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Abstract As part of the REgional Carbon Cycle Assessment and Processes‐2 (RECCAP‐2) project of the
Global Carbon Project, here we estimate the GHG budgets (anthropogenic and natural sources and sinks) for the
South Asia (SA) region as a whole and each country (Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan,
and Sri Lanka) for the decade of 2010–2019 (2010s). Countries in the region are experiencing a rapid rise in
fossil fuel consumption and demand for agricultural land, leading to increased deforestation and higher
greenhouse gas emissions. This study synthesizes top‐down (TD) and bottom‐up (BU) dynamic global
vegetation model results, BU GHG inventories, ground‐based observation upscaling, and direct emissions for
major GHGs. The fluxes for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) analyzed include
fossil fuel emissions, net biome productivity, land use change, inland waters, wetlands, and upland and
submerged soils. Our analysis shows that the overall total GHG emissions contributed to a net increase of 34%–
43% during the 2010s compared to the 2000s, primarily driven by industrial activities. However, terrestrial
ecosystems acted as a notable exception by serving as a CO2 sink in the 2010s, effectively sequestering
atmospheric carbon. The sink was significantly smaller than overall carbon emissions. Overall, the 2010s GHG
emissions based on BU and TD were 4,517 ± 639.8 and 4,532 ± 807.5 Tg CO2 eq, with CO2, CH4, and N2O
emissions of 2165.2 ± 297.1, 1,404 ± 95.9, and 712 ± 466 Tg CO2 eq based on BU models 2,125 ± 515.1,
1,531 ± 205.2, and 876 ± 446.0 Tg CO2 eq based on TD models. Total emissions from SA in the 2010s
accounted for approximately 8% of the global share. The terrestrial CO2 sinks estimated by the BU and TD
models were 462.9 ± 195.5 and 210.0 ± 630.4 Tg CO2, respectively. Among the SA countries, India was the
largest emitter contributing to 80% of the region's total GHG emissions, followed by Pakistan (10%) and
Bangladesh (7%).

Plain Language Summary South Asia (SA) is among the largest tropical and sub‐tropical areas and
has extensive industrial activity, producing a large quantity of greenhouse gases (GHGs). The region also has a
lot of natural areas like forests, which both emit and absorb GHGs, making it hard to estimate how much GHGs
are being released into the atmosphere overall. Thus, understanding how human activities and nature in SA
contribute to more GHG emissions in the atmosphere and climate change is necessary for a deeper
understanding of emission trends, their drivers, and GHG‐climate feedback. Our study quantifies how much
GHGs South Asian countries released into the atmosphere in the 2010s. Such country‐specific information is
crucial, especially for the Paris Climate Agreement (UNFCCC, 2015; https://unfccc.int/sites/default/files/
english_paris_agreement.pdf), which asks countries to report exactly how much they're adding or taking away
from the atmosphere. Our study focused on three main GHGs: CO2, CH4, and N2O. The study results showed
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that the GHG budget was the net source of the atmosphere during the 2010s. However, terrestrial ecosystems
acted as a notable exception by serving as a net CO2 sink, effectively sequestering atmospheric carbon.

1. Introduction
South Asia (SA) has experienced rapid environmental transformations over the last few decades due to population
growth, the green revolution, industrialization, and deforestation. With ballooning populations and fast‐growing
economies, these countries will likely undergo further development and increase energy production using fossil
fuels. It is noted that the rapid Gross Domestic Product (GDP) growth in SA increased energy demand and its
dependence on fossil fuels as a source of energy. SA contributed 9.3% of global emissions in 2019, with India
alone responsible for 7.3% (Crippa, Guizzardi et al., 2020; Crippa, Solazzo et al., 2020).

Geographically, SA is one of the biggest tropical areas covering an area of 5.13 × 106 km2. The region has a high
variability of terrestrial sources and sinks (Cervarich et al., 2016), which makes estimating temporal trends in net
terrestrial GHG emissions challenging. Thus, a more profound knowledge of how SA ecosystems respond to
different environmental factors, such as climate change and atmospheric CO2, is necessary for a deeper under-
standing of trends, their drivers, and carbon‐climate feedback.

SA has also experienced increasing food demand, resulting in significant land use land cover changes (LULCCs),
such as intensive agriculture, overgrazing, and converting forest land to agricultural land (Xu et al., 2021). There
are much concern about how these rapid alterations in LULCC activities affect the volume of litter deposition, soil
organic matter, and vegetation. Thus, these alterations have important yet uncertain implications for regional
carbon and other GHG budgets.

Furthermore, forest fires significantly affect the GHG budget by rapidly releasing carbon and other GHGs stored
within vegetation. Studies have shown that SA emissions from fires, resulting from both land‐use and non‐land‐
use changes, are approximately 422 ± 230 Tg CO2 per year, accounting for about 6% of global fire emissions
averaged over the period 1997–2016 (van der Werf et al., 2017). The emissions due to only non‐land‐use changes
were 60 ± 33 Tg CO2/yr (van der Werf et al., 2017), showing notable interannual variability. These fires, which
both human activities and natural phenomena can trigger, often result in simultaneous emissions from biomass
sources.

The region significantly contributes to CH4 emissions, primarily due to rice cultivation (Gumma et al., 2011) and
livestock (Xu et al., 2021). Following the Green Revolution (Pingali, 2012), CH4 emissions have surged, driven
by the widespread adoption of high‐yielding crop varieties, intensified usage of nitrogen fertilizers, and the
expansion of agricultural lands to meet the escalating food demands of SA's growing population. Long‐term
atmospheric data show that industrial and agricultural activities have significantly enhanced the emissions of
CH4 to the atmosphere (e.g., Dlugokencky et al., 2011; Etheridge et al., 1992; Ghosh et al., 2015).

SA has also become one of the world's epicenters within the hotspots of nitrous oxides (N2O) and nitrogen (N)
pollution (Raghuram et al., 2021; Tian et al., 2020, 2024). Growing food and energy demands of an increasing
population have increased anthropogenic N2O emissions from farming, waste production, and burning of fossil
fuels in the world's energy, transportation, industrial, urban, and other sectors.

Climate change is modifying the emissions and fluxes of these GHGs and the underlying environmental con-
ditions of the region. According to previous studies (Cervarich et al., 2016; Friedlingstein et al., 2022;
IPCC, 2021; Patra et al., 2013), SA currently contributes 8%–10% of the annual global GHG emissions of the
Planet and faces greater challenges in meeting nationally determined contributions (NDC) made at COP26
(UNFCCC, 2021) in a scenario of rapid economic growth and increasing demands for goods and services.
However, for mitigation to be effective, an accurate estimation of not only CO2 emissions but also non‐CO2 GHG
emissions is needed.

This study expands and builds upon previous research (Cervarich et al., 2016; Friedlingstein et al., 2022; Patra
et al., 2013) by delving deeper into the budget analysis of the three major GHGs (CO2, CH4, and N2O) for the SA
and provides a comprehensive assessment of their distribution across each country of the region.

