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Abstract
Main conclusion Foxtail millet performance under low phosphorus (P) is determined by growth potential, with tiller
number as a key indicator. Yield is influenced by P dilution rather than total P concentration.

Abstract Foxtail millet, renowned for its high nutrient content and drought resilience, faces limited breeding investment
despite being cultivated in vulnerable agri-systems. Low phosphorus (P) levels affect approximately 50% of global agri-
cultural soils, and particularly impact regions like Sub-Saharan Africa and Southeast Asia, the latter where foxtail millet is
extensively grown. This study explores the effects of low P (<5 ppm; Hedley Fractionation Method; Cross and Schlesinger
1995) on foxtail millet plant growth and yield-related traits, utilizing high-throughput platforms (HTP) with a selected
subset of genotypes (n=10) from the core collection of ICRISAT Genebank. Results uncover substantial variation in plant
growth and agronomical traits at both treatment and genotype levels. Under low-P conditions, genotypic variation is noted,
with a sixfold difference in tiller count, 2.4-fold in grain yield, 2.7-fold in 3D-leaf area, and 2.3-fold in root surface area. A
significant relationship was found between grain yield under low-P and high-P conditions (R*=0.65; P <0.01). This sug-
gests that genetic yield potential (vigor) under high-P conditions strongly influences grain yield and tiller numbers under
low-P conditions. Residual grain yield under low-P conditions, not explained by high-P conditions, had a strong positive
association with tiller numbers (R*>=0.70; P <0.01) and showed a significant negative association with total P concentra-
tion (R*=0.54; P <0.05). Conversely, under high-P conditions, grain yield (GY_LF) from Lysi-Field exhibited significant
positive correlations with P use efficiency (PUE) (r=0.94; P <0.001) and total biomass (r=0.84; P <0.01). These findings
underscore the critical role of P availability in influencing grain yield and related traits. Under low-P conditions, performance
is primarily driven by growth potential, with tiller number serving as a reliable marker of this potential. The significant
genotypic variation observed highlights the importance of selecting for growth-related traits in P-limited environments. In
addition, P dilution, rather than total P concentration, appears to play a key role in determining yield under low P. Optimiz-
ing P management strategies and breeding for improved growth potential may significantly enhance crop performance in
regions facing P limitation.
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Introduction

Phosphorus (P), essential alongside nitrogen (N) and
potassium (K), is critical for plant growth (Roch et al.
2020). Despite being primarily sourced from inorganic
phosphate (Pi), its limited soil availability often neces-
sitates using P fertilizers (Roch et al. 2019). Concerns
over depleting rock phosphate reserves and environmen-
tal impacts highlight the need for sustainable manage-
ment (Baker et al. 2015; Ceasar et al. 2017). Globally,
about 50% of agricultural soils, especially in Sub-Saharan
Africa and Southeast Asia, face P limitations. In India,
almost 98% of districts require P fertilizers due to varying
deficiency levels (Hasan 1996), underscoring the need to
address P deficiency for improved productivity.

P deficiency negatively impacts the growth and yield of
various crop plants, including rice (Oryza sativa) (Wis-
suwa and Ae 2001), maize (Zea mays) (Plenet et al. 2000),
wheat (Triticum aestivum) (Lazaro et al. 2010), sorghum
(Sorghum bicolor) (Loftus et al. 2025), common bean
(Phaseolus vulgaris) (Bonser et al. 1996), soybean (Gly-
cine max) (Mahamood et al. 2009), foxtail millet (Setaria
italica) (Ceasar et al. 2014, 2020) and other millets (Maha-
rajan et al. 2019). P deficiency affects a significant portion
of global agricultural land (Navea et al. 2023) raising con-
cerns about potential food scarcity (Childers et al. 2011).
Consequently, farmers resort to P fertilizer application to
optimize soil fertility and enhance crop yield (Maharajan
et al. 2018). However, prudent P management is essential
to ensure a continuous supply of P to sustain soil fertility
and prevent eutrophication and water pollution (Maharajan
et al. 2021).

Low P levels in the soil profile have been observed to lead
to poor seedling emergence (Valluru et al. 2010), represent-
ing a significant constraint for achieving higher millet yield
(Rebafka et al. 1993). P use efficiency (PUE) is a ratio that
quantifies the efficiency with which a plant utilizes P for
growth and development and is calculated as the square of
the total plant biomass divided by the total P content in the
plant, which is derived from the weighted sum of P concen-
trations in the leaf, stem, and grain, each weighted by their
respective dry weights (Gourley et al. 1993; Hayes et al.
2022). The inefficiency in P utilization, characterized by a
low PUE in modern cultivars, poses a significant challenge
in cropping systems heavily reliant on phosphate fertilizer
inputs (Dixon et al. 2020). Despite external inputs, P defi-
ciency persists, necessitating urgent efforts to improve PUE
for sustainable agriculture (Vinod et al. 2015; Ceasar et al.
2020). In this context, breeding efforts for PUE focus on
enhancing adaptation to P starvation.

