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Abstract: Mitigating the environmental impact of agricultural practices, particularly inten-
sive rice farming, is critical in the face of climate change. This study focuses on mapping rice
residue burn areas and their dates while estimating the greenhouse gas (GHG) emissions
associated with residue burning and rice cultivation. By using Sentinel-2 satellite imagery,
machine learning algorithms, and ground truth data, we analyzed changes in rice cultiva-
tion patterns before and after the Kaleshwaram intervention. The Near-Infrared Region
(NIR) band was instrumental in accurately identifying residue burn areas and pinpointing
burn dates, enabling timely alerts for decision-makers to act. Detailed quantifications of
CO2, CH4, and N2O emissions from crop residue burning, alongside methane emissions
from rice cultivation, highlight the significant contribution of these practices to overall GHG
emissions. Key findings reveal a significant 82.1% increase in rice cultivation area from
2018–2019 to 2022–2023, accompanied by a worrying rise in residue burning, with some
regions experiencing up to a 276% increase in burn areas. This research not only reveals the
dual challenges of residue burning and GHG emissions but also emphasizes the importance
of integrating precise burn date monitoring with emission data. The findings provide a
strong foundation for implementing sustainable crop residue management strategies and
developing informed policies to mitigate the adverse environmental effects of rice farming.

Keywords: residue burning; emissions; date of burn; GHG; rice areas; remote sensing

1. Introduction
Rice is the most crucial staple food globally, nourishing more people than any other

crop, and is cultivated across millions of hectares throughout South and Southeast Asia.
Unlike other crops, rice thrives in waterlogged conditions, which makes it unique. However,
due to the anaerobic conditions in which it is cultivated, rice contributes to global warming
by emitting methane into the atmosphere. It has long been established that methane
emissions from paddy fields significantly contribute to greenhouse gas emissions from
anthropogenic sources [1,2]. Over the past 50 years, there has been an unprecedented
40 percent increase in the global rice cultivation area. Methane (CH4) is a prominent
greenhouse gas (GHG) within the atmosphere. According to the Inter-governmental Panel
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on Climate Change (IPCC), using 100-year global warming potentials, methane’s warming
potential is estimated to be 25 to 30 times greater than that of CO2 per unit of weight [3–5].

Methane emissions from rice fields in South and Southeast Asia are expected to
increase, contributing 10–15 percent of global CH4 emissions, with annual estimates ranging
from 50 to 100 Tg of methane [6,7]. This could result in a 36 percent rise in methane
emissions from rice production. Flooded rice fields are the third largest agricultural
source of methane emissions, accounting for 10 to 30 percent globally from anaerobic
decomposition [8–10]. In contrast, upland paddy fields, which are not flooded, constitute
about 15 percent of the total global rice cultivation area of 150 million hectares (Mha) [11–13].
The remaining 127 Mha includes other types of rice fields primarily in Asia, with India
alone accounting for 42.2 Mha [14–16].

Crop residue burning is a significant environmental issue globally, with India facing a
more severe problem, particularly in its central and northern regions due to specific weather
and topographic conditions [17–21]. The drive for agricultural mechanization, aimed at
boosting crop productivity and reducing labor costs to meet the food security needs of
its rapidly growing population, is a major factor contributing to stubble burning [22–25].
India’s projected population growth from 1.3 billion in 2015 to 1.7 billion by 2050 requires
sustainable increases in crop productivity, intensity, and yield, driving agricultural mecha-
nization [26]. This leads to a significant amount of rice residues, which, when burned, have
the potential to emit large quantities of pollutants.

Traditionally, farmers manually collected crop residue to feed livestock. However,
with the mechanization of Indian agriculture, the use of combine harvesters leaves behind
root-bound and scattered crop residues that are labor-intensive and costly to remove,
leading to the burning of these residues [27]. Researchers estimate that in Punjab and
Haryana, 90% of rice residues from areas harvested by combine harvesters are burned,
leading to the seasonal degradation of regional air quality [28]. Agricultural crop residue
burning contributes to the emission of greenhouse gases (CO2, N2O, CH4), other pollutants
(CO, NH3, NOx, SO2, NMHC, VOCs), particulate matter, and smoke, directly impacting
global warming and public health [29–32]. Mapping the burnt areas involves identifying
and outlining fire scars using spectral signatures from sensors on ground, aerial, or satellite
platforms. Satellite data are vital for assessing the severity of burns, delivering quick
spectral measurements that enable the precise and timely mapping of burn-damaged
areas [33–35], and numerous studies have assessed and mapped stubble burning using
satellite data, highlighting various challenges from around the world [36–38].