K. Patra, Josep G. Canadell, Philippe Ciais,
Hammad Gilani, Masayuki Kondo,
Erandathie Lokupitiya, Hanqin Tian,
Yogesh K. Tiwari

Global Biogeochemical Cycles 10.1029/2024GB008261

JAIN ET AL. 2 of 19

 19449224, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

B
008261 by International C

rops R
esearch Institute for Sem

i A
rid T

ropics, W
iley O

nline L
ibrary on [28/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



This study quantifies country‐specific net GHG fluxes to help assess their net GHG contributions to the atmo-
sphere. Such country‐level estimates are crucial, especially within the 2015 Paris Climate Agreement
(UNFCCC, 2015), which requires explicit quantification of GHG sources and sinks at the national level to
effectively enact climate policies.

We report the GHG budget, which includes CO2, CH4, and N2O, and its spatial as well as decadal variability for
SA and each contributing country (Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri Lanka) for
the period 2010–2019 (hereafter 2010s), a RECCAP‐2 standard study period, and compare the 2010s with the
previous decade (2000s) results. We report results for countries in the region that occupy 12 or more 0.5° × 0.5°
grid cells. The Maldives is the only country that does not meet this criterion. The number of 0.5° × 0.5°grid cells
and % area share of SA covering each of the remaining seven countries are as follows: Afghanistan (244, 12%),
Bangladesh (40, 2%), Bhutan (12, 1%), India (1,144, 63%), Nepal (52, 3%), Pakistan (328, 17%), and Sri Lanka
(24, 1%). The study is part of an effort to study South Asia's GHG balance under the umbrella of the 2nd phase of
the REgional Carbon Cycle Assessment and Processes (RECCAP‐2), an initiative within the framework of the
international Global Carbon Project (www.globalcarbonproject.org/reccap/, Ciais et al., 2022).

2. Materials and Methods
We synthesize GHG fluxes from terrestrial and non‐terrestrial pools. The terrestrial fluxes account for anthro-
pogenic emissions, particularly LULCC emissions (ELULC), and natural GHG sources and sinks. In contrast, the
non‐terrestrial fluxes account for fossil fuel and anthropogenic emissions involving all industrial activities for
CO2, CH4, and N2O (Figure 1). To do so, we combine the outputs of different models and data products, including
(a) results of dynamic global vegetation models (DGVMs) as the bottom‐up approach (hereafter BU), (b) at-
mospheric inversion model as the top‐down approach (hereafter TD), fossil fuels, fire, riverin induced CO2, CH4

and N2O fluxes exchanged with the atmosphere, and wood and crop trade fluxes, and remote sensing data
products, (c) a book‐keeping model results to assess carbon fluxes and terrestrial carbon budgets.

The BU models typically run at 0.5° × 0.5°, whereas the TD models run at relatively coarse resolutions. It is not
straightforward to define the resolution of TD models, which involve (1) forward transport models (typically has a
spatial resolution of 2.5° × 2.5°), and inverse models for flux optimization at the forward model grid level with an

Figure 1. Emissions from anthropogenic, terrestrial (anthropogenic for CO2, CH4, and N2O and natural for N2O and CH4), wood and crop trade, fire, and inland water for
the South Asian region. The bottom panel shows the equations for calculating CO2, CH4, and N2O based on the Top‐Down (TD) and Bottom‐Up (BU) models described
in Section 2.7.
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assumption of 1,000 km or wider flux a priori spatial correlation or solves, for example, about 84 independent
regions in matrix method. The temporal resolution for BU models varies from hourly to daily resolution. TD
models range from weekly to monthly time intervals, depending on the model design and data availability. For
this study, we compile results at 0.5° × 0.5° spatial resolution and yearly temporal resolution for 2000–2019. If
data for a model output is not available for the entire decade of the 2010s, we calculate the mean of the available
years and use it as a representative value for the 2010s.

2.1. CO2 Fluxes From Terrestrial Ecosystems

2.1.1. Estimates of Net Biome Production (NBP) Based on the Bottom‐Up Approach

The Net Biome Production (NBP) based on the bottom‐up (BU) approach (ENBP_BU) was calculated using the
following equation:

ENBP BU = ENEP S2 – ELULCC – EFire

where ENEP_S2 is net terrestrial ecosystem production flux, LULCC emissions, ELULCC emissions, and EFire fire
emissions due to non‐LULCC activities, the methods for calculating each of these terms are described next.

We used an ensemble of 16 DGVM (BU) results based on TRENDY Version 11 (Friedlingstein et al., 2022;
details of each model are in Table S1 in Supporting Information S1) for two different simulation scenarios, S2 and
S3, for the calculations of ENEP_S2 and ELULCC (Figure 1). Model simulations followed the protocol described by
the Global Carbon Project (TRENDY) (Sitch et al., 2015), where each model was run from its pre‐industrial
equilibrium (beginning of 1700) to 2021. For S2 simulations, which calculate ENEP_S2 (= GPP [gross primary
productivity]—Ra [autotrophic respirations] —Rh [heterotrophic respiration]), the models were forced with
changing CO2 (Dlugokencky & Tans, 2022), CRU‐JRA reanalysis climate forcing (Viovy, 2018), and time‐
invariant pre‐industrial (the year 1700) land use data (LUH2; Goldewijk et al., 2017) over the period 1700–
2021. In the S3 simulations, which calculated ES3 (=ENEP_S2 + ELULCC), the same input for CO2 and climate
as for the S2 case was assumed, but the LULCC varied with time based on HYDE3.2 and LUH2 data sets over the
period 1700–2021. ELULCC was estimated by subtracting ENEP_S2 from ES3. All DGVMs accounted for major
LULCC activities, such as clearing the forest for croplands and other ecosystems and forest regrowth (Figure 2),
as well as the decomposition of dead organic matter associated with natural cycles and the vegetation and soil
carbon response to increasing atmospheric CO2 concentration and climate change. Some models explicitly
simulate the coupling of carbon and nitrogen cycles and account for atmospheric N deposition and N fertilizer
data of Tian et al. (2020) (Table S1 in Supporting Information S1).

The ELULCC term accounted for fire emissions due to LULCC activities, such as deforestation fires. The fire
emission term (EFire) accounted for CO2 emissions due to non‐LULCC related fire activities, such as wildfires as

Figure 2. The land use and land cover change transitions for South Asia for the 2000s and 2010s.
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well as fire emissions for carbon monoxide (CO), CH4, and non‐methane hydrocarbons (NMHCs) for all fire‐
related activities, including LULCC, based on an updated version of GFED v4.1 data (van der Werf
et al., 2017). This data was based on global fire emissions from various sources such as deforestation, savanna,
forest, agricultural, and peat fires. GFED v4.1 combines long‐term time series of satellite‐derived data for the
burned area, fire activity, and plant productivity with CASA (Carnegie–Ames–Stanford approach) model‐
estimated results for fuel loads and combustion completeness (van der Werf et al., 2017). The data was avail-
able for 1997–2019 on their website (http://globalfiredata.org). Here, we used the data for 2000–2019 to calculate
EFirefor 2000s and 2010s.

2.1.2. Estimates of NBP Based on Top‐Down Approach

Top‐down estimates of NBP (ENBP_TD) (i.e., inclusive of all non‐fossil CO2 fluxes exchanged between the land
and the atmosphere) were estimated using the ensemble of seven inversion model results based on TRENDY
Version 11 (Friedlingstein et al., 2022); details of inversion models are provided in Table S2 in Supporting In-
formation S1). All inversion models employ the Bayesian synthesis method and use atmospheric CO2 data to the
end of 2019 to infer the spatiotemporal distribution of the CO2 flux exchanged between the atmosphere and the
land along with prior fluxes for fossil fuels, land biospheres, fires, and oceanic exchange (Friedlingstein
et al., 2022; Patra et al., 2013). The variations between different model results are mainly due to the choice of
atmospheric CO2 and historical flux data, the spatial resolution, the estimated correlation structures, and the
mathematical approach of the models (Deng et al., 2022; Friedlingstein et al., 2022).

