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A B S T R A C T

Northwest India achieved remarkable wheat productivity gains during the past decades. However, this has been 
accompanied by increasing input levels and intensive production practices, raising questions about the economic 
and environmental sustainability of current cropping systems. A multicriteria integrated assessment is required 
for wheat farms in the region to understand the scope for cleaner wheat production in the future. Production 
practices from irrigated wheat fields (n = 3928) were evaluated for multiple sustainability indicators, namely 
yield gap, nitrogen (N)-use efficiency, profitability, and greenhouse gas emissions. Stochastic frontier analysis 
was combined with simulated potential yield (Yp) data to identify the causes of wheat yield gaps in the region. N- 
use efficiency was estimated by calculating the partial factor productivity of N, profitability was computed based 
on reported input-output amounts and prices, and greenhouse gas emissions were quantified using the Mitigation 
Options Tool (MOT). These indicators were subjected to a multicriteria assessment using the Technique for Order 
of Preference by Similarity to Ideal Solution (TOPSIS) under different scenarios (i.e., different weights for 
different indicators). For each scenario, farmers’ fields were classified as most efficient, efficient, less efficient, 
and least efficient, and random forest was used to identify the most important management practices governing 
the field classification. Wheat yield gaps were small (25–30 % of Yp or 2.4 t ha− 1) and mostly attributed to the 
technology yield gap (ca. 20 % of Yp or 1.5 t ha− 1). Ranking and grouping the farmers’ fields in the scenario with 
equal weights for all indicators revealed that at least 25 % of the fields had very high greenhouse gas emissions 
(>1500 kg CO2-eq ha− 1) at a productivity level of < 4.5 t ha− 1, and that it is possible to produce wheat sus-
tainably without compromising yields in Northwest India, as indicated by the performance of the most efficient 
fields. Tillage intensity and N application rates can be adjusted for least efficient fields (<10 % least efficient 
fields adopting zero tillage vs >80 % most efficient fields adopting zero tillage) to achieve an overall objective of 
higher yield, lower greenhouse gas emissions, more profit and higher N-use efficiency, whereas residue retention 
and tillage intensity would need to be prioritized for minimizing greenhouse gas emissions. For the most efficient 
fields the decrease in greenhouse gas emissions was always associated with a decline in yield level. The most 
important management practices governing the field classification included the crop establishment method used 
for the previous rice crop, the number of tillage operations, residue retention, and the N fertilizer rate for wheat. 
The study provides a data-driven approach to screen trade-offs between performance indicators and to identify 
the management practices that can deliver sustainable and cleaner crop production in the future.
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1. Introduction

Rice-wheat cropping systems prevail across the Indo-Gangetic Plains 
(IGP) in South Asia (Bhatt et al., 2021). Wheat is the second most 
important cereal crop in India after rice, being cultivated during the 
winter season on 31.4 Mha with a total production of 107.6 Mt in recent 
years (ICAR data book, 2021). Farmers in the Northwestern IGP use 
intensive crop production practices and achieve relatively high yields 
(Nayak et al., 2022). Yet, it remains important to understand to what 
extent wheat production can be further increased as wheat demand is 
expected to rise by about 60 % in the IGP by 2050 (Rosegrant et al., 
2009). At the same time, there are concerns of sustainable resource use 
in the region (Nayak et al., 2022; Jat et al., 2020, 2020a; Jat et al., 2020, 
2020aa), which require a better understanding of the environmental 
losses and economic profitability associated with on-farm wheat pro-
duction. Rice-wheat cropping systems face multiple challenges due to 
the different agronomic needs of rice and wheat and the intensive use of 
resources. This has led to declining soil fertility and a notable slowdown 
in yield progress. Consequently, production becomes increasingly less 
profitable as resources become scarcer (Chauhan et al., 2012). 
Improving the sustainability of crop production in the region requires 
understanding synergies and trade-offs between different production, 
socio-economic, and environmental dimensions, as an entry point to 
identify farming practices that balance multiple benefits simultaneously. 
Yield gap closure and profitability are among the main sustainability 
priorities for farmers, whereas greenhouse gas emissions and nutrient 
use efficiency are increasingly important for society at large.

Narrowing yield gaps on existing cropland is crucial for future food 
security. However, sustainable and cleaner crop production requires 
more than yield gap closure (Nayak et al., 2024). In this context, we refer 
to sustainable and cleaner production as the ability of farms to improve 
productivity and profitability per unit of resource use and environ-
mental footprint (Nayak et al., 2024). The yield gap, defined as the 
difference between the potential yield and the actual farm yield, is vital 
for understanding how efficiently land is used. Establishing the rela-
tionship between yield gap closure and other sustainability indicators 
helps identify the synergies and trade-offs for future crop production 
intensification. Farmers prioritize profitability, making it essential to 
consider economic viability alongside productivity (Silva et al., 2017; 
Van Dijk et al., 2017). However, crop production contributes to green-
house gas (GHG) emissions, emphasizing the need for multifaceted as-
sessments to guide sustainable farming practices (Sapkota et al., 2019). 
Comprehensive assessments have been conducted on how field-level 
technologies (e.g., minimum tillage, precision fertilizer management, 
tensiometer-based irrigation) affect wheat productivity, profitability, 
and environmental sustainability across the IGP (Harrington, 1992; 
Krishna and Veettil 2014; Aryal et al., 2015; Jat et al., 2019, 2019a; Jat 
et al., 2019, 2019aa). Yet, no comprehensive assessment has been con-
ducted to identify which management practices already used by farmers 
can best contribute to sustainable wheat production according to mul-
tiple performance indicators. In low-input cropping systems, increased 
input use often increases crop productivity and creates synergies among 
sustainability indicators. However, in high-input cropping systems, such 
as those in Northwest India, additional inputs often do not increase 
yields but instead increase environmental externalities, intensifying 
trade-offs between different sustainability dimensions (Nayak et al., 
2022; Tseng et al., 2021; Tahmasebi et al., 2018).