Therefore, it is imperative to comprehensively study the mechanisms and spatiotempo-
ral patterns of methane emissions from rice fields globally and regionally. Extensive global
estimation and monitoring of methane emissions are conducted to grasp their significant
contribution to greenhouse gases and to formulate effective management strategies. Based
on previous research recommendations, methane emissions from irrigated rice fields in
major rice-producing countries such as China, India, Bangladesh, Indonesia, and Thailand
were estimated at 7.41, 3.99, 0.47, 1.28, and 0.18 Tg annually, respectively [39]. Conventional
methods for estimating methane emissions for larger areas are tedious, time-consuming,
and laborious, and have become impractical [40–43]. These constraints warrant the use
of more scientific methods through remote sensing. The emissions from the rice fields
have been estimated using geospatial technology by integrating it with secondary data.
For example, Qian et al. (2023) conducted a comprehensive review of greenhouse gas
emissions and mitigation strategies in rice agriculture, emphasizing the need for region-
specific interventions to reduce methane emissions [44]. Additionally, Pazhanivelan et al.
(2024) assessed methane emissions from rice fields using satellite-derived land surface
temperature data, providing new insights into the spatial patterns of emissions and their
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drivers [45]. While the above studies have significantly advanced the mapping of burn
areas and the understanding of spatial emission patterns, our study introduces a novel
approach by emphasizing the temporal dimension, specifically identifying burn dates and
mapping rice residue burn pixels.

This study focuses on mapping rice residue burn areas and their dates while estimating
the greenhouse gas (GHG) emissions associated with residue burning and rice cultivation.
By using Sentinel-2 satellite imagery, machine learning algorithms, and ground truth data,
we analyzed changes in rice cultivation patterns before and after the Kaleshwaram irriga-
tion intervention. The Near-Infrared Region (NIR) band was instrumental in accurately
identifying residue burn areas and burn dates, enabling timely alerts for decision-makers to
act. Detailed quantifications of CO2, CH4, and N2O emissions from crop residue burning,
alongside methane emissions from rice cultivation, highlight the significant contribution
of these practices to overall GHG emissions. This research not only reveals the dual chal-
lenges of residue burning and methane emissions but also emphasizes the importance
of integrating precise burn date monitoring with emission data. The findings provide a
strong foundation for implementing sustainable crop residue management strategies and
developing informed policies to mitigate the adverse environmental effects of rice farming.

2. Materials and Methods
2.1. Study Area

Telangana, located in southern India, ranks as the 12th largest state in terms of both
geographical area and population. It is positioned between 15◦46′ and 19◦47′ N latitude
and 77◦16′ and 81◦43′ E longitude. The state is bordered by Maharashtra to the north
and northwest, Karnataka to the west, Chhattisgarh to the northeast, and Andhra Pradesh
to the south and east (Figure 1). Situated on the Deccan Plateau in a semi-arid zone,
Telangana receives an average annual rainfall of 713 mm, which can range from 700 mm
to 1500 mm. The southwest monsoon accounts for about 80% of this rainfall, with the
remaining 20% coming from the northeast monsoon [46]. Telangana experiences a tropical
climate, with slight variations influenced by elevation and maritime factors. Rainfall
patterns significantly influence the cropping patterns adopted by farmers in the region.