2.2. CH4 Emissions

The bottom‐up terrestrial flux estimates for CH4 emissions account for wetland fluxes calculated using the
ensemble of six DGVMs model results (details of each in Table S3 of Supporting Information S1), inland water
fluxes based on the synthesis of different model results (Section 2.4), and anthropogenic fluxes from the
EDGAR_v7.0 (Crippa, Guizzardi et al., 2020; Crippa, Solazzo et al., 2020) (Section 2.5). The DGVMs calcu-
lations account for processes important for CH4 fluxes, including CH4 production, oxidation, and transport, as
well as the data for long and shortwave radiation, air pressure, specific humidity, total precipitation, air tem-
perature, and wind speed and direction (Melton et al., 2013; Poulter et al., 2017; Saunois et al., 2020). CH4 fluxes
are calculated as a product of the area, and the model estimates the emission flux density. The DGVMs were run
for the period 2000–2017 using the dynamic wetland area data set prescribed from satellite data on inundated
areas without lakes and inland waters (WAD2M, Saunois et al., 2020). The BU estimates do not account for CH4

sink from upland and emissions from termites.

The top‐down inversion model estimates are based on global inversions (Chandra et al., 2021), a model of at-
mospheric chemistry and transport, and a prior distribution of methane sinks and sources and their uncertainties to
postulate improved methane sinks and sources estimates. Here, we employed an ensemble of eight atmospheric
inversion model results for CH4 emission fluxes (Saunois et al., 2020), which use global Eulerian transport
models (details of each are given in Table S4 in Supporting Information S1). The models combine all the elements
of the methane cycle, including atmospheric CH4 observations, emissions and sinks on the earth's surface, and air
temperature distribution in the atmosphere, to calculate temperature‐dependent loss rates from reactions with OH
radicals. In addition, prior emission flux information is derived from BU approaches, for example, process‐based
models or from the interpolation of available data (natural sources) and various inventories (anthropogenic
sources) (Houweling et al., 2017; Saunois et al., 2020).

2.3. Soil N2O Emission Fluxes

2.3.1. Bottom‐Up Estimates

The bottom‐up terrestrial N2O soil emissions were estimated based on the ensemble of seven DGVMs model
results (details of each in Table S5 in Supporting Information S1) for 2010–2019, which were obtained from the
N2O Model Intercomparison Project (NMIP) (Tian et al., 2020). To quantify the magnitude and pattern of N2O
fluxes, the ecosystem models require various input data sets, which include the atmospheric CO2 concentration,
climatic conditions (e.g., temperature and precipitations), LULCC, N deposition, synthetic N fertilizer input data
for the crop and pastureland areas, and production and applications of manure N input for the crop and pastureland
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areas (Tian et al., 2020). All the model simulations started with the equilibrium carbon and N status in 1860. After
that, models were transiently run from 1860 to 2020.

2.3.2. Top‐Down Estimates for N2O Emission Fluxes

In the present study, the ensemble of four N2O atmospheric inversion model results based on Tian et al. (2020)
was used to estimate N2O fluxes (details of each are given in Table S6 in Supporting Information S1) for 2010–
2016. Inversion models use N2O measurements of discrete air samples from the National Oceanic and Atmo-
spheric Administration (NOAA) Carbon Cycle Cooperative Global Air Sampling Network. A few sites of
continuous measurements from the Japan Meteorological Agency (JMA) and the National Institute of Envi-
ronmental Studies (NIES). Atmospheric N2O measurements are the most sparse among the three species
considered here because of the poor stability of the instrument for securing high precision (better than 0.2 ppb
measurement uncertainty in 300 ppb) and long‐term measurements.

2.4. CO2, CH4, and N2O Emission Fluxes From Inland Waters

Emissions for CO2 (EWater_CO2), CH4 (EWater_CH4), and N2O (EWater_N2O) from inland water, including those from
streams, rivers, lakes, and reservoirs, EWater_total (Figure 1), were taken from Lauerwald et al. (2023a, 2023b),
which calculate emissions for 10 RECCAP‐2 regions, including SA. These emission estimates were based on the
synthesis of existing estimates of GHG emissions from streams, rivers, lakes, and reservoirs but homogenized
with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. The
study excluded emissions from smaller lentic water bodies, such as ponds as well as those from temporally
inundated floodplains and swamps due to a lack of data on a global scale.

2.5. Fossil Fuels and Other Non‐Terrestrial Anthropogenic Emissions for CO2, CH4, and N2O

The anthropogenic non‐terrestrial GHG emissions for SA countries were taken from the European Commission's
Emissions Database for Global Atmospheric Research (EDGAR) data set (Crippa, Guizzardi et al., 2020; Crippa,
Solazzo et al., 2020). We used EDGAR update data (EDGARv7.0) because it provides independent country‐ and
sector‐specific estimates of GHG emissions based on a robust and consistent methodology stemming from the
latest IPCC guidelines and most recent activity data. The data was compiled from a number of international
statistical sources (Crippa, Guizzardi et al., 2020; Crippa, Solazzo et al., 2020), providing estimates at the spatial
scale for fossil fuel CO2 emissions (EFossil, including burning of coal, oil, gas, and others (e.g., gas flaring), and
cement production for each country for the period 1970–2021. Regarding CH4 anthropogenic emissions
(ECH4_AP), all anthropogenic activities (Figure 1) leading to climate‐relevant anthropogenic emissions are
included, except for biomass/biofuel combustion in the power, industry, buildings, transport, and agricultural
sectors, large‐scale biomass burning, and LULCC. It is important to note that while CH4 emissions from livestock
are not explicitly calculated, they are included as part of the total agricultural emissions. Anthropogenic activities
for N2O emissions (EN2O_AP) include industrial activities involving energy generation and consumption, con-
struction and production, and direct and indirect emissions from manure management. The anthropogenic non‐
terrestrial CH4 and N2O emission data are available for 1970–2018.

2.6. Wood and Crop Product Trade

This study accounts for CO2 fluxes associated with international trade, that is, import minus export, of wood
(EWood_Trade) and crop products (EAgri_Trade) in SA. In the wood trade, we considered industrial round wood for
emission calculation as international fuelwood trade, and charcoal was often used for domestic purposes and not
for international trade. We used FAOSTAT (2024) for the import and export quantities of wood and crop products
in cubic meters (m3), which classified industrial wood into coniferous and non‐coniferous woods and a total of 92
crop products. This data in m3 was converted to Tg CO2 using the methods described by Peters et al. (2012) for
wood and Xu et al. (2021) for crop products. For industrial wood, the m3 of wood was converted to dry‐weight
biomass using the factor 0.45 t m− 3 for coniferous raw wood and 0.59 t m− 3 for non‐coniferous raw wood, and
then to a ton of carbon using 0.45 t C t− 1 biomass. For agriculture, the ton of biomass in m3 was calculated for
individual crops. The crop‐specific factors that convert the volume of biomass to dry‐weight biomass and carbon
in tons were taken from (Xu et al., 2021).
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2.7. Total GHG Emissions

