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Abstract: Rice provides poor yields in acidic soils due to several nutrient deficiencies and metal
toxicities. The low availability of phosphorus (P) in acidic soils offers a natural condition for screening
genotypes for grain yield and phosphorus utilization efficiency (PUE). The objective of this study was
to phenotype a subset of indica rice accessions from 3000 Rice Genome Project (3K-RGP) under acidic
soils and find associated genes and alleles. A panel of 234 genotypes, along with checks, were grown
under low-input acidic soils for two consecutive seasons, followed by a low-P-based hydroponic
screening experiment. The heritability of the agro-morphological traits was high across seasons, and
Ward’s clustering method identified 46 genotypes that can be used as low-P-tolerant donors in acidic
soil conditions. Genotypes ARC10145, RPA5929, and K1559-4, with a higher grain yield than checks,
were identified. Over 29 million SNPs were retrieved from the Rice SNP-Seek database, and after
quality control, they were utilized for a genome-wide association study (GWAS) with seventeen
traits. Ten quantitative trait nucleotides (QTNs) for three yield traits and five QTNs for PUE were
identified. A set of 34 candidate genes for yield-related traits was also identified. An association
study using this indica panel for an already reported 1.84 Mbp region on chromosome 2 identified
genes Os02g09840 and Os02g08420 for yield and PUE, respectively. A haplotype analysis for the
candidate genes identified favorable allelic combinations. Donors carrying the superior haplotypic
combinations for the identified genes could be exploited in future breeding programs.

Keywords: peak SNP; acidic soils; rice; GWAS; haplotype

1. Introduction

Rice (Oryza sativa) is the most consumed food crop in Asia. On average, 700 and
500 million tonnes of paddy are respectively produced and consumed annually worldwide.
Around 50% of the world [1] and 34.5% of Indian [2] cultivated soils are acidic in nature.
Rice plants grown in acid soils show a reduced grain yield and plant biomass [3]. Strong
to moderate (pH 4.5–6.5) acidic soils are predominant in northeast India, especially the
rainfed lowlands of Meghalaya [4], and phosphorous (P) gets fixed into compounds that
are unavailable to plants. Traditional practices of low fertilizer application over the years
also make the soil deficient in available P, more than 60% of which that is taken up in cereal
crops is translocated into grains [5]. Therefore, developing low-P-tolerant genotypes is the
best sustainable solution for problematic acidic soils [6].

Apart from low P, acidic soils undergo other stresses like aluminum, iron and man-
ganese toxicity [7] and calcium and magnesium deficiency. Hence, screening specifically
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for low-P tolerance in acidic soils is confounded by other stresses. In early growth stages,
hydroponics is a potential method to screen a large number of accessions in a short time.
Mostly, for low-P screening, the Yoshida nutrient solution is used, and traits like root length,
root and shoot biomass and PUE (phosphorous use efficiency) are studied [8–10]. However,
traits from hydroponics cannot usually be used directly for the selection of genotypes.
Therefore, traits used for hydroponics screening, coupled with yield and related traits
under low-P field conditions, should be considered to identify potentially high-yielding
tolerant genotypes.

Although nineteen genes, thirteen mutants and many QTLs (quantitative trait loci)
are reported to govern low-P tolerance in rice [11], PSTOL1 (Phosphorous Starvation
Tolerance 1) is the only gene that is deployed in breeding programs through marker-assisted
selection [12]. Additionally, genetic background plays a major role in determining low-P
tolerance in addition to the gene itself. A diverse natural population like 3K RDP (3024,
Rice Diversity Panel) is an ideal genomic resource for identifying SNPs (single nucleotide
polymorphism) associated with low-P tolerance across diverse genetic backgrounds, and
3K RDP was established by combining accessions from the International Rice Research
Institute (IRRI) and China National Crop Gene Bank (CNCGB) [13]. All of these genotypes
were sequenced in 2014, and 32 million SNPs among these genotypes are publicly available
in the SNP-Seek IRRI database [14].

A GWAS (genome-wide association study) associates polymorphic SNPs with the
phenotype of diverse populations and thus serves as a potential tool in identifying new
genes with a high resolution across the genome in a single study [15]. Many GWAS
studies using a subset of genotypes from the 3K panel for traits like agronomic traits [15],
seedling vigor [16], drought tolerance [17], sulfur tolerance [18], seed storability [19],
weedy traits [20], low soil fertility tolerance [21] and nitrogen deficiency tolerance are
reported [22]. This dataset has also been used for an in silico polymorphism survey of
loci reported with various traits using a small set of contrasting genotypes [10,23]. In
the current study, a subset of 3K RDP was grown under low-input acidic soils with low
available P for two years, and yield and component traits were recorded. Additionally, a
low-P-stress hydroponics experiment was also conducted. GWAS led to the identification
of diverse tolerant genotypes, peak SNPs associated with low-P tolerance and superior
haplotypes imparting a higher yield under low-P conditions. Previously, we had mapped a
1.847 Mb region on chromosome 2 that is associated with a high yield under low-P acidic
soils, using a biparental mapping population [10]. In this region, several QTLs reported
for various yield-related traits, including drought-tolerant yield QTL (qDTY2.2) [24], are
located. Hence, we aimed to narrow this region down and detect associated SNPs using
the same resource and approach.