Previous studies examined yield gaps and associated indicators in 
various agricultural contexts but often lacked quantitative multicriteria 
assessments (e.g., Silva et al., 2021, 2017). Therefore, our study aims to 
fill this gap by evaluating wheat production practices across multiple 
sustainability indicators using a multicriteria assessment framework. 
Using data from 3928 farmer fields collected during the 2020–2021 
growing season, we conducted a multicriteria assessment to benchmark 
wheat production in Northwest India. The objectives of this study were 
to: (1) identify the causes of wheat yield gaps, (2) benchmark on-farm 

wheat production according to multiple sustainability indicators, and 
(3) assess synergies and trade-offs between the different indicators and 
identify important management practices contributing to sustainable 
and cleaner wheat production under different scenarios. Similar to rice 
(Nayak et al., 2022), we hypothesize that wheat yield gaps in Northwest 
India are about 20 % of Yp. Moreover, we expect some farms to achieve 
high wheat yield with low profitability, N-use efficiency, and high GHG 
emissions, while other farms are able to reconcile high productivity with 
sustainable wheat production from an economic and environmental 
perspective.

2. Material and methods

2.1. Survey data collection

Crop management practices from wheat farms in Northwest India 
were collected using a structured questionnaire administered by trained 
enumerators at the end of the cropping season and supplemented with 
crop-cut yield estimation from the largest plot. Data collection was 
performed using an Android-based Open Data Kit (ODK) platform (Ajay 
et al., 2022). Details of the survey questions and descriptive statistics of 
the key variables can be obtained from Nayak et al. (2022a). 
One-dimensional outliers were identified using boxplots and histograms, 
while two-dimensional outliers were identified using Mahalanobis dis-
tance (see Nayak et al., 2022a, for further details).

The diesel used for tillage operations was cross-verified against the 
tillage cost and intensity of tillage reported by the farmers. A minimum 
threshold for labor use, based on expert knowledge, was applied to 
correct cases where family labor use was unreported or underreported at 
unrealistically low values. Weather and soil data for each field were 
retrieved using the respective GPS coordinates from secondary sources. 
Cumulative solar radiation and average minimum and maximum tem-
peratures during the growing season were obtained from the ERA5 
hourly reanalyzed database (Sabater, 2019). Cumulative rainfall during 
the growing season was derived from the Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS; Funk et al., 2015). 
Soil texture data were obtained from Hengl et al. (2017). A total of 3928 
farm-fields were used for yield gap and multicriteria analysis. We 
excluded from the multicriteria analysis fields with wheat yields below 
3 t ha− 1 and fields sown before 15th October, as the method can be 
sensitive to outliers. Fields were spread across three districts in Haryana 
(Ambala, Karnal, and Kurukshetra) and four districts in Punjab 
(Ludhiana, Patiala, Fatehgarh-Sahib, and Kapurthala) in India. Further 
details about village, block, and farmer selection are provided in Nayak 
et al. (2022a); (2022).

Self-reported wheat production and field area data were verified 
with crop cuts conducted in about 25 % of the fields surveyed, where a 
2 × 2 m² quadrat was used to sample from a representative area in the 
center of the field. The harvested grain was threshed and weighed to 
measure wheat yield. The moisture content was measured using a 
handheld grain moisture meter and used to adjust the fresh-weight grain 
yield to a standard moisture content of 14 %. A linear regression model 
was fitted between the crop-cut yield and the self-reported yield. Given 
the good agreement between self-reported and crop-cut yields (R² of 
0.80; Nayak et al., 2022a), the fitted regression model was used to adjust 
the self-reported yield in the fields where crop cuts were not conducted.

2.2. Yield gap analysis

Wheat yield gaps were estimated as the difference between the 
simulated potential yields and the actual farm yields (van Ittersum et al., 
2013). A yield gap decomposition was further conducted to quantify the 
efficiency, resource, and technology yield gaps (Silva et al., 2017) and 
identify the key limiting factors to wheat production in Northwest India, 
as explained below.
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2.2.1. Efficiency yield gap
The efficiency yield gap refers to the difference between technical 

efficient yields (YTEx, i.e., the maximum yield that can be obtained for a 
given input level in a well-defined biophysical environment) and actual 
farm yields (Ya; Silva et al., 2017). Differences in yields between two 
fields with the same input levels can be explained by sub-optimal crop 
management regarding the timing, placement, and form of the inputs 
applied, which are the key drivers of the efficiency yield gap.

A Cobb-Douglas functional form considering first-order inputs only 
was assumed for the relationship between wheat yield and a vector of 
biophysical factors and crop management practices as follows: 

lnyi = β0 +
∑K

k=1

βklnxki + vi − ui (1) 

Eff. Ygi = 1 – exp(-ui)                                                                     (2)

YTExi = Yai / exp(-ui)                                                                      (3)

Technical efficient yields (YTEx), and the associated efficiency yield 
gaps, were estimated for each field using stochastic frontier analysis 
(Kumbhakar and Lovell, 2000) in combination with concepts of pro-
duction ecology (van Ittersum and Rabbinge, 1997) (Eqs. 2 and 3). 
Stochastic frontier analysis is an econometric approach to assess 
input-output relationships, which considers two random errors, namely 
random noise (v) and technical inefficiency (u). The random error vi is 
assumed to be independently and identically distributed (i.i.d.) 
following a N (0, σ2

v) distribution, while the random error ui is assumed 
to be i.i.d. following a N+(0, σ2

u) distribution.
The vector of input variables, x, was designed according to concepts 

of production ecology (van Ittersum and Rabbinge, 1997) to account for 
growth-defining factors (average maximum and minimum temperatures 
during the growing season, sowing date, seed rate, and growing season 
duration), growth-limiting factors (growing season precipitation, num-
ber of irrigations, N and P applied, residue retention, and soil texture), 
and growth-reducing factors (tillage intensity for the previous rice crop, 
tillage intensity for wheat, weed severity, lodging category, and herbi-
cide, fungicide, and insecticide applied). The Variance Inflation Factor 
(VIF), as implemented in the vif() function of the ‘car’ package in R (Fox 
and Weisberg, 2019), was used to assess multi-collinearity between 
input variables. Variables with a VIF value above 5 were assumed to be 
collinear, and hence not included in the analysis. The latter included 
cumulative solar radiation during the growing season, mean tempera-
ture during the growing season, insect and disease severity, and crop 
establishment method. Continuous variables were mean-scaled and 
log-transformed, such that model parameters can be interpreted as 
elasticities, prior to fitting the models with the sfa() function of the 
‘frontier’ R package (Coelli and Henningsen, 2020). Inefficiency effects 
included the dates of the first and second urea topdressing and the date 
of the first herbicide application.