Telangana boasts a diverse agricultural landscape, with crops cultivated during both
the Kharif (monsoon) and Rabi (winter) seasons. In irrigated regions during Kharif, major
crops such as paddy (rice), maize, cotton, and soybeans flourish due to irrigation water
availability. In contrast, rainfed areas primarily grow millets and pulses, leveraging natural
monsoon rainfall. Telangana is traversed by several rivers, including the major interstate
river basins of Godavari and Krishna. The Kaleshwaram Lift Irrigation Project (KLIP),
the world’s largest multi-stage lift irrigation initiative, aims to irrigate approximately
1.875 million hectares of drought-prone land across 13 districts in Telangana. The KLIP
comprises 7 links, 28 segments, and an extensive canal network spanning over 1800 km.
This project is designed to boost agricultural potential and water supply in the region,
benefiting 118 Mandals/blocks as per the Telangana government’s notification.

2.2. Sentinel-2 Data

Sentinel-2 surface reflectance data, accessed via Google Earth Engine (GEE), is ideal
for detailed vegetation monitoring and identifying burn areas. This study used 10 m
resolution images, available every 6 days, and cloud cover was filtered using the ’Cloud
pixel percentage’ command, taking the maximum NDVI. The NDVI was derived from the
Red and NIR bands, and a maximum value composite (MVC) was created for each month.
The resulting 12 images were stacked into a data cube from November to May for crop
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type classification, and further Red, Green, Blue, and NIR bands were used for identifying
burn areas.
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Figure 1. The study area shows the notified blocks of Telangana.

2.3. Ground Data

In March 2023, ground data for crop identification were gathered from 594 sample
points throughout the study area (Figure 2). This data collection process involved the
use of pre-classified outputs and Google Earth imagery accessed via the iCrops mobile
application. Specific details from various locations were collected for training, including
class identification and labeling. The dataset comprised geographical coordinates, land
use categories, land cover percentages, seasonal cropping patterns (derived from farmer
interviews), crop types, and irrigation methods (either irrigated or rainfed). Independent
data, not utilized for training, were used for accuracy assessments. The ground data
covered a range of crop types, including rice, maize, and millet, as well as other land use
and land cover categories.
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Following the Rabi season, primarily between March and June 2023, areas of crop
residue burning were identified using Sentinel-2 RGB imagery, and ground points were
collected. These samples were utilized to establish the threshold for identifying crop residue
burn areas.

2.4. Class Identification and Length of Growing Periods Using Satellite Imagery and Ground Data

This study utilized a methodology for mapping crop types that integrated remote
sensing techniques in Google Earth Engine (GEE) with traditional ground truthing for
precise classification and labeling (Figure 3). Sentinel-2 satellite imagery was employed
within GEE. Initially, the Normalized Difference Vegetation Index (NDVI) was computed
for images captured during the Rabi season from November to May across the years
2018–2019 and 2022–2023. The maximum NDVI values for each month were stacked to
create a composite image with seven bands, each representing the peak NDVI for that
month [47,48].

This composite image underwent unsupervised classification, adopting a k-means
algorithm to segment it into clusters, each characterized by a distinct signature known
as a cluster signature. Ground truth data collected in the field provided the reference
signatures [49]. The cluster signatures from the unsupervised classification were compared
with ground truth data and high-resolution imagery from Google Earth. The most accurate
clusters were labeled with corresponding crop types, and any misclassifications were cor-
rected by reclassifying the relevant clusters. This hybrid approach combines the efficiency
and scalability of machine learning in GEE for initial classification with the accuracy of
ground truthing to validate and refine results, ensuring the precise mapping of crop types
and their growing periods in the study area.
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2.5. Mapping of Rice Crop Residue Burning Areas

To detect rice residue burning, rice crop pixels derived from the crop type map served
as the foundational layer for analysis using Google Earth Engine (GEE). Ground truth data
on burned areas was collected via high-resolution RGB satellite imagery from March to
June, encompassing the post-harvest phase of Rabi crops (March to May) and the onset of
the Kharif season, when residue burning typically occurs. Sentinel-2 satellite imagery was
employed to extract spectral values from Bands 1 to 12 (B1 to B12) for both burned and
non-burned rice residue pixels. Among these, Band 8, corresponding to the Near-Infrared
Region (NIR), exhibited the most significant variations between the two classes.