2. Results
2.1. Nature of the Soil and Population Structure of the Genotypes Grown in Acidic Soils

Soil samples were taken at five random places within the ten blocks before trans-
planting for the two consecutive years, 2020 and 2021. The soil pH ranged between 5.5
and 6, and the average P content was less than 9 kg per hectare. The 234 genotypes of
the 3K RDP (3024 rice diversity panel) belonged to eight subpopulation groups, namely
indica (ind1A, indx, ind2, ind3), aus, japonica, temperate, tropical, subtropical, aromatic
and admixtures; among them, the indica type was the highest (ind2—36%, indx—28.4%)
followed by the aus-type subgroup (19.1%) (Supplementary Figure S1A). The 34 lakh SNP
data were used to perform population structure, kinship and PCA evaluations, and the
results showed the presence of three distinct groups (Supplementary Figure S1B–F). The
grouping confirmed the 3K MDS (MultiDimensional Scaling) plot downloaded from the
SNP-Seek IRRI database [14]. The grouping was able to distinguish indica- and aus-type
genotypes that are highlighted in the representative check genotypes Swarna and Kasalath
that belong to the indica and aus types, respectively (Supplementary Figure S1C,D).
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2.2. Superior Genotypes for Yield Under Low-P Field Conditions and in Hydroponics Experiment

Ten agro-morphological (TN: Tiller number; PL: Panicle length; SPP: spikelets per
panicle; FGPP: filled grains per panicle; SF: spikelet fertility percentage; BY: biological
yield; GYPP: grain yield per plant; DM: dry matter; PY: plot yield; HI: harvest index)
and two inorganic phosphorus (Pi) estimation-related traits (PUE: phosphorus utilization
efficiency; PC: phosphorous concentration) were studied in both seasons (Supplementary
Figure S2). Variance components were obtained from the restricted maximum likelihood
(REML) method based on a combined environment analysis for field- and Pi-related traits
(Supplementary Table S2). There were significant variations among the genotypes for all
the traits studied except for SF, HI, PC and PUE, and there was no significant variation
between the two seasons. The heritability of the studied agro-morphological traits was high,
whereas the two Pi-related traits, PC and PUE, showed low heritability. The phenotypic
BLUP (best linear unbiased prediction) values of the ten agro-morphological and two
Pi estimation-related traits were calculated (Supplementary Table S3) and used for all
subsequent analyses.

The frequency distribution curve for the important traits showed a normal distribution
(Figure 1A–G), and the performance of the common checks like Kasalath and Swarna were
nearly average for all the traits. The range of GYPP was from 3.1 to 24 g in kharif, 2020 and
2.4 to 20 g in kharif, 2021. In a combined-season analysis, the data were normalized, and the
range was between 4.5 and 18 g (Figure 1A). The genotypes ARC10145, RPA5929, K1559-4
and ARC10799 had the highest GYPP of more than 17 g. Similarly, PY ranged from 63 to
563 g (Figure 1B), and the genotypes Aus paddy and ARC10145 were the highest yielders
in the combined season analysis, yielding more than 400 g. In the combined analysis,
genotypes Bir bahadur, Code no 31225, CN 44-40-7 and Sons aus exhibited more than ten
tillers. Genotypes like ARC14299, Chile boro and NCS 964C exhibited more than 35 g and
50 g of DM and BY, respectively. Checks like Shasharang, DRR Dhan48 and CAUS105 were
the high-yielding checks in both seasons (>20 g). The P concentration was between 0.7
and 1.1 mg of Pi per gram of flag leaf at harvest, and PUE ranged between 1 and 3 g per
milligram of Pi (Figure 1G). The observed PUE was highest in the genotypes DRR Dhan 48,
ARC 15,088 and Makarandasail.