2.2.2. Resource yield gap
The resource yield gap from a production perspective refers to the 

difference between the highest farmers’ yields (YHF) and the YTEx esti-
mated using stochastic frontier analysis (Section 2.2.1) and can be 
attributed to sub-optimal amounts of inputs applied (Silva et al., 2017). 
YHF was estimated as the mean actual yield above the 90th quantile of 
actual yields for a given soil type. It was not possible to estimate YHF, and 
the resource yield gap, by climate zone and variety type, as all fields 
were in the same climate zone and reported the same variety type.

2.2.3. Technology yield gap
The technology yield gap refers to the difference between Yp, 

simulated with crop growth models, and YHF, hence reflecting resource 
yield gaps of individual inputs and/or technologies used by farmers not 
being able to reach Yp (see Silva et al., 2017, for further explanation). 

The technology yield gap was estimated for each field as the difference 
between the Yp retrieved from the Global Yield Gap Atlas and YHF 
estimated from the farmer field database (Section 2.2.2). The Global 
Yield Gap Atlas provides data on the potential yield for irrigated wheat 
in India simulated with the APSIM crop model (Holzworth et al., 2014) 
for the winter season over the years 1991–2014. The reader is referred to 
www.yieldgap.org/India for further details about the crop model 
parametrization, weather data used, and cropping systems considered in 
the simulations.

The simulated Yp should ideally match the year of the actual yield 
data, but this was not possible due to the lack of up-to-date simulated 
yield data in the Global Yield Gap Atlas. Therefore, the average Yp over 
the years 1991–2014 was taken as a benchmark for the on-farm wheat 
yields obtained with the field survey conducted during the growing 
season of 2020–2021. Despite the temporal mismatch between Yp and 
Ya data, the average Yp values adopted here can be considered reliable 
due to low inter-annual Yp variability in Northwest India. For each field 
in the database, the average Yp from the Global Yield Gap Atlas was 
retrieved using field-specific GPS coordinates and the technology yield 
gap was calculated as the difference between Yp and YHF.

2.3. Sustainability indicators

2.3.1. Profitability
Profitability was estimated considering variable costs only, hence 

excluding costs of land and depreciation of machinery and other capital 
items. For this, the field-specific quantity of inputs, i.e., fertilizer, 
pesticide, labor, and seed, reported by the farmers were multiplied by 
their unit cost and the sum of these input-specific costs corresponded to 
the variable costs of each field. The average labor wage rates were asked 
to farmers and used in the estimation of labor cost. The labor used in 
each field was cross-checked against the total number of operations or 
amount used for each input. The costs associated with tillage operations 
were directly asked to farmers and were further triangulated against the 
number of tillage operations and diesel use. A flat rate of irrigation, 
which varied with the number of irrigations, was considered in the 
estimation of irrigation costs, as electricity is either free or partly sub-
sidized in the states of Punjab and Haryana (Nayak et al., 2023).

The revenue from wheat production was calculated by multiplying 
the grain yield by the farm-gate price of wheat reported by the farmers. 
The Net Benefit Cost Ratio (NBCR) was calculated by dividing the rev-
enue from wheat production with the respective variable cost as follows: 

NBCRi =
Yi × Wp −

∑n

i=1
XiPi

∑n

i=1
XiPi

(4) 

where Xi refers to the amount of the n inputs of irrigation water, fer-
tilizer, pesticide, labor, tillage and seed in field i, Pi is the respective 
price per unit of input, Yi is the wheat grain yield, and Wp is the farm- 
gate price of wheat.

2.3.2. Nitrogen-use efficiency
The partial factor productivity of N (PFP-N), defined as the ratio of 

wheat yield to applied N, was the indicator considered to assess the N- 
use efficiency of wheat production (Table 1). This indicator captures a 
partial N balance as it does not consider indigenous soil N supply nor 
distinguishes between N recovery of applied N from conversion effi-
ciency of N uptake (Dobermann, 2005). However, this is a widely used 
indicator in agronomic studies (e.g., Cassman et al., 2002; Nayak et al., 
2022), providing a first-order assessment of N-use efficiency in farmer 
field data with minimal assumptions.

2.3.3. Greenhouse gas emissions
The “Mitigation Options Tool” developed by the CGIAR research 
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program on Climate Change Agriculture and Food Security (CCAFS- 
MOT; Feliciano et al., 2017) was used to estimate GHG emissions, and 
related carbon footprint, of wheat production. The CCAFS-MOT uses a 
combination of empirical models to quantify GHG emissions in agri-
cultural production systems. In doing so, the tool considers factors like 
land use change over the past two decades, nitrous oxide (N2O) emis-
sions associated with the use of mineral fertilizers and manure appli-
cation (based on soil organic carbon, soil pH, soil texture, climate, crop 
type, and length of the experiment), carbon dioxide (CO2) emissions 
from mineral fertilizer production, and GHG emissions from crop res-
idue burning and farm energy use.

The tool calculates background and fertilizer induced GHG emissions 
based on a multivariate empirical model (Bouwman et al., 2002) for N2O 
and nitric oxide (NO) emissions, and the model of FAO/IFA (2001) for 
ammonia (NH3) emissions. GHG emissions from crop residues returned 
to the field were calculated using IPCC N2O Tier 1 emission factors. 
Similarly, GHG emissions from the production and transportation of 
mineral fertilizers were based on the Ecoinvent database (https://ecoi 
nvent.org). GHG emissions from changes in soil carbon due to tillage, 
manure, and residue management were estimated using the IPCC 
methodology (see Ogle et al., 2005, and Smith et al., 1997). GHG 
emissions of CO2 due to urea application were also estimated using the 
IPCC methodology (IPCC et al., 2006).

To estimate the total GHG emissions for each field, i.e., the global 
warming potential, all GHG emissions were converted to CO2-equiva-
lents (CO2 eq) using the global warming potential (over 100 years) of 28 
and 265 for CH4 and N2O, respectively. Although CCAFS-MOT does not 
capture the soil dynamics associated with those emissions, it is still a 
useful tool for a first order assessment of GHG emissions and for plan-
ning emission reductions specific to each field.

2.4. Multicriteria assessment

The Technique for Order of Preference by Similarity to Ideal Solu-
tion (TOPSIS) (Hwang and Yoon, 1981) was used to assess the sustain-
ability of wheat production according to actual yield, NBCR, PFP-N, and 

GHG emissions. This technique ranks observation units from most effi-
cient (i.e., close to the ideal solution) to least efficient (furthest from the 
ideal solution) according to different indicators and user-defined 
weights for each indicator.

