to support context-specific peanut
breeding. Efforts are underway to develop the means to better support
the end-users needs by in-silico system analyses.
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Validation. Michal Stočes: Writing – review & editing, Resources. Jan
Jarolímek: Writing – review & editing, Resources. Jana Kholová:
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