Five traits (RRL: relative root length; RSFW: relative shoot fresh weight; RRFW: relative
root fresh weight; RTFW: relative total fresh weight; RTDW: relative total dry weight)
were studied for the genotypes grown in the hydroponics condition; average values were
calculated (Supplementary Table S5) to perform a two-way ANOVA. The genotypes showed
significant differences in both the control and treatment conditions for all the traits studied
(Supplementary Table S4). The genotypes Labra, ARC 12124, Lakha kuar and JC149
exhibited a significantly longer root length in the low-P treatment in comparison to the
control (Supplementary Figure S2D). The genotypes Zinco rice ms, Poongar and ARC15163
had a high root fresh weight in the treatment (Supplementary Figure S2E). For the rest of
the three traits, there was no genotype that had significantly higher values in the low-P
treatment. Banikat, ARC 10939, dudre, ARC 14901, Lanjali and seventeen other genotypes,
including check SD, exhibited positive RSFW, which is desirable.
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Figure 1. Distribution frequency using BLUP values for seven traits for 237 rice genotypes. (A) GYPP 
(grain yield per plant); (B) PY (plot yield); (C) DM (dry matter); (D) FGPP (filled grains per panicle); 
(E) TN (tiller number); (F) RSFW (relative shoot fresh weight; red and blue numbers on x axis rep-
resent positive values, respectively); (G) PUE (phosphorus utilization efficiency). The yellow and 
orange bars represent the performance of the checks Kasalath (aus) and Swarna (indica), respectively, 
while the dotted red line is a polynomial curve indicating the normal distribution for each trait. (H) 
Heatmap depicting the correlation between the eight traits. Pearson’s r values are given on the left, 
and a corresponding heatmap is shown on the right, with blue and red colors indicating positive 
and negative correlations, respectively. Significant values are indicated as * (p < 0.05), ** (p < 0.01) 
and *** (p < 0.001). 

Five traits (RRL: relative root length; RSFW: relative shoot fresh weight; RRFW: rela-
tive root fresh weight; RTFW: relative total fresh weight; RTDW: relative total dry weight) 
were studied for the genotypes grown in the hydroponics condition; average values were 
calculated (Supplementary Table S5) to perform a two-way ANOVA. The genotypes 
showed significant differences in both the control and treatment conditions for all the 
traits studied (Supplementary Table S4). The genotypes Labra, ARC 12124, Lakha kuar 
and JC149 exhibited a significantly longer root length in the low-P treatment in compari-
son to the control (Supplementary Figure S2D). The genotypes Zinco rice ms, Poongar and 
ARC15163 had a high root fresh weight in the treatment (Supplementary Figure S2E). For 
the rest of the three traits, there was no genotype that had significantly higher values in 
the low-P treatment. Banikat, ARC 10939, dudre, ARC 14901, Lanjali and seventeen other 
genotypes, including check SD, exhibited positive RSFW, which is desirable. 

2.3. Correlation Analysis and Identifying Tolerant and Susceptible Genotypes 

Figure 1. Distribution frequency using BLUP values for seven traits for 237 rice genotypes. (A) GYPP
(grain yield per plant); (B) PY (plot yield); (C) DM (dry matter); (D) FGPP (filled grains per panicle);
(E) TN (tiller number); (F) RSFW (relative shoot fresh weight; red and blue numbers on x axis
represent positive values, respectively); (G) PUE (phosphorus utilization efficiency). The yellow and
orange bars represent the performance of the checks Kasalath (aus) and Swarna (indica), respectively,
while the dotted red line is a polynomial curve indicating the normal distribution for each trait.
(H) Heatmap depicting the correlation between the eight traits. Pearson’s r values are given on the
left, and a corresponding heatmap is shown on the right, with blue and red colors indicating positive
and negative correlations, respectively. Significant values are indicated as * (p < 0.05), ** (p < 0.01)
and *** (p < 0.001).

2.3. Correlation Analysis and Identifying Tolerant and Susceptible Genotypes

Overall, seventeen different traits were measured, and a correlation matrix was plotted
(Supplementary Figure S3A). Our previous data for yield and low-P tolerance under acidic
soils suggest that eight traits, namely TN, PL, FGPP, DM, GYPP, PY, PUE and RSFW, are
important contributors to yield under a low-P soil condition. A correlation analysis for these
eight traits revealed that GYPP and PY were significant and positively associated with all
the other traits (Figure 1). Traits like PL and DM showed a significant positive correlation
with PUE and RSFW, whereas the traits TN and FGPP had a positive correlation with
RSFW. The Euclidean distance clustering (Ward’s method) based on these traits resulted
in three clusters (Supplementary Figure S3B). The genotypes belonging to cluster I were
poor yielders, whereas cluster II had high-yielding genotypes. Cluster III had average-
performing genotypes, including the checks Kasalath and Swarna. Cluster II included
checks like Shasharang, DRR Dhan48 and other genotypes that can be used to breed for
low-P tolerance [25] and high yield in acidic soils.