Burned rice residue pixels were characterized by Band 8 (B8) values predominantly
below 2000, whereas non-burned pixels typically exhibited values exceeding 3000. Based
on this observation, a threshold of 2500 was established in Band 8 to distinguish burned
pixels. Pixels with B8 values less than 2500 were classified as burned, while those above
this threshold were classified as non-burned (Figure 4). This methodology used Sentinel-2’s
high-resolution multispectral data to efficiently identify residue burning areas, enhancing
the spatial and temporal precision of monitoring activities.
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2.6. Estimation of GHG Emissions Due to Rice Crop Residue Burning and Rice Cultivation

The average amount of crop residue from 1 hectare (ha) of rice fields after machine
cutting can vary depending on several factors, but the majority of studies show an average
of 6 ton/ha, especially in Indian scenarios [50].

As per IPCC 2006 “Equation 2.27, Volume 4 of the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories”, the amount of GHG emissions was estimated (Table 1).

Table 1. IPCC emissions in rice crop residue burning.

Criteria Gas Quantity (g/kg)

Rice Residue Burning

Carbon dioxide 1212

Methane 2.16

Nitrous oxide 0.056

To estimate methane emissions from rice fields, the IPCC Tier 1 methodology, as
outlined in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, was
applied. This method utilizes the length of growing period of rice crops and emission
factors to calculate methane emission scaling factors. By multiplying the emission factor by
the cultivated area and the duration of the cropping period, the methane emission rate for
each type of rice field is determined. In India, the average emission factor for irrigated rice
cultivation is 0.24 g CH4 m−2/day [45], and the average cultivation period in Telangana
is around 120 days. This emission factor, when multiplied by the length of the growing
period and the total rice area, provides an estimate of the total methane emissions in a
specific area.

2.7. Accuracy Assessment

Accuracy was assessed using validation data. A total of 402 ground survey samples
were utilized to test the accuracy of the classification findings to produce a confusion matrix.
The confusion matrix’s columns included field-plot data points, while the rows provided
crop map classification results [51,52]. Kappa [53] is a widely used metric that represents
the agreement between user and reference ground survey data.
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3. Results and Discussion
3.1. Spatial Distribution of Crop Types and Their Changes

This study builds upon our previously published work, “Geospatial assessment of
cropping pattern shifts and their impact on water demand in the Kaleshwaram lift irrigation
project command area, Telangana” [54]. While the earlier study provided a broad analysis
of cropping pattern shifts and their implications for water demand, the current research
focuses on specific spatial and temporal changes in land use and land cover (LULC) between
2018–2019 and 2022–2023, offering a detailed evaluation of the associated impacts.

Rice cultivation exhibited a significant expansion, with the cultivated area increas-
ing by 82.1% from 313,929 hectares in 2018–2019 to 571,632 hectares in 2022–2023
(Table 2). Conversely, millets and maize cultivation experienced a 15.2% decline, decreas-
ing from 73,604 hectares to 62,396 hectares during the same period. The area under other
crops showed minimal change, reducing marginally by 0.6%, from 88,961 hectares to
88,385 hectares.

A substantial reduction of 30.3% was observed for fallow lands, with the area decreas-
ing from 754,954 hectares to 526,559 hectares. On the other hand, water bodies expanded
by 18.2%, increasing from 81,533 hectares to 96,375 hectares. These results, summarized
in Table 1, highlight the dynamic shifts in agricultural land use, potentially influenced by
irrigation interventions and improved water availability under the Kaleshwaram project
(Figure 5).
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Table 2. Classes and their respective areas for 2018–2019 and 2022–2023.

Class 2018–2019 (ha) 2022–2023 (ha) % Change

01. Rice 313,929 571,632 82.1
02. Millets/Maize 73,604 62,396 −15.2
03. Other Crops 88,961 88,385 −0.6

04. Fallows 754,954 526,559 −30.3
05. Water bodies 81,533 96,375 18.2

The classification accuracy achieved in this study further validates the methodologies
used in our earlier work. The integration of Sentinel-2 satellite imagery with field-collected
ground truth data yielded an overall classification accuracy of 91.6%, with a kappa coef-
ficient of 0.838. These metrics underscore the robustness of the classification approach
in capturing the spatial distribution of crop types and other land use categories with
high precision.