TOPSIS is implemented in three steps. First, indicator values are 

standardized to a common scale, viz. nij = xij/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑m

i=1 x2
ij

√
, where i refers 

to number of m observation units (fields in our dataset), and j the 
number of indicators considered in the analysis. The normalized indi-
cator values (nij) are then multiplied by user-defined weights for the 
relative importance of each indicator (wj), to derive the weighted indi-
cator score (vij). Secondly, positive and negative ideal solutions are 
identified, and their minimum and maximum values are determined for 
each indicator. A higher number is better for a positive ideal solution (e. 
g., yield) and a lower number is better for a negative ideal solution (e.g., 
GHG emissions). Finally, for each observation unit, the distance from the 
positive ideal solution and from the negative ideal solution is computed 
in a j dimensional space, where j is the number of indicators considered 
in the assessment. The TOPSIS score indicates how far each observation 
unit is from the negative ideal solution in comparison to the total dis-
tance from the positive and the negative ideal solutions. An observation 
unit with a larger distance from the negative ideal solution is close to the 
positive ideal solution and thus has a larger TOPSIS score as well as rank. 
The topsis() function from ‘topsis’ R package (Yazdi, 2013) was used to 
calculate the distance scores and delineate the field ranks for the sce-
narios explained below.

TOPSIS was used to obtain the rank of each field for five different 
scenarios. The first scenario considered the four indicators equally 
important, assigning equal weights to all indicators. The second scenario 
prioritized wheat yield over all other indicators, assigning it a weight 
five times greater than the other indicators, reflecting a production- 
maximizing situation. The third scenario explored how economic 
maximization affected the field ranks by considering the NBCR as the 
most important indicator (i.e., the weight of NBCR was five times that of 
the other indicators). The fourth and fifth scenarios focused on priori-
tizing environmental sustainability over other dimensions by consid-
ering minimization of GHG emissions and maximization of PFP-N as the 
most important indicators, respectively, again defining the weight of the 
respective indicator as five times that of the other indicators. With this 
assessment, we identified the fields performing best under different 
production objectives and assessed synergies and trade-offs in perfor-
mance for different groups of fields. Fields were classified into four 
groups based on their rankings under each of the five scenarios. ‘Most 
efficient fields’ were defined as those having a TOPSIS rank score above 
the 75 % quantile of the distribution of all TOPSIS rank scores. Similarly, 
fields with TOPSIS scores between the 50th and 75th, 25th and 50th, 
and 0th and 25th percentiles of the distribution of all TOPSIS rank scores 
were classified as ‘efficient,’ ‘less efficient,’ and ‘least efficient’ fields, 
respectively. Boxplots of the four indicators were developed for each 
group of fields (i.e., from most to least efficient) in each scenario to 
characterize the variability in each indicator for the different groups of 
fields. The lm() function in R was used to fit linear regressions between 
all indicators across different field groups and to quantify synergies and 
trade-offs under the first scenario of equal weight for all indicators.

2.5. Random forest and variable importance

A random forest classification model was used to identify the 
important management practices governing the field classification ob-
tained from TOPSIS under the scenario of equal weight for the four in-
dicators. A total of 19 management variables were considered in this 
analysis, including the number of tillage operations for rice and wheat 
(two separate variables), residue management, crop establishment 
method, sowing date, seed rate, variety type, number of irrigations, 
amounts of N and P applied, severity of weeds, diseases, and pests, weed 
control method, herbicide, fungicide, and insecticide applications, 

Table 1 
Descriptive statistics of the key management practices and key performance 
indicators of wheat production in NW-IGP.

Mean Standard 
deviation

Minimum Maximum

Sowing date in Julian 
dates

311.9 6.1 292.0 339.0

Fallow duration in days 16.9 8.3 0.0 33.0
Seed rate (kg/acre) 44.7 4.2 35.0 60.0
N applied (kg/ha) 161.8 17.3 90.1 227.0
P applied (kg/ha) 65.1 11.4 0.1 97.8
Cost of cultivation (INR/ 
ha)

28570.0 2508.0 20928.9 36025.0

Gross return (INR/ha) 88758.4 8924.2 55493.2 118696.8
Net return (INR/ha) 60188.3 9139.6 27931.8 87000.0
Net benefit cots ratio 2.1 0.4 0.9 3.2
Wheat yield (kg/ha) 4912.0 509.9 3032.4 6521.8
Global warming potential 
(Kg co2-eq/ha)

1384.1 529.1 62.0 2379.8

Partial factor productivity 
of N

41.6 9.2 21.2 86.0

Categorical variables (Number of data points in braces)
Residue maintain Yes (2524); No (1403)
Tillage in rice < =4 (1047); > =7 (859); 5 (1305); 6 (716)
Lodging Yes (1446); No (2481)
Tillage in wheat Intensive (1119); Moderate (1230); ZT/MT (1578)
Crop establishment 
method

Broadcasting (1879); Line sowing after tillage (507); 
Super seeder (547); Zero tillage sowing (994)

Irrigation in wheat < =3 (2891); > =4 (1036)
Weed severity Low (1413); Medium (2514)
Insect severity None (1327); Low (1299); Medium (1301)
Disease severity None (1270); Low (1444); Medium (1213)
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timing of the first herbicide application, and crop lodging severity. 
These management variables were identified from a fine-tuned random 
forest model fitted to explain yield variability using the same dataset 
(Nayak et al., 2022a). The selected variables are agronomically mean-
ingful and the result of recursive feature elimination prior to fitting 
machine learning models. The effect of the most important variable, as 
identified by the variable importance plot, was analyzed using 
descriptive statistics (i.e., the proportion of fields in each group 
reporting a specific management practice). The randomForest() function 
from ‘randomForest’ R package (Breiman, 2001; Liaw and Wiener, 
2002) was used to construct the classification model. The varImp() 
function was used to identify the important variables. The field classi-
fication error was evaluated using a permutation-based approach, 
measuring how many fields were misclassified when the values of a 
variable were randomly shuffled.

3. Results

3.1. Yield gaps and drivers of yield variability

Wheat Ya in Northwest India was on average 4.9 t ha− 1, corre-
sponding to 67 % of Yp (Fig. 1). Ya was highest in Karnal and Kuruk-
shetra (ca. 75 % of Yp) and lowest in Ambala (ca. 61 % of Yp; Fig. 1). 
The efficiency, resource, and technology yield gaps were on average 
0.45, 0.40, and 1.5 t ha− 1, respectively, across the surveyed districts 
(Fig. 1A). Efficiency and resource yield gaps accounted for ca. 12 % of 
Yp, whereas the technology yield gap accounted for 21 % of Yp.