2.4. Identification of Desirable Haplotypes for Yield in Low-P Acidic Soils for the 1.847 Mb Region
on Chromosome 2

A 1.847 Mb region associated with low-P tolerance was previously identified on chro-
mosome 2 in a biparental population derived from SD and Chakhao Poireiton [10]. The
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region spanned from Os02g07780 at 4,073,883 bp to Os02g11130 at 5,967,668 bp with 281
annotated loci. The entire region is of 1,893,785 bp length with reference to Nipponbare,
and a total of 21,702 SNPs (single nucleotide polymorphisms) were obtained, which, on
filtering, yielded 16,090 polymorphic SNPs. A linear mixed-model approach in the EMMA
eXpedited software (version emmax-beta-07Mar2010) (EMMAX)-based association study
for this region with respect to eight traits (TN, PL, FGPP, DM, GYPP, PY, PUE and RSFW)
led to the detection of 71 peak SNPs in 25 annotated loci, with ten loci having SNPs in
exons. The genes present in the local LD (linkage disequilibrium) blocks were extracted,
and a haplotype analysis was done for 235 genotypes (Supplementary Figure S4). Three
loci, namely Os02g09820 (zinc finger C3HC4), Os02g09830 (bZIP transcription factor) and
Os02g09840 (serine/threonine-protein phosphatase 2A), included SNPs that were associ-
ated with GYPP and PY (Supplementary Table S6). Based on closely spaced SNPs within an
LD block, Os02g09840 was considered the candidate gene (Supplementary Figure S4D). A
haplotype analysis including two nonsynonymous SNPs within the genes showed signifi-
cant differences between haplotypes for both PY and GYPP (Supplementary Figure S4E–G).
The SNP at the 5,073,629th position causes a change in amino acid from alanine (C) to
glycine (G) with a sift score of ‘0’ meaning the change might have a negative effect, and
at the 5,073,665th position, there was a change in isoleucine (G) to threonine (A). Both
of these SNPs were in PP2A regulatory subunit B, EF-hand domain. Among the three
low-P-tolerant checks used in this study for which genotypic information is available, the
desirable haplotype1 was present only in IAC47. Peak SNPs were also detected for PUE
in this region, and Os02g08420 (cinnamoyl CoA reductase) was considered the candidate
gene (Supplementary Figure S4C). A haplotype analysis revealed four haplotypes, with
haplotype 1 having significantly superior PUE (Supplementary Figure S4H–I). The other
candidate genes, Os02g09820 and Os02g09830, also had nonsynonymous SNPs that were
associated with a significant increase in GYPP and PY. Three loci, Os02g10750, Os02g10920
and Os02g11000, coding for CBL-interacting protein kinase, zinc finger protein and agenet
domain-containing protein, respectively, were detected for DM and PL (Supplementary
Table S6).

2.5. Genome-Wide Association Study (GWAS) and Identification of Candidate Genes for Yield
Under Lowland Acid Soil

Four quantitative trait nucleotides (QTNs) for grain yield per plant (GYPP) in chromo-
somes 2, 5, 9 and 11 were identified (Figure 2 and Table 1).

The QTN for the grain yield per plant on chromosome 11 (QTNGYPP11.1) spanned
95 kb in length and included only one annotated gene, Os11g34110, encoding a heparan-
alpha-glucosaminide N-acetyltransferase protein. There were 16 significant peak SNPs
present with eleven nonsynonymous SNPs leading to six haplotypes (Figure 2D). There
was a decreasing trend in yield across haplotypes (Figure 2E); haplotype 1 had the highest
GYPP (13.1 ± 1.2 g), whereas haplotype 6 had the lowest GYPP (9.1 ± 0.6 g). There was a
difference of 95 g between the two haplotypes for PY (Figure 2F). Desirable haplotype1 was
present in eight genotypes, which represent 73% of temperate and 44% of tropical genotypes,
including the low-P-tolerant check Dular. Three SNPs at the 19,957,983rd, 19,959,498th, and
19,959,772th positions were deleterious (SIFT score less than 0.05) and resulted in change in
isoleucine to threonine, glycine to serine and arginine to methionine, respectively. The SNP
at the 19,959,772th position was also a splice variant. QTNGYPP2.2 spanned around 171 kb
and had seventeen annotated loci, and two peak SNPs were found within Os02g51570
(peptidyl-prolyl cis-trans isomerase) and Os02g51670 (ethylene-responsive transcription
factor). Os02g51670 was considered a candidate gene and was also associated with PY. A
nonsynonymous SNP (31,604,990th position) for Os02g51610 was associated with GYPP
(p value—4.18 × 10−6) and PY (p value—1.13 × 10−6). The QTN for GYPP on chromosome
5 (QTNGYPP5.1) spanned 151 kb and had four annotated loci; three peak SNPs each were
present within two loci, Os05g28180 (AMP deaminase) and Os05g28190 (ranBP1 protein),
respectively. Nine SNPs in Os05g28200 (prenyltransferase) were associated with the peak
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SNP, and therefore, this was considered the candidate gene (Figure 2G). A haplotype
analysis for the peak SNPs, splice variant (1,651,515th position) and associated SNPs from
upstream and coding regions of the candidate gene identified three haplotypes, and it
revealed that haplotype 1 had 2.9 g and 52 g higher GYPP and PY, respectively, than
haplotype 3 (Figure 2H). The desirable haplotype was present in indica-type genotypes.
QTNGYPP9.1 had twelve annotated loci, but SNPs were not detected within any annotated
loci. Based on the LD block, nine SNPs within Os09g23650 (FAM10 family protein), three
in Os09g23690 (UBX domain-containing protein), two in Os09g23730 (HMG-Y-related
protein) and three within Os09g23740 (1-phosphatidylinositol-4-phosphate 5-kinase/zinc
ion binding protein) were associated with the peak SNPs. The haplotype analysis for the
seven nonsynonymous SNPs in the candidate gene Os09g23650 identified five haplotypes
with a difference of 2.7 g between haplotype 1 and haplotype 5 (Figure 2I–J). The desirable
haplotype was present in 39% of aus-type genotypes, which include the low-P-tolerant
check Dular. The SNP at the 14,051,302th position causes a change in aspartic acid to
asparagine, which might exert a negative effect on GYPP. Apart from the above-mentioned
haplotypes, other single-peak genic SNPs were also detected for GYPP, like Os06g50360 (a
pseudouridine synthase), Os11g42230 (OsFBX430 F-box protein), and transporter proteins
like Os03g43720 and Os07g47100 (Table 2).
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Figure 2. Identification of candidate genes associated with grain yield per plant (GYPP) in low-P
field conditions. (A) Manhattan plot of GYPP with EMMAX model showing QTNs and associated
candidate genes (highlighted with arrows). Horizontal lines in the Manhattan plots indicate the
genome-wide thresholds -log P values of 5 (blue) and 7.5 (red). (B) Q–Q plot for GYPP. The dashed
(red) line in Q–Q plot represents significance threshold, whereas black dots represent observed values.
(C) Zoomed-in SNP likelihood LD (linkage disequilibrium) heatmap showing the peak SNP and the
position of candidate gene Os11g34110 within the dotted red triangle. Gene structure of candidate
genes—(D) Os11g34110, (G) Os05g28200 and (I) Os09g23650—with haplotype analysis of peak SNPs.
The orange, blue and white colors represent exons, UTR and introns, respectively. Nonsynonymous
SNPs are in bold; the blue-, red- and yellow-colored columns represent peak, deleterious SNP (SIFT
score < 0.05) and the splice variant, respectively. The average value for a particular haplotype (hap.)
for GYPP and PY, along with the number of genotypes (no.), is indicated. Phenotypic variation among
haplotypes for GYPP and PY with significant values (t-test) indicated as * (p < 0.05), ** (p < 0.01)
and *** (p < 0.001), respectively, for candidate genes—(E) and (F) Os11g34110, (H) Os05g28200 and
(J) Os09g23650.
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Table 1. List of QTNs detected through GWAS analysis for the traits GYPP, PY, TN and PUE.