Total CO2, CH4, and N2O emissions based on the BU models were calculated by the following equations:

ECO2 BU total = ENBP BU + EFossil + EWater CO2 + EWood Trade + EAgri Trade

ECH4 BU total = ECH4 BU + ECH4 AP + EWater CH4

EN2O BU total = EN2O BU + EN2O AP + EWater N2O

Total CO2, CH4, and N2O emissions based on the TD models were calculated by the following equations:

ECO2 TD total = ENBP TD + EFossil

ECH4 TD total = ECH4 TD + ECH4 AP

EN2O TD total = EN2O TD + EN2O AP

Following the IPCC AR6 (Canadell et al., 2021), we used the 100‐year global warming potentials (GWP) of CH4‐
fossil (29.8), CH4 ‐non‐fossil (27), and N2O (278) to combine all top‐down and bottom‐up GHG emissions to CO2

equivalent (CO2 eq). In the case of NMHCs, the emissions of NMHCs given in Tg NMHC yr− 1 were converted to
Tg C yr− 1 using a ratio of 161/210 TgC/Tg NMHC (Hoor et al., 2009).

Next, we discuss the 2010s results. The positive values represent a land sink of carbon, and the negative values
represent atmospheric emissions.

2.8. Uncertainty Analysis

While the ensemble mean often provides more accurate and reliable results than relying on individual models
(IPCC, 2014; Meehl et al., 2007; Weigel et al., 2008), it's crucial to estimate the uncertainty between the different
model results, which can help to understand the spread of the individual model results. The uncertainties in the TD
and BU model estimated GHG budget were evaluated based on the error propagation method, accounting for the
standard deviations (1σ) of the individual component of the budget fluxes resulting from the ensemble of multiple
models. The goal was to quantify how uncertainties in the component fluxes, derived from multiple models,
influence the overall uncertainty of the GHG budget estimate. The total uncertainty (σ) of the ensemble of the
modeled budget was calculated as the square root of the sum of the squares of the uncertainties of the individual
flux components (e.g., σx; σy,etc.), under the assumption that the errors in component fluxes are uncorrelated, that

is, σ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

x + σ2
y + …

√
.

3. Results
3.1. Net Terrestrial Ecosystem Productivity (ENEP_S2)

The TRENDY model results based on the S2 scenario, which do not account for any LULCC disturbances over
time, suggest that ENEP_S2 increased from − 272± 166.4 TgCO2 yr− 1 in the 2000s to − 462.9± 195.5 Tg CO2 yr− 1

in the 2010s (Figure 1) mainly because of the higher CO2 fertilization effect. The results from individual models
for ENEP_S2 also exhibit significant variation from a low of − 199 Tg CO2 eq yr− 1 for the SDGVM model to a high
of − 989 Tg CO2 eq yr− 1 for the JSBACH model (Table S1 in Supporting Information S1). Regarding the in-
dividual country's NEP for the 2010s, the estimates reflected the size of the country. For example, India saw
relatively higher estimates of − 366.7 ± 188.9 TgCO2 eq yr− 1 or 80% of the total regional value, followed by
Pakistan and Nepal with estimated values of − 25.8± 14.6 Tg CO2 eq yr− 1 (5%) and − 23.1± 10.8 TgCO2 eq yr− 1

(4%) (Table 1).

3.2. Emissions From Land‐Use and Land Cover Change (ELULCC)

The estimated ELULCC based on BU was the net carbon source of 251.9 ± 203.8 TgCO2 yr− 1 (Figure 1) for the
2010s (Figure 1 and Table 1). The emissions increased by 45% compared to the 2000s (173± 191.4 Tg CO2 yr− 1)
due to reduced reforestation over the 2010s compared to the 2000s. The results consistently reflect each country's
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LULCC transitions. The region's net emissions are mainly determined by land change activities in the three
largest countries in the region, India, Pakistan, and Bangladesh, with India's emissions being the highest
(200.6 ± 201.7 Tg CO2 yr− 1, 85%) because it occupies around 70% of the total area, followed by Sri Lanka
(12.8 ± 6.4 Tg CO2 yr− 1, 5%) and Pakistan (11.4 ± 19.8 Tg CO2 yr− 1, 4%) (Table 1). The rest of the countries
combined contributed about 7% of the total LULCC emissions for the SA region.

The BU estimated results are also well within the range of the ensemble of three book‐keeping model results
ELULCC_BK, BLUE (354 Tg CO2 yr− 1; Hansis et al., 2015), OSCAR (77 Tg CO2 yr− 1; Gasser et al., 2020) and
H&N (− 1.6 Tg CO2 yr− 1; Houghton & Nassikas, 2017) (Table S7 in Supporting Information S1). However, the
results show significant variations between low and high ranges of values for book‐keeping (ranging from − 2 to
77 Tg CO2 yr− 1) and bottom‐up (ranging from − 14 to 518 Tg CO2 yr− 1) model results. The exact causes of such
significant differences are not clear. This may be due to the different LULCC inputs and modeling approaches
used to estimate emissions.

3.3. Fire Emissions (EFIRE)

As per the GFED4.1, the SA region is not a significant source of CO2 emission due to non‐LULCC‐related
biomass burning (Figure 1). Out of about 7,674 ± 195 Tg CO2 yr− 1 of total global emissions due to open fires
(i.e., a fire in which material is burned in an outdoor area) (van der Werf et al., 2017), only 46.7 ± 23.3 Tg
CO2 yr− 1 (0.6% of the global total) are emitted from non‐LULCC sources in the SA countries (Table 2), which
was about a 19% increase compared to the 2000s. The total regional non‐LULCC fire CO2 emissions for the 2010s
can be attributed to open forest fires (22.2± 11.4 Tg CO2 yr− 1) and savanna burning (14.8± 2.7 Tg CO2 yr− 1) for
the 2010s. Peat land fire emissions were almost negligible in SA. Amongst the countries that contributed most to
the regional non‐LULCC emissions, India stands out with an estimated contribution of about 83% (39± 19.01 Tg
CO2 yr− 1), followed by Nepal 10% (4.5 ± 2.3 Tg CO2 yr− 1) and Sri Lanka 1.9% (0.9 ± 0.4 Tg CO2 yr− 1).
Moreover, the rest of the countries in SA contributed about 5% (2.3 ± 1.1 Tg CO2 yr− 1) to the total non‐LULCC
CO2 emissions due to fire in the SA region in the 2010s (Table 2).

The contribution of carbon monoxide (CO) emissions due to open fire to the global emissions is quite low, only
2.81 ± 0.25 Tg CO2 yr− 1 (0.8% of the global total of CO emissions). Compared to the 2000s (2.38 ± 0.23 Tg
CO2 yr− 1), the CO emissions increased by 16%.

Much like the CO emission, the contribution of SA CH4 (0.14 ± 0.07 Tg CO2 eq yr− 1), NMHC (2.33 ± 0.23 Tg
CO2 eq yr− 1), and N2O (0.01± 0.01 Tg CO2 eq yr− 1) (Figure 1) emissions to the global fire emissions is relatively
smaller (less than 1% of total emission) (Table 2).