The gamma value of the fitted Cobb-Douglas production function 
indicates a greater contribution of random errors associated with tech-
nical efficiency (ui) than random errors associated with random noise 
(vi) to the overall model results (Table 2). Sowing date had the largest 
significant negative effect on wheat yield with a 1 % increase in sowing 
date resulting in 1.3 % decline in wheat yield (Table 2). Conversely, the 
average seasonal minimum temperature had the largest significant 
positive effect on wheat yield. Moreover, a 1 % increase in N applied was 
associated with a 0.14 % increase in wheat yield, whereas a 1 % increase 
in total crop duration was associated with a 0.6 % decline in wheat 
yield. The number of tillage operations for the previous rice crop had a 
significant negative effect on wheat yield, whereas zero or minimum 
tillage prior to wheat sowing increased wheat yield compared to 
intensive tillage. Residue retention also showed a significant positive 
effect on wheat yield, although the effect was small (Table 2). Parameter 

estimates, and respective significance, were consistent between Cobb- 
Douglas models fitted with and without inefficiency effects (Table 2). 
The timing of the 1st and 2nd urea topdress application had a significant 
effect on the efficiency yield gap, with later dates of the 1st topdress of 
urea resulting in larger efficiency yield gaps whereas the opposite was 
observed for the 2nd topdress of urea (Table 2).

3.2. Sustainability indicators and their relationship

The mean wheat yield across the surveyed districts ranged from 4.3 
to 5.2 t ha− 1, being highest in Karnal and Kurukshetra and lowest in 
Ambala (Fig. 2A). PFP-N was highest in Karnal, Kurukshetra, and 
Ambala with an average 45–48 kg grain kg− 1 N applied (Fig. 2B). 
Conversely, the lowest PFP-N was observed in Ludhiana, Patiala, and 
Kapurthala with an average of 35 kg grain kg− 1 N applied. The lowest 
values of PFP-N varied across districts, between 21 and 31 kg grain kg− 1 

N applied, while the largest PFP-N varied between 53 and 86 kg grain 
kg− 1 N applied (Fig. 2B). NBCR was largest in Karnal (mean of 2.3 USD 
USD− 1) and lowest in Ambala (1.7 USD USD− 1; Fig. 2C). Yet, there were 
no large differences in NBCR across districts, except for Ambala, with 
mean values between 2.0 and 2.5 USD USD− 1. The largest GHG emis-
sions were observed in Kurukshetra, with an average of 1763 kg CO2 eq 
ha− 1 and a range between 450 and 2380 kg CO2 eq ha− 1 (Fig. 2D). The 
lowest GHG emissions were observed in Kapurthala, with an average of 
889 kg CO2 eq ha− 1 and a range between 500 and 1500 kg CO2 eq ha− 1 

(Fig. 2D). The minimum GHG emissions varied between 62 and 450 kg 
CO2 eq ha− 1 across districts, whereas the maximum GHG emissions 
varied between 1950 and 2380 kg CO2 eq ha− 1 (Fig. 2D).

Synergies and trade-offs between indicators were quantified for the 
different group of fields under the scenario considering equal weights for 
all indicators (Fig. 3). NBCR increased linearly with increases in wheat 
yield for all field groups (Fig. 3A), indicating a synergy between wheat 
yield and profitability. The intercept was higher for the most efficient 
fields than for less efficient fields and an intermediate intercept was 
observed for efficient and less efficient fields. Yet, the slope of the 
regression was similar for all field groups. Therefore, profitability for a 
given yield level was higher for most efficient fields than for the other 
field groups. Conversely, there was a different relationship between 
wheat yield and GHG emissions (Fig. 3B) and NBCR and GHG emissions 
(Fig. 3D). The steepest decline in GHG emissions per ton of grain was 
observed for the efficient fields, followed by the less efficient and most 
efficient fields: for a 5 t ha− 1 wheat yield, most efficient fields had an 

Fig. 1. Wheat yield gap decomposition into efficiency, resource, and technology yield gaps for the state of Haryana (Ambala, Karnal and Kurukshetra) and Punjab 
(Fatehgarh Sahib, Kapurthala, Ludhiana and Patiala) in the Northwestern Indo-Gangetic Plains of India during the 2020–2021 winter growing season. Panel (A) and 
(B) show yields and yield gaps in absolute (t ha− 1) and relative terms (% of Yp), respectively. Yield gap closure refers to the ratio between actual farmers’ yields (Ya) 
and simulated potential yields (Yp).
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average GHG emission of ca. 750 kg CO2 eq ha− 1, followed by efficient 
fields with ca. 1300 kg CO2 eq ha− 1, less efficient fields with ca. 1650 kg 
CO2 eq ha− 1, and least efficient fields with ca. 1850 kg CO2 eq ha− 1 

(Fig. 3B). Moreover, GHG emissions decreased by only 12 % with re-
ductions in wheat yield, from 5.7 to 3.0 t ha− 1, for the least efficient 
fields, but by 73 % with reductions in wheat yield, from 6.5 to 3.9 t 
ha− 1, for most efficient fields. Similar relationships and trade-offs were 
observed between GHG emissions and NBCR (Fig. 3D) as that of GHG 
emission and yield, due to the linear relationship between wheat yield 
and NBCR (Fig. 3A). Finally, the regression between wheat yield and 
PFP-N and between NBCR and PFP-N had a positive slope of similar 
magnitude for most efficient, efficient, less efficient, and least efficient 
fields (Figs. 3C and 3E). Yet, for a given wheat yield and NBCR, most 
efficient fields had a lower PFP-N than the other field groups (Fig. 3C). 
The relationship between PFP-N and GHG emissions was also positive 
for all field groups, but most efficient fields attained higher PFP-N per 
unit of GHG emissions than the other groups (Fig. 3F). Conversely, least 

efficient fields exhibited high levels of GHG emissions (1700–2000 kg 
CO2 eq ha− 1) and low PFP-N (30–45 kg grain kg− 1 N; Fig. 3F).