Trait QTN Physical Position Peak SNP p Value No. Associated Loci Annotation

GYPP

QTNGYPP2.2 31583066–31756679 31583481 4.18 × 10−6 18 LOC_Os02g51670/
Os02g0752800

Ethylene-responsive transcription
factor/dehydration-responsive element-binding
protein 2B

QTNGYPP5.1 16365441–16514559 16376571 9.79 × 10−7 50 LOC_Os05g28200/
Os05g0349700 Prenyltransferase/chloroplast synthase

QTNGYPP9.1 13899180–14143315 13899180 2.33 × 10−6 4 LOC_Os09g23650/
Os09g0401200

FAM10 family protein/tetraticopeptide
domain-containing thioredoxin

QTNGYPP11.1 19883002–19959555 19948634 9.91 × 10−7 40 LOC_Os11g34110/
Os11g0543500 Heparan-alpha-glucosaminide N-acetyltransferase

PY

QTNPY2.1 29338187–29528492 29402867 7.43 × 10−7 96 LOC_Os02g48110/
Os02g0710900

DnaK family protein/
heat shock protein (Hsp70)

QTNPY2.2 31574786–31681012 31629041 1.13 × 10−6 91 LOC_Os02g51670/
Os02g0752800

Ethylene-responsive transcription
factor/dehydration-responsive element-binding
protein 2B (DREB2B)

QTNPY3.1 36339939–36362784 36339939 2.18 × 10−6 3 Loc_Os03g64300/
Os03g0860900

THION30—plant thionin family protein precursor/
WD40 repeat-like protein

QTNPY8.1 27334831–27459981 27448010 2.31 × 10−6 3 LOC_Os08g43400/
Os08g0547500 Kinesin motor domain-containing protein

PUE

QTNPUE6.1 6456833–6687984 6581539 8.55 × 10−8 59 LOC_Os06g12250/Os06g0226950 Sphingolipid C4-hydroxylase SUR2/Fatty acid
hydroxylase

QTNPU8.1 2408901–2421911 2408901 3.87 × 10−7 3 LOC_Os08g04810/Os08g0143700 Serine esterase/hydrolase
QTNPU8.2 3312360–3416391 3324300 1.88 × 10−9 58 LOC_Os08g06070/Os08g0157100 ELF7/Paf1 domain
QTNPU8.3 5958930–5965191 5965191 4.92 × 10−6 4 LOC_Os08g10260/Os08g0202400 NBS-LRR/disease resistance protein