3.2. Rice Acreage and Crop Residue Burning

The spatial distribution of rice areas revealed that many Mandals exhibited a significant
increase in rice cultivation from 2019 to 2023 (Figures 6 and 7). For instance, rice cultivation
in Alair rose from 1854.7 hectares in 2019 to 3747.6 hectares in 2023. Similarly, Armoor
saw an increase from 6776.7 hectares to 8720.8 hectares over the same period. This trend
suggests an overall growth in agricultural output across these regions. The increased
production is likely a result of improvements in agricultural practices, better irrigation, and
government policies. However, this increase is accompanied by a worrying rise in burn
areas, raising concerns about sustainability.

There was a significant rise in the burn area across several Mandals. For example, in
Alladurg, the burn area increased from 332.2 hectares in 2019 to 1260.0 hectares in 2023.
Likewise, Dharpally saw an increase from 1511.3 hectares to 5095.4 hectares. This trend
indicates an escalating issue with field burns, which could be due to the increased use of
fire for clearing fields, climate change effects, or agricultural practices. This trend could
lead to long-term soil degradation and reduced agricultural productivity.

The percentage of the area affected by burns has risen significantly. In Armoor, the
percentage increased from 76.65% in 2019 to 90.16% in 2023 (Figure 8). Similarly, in
Dichpally, the percentage rose from 63.50% to 86.12%. This increase suggests that a larger
proportion of agricultural land is being affected by crop residue burns. The substantial rise
in the percentage of areas burned is alarming, as it suggests that increased rice production
may not be sustainable if fields continue to be susceptible to burning. This trend could
lead to long-term soil degradation, nutrient loss, and reduced productivity, impacting the
overall agricultural output and farmer livelihoods.

Some Mandals experienced drastic increases in the burn area percentage. For instance,
Jharasangam’s burn area percentage surged from 21.86% in 2019 to 97.00% in 2023. Similarly,
Nyalkal’s percentage increased from 14.52% to 96.37%. These spikes highlight critical areas
that require immediate attention. Understanding these variations is crucial for developing
effective, region-specific strategies to manage burn areas. The high percentages in these
regions indicate a growing challenge in managing agricultural burns and highlight the
need for localized interventions to address the specific issues faced by these areas.

Several Mandals now have a high percentage of their rice-producing area affected
by burns. For example, in Kulcharam, 83.42% of the area was burned in 2023, up from
64.22% in 2019. In Indalwai, 84.71% of the area was burned, up from 54.08%. These high
percentages indicate a growing challenge in managing agricultural burns. The rise in crop
residue burn areas and percentages have severe impacts on the environment.
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3.3. Shift in Crop Residue Burning Dates

The analysis of burn dates across various locations in 2019 and 2023 shows significant
shifts in the timing of rice crop residue burning, both earlier and later (Figure 9). Notably,
several locations experienced substantial advancements in their burn dates. For instance,
Alladurg’s burn date shifted from 20 June 2019, to 4 June 2023, indicating an advancement
of 16 days. Banswada saw a shift from 25 June 2019 to 25 May 2023, a significant 31-day
advancement. Similarly, Hathnoora’s burn date moved from 15 June 2019 to 30 May 2023,
showing a shift of 16 days earlier, while Medak saw a remarkable 49-day advancement
from 25 June 2019 to 7 May 2023.
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Conversely, some locations exhibited delays in their burn dates. For example, Bhi-
knoor’s burn date moved from 4 March 2019 to 1 June 2023, reflecting a delay of 89 days.
Birkoor experienced a delay from 11 May 2019 to 14 June 2023, marking a 34-day shift later.
Similarly, Yadagirigutta’s burn date shifted from 3 April 2019 to 3 March 2023, indicating a
31-day delay. The range of shifts across different locations suggests a complex interplay of
factors influencing burn dates.

The shifts in rice crop residue burning dates from 2019 to 2023 could reflect significant
changes in agricultural practices or environmental conditions. Advances in harvesting
techniques and machinery might allow for the earlier completion of the rice harvest, leading
to earlier residue burning. Changes in crop rotation schedules and the introduction of
short-duration rice varieties could impact burn timings.