In summary, it is possible to produce wheat sustainably in Northwest 
India as most efficient fields achieved high wheat yield and economic 
benefit with the lowest GHG emissions, and with only slightly lower 
PFP-N than the other field groups. Yet, this is not true for the efficient 
and less efficient fields. The management practices in most efficient 
fields can be assumed optimal, hence the trade-off between yield and 
GHG emissions for this field group is likely hard to overcome with 
current practices. We also observed a trade-off between wheat yield and 
GHG emissions across the most efficient, efficient, and less efficient field 
groups given their current practices. For these field groups, an increase 
in wheat yield consistently increased GHG emissions. However, for the 
least efficient fields, we observed no trade-off between wheat yield and 
GHG emissions, suggesting opportunities to increase productivity in this 
group of fields without additional GHG emissions. Despite within group 
synergies and trade-offs, the performance of efficient, less efficient, and 
least efficient fields could be further improved with practice change, i.e., 
pathways for them to transition towards the sustainability performance 
observed in most efficient fields. Our results thus show clear, group- 
specific, pathways to achieve sustainable wheat production at the 
regional level.

3.3. Field classification under different scenarios

The performance of the different farm-fields was affected by different 
optimization scenarios prioritizing specific dimensions of sustainability 
(Fig. 4). Yet, these effects were more noticeable for most and least 
efficient fields than for efficient and less efficient fields. Therefore, the 
results described below focus on differences in performance for most and 
least efficient fields under different scenarios.

Most efficient fields in the maximum yield scenario attained on 
average 10 % higher yield than the same group of fields in the maximum 
PFP-N and minimum GHG emissions scenarios (Fig. 4A). The average 
yield for most efficient fields was nearly similar for the maximum yield, 
maximum NBCR, and equal weight scenarios. Conversely, least efficient 
fields had 13 % lower yield in the maximum yield scenario compared to 
the minimum GHG emissions and maximum PFP-N scenarios (Fig. 4A). 
No major differences in yield were observed for least efficient fields 
under the equal weight, maximum yield, and maximum NBCR scenarios. 
Similar to the maximum yield scenario, most efficient fields in the 
maximum NBCR scenario had a higher NBCR than most efficient fields 
in the minimum GHG emissions and maximum PFP-N scenarios, 
whereas the opposite was true for least efficient fields (Fig. 4B).

Most efficient fields in the minimum GHG emissions scenario had 64, 
53, 50 and 25 % lower GHG emissions than most efficient fields in the 
maximum PFP-N, maximum yield, maximum NBCR, and equal weight 
scenarios, respectively (Fig. 4C). Conversely, least efficient fields in the 
minimum GHG emissions scenario had similar GHG emissions to the 
least efficient fields under the maximum PFP-N scenario, and 27 and 
40 % lower GHG emissions than least efficient fields in the maximum 
NBCR and maximum yield scenarios, respectively (Fig. 4C). The average 
PFP-N for most efficient fields in the maximum PFP-N scenario was 
53 kg grain kg− 1 N applied (Fig. 4D). Most efficient fields in the 
maximum yield, minimum GHG emissions, and maximum NBCR sce-
narios had 18, 40, and 21 % lower PFP-N than most efficient fields in the 
maximum PFP-N scenario, respectively (Fig. 4D). Finally, average PFP-N 
for least efficient fields in the maximum PFP-N scenario was about 30 kg 
grain kg− 1 N applied and slightly greater, about 40 kg grain kg− 1 N 
applied, in the other scenarios (Fig. 4D).

3.4. Management practices contributing to sustainable and cleaner 
production

The most important crop management practices affecting the field 
classification in the random forest model were (a) tillage intensity for 

Table 2 
Parameter estimates of the stochastic frontier models fitted for wheat production 
systems in the Northwestern Indo-Gangetic Plains of India during the winter 
growing season of 2020–2021.

Variables Cobb-Douglas without 
inefficiency effects

Cob-Douglas with 
inefficiency effects

Production function  
(Intercept) 0.036 * ** 0.015 *
Maximum temperature 
(⸰C)

0.137 − 0.046

Minimum temperature 
(⸰C)

0.534 * ** 0.655 * **

Precipitation (mm) 0.026 0.016
Total N applied (kg 
ha− 1)

0.146 * ** 0.144 * **

Total P2O5 applied (kg 
ha− 1)

0.017 * ** 0.012 *

Seed rate (kg ha− 1) 0.082 * ** 0.060 * **
Sowing dates in Julian 
days

− 1.262 * ** − 1.144 * **

Crop duration (days) − 0.600 * ** − 0.473 * **
Herbicide applied (ai 
ai− 1)

0.025 * ** 0.025 * **

Fungicide applied (ai 
ai− 1)

− 0.002 * * − 0.001

Insecticide applied (ai 
ai− 1)

− 0.004 * * − 0.006 * **

Irrigation number 
(>=4)

0.029 * ** 0.024 * **

Tillage intensity in rice 
(>=7)

− 0.026 * ** − 0.024 * **

Tillage intensity in rice 
(5)

− 0.002 0.001

Tillage intensity in rice 
(6)

0.011 * 0.011 *

Residue retention (Yes) 0.029 * ** 0.028 * **
Tillage intensity in 
wheat (Moderate)

0.012 * * 0.009 *

Tillage intensity in 
wheat (ZT or MT)

0.023 * ** 0.017 * **

Texture category 
(Moderate)

0.018 * ** 0.022 * **

Weed severity 
(Medium)

− 0.001 0.001

Lodging category (Yes) − 0.006 # − 0.002
Inefficiency effects  
(Intercept)  − 0.323 *
Days of 1st urea top 
dressing

 1.452 * **

Days of 2nd urea top 
dressing

 − 1.863 * **

1st herbicide 
application time

 − 0.004

Model evaluation  
SigmaSq (σ2) 0.017 * ** 0.034 * **
Gamma (ỿ) 0.786 * ** 0.877 * **
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wheat for the scenario with equal weights for all indicators, (b) tillage 
intensity for the preceding rice crop for the yield maximization scenario, 
(c) wheat establishment method for profit maximization scenario, and 
(d) residue management prior to wheat establishment for the minimum 
GHG emissions and maximum PFP-N scenarios (Fig. 5). N fertilizer 
applied was the second most important variable to explain the field 
classification for the equal weights and maximum PFP-N scenarios, and 
the third most important variable for the minimum GHG emissions 
scenario. Residue management was the second most important variable 
for the yield maximization scenario, whereas herbicide use and tillage 
intensity prior to wheat establishment were the second most important 
variables for profit maximization and minimum GHG emissions sce-
narios, respectively.