QTNPUE11.1 27491496–27574635 27491496 1.4 × 10−6 4 LOC_Os11g45540/Os11g0681400 TKL_IRAK_DUF26-lh.11—DUF26 kinases

TN
QTNTN4.1 18509344–18532574 18509683 2.57 × 10−6 3 LOC_Os04g31000/Os04g0379300 Methyltransferase domain-containing protein

QTNTN8.1 26190355–26773599 26773599 5.75 × 10−6 10 LOC_Os08g42400/
Os08g0535800 No apical meristem protein (NAM)

No.—Number of SNPs within the QTN region.
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To confirm the association observed for the grain yield per plant (GYPP), the GWAS
for the plot yield (PY) was also performed. For PY, four QTNs were identified (details given
in Supplementary Figure S5 and Table 1). The QTN for PY on chromosome 2 (QTNPY2.1)
was 182 kb in length and had thirteen annotated loci; within this QTN, there were 96
significant SNPs, and a few were within the six annotated loci. Os02g48110, encoding a
heat shock protein and having six nonsynonymous SNPs, was considered the candidate
gene (Figure 2C). A haplotype analysis identified four haplotypes with an increase of 62 g
of PY and 2 g of GYPP between haplotype1 and 4 (Supplementary Figure S5D,E). The SNP
at the 2,94,55,392th position causes a change from arginine to histidine and might affect PY
(sift-0.03). The desirable haplotype1 was present in all indica-type genotypes, including the
tolerant check Swarna. Another locus within this region that had significant peak SNPs was
Os02g48100 (DEAD-box ATP-dependent RNA helicase). The second QTN on chromosome
2 for the plot yield (QTNPY2.2) was 106 kb in length and had nine annotated loci, and one
peak SNP each was detected in loci Os02g51550, Os02g51570, Os02g51610, Os02g51730,
Os02g51740 and Os02g51680 (trehalose-6-phosphate phosphatase). All of these genes were
also detected in QTNGYPP2.2. In this QTN, Os02g51670 (ethylene-responsive factor) had
two SNPs and was considered a candidate gene (Supplementary Figure S5F–H). Since
the locus did not have any nonsynonymous SNPs in our panel, a haplotype analysis was
performed with all the other SNPs in exons and UTR. Four haplotypes were identified, and
haplotype 1 had 1 g and 19 g higher GYPP and PY, respectively, than haplotype 4. The
desirable haplotype in this locus predominantly occurred in the aus-type population. In
QTNPY3.1, the peak SNP was not genic, but the next peak at 36,339,939 bp was associated
with Os03g64300 (thionin protein) (p value—2.18 × 10−6), which is a known plant defense
protein (Supplementary Figure S5A). Three nonsynonymous SNPs present in this gene
were used for haplotype analysis, and four haplotypes were identified, with haplotype 1
having a 1.3 g (GYPP) and 59 g (PY) yield advantage over haplotype 4 (Supplementary
Figure S5I–K). The SNP at the 36,344,929th position causes a proline-to-leucine change
with a minimum SIFT score (0) suggesting a negative effect on PY. The desirable haplotype
with a positive effect on PY is present in 72% of the aus-type population, including the
check IAC47. QTNPY8.1 spanned 125 kb in length and included 13 annotated loci, among
which two significant peak SNPs were present in Os08g43400 (kinesin motor domain-
containing protein) (p value—2.31 × 10−6), and it is considered a candidate gene. Three
other loci, namely Os08g43370 (6-phosphogluconolactonase), Os08g43380 (TBC domain-
containing protein) and Os08g43540 (peptidase), also exhibited a moderate association
with the peak SNP. The haplotype analysis of the candidate gene Os08g43400 with its
three nonsynonymous SNPs identified four haplotypes, with haplotype 1 having a 13 g
increase in PY compared to haplotype 4. The desirable haplotype was present in 72% of
the aus-type population, including the low-p-tolerant checks Dular and Kasalath. Seven
loci, viz. Os01g57110, Os04g38530, Os05g25560, Os06g17290, Os07g27140, Os11g34110 and
Os12g05040, with a single peak SNP near them, were also detected for PY (Table 2).

Two QTNs were detected for the trait tiller number (TN) on chromosomes four and
eight (Table 1; Supplementary Figure S6). The QTNTN4.1 had three SNPs and spanned
23 kb in length. Based on the SNP likelihood LD block, methyltransferase (Os04g31000)
protein-coding genes were identified as the candidate gene. A haplotype analysis for
the gene showed three possible haplotypes based on the seven nonsynonymous SNPs
within the gene and a peak SNP (18,532,574) located at the 3′ UTR region. The SNP at
18,522,640 bp had the lowest SIFT score and may cause a change in the protein conformation
and affect the TN in rice plants. Haplotypes 1 and 2 showed significantly higher TN than
haplotype3, and the desirable haplotype 1 was present in the tolerant checks Dular and
Swarna. QTNTN8.1 spanned around 583 kb and had ten peak SNPs in them. Based on
the LD block, the candidate gene was identified to be no apical meristem (Os08g42400)
protein coding. Six haplotypes were identified for this gene, which includes two SNPs
in 5′ UTR, two nonsynonymous SNPs in the second exon, one SNP in 3′ UTR and two
peak SNPs in the downstream of the gene. A higher TN was observed in haplotype 1
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(8.2 ± 0.6), followed by haplotype 2 (7.3 ± 0.5), and the other haplotypes showed a similar
tiller number (6.5–6.8).