Economic factors could also drive farmers to clear fields earlier to prepare for the
next planting season, maximizing yield and income. Early burning could be part of a
strategy to ensure timely sowing of subsequent crops. The adoption of new technologies for
residue management, such as in-field decomposition or alternative uses for crop residues,
might influence the timing and necessity of burning practices, leading to variations in
burn dates. The significant shifts in rice crop residue burning dates observed between
2019 and 2023 highlight the dynamic nature of agricultural practices in response to various
influencing factors. Understanding these shifts and their underlying causes is crucial
for developing adaptive strategies that support sustainable agriculture while minimizing
environmental harm. Further research into localized conditions and broader trends will
help in crafting targeted interventions to optimize burn practices and enhance overall
agricultural resilience.

3.4. Emissions Due to Rice Crop Residue Burning and Rice Cultivation

The study investigates CO2, CH4, and N2O emissions from rice crop residue burning
across Mandals in the Kaleshwaram command area for the years 2019 and 2023 (Figure 10).
The findings highlight significant variations in emissions, reflecting the impact of agri-
cultural practices on regional greenhouse gas emissions and air quality. CO2 emissions
increased notably from 2019 to 2023 across most Mandals, indicating intensified agricul-
tural activities and rice residue burning. For instance, Mandals like Armoor showed an
increase from 37,772.95 Mg in 2019 to 57,179.01 Mg in 2023, while Banswada increased
from 19,939.82 Mg to 42,377.58 Mg over the same period. These increases underscore the
carbon-intensive nature of residue burning practices in these regions. Urgent measures
are necessary to mitigate CO2 emissions through improved residue management and
alternative agricultural practices.

Methane emissions, though lower in quantity compared to CO2, showed distinct spa-
tial patterns across Mandals. Makloor consistently reported the highest methane emissions,
increasing from 87.76 Mg in 2019 to 114.70 Mg in 2023, suggesting localized factors influ-
encing methane release during residue burning. Given methane’s potent greenhouse effect
over shorter timescales, strategies like alternate wetting and drying (AWD) techniques are
crucial for mitigating climate impacts at a local level.

The analysis of carbon emissions due to rice crop residue reveals a marked increase
in CO2 equivalent (CO2e) emissions. The data indicates a significant rise in emissions,
with values escalating across the board. For instance, emissions in Armoor increased from
39,456 CO2e in 2019 to 59,727 CO2e in 2023, highlighting a substantial rise of 20,271 CO2e.
Similarly, Papannapet experienced a dramatic increase from 25,260 CO2e to 64,770 CO2e,
amounting to a rise of 39,510 CO2e. This trend is reflective of a broader pattern observed
across multiple Mandals, underscoring the growing environmental impact of rice crop
residue burning.
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The increase in emissions suggests a significant opportunity for the implementation of
carbon credit mechanisms. By curtailing or halting the practice of burning crop residues,
there exists a considerable potential for reducing CO2e emissions. This reduction could
enable the generation and sale of carbon credits, providing a financial incentive for adopting
sustainable agricultural practices. The potential revenue from carbon credits could serve
as an additional income stream for farmers and local governments, while simultaneously
fostering environmental benefits.

N2O emissions were notable in Mandals with intensive agricultural activities. Makloor,
Dichpally, and Sarangapur recorded high N2O emissions, indicative of nitrogen-rich rice
residues and combustion. Makloor, for example, increased from 2275.26 kg in 2019 to
2973.70 kg in 2023. N2O poses significant health risks and contributes to regional air
pollution. Effective regulatory measures and emission reduction technologies are essential
to mitigate N2O emissions and improve air quality in affected areas.

Methane emissions, although comparatively lower, necessitate targeted interven-
tions such as AWD techniques to minimize emissions without compromising crop yields.
Meanwhile, N2O emissions underscore the importance of regulatory frameworks and
technological innovations to address air quality concerns arising from agricultural burning.