Foxtail millet (Setaria italica), ranking as the second
most cultivated millet crop globally, holds significance

@ Springer

for both food and forage purposes (Jaiswal et al. 2019).
This C4 self-pollinated cereal has a rich cultivation history
dating back to 5000-6000 BC along the Yellow River in
China. Foxtail millet is celebrated for its agronomic advan-
tages, cost-effectiveness, stress resilience, efficient water
utilization, and nutritional value. Its primary production
hubs are situated in China and India (Lin et al. 2024). In
Africa, foxtail millet is cultivated in upland regions across
East Africa, Cameroon, and southern Africa (Brink 2006).
With its relatively small diploid genome of 510 Mb, foxtail
millet serves as an ideal C4 model for genetic studies. This
includes investigating the molecular, genetic, and physi-
ologic mechanisms underlying the C4 photosynthetic path-
way, such as its efficiency in carbon fixation, adaptation
to high temperature conditions, and water use efficiency.
These traits make foxtail millet particularly valuable for
research aimed at enhancing crop productivity and resil-
ience (Ceasar et al. 2017, 2020; Jaiswal et al. 2019).

Among millets, foxtail millet stands out as an excel-
lent source of protein (12.3 g/100 g), dietary fibers
(14 g/100 g), minerals (3 g/100 g), and B-carotene
(126-191 pg/100 g), while containing a limited amount
of bioavailable carbohydrates (60.9 g/100 g) (Ballolli
et al. 2014). Despite these nutritional advantages, there
is a noticeable gap in comprehensive studies exploring
the responses of diverse foxtail millet cultivars to limited
P conditions. A few studies have investigated aspects of
plant growth, development, and the molecular expression
of the PHT1 transporter family under P limitations (Ceasar
et al. 2014, 2017, 2020; Ahmad et al. 2018; Roch et al.
2020). A systematic study aimed at characterizing foxtail
millet genotypes for plant growth and development, water
use efficiency, and agronomical trait values under a lim-
ited P regime, utilizing relevant phenotyping methodology,
was notably absent. Our hypothesis is that under limited P
conditions, overall plant growth and development are criti-
cal factors in determining the grain yield (GY) of foxtail
millet. To examine this hypothesis, we undertook a com-
prehensive investigation involving ten foxtail millet geno-
types from the core collection of the ICRISAT Genebank.
This investigation explored responses to both P sufficiency
(high P) and starvation (low P) using diverse phenotyping
platforms, namely Lysi-Field, LeasyScan, and hydropon-
ics. Our specific objectives were (i) to identify genotypic
variations in plant canopy growth, root growth, phenology
and agronomic traits under different P regimes (low P and
high P) and (ii) to analyze functional trait associations
under low-P and high-P conditions and propose potential
driving factors or key component traits for foxtail mil-
let breeding programs, with a specific emphasis on low-P
adaptation.
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Materials and methods
Plant materials

Ten foxtail millet genotypes were selected from the core
collection based on the previous study (Krishnamoorthy
et al. 2016). The primary objective was to investigate and
comprehend the extent of plant growth and agronomical
traits variation across diverse P regimes, employing vari-
ous phenotyping platforms. Details on the experimental
overview, including a list of traits assessed across dif-
ferent phenotyping platforms are available in Table 1. In
the initial Lysimeter trial, ISe710 was utilized. However,
in subsequent LeasyScan and Hydroponics experiments,
the cultivar Maxima (cv Maxima) was chosen to replace
ISe710 due to the scientific interest in evaluating the cul-
tivar and space constraints in these setups.

Water use and agronomical traits assessment
at lysi-field facility under different P regimes (low
and high P)

The Lysimetric facility is located at the International
Crops Research Institute for the Semi-Arid Tropics
(ICRISAT), Patancheru, India (17°30'N; 78°16'E; altitude
549 m). It provides an experimental setup to assess key
crop agronomic features, track the crop’s ability to convert
water into biomass (grams of dry mass per unit of water
transpired), and measure water use patterns throughout the
cropping season (Vadez et al. 2016). Plants were grown in
PVC plumbing pipe lysimeters with a diameter of 20 cm
and a length of 1.2 m, positioned outdoors under a rain-out
shelter. The procedures for preparing soil, filling, spacing
arrangement, and plant cultivation followed the methods
outlined by Vadez et al. (2008, 2016). The soil utilized
in this study from the ICRISAT field exhibited a low-P
level (2.11 ppm; available P) analyzed through Hedley
Fractionation Method (Cross and Schlesinger 1995). The
methodology for cultivating and testing plants in lysim-
eters adhered to the protocol established by Vadez et al.
(2013). Seeds were sown in each PVC cylinder, and later,
the plants were thinned to four per cylinder two weeks
after sowing. Subsequently, the number was further
reduced to two plants per cylinder at 3 weeks after sowing.
Six replications were designated for the high-P treatment,
and another six replications for the low-P treatment. Fol-
lowing the final thinning, high-P cylinders received 5 g of
di-ammonium phosphate (DAP) per cylinder and 2 g of
potash (K) per cylinder, while low-P cylinders received 2 g
of K per cylinder and 2 g of urea per cylinder to compen-
sate for the nitrogen provided by DAP in high-P cylinders