Table 2. List of individual peak SNPs and putative candidate gene identified from GWAS analysis.

Trait Chr. SNP Position p Value Candidate Gene Annotation

GYPP

3 24425242 5.83 × 10−6 Os03g43720 Transporter family protein
6 30475205 9.64 × 10−6 Os06g50360 Pseudouridine synthase family protein

7 28158176 3.58 × 10−6 Os07g47100 Transporter, monovalent cation: proton antiporter−2
family

11 25436658 9.28 × 10−6 Os11g42230 OsFBX430—F-box domain-containing protein

PY

1 33040531 2.61 × 10−7 Os01g57110 SNF2 family N-terminal protein
4 22897241 8.88 × 10−6 Os04g38530 Aldose 1-epimerase
5 14854900 2.77 × 10−8 Os05g25560 Glycosyl hydrolase family 10 protein
6 10036143 7.20 × 10−6 Os06g17290 Phosphatidylinositol 3- and 4-kinase protein
7 15821103 3.41 × 10−6 Os07g27140 AT hook motif family protein
11 19958448 5.85 × 10−6 Os11g34110 Heparan-alpha-glucosaminide Nacetyltransferase
12 2200441 5.33 × 10−6 Os12g05040 Heavy-metal-associated protein

DM 11 19958448 2.63 × 10−6 Os11g34110 Heparan-alpha-glucosaminide Nacetyltransferase

FGPP

1 34407559 8.37 × 10−7 Os01g59490 FAD-dependent oxidoreductase domain-containing
protein

1 34419588 4.10 × 10−6 Os01g59520 Cupin, RmlC-type
1 36373428 8.65 × 10−6 Os01g62800 Methyltransferase
7 25792255 7.45 × 10−6 Os07g43040 Heavy metal-associated protein
8 1311795 1.03 × 10−6 Os08g02996 Receptor-like kinase
8 1512058 2.99 × 10−6 Os08g03260 Zinc finger family
8 24009532 4.31 × 10−6 Os08g37904 ZOS8-08—C2H2 zinc finger

PUE 2 4536291 2.02 × 10−6 Os02g08420 cinnamoyl CoA reductase

Chr.—Chromosome number; GYPP—grain yield per plant; PY—plot yield; DM—dry matter; FGPP—filled grains
per panicle; PUE—phosphorus utilization efficiency.

2.6. Genome-Wide Association Study and Haplotype Analysis for Phosphorus Utilization
Efficiency and Related Traits

Five significant QTNs were detected for the trait PUE, and a haplotype analysis for all
the candidate genes was performed (Figure 3).

The QTN for PUE on chromosome six (QTNPUE6.1) had 59 SNPs in a span of 231 kb,
with SNPs detected in three loci, Os06g12250, Os06g12260 and Os06g12280. Based on a
local LD plot, Os06g12250 (sphingolipid C4-hydroxylase SUR2) (p value—8.55 × 10−8) is
considered the candidate gene (Figure 3C). A haplotype analysis of this gene revealed that
haplotype 1 exhibited an increase of 0.3 g/mg of PUE over haplotype2 (Figure 3D). Three
QTNs were detected on chromosome eight, QTNPUE8.1 was 13 kb in length and had three
significant SNPs that were associated with Os08g04810 (Figure 3E,F). QTNPUE8.2 was
104 kb in length and had 58 significant SNPs detected in the region, which includes SNPs
in Os08g06090, Os08g06100, Os08g06180, Os08g06190 and Os08g06070. Based on a local
LD block, Os08g06070 (ELF7) (Figure 3G,H) was identified as the candidate gene. Here,
haplotypes 1 and 2 had a higher PUE than the other two haplotypes. Four significant SNPs
were present in chromosomes 8 and 11. QTNPUE8.1 had two peak SNPs directly within the
locus Os08g10260 (NBS-LRR) (Figure 3I,J). An LD block analysis around the peak SNPs of
QTNPUE11.1 identified locus Os11g45540 as the candidate gene. A haplotype analysis for
the candidate genes of QTNPUE8.3 and QTNPUE11.1 revealed that haplotype 1 exhibited
an increase in PUE of 0.3 g/mg compared to haplotype 2. All the desirable haplotypes for
PUE identified in this study were present only in indica-type genotypes, and hence, these
could be used as donors in breeding for low-p tolerance under acidic soil conditions.
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Figure 3. Identification of candidate genes associated with phosphorus utilization efficiency (PUE).
(A,B) Manhattan plot and Q–Q plot of PY, GYPP and PUE with EMMAX model showing QTNs
and associated candidate genes (highlighted with arrows). Horizontal lines in the Manhattan plots
indicate the genome-wide thresholds -log P values of 5 (blue) and 7.5 (red). The dashed (red) line
in Q–Q plot represents significance threshold, whereas black dots represent observed values. Gene
structure of candidate genes—(C) Os06g12250, (E) Os08g04810, (G) Os08g06070, (I) Os08g10260, and
(K) Os11g45540 with a haplotype analysis of peak SNPs. Orange, blue and white colors represent
exons, UTR and introns, respectively. Nonsynonymous SNPs are in bold; the blue-colored columns
represent peak SNP. The average value for a particular haplotype (hap.) for PUE, along with the
number of genotypes (no.), is indicated. (D,F,H,J,L) Phenotypic variation among haplotypes for
PUE with significant values (t-test) indicated as ** (p < 0.01) and *** (p < 0.001), respectively, for
candidate genes.