The effect of the most important management practices on the field 
classification was further analyzed (Fig. 6). In the scenario with equal 
weights across indicators, where tillage intensity in wheat was the most 
important variable in the random forest model, 82 % of the most effi-
cient fields used zero or minimum tillage, compared to 55 % of the least 
efficient fields, which reported intensive tillage for wheat (Fig. 6A). For 
the yield maximization scenario, very high tillage intensity for the 
previous rice crop was associated with poor performance in wheat. 

Nearly half of the least efficient fields in the yield maximization scenario 
reported more than seven tillage operations for the previous rice crop, 
whereas ca. 65 % of the most efficient fields reported five or less tillage 
operations for the previous rice crop (Fig. 6B). For the profit maximi-
zation scenario, broadcasting wheat was the preferred crop establish-
ment method for about 55 % and line sowing after tillage for about 25 % 
of the least efficient fields (Fig. 6C). Conversely, a large share of most 
efficient fields in the profit maximization scenario reported zero tillage 
methods for wheat establishment (Fig. 6C). Regarding the minimum 
GHG emissions scenario, nearly 90 % of the efficient fields reported crop 
residue retention prior to wheat establishment, as opposed to nearly 
80 % of the least efficient fields, for which residue removal was reported 
(Fig. 6D). Finally, crop residue retention and N fertilizer applied were 
important drivers of field classification in the PFP-N maximization sce-
nario. Yet, the effect of residue retention on PFP-N was negative with 
nearly 75 % of the most efficient fields reporting residue removal and 
nearly all the least efficient fields reporting residue retention.

Fig. 2. On-farm variability of sustainability indicators for wheat production in the Northwestern Indo-Gangetic Plains of India: wheat yield (A), N partial factor 
productivity (B), net benefit cost ratio (C), and greenhouse gas (GHG) emissions (D). Ambala, Karnal, and Kurukshetra are districts in the state of Haryana, whereas 
Fatehgarh Sahib, Kapurthala, Ludhiana, and Patiala are districts in the state of Punjab. Red diamonds indicate the mean of each sustainability indicator in 
each district.
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4. Discussion

4.1. Sustainable and cleaner wheat production in Northwest India

The Punjab and Haryana states of Northwest India are popularly 

known for ensuring food security to the country and renowned for high 
productivity levels (Chauhan et al., 2012). Similar to previous findings 
for rice (Nayak et al., 2022), the small wheat yield gaps estimated in this 
study confirm the high productivity of rice and wheat crops in the re-
gion. Currently, wheat farms in Northwest India achieve 60–75 % of the 

Fig. 3. Relationship between four sustainability indicators for wheat production in the Northwestern Indo-Gangetic Plains of India. Linear regressions were fitted for 
different groups of fields (most efficient, efficient, less efficient, and least efficient) derived using TOPSIS under the assumption of equal weight between all the 
indicators. The R2 of the fitted linear regressions is shown in the legend of each panel.

Fig. 4. Impact of five scenarios on wheat yield (A), net benefit cost ratio (B), greenhouse gas emissions (C), and N partial factor productivity (D) for most efficient, 
efficient, less efficient, and least efficient fields. The five scenarios were implemented with TOPSIS assuming equal weight for all four sustainability indicators (equal 
weight), maximum yield (max. yield), maximum net benefit cost ratio (max. BCR), minimum greenhouse gas emissions (min. GHG), and maximum N partial factor 
productivity (max. NUE). Red diamonds show the mean value of each indicator for each farm-field group x scenario combination and vertical red lines show the mean 
value of each indicator for the pooled data.
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potential yield. The small yield gap was mostly attributed to the tech-
nology yield gap (ca. 20 % of Yp, corresponding to 1–2 t ha− 1), meaning 
that further increases in wheat production require precision agriculture 
technologies not yet widely used in farmers’ fields. Yet, fine-tuning 
current practices, through narrowing efficiency and resource yield 
gaps, would increase wheat yield by ca. 0.9 t ha− 1, on average. Small 
yield gaps mostly attributed to the technology yield gap were also 
observed for rice crops in the same region (Nayak et al., 2022) and for 
arable crops, including wheat, in Northwest Europe (Silva et al., 2017). 
This situation contrasts with that in low-input settings, where narrowing 
efficiency and resource yield gaps could double wheat yields, with the 
technology yield gap accounting for as much as 50 % of the 
water-limited yield (Silva et al., 2021; Baudron et al., 2019). In pro-
duction systems with high input use and limited potential for increasing 
farm yields, as demonstrated by this study, prioritizing resource-use 
efficiency becomes crucial (Kakraliya et al., 2022).

Multicriteria assessments of cropping systems (Davis et al., 2019) 
reveals trade-offs between different sustainability indicators (Struik 
et al., 2014), with the strength of the trade-off varying with the adopted 

management practices (Fig. 3). For instance, Sapkota et al. (2017)
grouped farms in India based on yield and GHG emissions and evaluated 
the crop management practices (tillage intensity, residue management, 
and split N application) used by each group of farms. In another study, 
Ashok et al. (2021) observed trade-offs between energy use efficiency, 
GHG emissions, and resource-use efficiency in different geographies. 
Therefore, identifying which management practices perform best for 
different sustainability dimensions, and to quantify potential trade-offs 
between those different dimensions, is of utmost importance for 
high-input cropping systems as illustrated in this study for wheat crops 
in Northwest India. Despite the numerous approaches available for 
multicriteria assessment (Carof et al., 2013, Talukdar, 2016), TOPSIS 
was preferred due to its straightforward implementation to rank 
observation units based on weights assigned to different indicators (see 
also Özkan et al., 2019), hence allowing us to identify groups of fields 
with different performance under different scenarios.

Fig. 5. Variable importance of random forest models fitted to the field classification derived with TOPSIS under five different scenarios: equal weights between all 
indicators (ALL), maximum wheat yield (YLD), maximum profitability (ECO), minimum greenhouse gas emissions (GHG), and maximum N-use efficiency (NUE).
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4.2. Management drivers of field performance

We found little evidence of trade-offs between wheat yield, profit-
ability, and N-use efficiency in this study. This means that high wheat 
yields in Northwest India are compatible with increased profitability 
and nutrient-use efficiency (Figs. 3A and 3C), as also observed for other 
crops in other production systems (Silva et al., 2018, Silva et al., 2017). 
The latter was true when field performance was compared under a 
scenario assuming equal weights for all indicators (Fig. 3) and under 
scenarios prioritizing different indicators (Fig. 4). Yet, the relationship 
between the aforementioned indicators and GHG emissions was 
group-specific and hard to generalize. For instance, most efficient fields 
can achieve high productivity and profitability with low GHG emissions 
(Figs. 3A and 3B), even though GHG emissions increased with increasing 
levels of the other two indicators (Fig. 3B). This is a trade-off that seems 
hard to overcome with current farm practices. Two pathways for sus-
tainable wheat production emerged: (1) least efficient fields can boost 
productivity and profitability without raising GHG emissions, and (2) 
fields of all efficiency levels can reduce GHG emissions to match those 
observed in the most efficient fields without sacrificing yield or profit. 
These pathways offer a promising approach to sustainable wheat pro-
duction regionally.