(Kadirimangalam et al. 2022). At 28 days after sowing
(DAS), polythene beads were applied to cover the surface
of the soil in the cylinders, preventing direct evaporation
(more details in Vadez et al. 2011). Starting from the 5th
week, cylinder weighing was carried out on a weekly basis
with flowering time visually recorded. Tiller numbers
were manually scored at the time of harvest. At the end
of the experiment, the plant samples of leaf, stem, and
panicles were dried in a hot air oven at 72 °C for about
3 days. Individual biomass components, such as leaf dry
weight, stem dry weight, and panicle dry weight, were
measured using a KERN 3600-g precision balance (Kern
& Sohn GmbH, Balingen, Germany). GY was obtained
by threshing panicles. Thousand grain numbers were
counted by the seed counter machine (Data Count S60
seed Counter, Data technologies, Israel (details in https://
data-technologies.com/product/seed-counter-s60/)) and
the thousand grain weights were recorded using a weigh-
ing scale (KERN 360-3N, Kern & Sohn GmbH). Plant
transpiration was assessed based on consecutive cylinder
weight differences and water additions. Total transpiration
was determined as the sum of weekly plant transpiration.
Transpiration efficiency (TE; grams of biomass per kilo-
gram of water transpired; g kg™') was calculated as the
ratio of total dry biomass to the unit of water transpired.
Finally, Harvest Index (HI) was computed as the ratio of
total GY to the total biomass. For additional details on the
methodology and data collection, please refer to Vadez
et al. (2011, 2013, 2015, 2022), Tharanya et al. (2018),
and Sivasakthi et al. (2019). The dried samples of leaf,
stem and grains were ground, weighed and subjected to
total P estimation through nitric acid pressure digestion
(Heinrichs et al. 1986), followed by measurement using an
inductively coupled plasma optical emission spectrometer
(ICP-OES) (Thermo Scientific iCap 6000 Series, Thermo
Fisher Scientific, Bremen, Germany). This method allowed
for the determination of leaf P (leaf P; mg g~!), stem P
(stem P; mg g ~!), and grain P (grain P; mg g ~!) concen-
tration. Total P concentration (mg g~!) was determined as
the sum of P concentrations in leaves, stems, and grains,
weighted by their relative contributions to the total plant
biomass. The PUE (g2 mg~!) was calculated as the square
of the total plant biomass divided by the total P content
in the plant, which is derived from the weighted sum of P
concentrations in the leaf, stem, and grain, each weighted
by their respective dry weights (Gourley et al. 1992; Irfan
et al. 2020). The percent reduction in traits under low-P
conditions compared to high-P conditions was calculated
using the formula

Percent Reduction in Trait

= (Traityp — Trait p) / (Traityp) X 100,
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Table 1 Details on genotypes, treatments, and replications, along with a list of phenotyped traits obtained from various phenotyping platforms
(Lysi-Field, HTP-LeasyScan, and Hydroponics)

Sl no. Phenotyping  Trait descrip-  Unit Trait code Trait category No.of  No. of treat-  Replication Method
platform tion geno- ments per treat- employed for
types ment trait measure-
ment
1 Lysi-Field Tiller Num- count TLR-LF Growth 10 2 (Low and 6 Manual count-
(LF) bers high P) ing
2 Lysi-Field Leaf dry g LDW Biomass 10 2 (Low and 6 Weighing
(LF) weight high P)
3 Lysi-Field Stem dry g StDW Biomass 10 2 (Low and 6 Weighing
(LF) weight high P)
4 Lysi-Field Panicle dry g PnDW Biomass 10 2 (Low and 6 Weighing
(LF) weight high P)
5 Lysi-Field Total biomass g TBM Biomass 10 2 (Low and 6 Weighing
(LF) high P)
6 Lysi-Field Days to flow-  count DFL Phenology 10 2 (Low and 6 Visual scoring
(LF) ering high P) based on days
after sowing
7 Lysi-Field Grain yield g GY Agronomy 10 2 (Low and 6 Weighing
LF) high P)
8 Lysi-Field Harvest Index % HI Agronomy 10 2 (Low and 6 Weighing
(LF) high P)
9 Lysi-Field 1000-Grain g ThGW Agronomy 10 2 (Low and 6 Mechanical
(LF) weight high P) counting
10 Lysi-Field Total transpi- kg Tot-T Water use 10 2 (Low and 6 Weighing
(LF) ration high P)
11 Lysi-Field Transpiration ~ gkg™' TE Water use 10 2 (Low and 6 Weighing
(LF) efficiency high P)
12 Lysi-Field Phosphorus mg g~! Leaf P Nutrient 10 2 (Low and 6 Chemical
(LF) concentra- high P)
tion in leaf
13 Lysi-Field Phosphorus mg g~! Stem P Plant nutrient 10 2 (Low and 6 Chemical
(LF) concentra- uptake high P)
tion in stem
14 Lysi-Field Phosphorus mg g} Grain P Plant nutrient 10 2 (Low and 6 Chemical
(LF) concentra- uptake high P)
tion in grain
15 Lysi-Field Total phos- mg g~ dry Tot-P conc Plant nutrient 10 2 (Low and 6 Chemical
(LF) phorus con- uptake high P)
centration
16 Lysi-Field Phosphorus g’mg™! PUE Pla nt nutri- 10 2 (Low and 6 Chemical
(LF) use effi- ent use high P)
ciency efficiency
17 LeasyScan Digital bio- mm™> DBM Biomass 10 2 (Low and 8 3D imaging
(LS) mass high P)
18 LeasyScan Plant height mm PH Growth 10 2 (Low and 8 3D imaging
(LS) high P)
19 LeasyScan 3D-Leaf area mm™2 3DLA Biomass 10 2 (Low and 8 3D imaging
(LS) high P)
20 LeasyScan Pojected leaf ~mm™> Proj.LA Biomass 10 2 (Low and 8 3D imaging
(LS) area high P)
21 Hydroponics  Root length cm RL Growth 10 2 (Low and 8 Manual meas-
(Hydro) high P) urement with
aruler
22 Hydroponics  Crown root count Crown root Growth 10 2 (Low and 8 Manual count-
(Hydro) numbers No high P) ing
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Table 1 (continued)