3.4. Riverine Carbon Flux (EWater)

The synthesis of total inland water (streams, rivers, lakes, and reservoirs) GHG emissions was 334.3 ± 126.9 Tg
CO2 eq yr− 1 (Figure 1), with a dominant contribution from CO2 (EWater_CO2) (72%) and CH4 (26%) (EWater_CH4)

Table 1
Country‐Specific and South Asia (SA) Region Net Biome Production Fluxes Based on the Ensemble of the Top‐Down (ENBP_TD) and Bottom‐Up (ENBP_BU) TRENDY
Model Results, Fossil Emission (EFossil), and Total Fluxes (ECO2_BU_Total = ENBP_BU + EFossil and ECO2_TD_Total = ENBP_TD + EFossil) for the 2010s

Country/Region ENEP_S2 ELULCC Efire ENBP_BU
a ENBP_TD EFossil ECO2_BU_Total ECO2_TD_Total

Afghanistan − 17.6 ± 10.2 1.9 ± 10.9 0.03 ± 0.01 − 15.7 ± 14.9 − 6.7 ± 22.4 13.1 ± 0.6 − 2.6 ± 14.9 6.4 ± 22.4

Bangladesh − 14.8 ± 11.6 10.4 ± 13.8 0.1 ± 0.01 − 4.3 ± 18 − 4.0 ± 38.3 83.4 ± 4.2 79.4 ± 18.5 79.4 ± 38.5

Bhutan − 5.3 ± 4.1 3.2 ± 3.8 0.2 ± 0.02 − 1.0 ± 3.8 − 0.5 ± 7.4 1.01 ± 0.1 0.01 ± 3.8 0.5 ± 7.5

India − 366.7 ± 188.9 200.6 ± 201.7 34.5 ± 3.4 − 131.6 ± 276.3 − 163.8 ± 504.2 2038.4 ± 101.9 1906.8 ± 294.5 1874.6 ± 514.4

Nepal − 23.1 ± 10.8 11.0 ± 9.7 4.1 ± 0.4 − 8 ± 14.5 − 17.1 ± 71.3 12.8 ± 0.6 4.8 ± 14.5 − 4.3 ± 71.3

Pakistan − 25.72 ± 14.6 11.4 ± 19.8 1.7 ± 0.1 − 12.6 ± 24.5 − 16.6 ± 43.7 177.3 ± 8.9 164.7 ± 26.0 160.7 ± 44.5

Sri Lanka − 9.7 ± 6.4 12.8 ± 6.4 0.8 ± 0.1 3.9 ± 9.0 − 1.9 ± 12.5 9.4 ± 0.5 13.3 ± 9.0 8.5 ± 12.5

SA Total − 462.9 ± 190.5 251.9 ± 203.8 41.4 ± 3.4 − 170.2 ± 279.0 − 210.4 ± 504.9 2335.4 ± 102.4 2165.2 ± 297.1 2125.8 ± 515.1

Note. Positive values are the carbon source, and negative values are the carbon sink (TgCO2/yr). aENBP_BU= ENEP_S2+ ELULCC+ EFire, where ENEP_S2 is net ecosystem
productivity with LULCC, ELULCC, CO2 flux due to LULCC, and Efire due to non‐LULCC emissions flux.
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and a minor contribution from N2O (2%) (EWater_N2O). The rivers were the most significant contributor to the
regional inland water emissions (∼85%), with minor contributions from reservoirs (10%) and lakes (5%). The
most significant contributors to SA inland water GHG emissions were India (296.5 ± 112.6), Pakistan
(23.4± 8.9), and Bangladesh (9± 3.6). These three countries account for more than 98% of the inland water GHG
emissions (Table 3).

3.5. NBP (ENBP)

The BU models estimated ENBP_BU (− 170.2 ± 279.0 Tg CO2 yr− 1), and the TD models estimated ENBP_TD

(− 210.4± 504.9) TgCO2 yr− 1 (Figure 1) show that the region acted as a net sink during the 2010s. Compared to the
2000s (BU: − 99.0 ± 170.08 Tg CO2 yr− 1; TD: − 157.8 ± 581 Tg CO2 yr− 1), the sink in the BU case increased by
72%, whereas in the case of TP, the increase was only about 33%. The ensemble of different TD and BU models
suggests large uncertainties in the estimated CO2 fluxes. With regard to the individual country's terrestrial carbon
fluxes in 2010s, the terrestrial ecosystems acted as a sink for atmospheric CO2, with India having the greatest sink,
being the largest country of SA, for both modeling approaches (ENBP_BU: 131.6± 276.3 TgCO2 yr− 1 and ENBP_TD:
163 ± 504 Tg CO2 yr− 1) with relatively higher estimates of ENEP_S2 of 366.7 ± 188.9 Tg CO2 yr− 1 (Table 1).

3.6. CH4 and N2O Emissions From Soils

The estimates for the soil CH4 emissions for the top‐down models, ECH4_TD (12.5 ± 4.4 Tg CH4 yr− 1), are larger
than the bottom‐up emissions, ECH4_BU (4.45± 1.27 Tg CH4 yr− 1), with the emissions almost 2.8 times higher for
the 2010s (Table 4). India had the maximum share in CH4 emission in the SA for ECH4_TD and ECH4_BU cases,
with an estimated contribution of 76% and 65% (Table 4). Compared to the 2000s, ECH4_TD and ECH4_BU

emissions decreased by 12% and 8% in the 2010s.

The estimates for the soil N2O emissions from the TD (EN2O_TD) and BU
(EN2O_BU) models gave similar results for the SA region for the 2010s, with
values of 2.0 ± 0.1 and 1.4 ± 0.5 Tg N yr− 1 (Table 5). For both modeling
approaches, India's emissions were the highest (78%–82%), followed by
Pakistan (ca. 23%–25%) and Bangladesh (ca. 4%–6%). Compared to 2000s,
the 2010s EN2O_TD increased 73%, whereas EN2O_BU 16%.

3.7. Non‐Terrestrial Anthropogenic Emissions for CO2, CH4, and N2O

The estimated total non‐terrestrial anthropogenic emissions for three GHGs in
the 2010s were 3848 ± 506 Tg CO2 eq yr− 1 (Figure 1). CO2 (EFossil), CH4

(ECH4_AP), and N2O (EN2O_AP) contributed 61%, 31%, and 8%, respectively.
The following describes the emissions specific to each country and details the
contributions of various anthropogenic activities.

Table 2
Country‐Specific Fire Activity Related Emissions (TgCO2 eq/yr) for CO2, CO, NMHCs, CH4, and N2O for the 2010s

Country CO2
a CO NMHCs CH4 N2O Total

Afghanistan 0.03 ± 0.01 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.03 ± 0.01

Bangladesh 0.10 ± 0.5 0.00 ± 0.0 0.01 ± 0.01 0.00 ± 0.0 0.00 ± 0.0 0.11 ± 0.05

Bhutan 0.22 ± 0.1 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.0 0.00 ± 0.0 0.24 ± 0.1

India 34.54 ± 17.0 2.37 ± 0.23 1.98 ± 0.1 0.12 ± 0.01 0.01 ± 0.0 39.01 ± 19.5

Nepal 4.07 ± 2 0.24 ± 0.02 0.18 ± 0.02 0.01 ± 0.0 0.00 ± 0.0 4.51 ± 2.7

Pakistan 1.71 ± 0.9 0.11 ± 0.05 0.10 ± 0.01 0.01 ± 0.0 0.00 ± 0.0 1.93 ± 0.9

Sri Lanka 0.76 ± 0.4 0.06 ± 0.03 0.05 ± 0.01 0.00 ± 0.0 0.00 ± 0.0 0.88 ± 0.4

SA Total 41.43 ± 3.4 2.81 ± 0.3 2.33 ± 0.2 0.14 ± 0.01 0.01 ± 0.01 46.71 ± 23.4
aFire emissions due to non‐land use change‐related fire activities.