Various management practices were identified as important drivers 
of the field classification under different scenarios (Fig. 5). For instance, 
tillage intensity for wheat and for the previous rice crop were important 
for the yield maximization scenario and for the scenario with equal 
weights for all indicators. Zero tillage practices reduce cultivation costs 
and increase profitability due to savings in tillage operations and hand- 
weeding (Sahoo et al., 2022; Samal et al., 2017). Moreover, zero tillage 

can also improve wheat yield and nutrient-use efficiency through timely 
planting and improvements in soil fertility (Aryal et al., 2015; 2022). 
Field experiments in the region further reported higher wheat yield 
followed by zero tillage rice production practices (Kumar et al., 2019), 
in agreement with our results. Conventional puddling of transplanted 
rice often causes the formation of a plow pan that restricts root devel-
opment, whereas zero-tillage rice cultivation improves soil physical 
properties for subsequent crops (Gathala et al., 2011). Conversely, crop 
residue management was the most important practice governing the 
field classification in the minimum GHG emissions scenario. Residue 
retention is indeed a source of carbon to the soil, which can have a 
positive impact on crop yield and GHG emissions in the long run 
(Parihar et al., 2018; Jat et al., 2019a), particularly compared to residue 
burning. Finally, line sowing is known to improve crop establishment, 
and hence crop yield and profitability, which likely explains why it was 
identified as the most important practice governing the field classifica-
tion in the profit maximization scenario. In conclusion, ensuring sus-
tainable wheat production in Northwest India in the future requires due 
attention to crop management operations happening prior to or at 
planting, namely land preparation method, residue management, and 
crop establishment method. The evidence generated from the bottom-up 
approach, involving thousands of farms, aligns with the existing litera-
ture from the same region. The distribution of various management 
practices affects farm efficiency differently depending on which in-
dicators are prioritized.

4.3. Methodological considerations

We employed an innovative data-driven approach to assess farm 

Fig. 6. Share of fields for the most important management practice explaining the TOPSIS farm-field classification under five scenarios: tillage practice for the 
scenario with equal weights for all the indicators (A), number of land preparation operations for the previous rice crop for the maximum yield scenario (B), crop 
establishment method for the maximum net benefit cost ratio scenario (C), residue retention for the minium greenhouse gas emissions scenario (D) or the maximum 
N-use efficiency scenario (E). Abbreviations: ZT/MT = zero tillage/minimum tillage.
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performance in the context of sustainable and cleaner crop production. 
The four building blocks of our analysis were extensively applied in 
isolation in the past: stochastic frontier analysis to decompose yield gaps 
(cf. Silva et al., 2017), CCAFS-MOT to estimate GHG emissions from 
cropping systems (Sapkota et al., 2019), TOPSIS to conduct multicriteria 
assessments in agriculture (García-Cascales et al., 2021), and random 
forest to identify crop management determinants of crop yield vari-
ability (e.g., Nayak et al., 2022a). Yet, this is the first study combining all 
these methods to provide an integrated assessment of crop production 
with a case study for irrigated wheat in the Northwest India. With this 
data-driven integrated assessment, we were able to (1) quantify yield 
gaps and identify their causes, which is critical to delineate the scope for 
future yield increases, (2) cluster fields based on their performance ac-
cording to four indicators, (3) quantify synergies and trade-offs between 
indicators for most efficient, efficient, less efficient, and least efficient 
fields, and finally (4) identify the management practices associated with 
each group of fields. Our approach builds entirely upon data-driven 
methods powered by a large database of farmer field data. It therefore 
depicts the sustainability of crop production under real farm conditions 
and guides future improvements attuned to the local context.

Multicriteria assessments are especially important for high produc-
tivity crops because small yield gaps often come at the expense of 
profitability and the environment (Silva et al., 2021). Expanding the 
methods used in this study to other high-input cropping systems would 
help quantify the sustainability of crop production at the farm and 
regional levels, targeting interventions contributing to sustainability 
improvements in those settings. The approach would also be useful for 
intermediate- and low-input cropping systems though, to characterize 
the current situation upon which the impact of different scenarios on key 
indicators could be explored ex-ante. Beyond applying the methodo-
logical approach to new environments and production systems, we also 
recommend that future studies explore the interactions between climatic 
conditions and crop management practices, and how this affects crop 
yield variability and the overall sustainability of the production system. 
Such analyses remain important to understand not only how crop pro-
duction impacts the environment, but also how it benefits farmers and 
society at large.

5. Conclusion

This study aimed to quantify yield gaps and sustainability perfor-
mance for irrigated wheat farms in Northwest India. Findings revealed 
that actual farm yields reach about 70 % of the potential yield, with 
current yield constraints associated with precision agricultural practices 
not used by farmers. A multicriteria assessment considering productiv-
ity, profitability, greenhouse gas emissions, and nitrogen-use efficiency 
unraveled that it is possible to produce wheat sustainably in Northwest 
India, without compromising current yields, and that two different 
strategies are required to achieve that at regional level. First, decreases 
in greenhouse gas emissions are possible for least efficient fields at same 
productivity level. Second, reductions in greenhouse gas emissions, to 
the levels observed for most efficient fields, seem possible for efficient, 
less, and least efficient fields without compromising wheat productivity 
and profitability. The trade-off observed for the most efficient fields 
between productivity and profitability on the one hand and greenhouse 
gas emissions on the other seems hard to overcome with current prac-
tices. Therefore, improving the performance of efficient, less efficient, 
and least efficient fields is paramount to improve the sustainability of 
wheat production in Northwest India in the future. Finally, the meth-
odological approach deployed in this study was helpful to explore trade- 
offs between performance indicators and to identify the management 
practices that can deliver sustainable and cleaner crop production under 
on-farm conditions. It thus provides a blueprint for future integrated 
assessments of crop production built upon data-driven methods and 
powered by large databases of farmer field data.
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