Sl no. Phenotyping  Trait descrip- Unit Trait code Trait category No.of  No.of treat-  Replication Method
platform tion geno- ments per treat- employed for
types ment trait measure-
ment
23 Hydroponics  Shoot dry g ShDW Biomass 10 2 (Low and 8 Weighing
(Hydro) weight high P)
24 Hydroponics  Root dry g RDW Biomass 10 2 (Low and 8 Weighing
(Hydro) weight high P)
25 Hydroponics ~ Root: Shoot RDW/ShDW  Biomass 10 2 (Low and 8 Weighing
(Hydro) ratio high P)
26 Hydroponics  Root surface  cm? RSA Biomass 10 2 (Low and 8 Digital imaging
(Hydro) area high P)
27 Hydroponics  Leaf area cm? LA Biomass 10 2 (Low and 8 Area quantifi-
(Hydro) high P) cation
28 Hydroponics  Tiller numbers count TLR-LS Growth 10 2 (Low and 8 Manual count-
(Hydro) high P) ing

where Trait ;p = Value of the trait under high-P conditions.
Trait | p = Value of the trait under low-P conditions.

Canopy development-related traits assessed
at LeasyScan under different P regimes (low
and high P)

LeasyScan, a high-throughput phenotyping platform,
was designed to effectively monitor crop canopy-related
parameters during the vegetative phase with exceptional
throughput and accuracy. For a detailed understanding
of LeasyScan technology and its setup, please refer to
the works of Vadez et al. (2015), Sivasakthi et al. (2018,
2019) and Tharanya et al. (2018). Ten seeds were sown in
individual 10-inch pots during November 2022 post-rainy
season. The soil used in this experiment displayed a low-P
level (2.11 ppm), sourced from the ICRISAT field, which
was also the origin of the soil used in the Lysi-field experi-
ment. Each genotype and treatment combination involved
eight replications, with each replication consisting of two
pots, and after the final thinning, two plants were retained
per pot. The treatments with low P (1 gof ureaand 1 g
of potash per pot) and high phosphorus (2.5 g of DAP
and 1 g of potash per pot) were applied (Kadirimangalam
et al. 2022). Throughout the experiment, plants were main-
tained under well-watered conditions. Continuous meas-
urements of canopy size-related parameters, including
3D-leaf area, projected leaf area, plant height and digital
biomass (estimate of biomass based on observed plant
dimensions—height and volumes), were taken from 15
to 40 DAS, with the final harvest conducted at 40 DAS.
The daily temperature and humidity fluctuated between
11/35.8 °C and 17.2/93.2% on average during the crop

growth period, as recorded by the attached weather station
(Model: WxPRO™; Campbell Scientific Ltd., Shepshed,
UK).

Hydroponic facility for plant shoot and root
morphologic traits under different P regimes (low
and high P)

To evaluate plant growth, especially root-related traits
under high and low-P conditions, plants were cultivated
in a greenhouse under natural daylight fluctuations, with
an average day/night temperature of around 28/22 °C and
relative humidity ranging from 70 to 90%. Seeds were ini-
tially sown in sand, and when the plants reached the 3rd
leaf stage, they were transferred to trays with nutrient solu-
tion (modified Hoagland solution; macronutrients: MgSO,
(2.05 mM), K,SO, (1.25 mM), CaCl,..2H,0 (3.3 mM), Fe-
EDTA (0.04 mM), urea (5 mM) and micronutrients: H;BO;
(4 mM), MnSO, (6.6 mM), ZnSO, (1.55 mM), CuSO,
(1.55 mM), CoSO, (0.12 mM), Na,MoO, (0.12 mM)).
Subsequently, the plants were grown in hydroponic solu-
tions within trays measuring 40 cm x 20 cm (length and
width), utilizing the modified Hoagland solution in accord-
ance with the protocol outlined in Tharanya et al. (2018) and
Sivasakthi et al. (2020). However, concerning KH,PO,, the
high-P treatment involved a nutrient solution with 300 uM
KH,PO,, while the low-P treatment received 10 uyM KH,PO,
(Ceasar et al. 2020). The pH of the nutrient solution was
maintained between 6.0 and 6.3, with continuous aeration
to facilitate root nutrient absorption. The nutrient solution
was replenished every 3 days. At 45 DAS, the plants culti-
vated through hydroponics underwent phenotypic assess-
ment for morphologic characteristics, including root length,
crown root numbers and leaf area. Leaf area was measured
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utilizing a leaf area meter (LI-3100C area meter, LI-COR
BioSciences, Lincoln, NE, USA). The root surface area was
determined by scanning the roots with a Shimadzu scanner
and analyzing the scans with Winrhizo software (Winrhizo,
Regent Ltd). In addition, plant samples comprising leaves,
stems, and roots were dried at 60 °C in an oven for a mini-
mum of 72 h, and their dry weights were measured using
a KERN 3600-g precision balance (Kern & Sohn GmbH).

Data analysis

The datasets collected from LeasyScan, hydroponics, and
Lysimetric systems were statistically analyzed. One-way
ANOVA was used to assess differences among genotypes,
while two-way ANOVA evaluated the effects of genotypes,
treatments, and their interactions. The Tukey—Kramer test
was subsequently applied to identify significant variations
between genotypes or treatments. All analyses were per-
formed using the statistical software package CoStat ver-
sion 6.204 (Cohort Software, Monterey, CA, USA). Resid-
ual yields can be effectively used to assess key adaptation
traits under low-P conditions. In the absence of genotype-
by-treatment interaction (GxTrt) for yield components, the
performance of genotypes under low-P conditions reflects
both their inherent GY potential and residual yield variation.
This residual component includes the genotypes’ adapta-
tion to low P and an error factor, capturing the part of yield
variation under low P that is not explained by GY poten-
tial (Bidinger et al. 1987; Vadez et al. 2007; Beggi 2014).
Residual yields were calculated by taking the difference
between the predicted yields (based on a linear regression
model comparing low P to high-P yields) and the observed
yields under low P.