Table 3
Inland Water Emissions for CO2, CH4 and N2O (TgCO2 eq/yr)

Country EWater_CO2 EWater_CH4 EWater_N2O Country total

Afghanistan 0.02 ± 0.0 0.01 ± 0.0 0.00 ± 0.0 0.03 ± 0.0

Bangladesh 6.09 ± 3.2 2.49 ± 1.6 0.18 ± 0.1 9.36 ± 3.6

Bhutan 0.31 ± 0.2 0.12 ± 0.1 0.01 ± 0.0 0.43 ± 0.2

India 211.92 ± 101.2 79.00 ± 49.4 5.60 ± 2.0 296.52 ± 112.6

Nepal 2.75 ± 1.3 1.02 ± 0.6 0.07 ± 0.0 3.85 ± 1.4

Pakistan 16.75 ± 8.0 6.25 ± 3.9 0.44 ± 0.2 23.40 ± 8.9

Sri Lanka 0.57 ± 0.3 0.21 ± 0.1 0.02 ± 0.0 0.80 ± 0.4

SA Total 239.0 ± 114.0 89.1 ± 55.7 6.3 ± 2.2 334.3 ± 126.9
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3.7.1. CO2 Emissions From Fossil Fuels and Cement Production (EFossil)

Carbon emissions from burning fossil fuels, including cement production, have increased in the 2010s compared
to the 2000s in every country of the SA region, according to the EDGAR data set (Crippa et al., 2021; Minx
et al., 2021). The total regional emissions increased in the 2010s by 87%, from an average of 1,341± 67.5 Tg CO2

yr− 1 for the decade of the 2000s to an average of 2335.4 ± 102.4 Tg CO2 yr− 1 for the 2010s (Table 1) (Figure 1).
The rapid increase in fossil CO2 emissions was primarily attributed to the rapid economic growth. It is noted that
the SA fossil fuel emissions grew at a higher rate than the GDP during the 2010s, wherein the GDP increased by
$1,726 billion or by 16% in 2010s compared to the 2000s (World Bank, 2023) (Table S8 in Supporting Infor-
mation S1). On the country scale, India's emissions were the highest (2,038± 101.9 CO2 yr− 1) (87%), followed by
Pakistan (177 ± 8.9 CO2 yr− 1) (7%) and Bangladesh (83 ± 4.2 CO2 yr− 1) (3%) during the 2010s (Table 6).
Regarding percentage increase, Afghanistan, Bhutan, Bangladesh, and Nepal witnessed an increase of more than
100% in the 2010s relative to the 2000s. The contribution of individual countries to total fossil fuel emissions is
also coherent with their contribution to the total regional GDP (Table S8 in Supporting Information S1).

The comparison between the EDGAR data set (Crippa et al., 2021; Minx et al., 2021) and the GCP (Friedlingstein
et al., 2022) data set for fossil fuel emissions for the SA region exhibits excellent agreement across different
countries; the emissions lie within the close range, with the average total emissions for EDGAR being only 3.4%
higher than GCP (Table 6).

3.7.2. Non‐Terrestrial Anthropogenic Emissions for CH4 (ECH4_AP) and N2O (EN2O_AP)

The regional ECH4_AP for the 2010s was 44.33± 6.20 Tg CH4 yr− 1, about 76% and 90% of the total CH4 emission
estimates of TD and BU models. India generated the overwhelming majority of CH4 in the regional budget,
accounting for 68% (30.06 ± 4.50 Tg CH4 yr− 1) of total anthropogenic CH4 emissions. Pakistan and Bangladesh

Table 4
Estimated CH4 Emissions (Tg CH4/yr) From the Soils From Bottom‐Up Models (ECH4_BU) and Top‐Down Models (ECH4_TD)
and From Anthropogenic Activities (ECH4_AP) in South Asian Countries for the 2010s

Country ECH4_AP ECH4_BU ECH4_TD

Afghanistan 0.65 ± 0.10 0.01 ± 0.01 0.03 ± 0.1

Bangladesh 3.9 ± 0.60 0.72 ± 0.53 3.4 ± 1.6

Bhutan 0.02 ± 0.00 0.03 ± 0.00 0.07 ± 0.20

India 30.06 ± 4.50 3.38 ± 0.84 8.09 ± 3.11

Nepal 1.17 ± 0.30 0.03 ± 0.01 0.30 ± 0.22

Pakistan 7.98 ± 1.20 0.15 ± 0.03 0.37 ± 0.42

Sri Lanka 0.51 ± 0.10 0.10 ± 0.06 0.12 ± 0.10

SA Total 44.33 ± 6.20 4.45 ± 1.27 12.45 ± 4.4

Table 5
Estimated N2O Emissions From Anthropogenic Activities (EN2O_AP) and the Soils and From Bottom‐Up Models (EN2O_BU)
and Top‐Down Models (EN2O_TD) in South Asian Countries for the 2010s (Tg N2O/yr)

EN2O_AP EN2O_BU EN2O_TD

Afghanistan 0.02 ± 0.03 0.02 ± 0.02 0.06 ± 0.02

Bangladesh 0.06 ± 0.1 0.06 ± 0.03 0.08 ± 0.02

Bhutan 0.00 ± 0.0 0.00 ± 0.00 0.01 ± 0.00

India 0.84 ± 1.1 1.15 ± 0.4 1.64 ± 0.4

Nepal 0.02 ± 0.0 0.03 ± 0.01 0.06 ± 0.01

Pakistan 0.18 ± 0.2 0.13 ± 0.1 0.25 ± 0.10

Sri Lanka 0.01 ± 0.0 0.02 ± 0.00 0.01 ± 0.01

SA Total 1.13 ± 1.6 1.43 ± 0.51 2.1 ± 0.47
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were the second and third largest contributors, with an estimated 18% (7.98 ± 1.20 TgCH4 yr− 1) and 9%
(3.9 ± 0.60 TgCH4 yr− 1). Emissions from agriculture and waste played a predominant role in the anthropogenic
sources of CH4, with about 85% followed by fossil fuels, biomass, and biofuel burning.

The regional EN2O_AP were 1.13 ± 1.6 Tg N2O yr− 1, about 36% and 44% of total N2O emissions estimated by TD
and BU models. Again, India was the highest emitter (74%) of anthropogenic emissions, followed by Pakistan
(16%). The rest of the countries' total emissions were only 10%. Anthropogenic emissions from direct sources,
including fossils and industrial sources, biomass burning, and waste and wastewater, contributed the most to the
total emissions (60%).

3.8. Wood (EWood_Trade) and Crop Trade (EAgri_Trade) Emissions

The SA emissions from the international wood trade were − 5 ± 1.0 Tg CO2 yr− 1. India was the highest emitter
− 4.7 ± 0.9 TgCO2 yr− 1. The regional emissions from the international crop trade were about 1.0 ± 0.2 Tg
CO2 yr− 1. The non‐coniferous and coniferous roundwoood emissions were about − 3.5 ± 0.6 Tg CO2 yr− 1 and
− 1.5 ± 0.3 Tg CO2 yr− 1, respectively. Rice (0.3 ± 0.06 Tg CO2 yr− 1), wheat products (0.17 ± 0.02 TgCO2 yr− 1),
and pulses (0.03 ± 0.01 Tg CO2 yr− 1) had the highest emissions among the traded crop products.