3.5. Methane Emissions from Rice Sowing to Harvesting Periods

The analysis of methane emissions due to rice cultivation across various Mandals in
the Kaleshwaram command area reveals notable trends between 2019 and 2023 (Figure 11).
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Methane emissions have increased significantly across most Mandals, indicating an upward
trend in rice cultivation activities and subsequent methane release.
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For instance, Alair’s emissions rose from 0.53 × 10−6 Tg/season in 2019 to
1.08 × 10−6 Tg/season in 2023, and Athmakur (M) saw a substantial increase from
0.51 × 10−6 Tg/season to 2.13 × 10−6 Tg/season. Similarly, Mandals like B. Pocham-
pally, Banswada, Bejjanki, and Bhiknoor also demonstrated marked increases in methane
emissions, reflecting intensified rice farming practices. Noteworthy are the Man-
dals such as Ramannapet, where emissions climbed from 1.92 × 10−6 Tg/season in
2019 to 3.02 × 10−6 Tg/season in 2023, and Valigonda, which saw an increase from
3.14 × 10−6 Tg/season to 4.83 × 10−6 Tg/season. Conversely, a few Mandals, includ-
ing Ghatkesar, Nirmal, and Sangareddy, reported lower or relatively stable emissions,
suggesting variations in agricultural practices or crop management techniques or changes
in cropping patterns.

Overall, the increase in methane emissions is widespread, with many Mandals exhibit-
ing a two- to three-fold increase over the four-year period, underscoring the significant
impact of rice cultivation on methane release in the region. The observed increase in
methane emissions across the Mandals in the Kaleshwaram command area from 2019 to
2023 can be attributed to several factors. The expansion of rice cultivation area, adoption
of water-intensive farming practices, and limited implementation of methane-reducing
techniques contribute to the rising emissions.

High-emission Mandals such as Ramannapet and Valigonda, which reported sig-
nificant increases in methane emissions, highlight the need for targeted interventions.
Implementing alternative wetting and drying (AWD) practices, promoting aerobic rice cul-
tivation, and encouraging the use of organic amendments can significantly reduce methane
emissions from rice paddies.

Furthermore, the variations in emissions among different Mandals suggest that local-
ized agricultural practices and environmental conditions play a crucial role in methane
production. Policy measures and farmer education programs are essential to disseminate
knowledge about sustainable agricultural practices and methane mitigation strategies.
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The government and agricultural extension services should focus on providing technical
support, financial incentives, and training farmers for adopting low-emission technologies.

While rice cultivation is a vital economic activity in the Kaleshwaram command area,
it is imperative to address its environmental impacts, particularly methane emissions.
By adopting sustainable practices and innovative technologies, the region can achieve a
balance between agricultural productivity and environmental sustainability, contributing
to the broader goals of climate change mitigation and improved air quality.

3.6. Summary of Key Findings

Our analysis revealed significant changes in rice cultivation, residue burning, and
greenhouse gas (GHG) emissions in the Kaleshwaram command area. Rice cultivation
expanded by 82.1%, increasing from 313,929 hectares in 2018–2019 to 571,632 hectares
in 2022–2023, primarily due to irrigation interventions under the Kaleshwaram project.
Meanwhile, the cultivation of millets and maize declined by 15.2%, from 73,604 hectares
to 62,396 hectares, and fallow lands decreased by 30.3%, from 754,954 hectares to
526,559 hectares.

Residue burning increased sharply across multiple Mandals. In Alladurg, burn areas
expanded from 332.2 hectares in 2019 to 1260.0 hectares in 2023, marking a 276% increase.
Similarly, Dharpally witnessed a 238% rise, with burnt areas growing from 1511.3 hectares
to 5095.4 hectares. The proportion of rice-producing areas affected by residue burning also
rose significantly, with Armoor increasing from 76.65% in 2019 to 90.16% in 2023, while
Jharasangam saw a surge from 21.86% to 97.00% over the same period.

A notable shift in residue burning dates was observed. In Alladurg, the burning date
advanced by 16 days, from 20 June 2019 to 4 June 2023, while in Medak, it advanced by
49 days, from 25 June 2019, to 7 May 2023. Conversely, Bhiknoor experienced a delay of
89 days, shifting from 4 March 2019 to 1 June 2023.