Graphical representations such as box plots, bar graphs,
and simple linear regressions were created using Microsoft
Excel 2017 (Microsoft Office 365, Microsoft Corp., Red-
mond, WA, USA). To evaluate correlations among selected
phenotypic traits, a simple Pearson correlation analysis
was carried out with R software (version 2.11.1) using the
‘metan’ library. In addition, Principal Component Analysis
(PCA) was conducted with R software (version 2.11.1) using
the ‘factoextra’ library.

Results

Treatment and genotypic variation due to varying P
conditions

Plant growth, water use and agronomical traits

The study focused on evaluating various traits of foxtail
millet genotypes using multiple phenotyping platforms,
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including Lysi-field, LeasyScan, and hydroponics facili-
ties under low P and high-P conditions. Using two-way
analysis of variance, significant variations in genotype and
treatment were identified for most traits under both low
and high-P conditions (Table 2). In the one-way analysis,
a range of plant traits, including growth, water use, and
agronomical features, exhibited significant genotypic dif-
ferences under both low- and high-P conditions (Table 3).
Under high-P conditions, the majority of genotypes exhib-
ited enhanced plant growth and agronomic parameters
compared to low-P conditions (Table 2).

GY from the Lysi-Field experiment, ranged from 4.86 g
to 50.41 g, with an average of 24.26 g under high-P con-
dition. Under low-P conditions, it ranged from 1.17 g to
27.95 g, with an average of 14.12 g (Fig. 1), indicating a
42% decline compared to high-P conditions. This decline
underscores the sensitivity of grain production to low-P
availability. The genotypic differences in yield across
both P conditions are illustrated in Fig. 1b and detailed in
Table 3. Subsequently, biomass accumulation also varied
across the treatments with high P having higher biomass
than the low-P conditions (Table 2). TE exhibited a sig-
nificant reduction under low-P conditions, with a mean
of 2.01 g biomass per kg water under high-P conditions
compared to 1.10 g biomass per kg water under low-P
conditions, representing a 50% reduction. This substan-
tial decline highlights the critical role of P availability in
influencing water use (Table 2).

Tiller counts under high-P conditions ranged from 3.17
to 32.67, with a mean of 17.5. Conversely, under low-P
conditions, tiller counts ranged from 2.17 to 11.50, with a
mean of 6.37, representing a 64% reduction compared to
the high-P treatment (Suppl. Fig. S1a). Furthermore, geno-
typic variability in tiller counts under both low and high-P
conditions is illustrated in Suppl. Fig. S1b and detailed in
Table 3.

In the LeasyScan facility, the 3D leaf area under high-P
conditions ranged from 6000 mm? to 50,565 mm?, with a
mean of 23,356 mm?. Conversely, under low-P conditions,
the 3D leaf area ranged from 2500 mm? to 21,000 mm?,
with a mean of 10,595 mm?, representing a 50% reduction
compared to the high-P treatment (Fig. 2a, Suppl Fig. S2).
In hydroponic experiments, root surface area under high-P
conditions varied from 211 cm? to 726 cm?, with a mean of
454 cm?. In contrast, under low-P conditions, root surface
area ranged from 94 cm? to 575 cm?, with a mean of 291
cm?, indicating an average of 34% reduction compared to
the high-P treatment (Fig. 2a). Notably, the reduction in root
surface area was considerably smaller than the reduction in
3D leaf area, which may be due to the plant’s prioritization
of root growth to enhance P acquisition under P-nutrient
limitation. Genotypic variability in 3D leaf area and root
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Fig.1 a Boxplot depicting the variation in grain yield of foxtail mil-
let under low and high phosphorus (P) treatments, measured using a
Lysimeter. The blue boxplot represents the high-P treatment, and the
orange boxplot represents the low-P treatment. The boxplot is based
on replicated data (n=6), displaying the median, interquartile range
(IQR), and whiskers extending to 1.5 XIQR. Statistically significant
differences between treatments at P <0.05 are indicated by different
letters on the boxplots. b Bar graph (mean values +SE; n=6) show-

surface area under both low and high-P conditions is pro-
vided in Table 3 and Suppl. Fig S2, S3.

P concentration and PUE in different plant organs

The distribution of P content exhibited significant vari-
ability among plant organs, with the highest concentra-
tion found in the grain, followed by the leaf and stem
(Table 3). Grain P concentration ranged from 2.1 mg g~
to 4.2 mg g”! (mean 3.17 mg g!) under high-P conditions,
and from 1.9 mg g”! to 3.4 mg g”! (mean 2.55 mg g™!)
under low-P conditions, indicating a 24% reduction com-
pared to high-P conditions (Table 3). Similarly, leaf P con-
centration exhibited substantial variation, ranging from
1.27 mg g”'to 3.2 mg g™! (mean 2.26 mg g™!) under high
P, and from 0.86 mg g™! t0 2.35 mg g~! (mean 1.46 mg g™')
under low P, resulting in a 35% reduction (Table 3). Stem
P concentration demonstrated significant variation, rang-
ing from 0.65 mg g™ to 2.13 mg g”! (mean 1.41 mg g™})
under high P, and from 0.23 mg g™! to 1.25 mg g”! (mean
0.47 mg g~') under low P, resulting in a 66% reduction
(Table 3). Genotypic variability in grain, leaf, and stem
P content under low and high-P conditions is shown in
Suppl. Fig. S3, Fig. S4.