3.9. Discussion and Conclusions

The total net GHG emissions estimated for South Asia by the bottom‐up (BU) and top‐down (TD) models for the
2010s were 4,516.4 ± 639.8 Tg CO2 eq yr− 1 and 4,531.9 ± 807.5 TgCO2 eq yr− 1. These estimates were 34% and
43% higher than in the 2000s, as well as represent about 8% of the global total GHG emissions, as reported by the
IPCC AR6 (56,600.0 ± 600.0 TgCO2 eq yr− 1, Dhakal et al., 2022). It is important to note that BU and TD model
results for regional total are consistent with each other, as well as they were also consistent with IPCC AR6
estimates of 4,480 TgCO2 eq yr− 1 (Dhakal et al., 2022). However, spatial patterns can differ (Figure 4). These
agreements, among different estimates, suggested a robust understanding of the region's GHG exchanges.

The estimated industrial‐related anthropogenic emissions (EFossil+ ECH4_AP+ EN2O_AP) were 3848.1± 489.4 Tg
CO2 eq yr− 1, which were 85% and 84% of the total fluxes from the BU and TD models, respectively (Figure 1).
Approximately 53% (2399.7± 427.7 Tg CO2 eq. yr− 1) of the total CO2 eq. emissions, as calculated by BU models,
and 46% (2124.81 ± 641.2 Tg CO2 eq. yr− 1) of the total emissions estimated by TD models were solely of CO2

emissions. The total CH4 emission contributions were 31% (1404.27 ± 95.9 Tg CO2 eq yr− 1) and 34%
(1531.4 ± 205.2 Tg CO2 eq. yr− 1), and the rest 16% (712.4 ± 466 Tg CO2 eq yr− 1) and 18% (875.7 ± 446 Tg CO2

eq. yr− 1) of the total emissions were N2O (Figure 3).

Although our study's model results suggest that SA terrestrial ecosystems serve as a net carbon sink for atmo-
spheric CO2, several recent satellite‐based studies report conflicting findings. Some studies suggest that while
forests in SA, particularly in countries like India, may function as carbon sources due to climate warming,
agricultural ecosystems act as carbon sinks driven by crop expansion and improved management practices.

Table 6
Fossil Fuel CO2 Emissions, EFossil, From EDGAR (Crippa et al., 2021) and Global Carbon Project (Friedlingstein
et al., 2022) for the 2010s (TgCO2/yr)

Country

EFossil

EDGAR GCP

Afghanistan 13.1 9.2

Bangladesh 83.4 71.6

Bhutan 1.0 1.1

India 2038.4 2195.0

Nepal 12.8 8.0

Pakistan 177.3 187.1

Sri Lanka 9.4 19.0

Total 2335.4 2419.2
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Despite these dynamics, the net primary productivity (NPP) shows limited variation over time (e.g., Das
et al., 2020; Park et al., 2023). However, other satellite‐based studies show contradictory results regarding NPP.
For instance, Bala et al. (2013) attribute rising NPP during the 2000s to CO2 fertilization, while Nayak
et al. (2016) and Bejagam and Sharma (2022) link the increase to changes in precipitation. Zeng et al. (2023)
further challenge the reliability of satellite data in tropical forest biomes, arguing that complex forest structures
cast large shadows, leading to an underestimation of fraction of photosynthetically active radiation (FPAR) and
hence GPP and NPP fluxes. Given these substantial uncertainties in model and satellite‐based carbon seques-
tration estimates in South Asia, refining these estimates using enhanced observational data and advanced methods
is critical, as detailed below.

Figure 3. The GHG emission budget for South Asia and its countries is based on the syntheses of the top‐down and bottom‐up
model results and various data sets for the 2010s.
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Overall, both TD and BU model results indicate that the regional total ENBP sink fluxes were smaller than the
magnitude of the carbon sources, primarily due to the large emissions from the combustion of fossil fuels
(Table 1). The SA region's emissions from fossil fuel burning were 11–15 times higher than the region's NBP
(Table 1). As a result, the region and its countries, with the exception of Afghanistan and Bhutan, are a net source
of CO2 for TD and BU model‐estimated CO2 fluxes when fossil fuel emissions are accounted for. Afghanistan
was a small net sink based on the bottom‐up model results, while Bhutan was also a sink for CO2 based on the top‐
down model results (Table 1).

In contrast to CO2 emissions, CH4 emissions were dominated by enteric fermentation in ruminant livestock and
rice cultivation. The major contribution to the total N2O emissions came from agricultural soils due to fertilizer
applications. At a sectoral level, the energy sector contributed 60% of the total GHG emissions, while the
agricultural sector contributed around 30%. The rest came from industrial activities, waste management, and land
use and land cover activities.

The magnitudes of GHG sources and sink fluxes are different across different countries in the region. For example,
India's CO2 emissions were higher than its CH4 and N2O emissions. However, in other countries, CH4 emissions
dominated during the 2010s. This diversity highlights the distinct factors, particularly the socioeconomic factors

Figure 4. The GHG emissions (CO2, CH4, and N2O) at 0.5 × 0.5 deg grids for South Asia and its countries are based on the syntheses of top‐down (TD) and bottom‐up
(BU) model results and various data sets for the 2010s.
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(e.g., economic growth and population size; Table S8 in Supporting Information S1), of key drivers influencing
GHG emissions across South Asian countries because changes in these factors directly influence land cover and
land use, industrial and agricultural activities, climatic conditions, frequency of forest fires, and management
strategies. For example, with its large population and rapid economic expansion (as indicated by GDP; Table S8 in
Supporting Information S1), India is the region's largest emitter ofGHGemissions (80%). The primary contributors
to India's emissions are industrial activities and energy production, while population growth and increased food
demand are further driving LULCC.

Pakistan (11%) and Bangladesh (6%) follow India regarding emissions, with moderate socioeconomic factors at
play, albeit at a lower scale. These countries' more moderate economic growth and industrialization rates result in
comparatively lower CO2 emissions than CH4 emissions (Figure 3). Afghanistan, Nepal, and Sri Lanka exhibit
low emissions (1% or less), which are primarily influenced by land use changes, particularly deforestation for
agricultural expansion. The slowest pace of economic development in these countries, relative to high emitters
like India and Pakistan (Table S8 in Supporting Information S1), contributes to their lower fossil fuel‐related
emissions (Figure 3). Bhutan stands out for its commitment to maintaining almost a carbon‐neutral status, pri-
marily due to its focus on conservation and reliance on renewable energy, particularly hydropower. Bhutan's
small population and emphasis on balancing development with sustainability have kept its GHG emissions the
lowest in the region (<0.1%) (Figure 3).