GHG emissions increased significantly across the region. In Armoor, CO2 emissions
rose from 37,772.95 Mg in 2019 to 57,179.01 Mg in 2023, while in Banswada, emissions nearly
doubled from 19,939.82 Mg to 42,377.58 Mg. Methane emissions also showed an upward
trend, with Alair increasing from 0.53 × 10−6 Tg/season in 2019 to 1.08 × 10−6 Tg/season
in 2023, and Valigonda rising from 3.14 × 10−6 Tg/season to 4.83 × 10−6 Tg/season.

These findings highlight the urgent need for sustainable agricultural practices. The
increase in residue burning and methane emissions, particularly in high-emission Mandals
like Ramannapet and Valigonda, underscores the importance of implementing targeted
interventions such as alternate wetting-drying (AWD) techniques and residue recycling.
Overall, the study provides a detailed understanding of the spatial and temporal changes
in rice cultivation, residue burning, and emissions, emphasizing the challenge of balancing
agricultural productivity with environmental sustainability.

3.7. Comparison with Recent Studies

This study builds on and extends recent research on crop residue burning and methane
emissions, offering novel insights through its focus on precise burn date identification and
emission quantification. Pazhanivelan et al. (2024) assessed methane emissions from rice
fields using satellite-derived land surface temperature [45]. Their work primarily empha-
sized spatial patterns rather than temporal precision. In contrast, our study highlights
the importance of identifying exact burn dates, enabling timely interventions to mitigate
environmental impacts.

The observed increase in greenhouse gas emissions aligns with Qian et al. (2023),
who reviewed mitigation strategies for rice agriculture, emphasizing region-specific in-
terventions like alternate wetting–drying (AWD) techniques [44]. However, their study
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lacked detailed emission estimates from residue burning, which we address by quantifying
CO2, CH4, and N2O emissions. Additionally, Lin and Begho (2022) reviewed crop residue
burning in South Asia but focused on reactive nitrogen losses rather than precise emission
quantifications or temporal shifts [18]. Our research fills this gap by analyzing changes in
burn dates and their implications for emission mitigation.

Recent advancements in remote sensing, such as those made by Roteta et al. (2019)
and Von Nonn et al. (2024), have improved burn area mapping but often lack the high-
resolution temporal analysis provided in this study [33,35]. By using Sentinel-2 data and
machine learning algorithms, we achieve greater accuracy in identifying small-scale residue
burn areas and estimating emissions. Our study integrates residue burning into its analysis,
offering a holistic view of rice farming’s environmental impacts.

In summary, this study advances current understandings by combining high-
resolution satellite data, machine learning, and ground truth validation to identify burn
areas, quantify emissions, and analyze temporal patterns. These contributions provide a
foundation for sustainable residue management and informed policy development.

4. Conclusions
This study analyzed rice residue burn areas, their dates, and associated greenhouse

gas (GHG) emissions in the Kaleshwaram command area using Sentinel-2 satellite imagery,
machine learning, and ground truth data. Our key findings reveal an 82.1% increase in
rice cultivation from 2018–2019 to 2022–2023, accompanied by a worrying rise in residue
burning. For example, burn areas in Alladurg and Dharpally increased by 276% and 238%,
respectively. Shifts in burn dates, both earlier and later, highlight the dynamic nature of
agricultural practices. The study quantified significant increases in CO2, CH4, and N2O
emissions due to residue burning and rice cultivation. For instance, CO2 emissions rose
by 51% in Armoor and 156% in Papannapet. Methane emissions also increased markedly,
particularly in high-emission Mandals like Ramannapet and Valigonda. These trends
underscore the urgent need for sustainable practices such as alternate wetting–drying
(AWD), residue recycling, and low-emission technologies.

While burning offers immediate benefits like efficient land clearing, it also contributes
to air pollution, soil degradation, and greenhouse gas emissions. Remote sensing plays a
critical role in monitoring these activities, providing valuable data for regulatory compli-
ance and mitigation strategies. Comparing our results with recent studies, this research
highlights the importance of precise burn date monitoring and high-resolution data for
effective emission mitigation. The findings provide a foundation for region-specific policies
to balance agricultural productivity with environmental sustainability.

In conclusion, balancing increased rice production with environmental sustainability
requires targeted interventions, innovative technologies, and farmer education. Sustain-
able agricultural practices are crucial for maintaining productivity while protecting the
environment and public health.
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