Total P concentration ranged from 1.72 mg g™! to
3.6 mg g”! (mean 2.45 mg g™!) under high-P conditions and

@ Springer

ing genotypic variation in grain yield under low and high-P treat-
ments, assessed using a Lysimeter. Blue bars represent the high-P
treatment, and orange bars represent the low-P treatment. Statistically
significant differences among genotypes (P <0.05) are indicated by
distinct upper-case letters for low-P treatment and lower-case letters
for high-P treatment, while bars with the same letters denote no sig-
nificant differences

from 1.14 mg ¢! to 2.39 mg g”! (mean 1.66 mg g”') under
low-P conditions, reflecting a 35% reduction compared to
high-P conditions (Suppl. Fig. SS5A and Table 2). Genotypic
variability in total P concentration under both low and P
conditions is provided in Table 3 and Suppl. Fig. S5B.

Similarly, PUE ranged from 6.08 g?> mg™! to 53.55
g® mg™! (mean 18.88 gZ mg™!) under low-P conditions and
from 9.04 g> mg™! to 35.14 g mg™! (mean 19.38 g mg™!)
under high-P conditions, representing a 2.58% reduction in
low P compared to high-P conditions (Table 2). Genotypic
variability in PUE under both low and high-P conditions is
shown in Table 3 and Suppl. Fig. S6.

Functional trait associations

GY under both low and high-P conditions demonstrated a
significant association (R*=0.65; Fig. 3), suggesting a cer-
tain level of consistency in performance across different P
levels. This indicates that GY under low P was, in large part,
influenced by the yield potential under high-P conditions,
although other factors may also contribute to yield varia-
tions. To explore the factors contributing to yield variation
under low-P conditions, the residuals of GY under low P,
which were not explained by GY under high P, were calcu-
lated. These residuals revealed a strong relationship with
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Fig.2 a Boxplot illustrating the percentage reduction under low-P
treatment relative to the high-P treatment [(high P — low P)/high P)
* 100] in foxtail millet. Data are based on replicated measurements,
showing the median, interquartile range (IQR), and whiskers extend-
ing to 1.5%XIQR. The orange boxplot represents root surface area
(cm?), measured in a hydroponics facility (n=10), while the green
boxplot represents leaf area (mm?), measured using the HTP-Leasy-
Scan facility (n=8). The cross symbol within each boxplot denotes

tiller numbers under both low P (R?=0.70; Fig. 4) and high
P (R*=0.66; Fig. 4), indicating that tiller production plays
a key role in determining yield, especially in P-limited envi-
ronments. This suggests that increasing tiller numbers could
help improve yield in conditions where P is limited.

A regression analysis was performed to examine the
relationship between biomass and total P concentration.
Under low-P conditions, a significant negative relationship
was observed (R*=0.71, P<0.05; Fig. 5), indicating that

20 24% J—

the mean percentage reduction. RSA, root surface area. b Boxplot
showing the variation in percentage reduction of P content under
low-P treatment relative to high-P treatment [(high P — low P)/high
P) * 100]. The boxplot is based on replicated data (n=6) and repre-
sents the median, interquartile range (IQR), and whiskers extending
to 1.5xIQR. Pink, green, and orange boxplots correspond to grain,
leaf, and stem P content, respectively. The cross symbol inside each
boxplot represents the mean percentage reduction

genotypes maintaining growth under P-limited conditions
are those that effectively dilute P. In contrast, genotypes
unable to dilute P are more likely to experience biomass
limitations. No significant relationship was found under
high-P conditions (Fig. 5), suggesting that, when P is suf-
ficient, biomass accumulation is less dependent on total P
concentration.

@ Springer
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Fig.3 Regression analysis showing the relationship between grain
yield under low-P treatment and grain yield in foxtail millet under
high-P treatment, measured at the Lysi-field facility. Data area based
on mean values (n=6) and the figure includes the slopes, R% and r
values of the regressions. R? and r values marked with an asterisk
(**) indicate significant differences at P <0.01

Discussion

Growth potential as the key driver of performance
under low-P conditions

The imposition of low-P deficiency significantly affected
various plant traits, including tillers, leaf area, root surface
area, agronomic characteristics (notably GY), and P concen-
tration in different plant tissues. This deficiency led to an
overall decrease in plant growth and GY, with reductions in

Fig.4 Regression analysis 5.0 -
showing the relationship
between residual grain yield 4.0 -

under low-P conditions (unex-
plained by high-P treatment)
and tiller numbers from the
Lysi-field, under both low and
high-P treatment conditions.
In the scatterplots, blue dots
and a red trend line represent
the high-P treatment, while

w
o
1

N
=}

-
o

e
=}

plant growth and development traits ranging from 30 to 50%
compared to high-P conditions (Fig. 1). These findings align
with prior studies, showing similar trends observed in vari-
ous crops like sorghum (Leiser et al. 2012), maize (Parentoni
et al. 2010), common bean (Beebe et al. 2008), and foxtail
millet (Ceasar et al. 2020) under low-P conditions.