This study's country‐level GHG emission results can inform decision‐makers about GHG emission management
and policy development. When assessing emissions for mitigation policies, it is crucial to fully understand these
countries' broader environmental and social impacts, including implications for public health, economic chal-
lenges, and vulnerabilities to climate change. Higher emissions are associated with deteriorating air quality,
which can lead to increased rates of respiratory illnesses, particularly in densely populated countries such as India,
Pakistan, and Bangladesh. Deforestation and land use changes in rural areas disrupt local communities' access to
natural resources, negatively affecting agriculture and livelihoods. On the economic development front, South
Asian countries, all of which are developing, face the challenge of balancing economic growth with environ-
mental sustainability. Adopting cleaner technologies is critical for mitigating the long‐term societal impacts of
emissions. Furthermore, given the high vulnerability of many South Asian countries to the effects of climate
change, such as flooding in Bangladesh, these nations must implement policies that prioritize renewable energy,
sustainable land management, and conservation efforts. Bhutan's success in maintaining a carbon‐negative status,
driven by its focus on renewable energy and environmental conservation, provides a potential model for other
countries in the region to explore pathways toward sustainable development while reducing emissions.

At the same time, it is also important to note that the uncertainty associated with regional and country‐specific
GHG emissions estimates using top‐down and bottom‐up modeling approaches is substantial, represented here
as the one σ standard deviation of the model‐derived estimates. The spatial emission patterns for top‐down and
bottom‐up models also differ significantly (Figure 4). Comparing emissions national inventory estimates from the
United Nations Framework Convention on Climate Change (UNFCCC, 2024a, 2024b) with emissions based on
top‐down and bottom‐up models in the present study reveals diverse patterns across different countries in SA
(Table 7). UNFCCC's national emission inventories generally align within the large ranges provided by either or
both BU and TD models. Some countries like Pakistan and Sri Lanka exhibit instances where UNFCCC's in-
ventory values align more closely with BU estimates. However, the emission inventories for a country like India
deviate the most from the broader ranges provided by both models' estimates. This discrepancy between
UNFCCC‐reported values and top‐down and bottom‐up model estimated values highlights the complexity and
challenges associated with model estimating and reporting GHG emissions and the importance of improving data
quality, methodological consistency, and transparency in emission accounting practices.

According to our analysis, GHG emissions from terrestrial ecosystems are less reliable than those from
anthropogenic non‐terrestrial sources. In particular, the terrestrial net CO2 flux terms, ENBP_BU and ENBP_TD,
show the highest uncertainty, with estimates of − 170.2 ± 279.0 and ‐210.4 ± 504.9 Tg CO2 yr− 1, respectively.
This high uncertainty primarily arises from emissions related to deforestation and other disturbances. Additional
uncertainty stems from post‐disturbance recovery sinks and interannual variations caused by climate anomalies
across South Asian countries. In contrast, CO2 EFossil emissions are the most certain, with an estimated value of
2335.4 ± 117.0 Tg CO2 yr− 1. This is because fossil fuel consumption (coal, oil, and natural gas) is well‐
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documented through detailed records of energy production, trade, and usage, as well as countries and industries
regularly update their emissions data (Crippa, Guizzardi et al., 2020; Crippa, Solazzo et al., 2020).

The existing TD and BU methods for modeling GHG emissions require effective enhancements to incorporate
sub‐grid scale processes and feedback loops. The coarse spatial resolution of TD and (to a lesser extent) BU
models introduce significant uncertainties in their results. Low‐resolution models often fail to capture critical
fine‐scale processes, such as local climate variations, topography, vegetation types, and land‐use patterns. This
oversimplification can obscure complex interactions between land and climate systems, reducing the models'
ability to accurately simulate regional and localized phenomena, such as extreme weather events, microclimates,
and ecosystem responses. Moreover, BU models must account for key agricultural management practices,
including irrigation and nitrogen fertilizer application. Without incorporating these factors, models underestimate
carbon sequestration rates in agricultural landscapes. Another critical regional gap is the lack of Fluxnet tower
data for biophysical and micrometeorological variables. These data are essential for validating model and
satellite‐derived results, but they remain entirely absent in many South Asian areas.

Future GHG emission analyses will require comprehensive data sets on environmental variables, notably LULCC
activities at finer resolutions. This entails considering intricate decisions regarding land management at a sub‐
national level, given the diverse land classes, soil types, commodities, and myriad management options preva-
lent in most countries.

To improve the accuracy of satellite‐derived estimates of terrestrial carbon fluxes, studies must consider using
finer‐resolution satellite data, such as Landsat, which offers 30‐m resolution (Mondal et al., 2020). Currently,
many studies rely on coarser resolution data from satellites like MODIS, which struggle to detect long‐term
changes, such as greening trends and carbon sequestration dynamics, and often fail to capture the slow degra-
dation of tropical forests. This challenge is particularly pronounced in tropical regions, where deep convective
clouds frequently interfere with data retrieval, leading to poor performance of satellite‐based estimates (Deb
Burman et al., 2020).

Using satellite‐derived biomass and other GHG products can also provide opportunities to reduce uncertainties.
Utilizing higher‐resolution data alongside advanced process‐based modeling, both TD and BU, will be pivotal in
accurately capturing carbon and other GHG dynamics. Top‐down models estimating the budget for the SA are

Table 7
Comparison of UNFCCC‐Reported Country‐Specific Total Emission Inventories (TgCO2 eq yr− 1) (UNFCCC, 2024a, 2024b)
Mean for the Random Periods With the Top‐Down (TD) and Bottom‐Up (BU) Models and Their Uncertainty Ranges

Country

UNFCCC This study

Methoda Period/Year Emissions BU TD

Afghanistan NC 2012–2013 60.2 44.9 (15.6–74.4) 42.3 (30.7–53.9)

BUR 2010–2017 40.4 57.5(33.6–81.5) 46.8(18.5–75.2)

Bangladesh NC 2010–2012 152.3 208.5 (169.3–247.8) 199.2 (146.6–251.8)

BUR 2013–2019 193.8 236.0 (193.6–279.6) 315.5 (248.4–382.6)

Bhutan NC 2010–2015 − 5.7 2.8 ((− 3)− 8.5) 6.12 ((− 5.1)–17.3)

BUR 2010–2019 − 6.5 0.9 ((− 2.9)− 4.7) 6.5 ((− 2.6)–15.7)

India NC 2011–2019 2394.7 3343 (3048.5–3637.5) 3568.8 (3054.4–4,083.4)

BUR 2011–2016 2271.6 3236.9 (2754.2–3719.5) 3437.6 (2913.5–3961.9)

Nepal NC 2010–2011 28.2 41 (12.4–69.6) 49.4 (27.1–71.7)

BUR – – – –

Pakistan NC 2012–2015 405.0 426.8 (365.7–487.8) 454 (406.7–501.5)

BUR 2012,2015,2018 359.6 481.8 (381.7–581.9) 503.3(397.3–609.3)

Sri Lanka NC 2010 3.7 10.1 ((− 6.6)− 26.9) 27.2 (16.1–38.2)

BUR – – – –
a“NC” values are based on National Communication (NC) submissions from Non‐Annex I Parties (UNFCCC, 2024a), and
Biennial Update Report (BUR) values are based on BUR submissions from Non‐Annex I Parties (UNFCCC, 2024b).
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notably under‐constrained by data, primarily due to the significant lack of greenhouse gas (GHG) and climate
measurement data in this area (Chandra et al., 2021; Patra et al., 2016). Such approaches will enable a deeper
understanding of GHG stocks and flows, establish crucial connections to ground‐based physical processes and the
national GHG inventories, and facilitate more informed policy decisions.
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