The current study highlights a notable variability in the
number of tillers and grain yields among tested foxtail mil-
let genotypes under low-P conditions. Zhao et al. (2023)
reported similar reductions in P accumulation, photosyn-
thetic function, and biomass in wheat under low-P condi-
tions. Rajamanickam et al. (2024) also observed significant
genotypic variability in root traits and their association with
P utilization efficiency in wheat seedlings under low-P con-
ditions. These findings emphasize the critical role of growth
potential in plant performance under low-P conditions.

Our findings align with previous studies by Beggi et al.
(2015) and Gemenet et al. (2015), who investigated low-P
adaptation in pearl millet. Beggi et al. (2015) reported a sig-
nificant positive correlation (r=0.69; P <0.01) between GY
under low and high-P conditions and used residual yields
as a proxy for assessing low-P adaptation in pearl millet
genotypes. Consistent with Beggi et al. (2015), we observed
a significant reduction in transpiration efficiency (TE) under
low-P conditions, similar to their findings in pearl millet.
However, while their study indicated that this decrease was
less pronounced in genotypes adapted to low P (as shown
by higher grain yields), our results suggest a stronger physi-
ologic response to P deficiency, with a more pronounced
reduction in TE.

Genetic variability in plant growth and agronomic traits
under low-P conditions is essential for the success of breed-
ing programs, as it enables the identification and selection

y = 0.5015x - 3.2205
R?=0.70"*_Low P

y = 0.1445x - 2.7524
R? = 0.66**_High P

orange dots and a red trend line
represent the low-P treatment.
Data are based on mean values
(n=06) and the figure includes
the slopes and R? values of the
regressions. R* values marked

Residual grain yield under low P
not explained by high P

with an asterisk (**) indi- -3.0 - O P
cate significant differences at
P<0.01 -4.0 -

0 10

@ Springer
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of traits that improve crop performance in nutrient-limited
environments. The effectiveness of a breeding program
depends on the availability of significant genetic variabil-
ity for the targeted traits and the use of efficient selection
methods to increase the frequency of desirable genes or gene
combinations (Gemenet et al. 2016). In the present study,
significant genotypic variation was observed in plant growth
and agronomic traits among the foxtail millet genotypes,
with more than a twofold difference under low-P treatments.
These findings are consistent with previous research indi-
cating greater genotypic variation in P uptake compared to
PUE traits in crops such as wheat, maize, rice, sorghum,
and foxtail millet (Jones et al. 1989; Wissuwa et al. 1998;
Parentoni et al. 2010; Leiser et al. 2014; Ceasar et al. 2020).
The considerable variation observed underscores the impor-
tance of breeding programs focusing on key traits like tiller
development and PUE, which are crucial for improving crop
performance under P-deficient conditions. Specifically, gen-
otypes ISe 480 and ISe 710 exhibited enhanced tiller counts,
PUE, and GY under low-P stress, highlighting the value of
selecting for these traits to boost crop resilience and produc-
tivity in P-limited soils.

In the present study, a 24% reduction in grain P concen-
tration under low-P conditions indicates that this variable
is relatively less impacted by P deficiency. This suggests
that the observed increase in GY under low-P conditions is
likely due to the plant's enhanced ability to extract P from
the soil. In contrast, more substantial changes were observed
in P concentrations across other plant organs. Specifically,
stem P concentration showed a significant decline, reflect-
ing the limited role of stems in biomass accumulation under
P-deficient conditions. Conversely, leaf P concentration
experienced a relatively smaller reduction, likely due to
the essential role of leaves in photosynthesis and biomass

Total P concentration (mg g-')

production. These results highlight a strategic redistribution
of P within the plant, prioritizing critical organs like leaves
to sustain growth and yield under low-P availability. This
observation aligns with findings by Veneklaas et al. (2012),
which emphasize that P allocation among plant organs is
closely linked to crop growth and suggest that optimizing
this distribution can improve overall PUE.

Plants adapt to low-P conditions by allocating biomass to
roots, increasing the root-to-shoot ratio, and adjusting root
morphologic and physiologic traits to enhance P uptake effi-
ciency (Lambers et al. 2015; Igbal et al. 2020). Insights into
the physiologic and molecular mechanisms of plant adapta-
tion to P deficiency, including changes in root architecture
and P acquisition strategies, have been provided by Vance
et al. (2003). In addition, genetic variability in common bean
for P uptake and use efficiency, highlighting the importance
of root traits and P allocation under low-P conditions, was
explored by Ramaekers et al. (2010).

Tiller number: a key trait for low-P adaptation

The current study observed substantial genotypic varia-
tion in tiller numbers among foxtail millet genotypes under
low-P conditions. Specifically, there was a sixfold difference
in tiller count among the tested genotypes. This variation
underscores the importance of tiller number as a key trait for
assessing growth potential under low-P conditions.

A strong correlation was observed between GY under
low-P and high-P conditions (R2 =0.65; P<0.01), indicating
that genetic yield potential (vigor) in high-P environments
significantly influences GY and tiller numbers under low-P
conditions. This suggests that genotypes with higher tiller
numbers tend to perform well in both high and low-P con-
ditions, making tiller number a reliable indicator of growth
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potential. These results are consistent with Bhatta et al.
(2021), who highlighted tiller number as a critical trait for
improving crop performance in P-deficient environments.
Their study emphasizes the importance of evaluating geno-
types based on tiller number, along with shoot and root bio-
mass, to enhance yield stability and optimize productivity
under P-limited conditions.

Residual GY under low-P conditions, not explained by
high-P conditions, had a strong positive association with
tiller numbers (R*=0.70; P <0.01). This suggests that tiller
number contributes significantly to yield under P-limited
conditions, even after accounting for the overall vigor
observed under high-P conditions. These results align with
previous studies that indicate alterations in growth, biomass,
and yield as key indicators of adaptation to P deficiency, as
reported in various cereals, including oat (Zebrowska et al.
2017), rice (He et al. 2005; Wissuwa et al. 2020), maize
(Mollier et al. 1999), sorghum (Yoneyama et al. 2007), and
foxtail millet (Ceasar et al. 2020).

The observed genotypic differences in tiller development
highlight its role in enabling plants to cope with low-P stress
while maintaining yield. For example, genotypes ISe 480
and ISe 710 exhibited higher tiller counts, improved PUE,
and increased GY in the Lysi-Field under low-P conditions
compared to high-P conditions. These findings highlight the
value of selecting for traits like tiller number to enhance crop
resilience in limited environments.

Supporting evidence from other studies further under-
scores the significance of tiller number in crop performance.
A genome-wide association study (GWAS) by Ren et al.
(2021) identified multiple quantitative trait loci (QTLs) asso-
ciated with effective tiller number (ETN) in rice, revealing
the genetic basis of this trait and its influence on GY. Simi-
larly, Cui et al. (2004) mapped QTLs for tiller number in rice
and demonstrated strong correlations between tiller num-
ber, plant height, and heading date, underscoring its critical
role in determining final GY. In addition, Chen et al. (2012)
showed that overexpression of specific genes in rice resulted
in increased tiller numbers, further highlighting the role of
genetic regulation in this trait.

P dilution and its impact on yield in low-P
environments

The current study reveals a strategic reallocation of P in
foxtail millet under low-P conditions, highlighting signifi-
cant differences in P uptake and utilization efficiency among
genotypes. Grain P concentration exhibited the least reduc-
tion (24%) compared to high-P conditions, while leaf and
stem P concentrations decreased by 37% and 68%, respec-
tively. These results are consistent with those of Ceasar et al.
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(2020), who observed a reduction in total shoot P concentra-
tion under P-deficient conditions.

The relatively small reduction in grain P concentration
suggests that foxtail millet maintains P allocation to repro-
ductive structures, likely prioritizing reproductive success
under nutrient stress. This trait is particularly important for
ensuring yield stability in P-deficient soils. By contrast, the
substantial reduction in stem P concentration suggests that
stems, being less critical for immediate growth and produc-
tivity, serve as a lower priority reservoir for P under stress.
Leaves, which are crucial for photosynthesis and biomass
accumulation, experienced a lower reduction than observed
in stems, reflecting their higher priority in P allocation under
low-P conditions.

These findings highlight the physiologic adaptations of
foxtail millet to low-P conditions. The observed changes in
P allocation suggest that under P deficiency, plants employ
mechanisms to optimize P use by prioritizing allocation to
organs essential for photosynthesis and reproduction while
reducing allocation to non-essential biomass components.
This strategic redistribution of P within the plant under-
scores the importance of P dilution in determining yield
under low P conditions.

The study also found that residual GY under low P condi-
tions, not explained by high-P conditions, had a significant
negative association with total P concentration (R>=0.54;
P <0.05). This indicates that lower total P concentration, or
P dilution, is associated with higher GY under low-P con-
ditions. Conversely, under high-P conditions, grain yield
(GY_LF) from Lysi-Field exhibited significant positive cor-
relations with PUE (r=0.94; P <0.001) and total biomass
(r=0.84; P<0.01).

Additional studies support the role of P dilution in crop
performance. For instance, Zamuner et al. (2016) estab-
lished a critical P dilution curve for potato, demonstrating
that P dilution is a robust diagnostic tool for assessing crop
P status and improving P fertilizer management. Similarly,
Kong et al. (2024) validated the use of the P-nutrition
index in potato, showing a significant relationship between
P-nutrition index and relative tuber yield. Rose et al. (2013)
highlighted the importance of P remobilization efficiency
in maintaining grain P concentration under low-P supply.

Conclusion

This study underscores the critical role of P availability in
shaping plant growth and yield-related traits in foxtail mil-
let, particularly under low-P conditions. Plant performance
in these environments is primarily influenced by growth
potential, with tiller number serving as a reliable marker of
this potential. The significant genotypic variation observed
highlights the importance of selecting growth-related traits
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to improve crop resilience and productivity in P-limited
environments. The findings reveal substantial variation in
plant growth and agronomic traits, such as tiller count, GY,
leaf area, and root surface area, among foxtail millet geno-
types under low-P conditions. This variation emphasizes
the necessity for breeding programs to prioritize traits that
enhance growth potential, including tiller development and
PUE, to optimize crop performance in nutrient-deficient
soils.

Moreover, the study highlights the strategic redistribu-
tion of P within the plant under low-P conditions, where
critical organs like leaves maintain higher P concentrations
to support growth and yield. This strategic P allocation
suggests that P dilution, rather than total P concentration,
plays a key role in determining yield under low-P con-
ditions. The observed negative association between total
P concentration and residual GY under low-P conditions
further supports this finding. Optimizing P management
strategies and breeding for improved growth potential are
essential for enhancing crop performance in regions facing
P limitation. By selecting for traits that enhance growth
potential and understanding the mechanisms of P alloca-
tion and dilution, breeding programs can develop foxtail
millet varieties that are better adapted to low-P environ-
ments, ensuring yield stability and food security in vulner-
able agri-systems.
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