Seven single SNPs were also detected for FGPP (Table 2). Two loci, Os08g03260 and
Os08g37904, code for zinc finger protein. Os08g02996 and Os07g43040 code for a receptor-
like kinase and a heavy metal-associated domain-containing protein, respectively. Three
SNPs in chromosome 1 in genes coding for FAD-dependent oxidoreductase, cupin and
methyltransferase were also identified (Table 2). SNPs were also detected for all the other
traits studied, but an annotated potential candidate gene could not be identified, and hence,
they are not discussed in this paper. Peak SNPs present in introns of 16 annotated loci for
the traits GYPP, DM, TN, FGPP and PUE were also identified (Supplementary Table S7).

3. Discussion

The lowland rice fields of CPGS-AS, Meghalaya, have not received any inorganic P
fertilizer input for at least the past 10 years, and the soil is acidic [9,10,17]. Due to the
low pH in acidic soils, the available inorganic P is converted into non-available forms by
binding with aluminum, iron and other metal oxides, leading to a reduction in the rice yield.
Comparable low yields (less than 2 tonnes per hectare) are reported for the acidic soils of
Malaysia [26] and Indonesia [27]. Therefore, identifying alleles, genes and loci associated
with low-P tolerance in rice will help utilize them in the development of low-P-tolerant,
high-yielding rice varieties.
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Two hundred and thirty-four diverse rice genotypes (grouping into three indx, ind2
and aus distinct subgroups) belonging to 3K RDP were grown in the low-input acidic
soils for two consecutive seasons in an augmented block design with checks. Generally, a
mixed-model analysis is used to find the best linear unbiased estimation (BLUE) of fixed
effects or best linear unbiased predictions (BLUP) of random effects, and they are proven to
be effective for analyzing phenotypic and SNP data [28]. In this study, BLUP values were
calculated using data from two seasons, and there were significant variations for yield, P,
and hydroponics-related traits, with high heritability for yield-related traits. The reported
average yield per plant of genotypes grown in low-P soils was 12.9 [29] and 10 g [30], which
was similar to the average grain yield per plant of our genotypes at 9.9 g in the combined
analysis. The average phosphorous content (PC) and phosphorous utilization efficiency
(PUE) obtained in this study were 0.8 mg and 1.5 g/mg, respectively, and it was similar to
values obtained previously [31,32]. There was a decrease in the shoot weight because of P
deficiency. Seventeen genotypes including SD had a positive relative shoot fresh weight
(RSFW) in hydroponics, which indicates tolerance [6,10]. A positive correlation between
PUE and biomass is important for efficiency [31]. Phosphorous utilization efficiency (PUE)
and relative shoot fresh weight (RSFW) had a positive correlation with most of the yield and
its related traits. Based on observations in the study, ARC10145 and Selhi were the extremely
low-P-tolerant and susceptible genotypes, respectively. Ward’s clustering identified three
clusters, and genotypes of cluster II can be directly used as parents in breeding for high
yield under low-P acidic soils.

3.1. Peak SNPs Identified in Genes Involved in Abiotic Stress Tolerance in 1.8 Mb Region of
Chromosome 2

The short arm of chromosome 2 carries many QTLs, including qDTY2.2 [24] and
qGY2.4 [33], associated with grain yield under drought stress. Our previous study using
a biparental population [10] also identified a much smaller region of 1.8 Mb lying within
these QTLs that was associated with the grain yield in acidic soils. In the current study,
polymorphic SNPs identified in this region for 235 diverse genotypes were analyzed for
their association with yield and low-P tolerance-related traits in acidic soils, and twenty-five
annotated loci were identified. Os02g09840 (OsPP2A) was identified as the candidate gene
governing the grain yield per plant (GYPP) and plot yield (PY) in this 1.8 Mb region. The
OsPP2A gene is involved in various regulating signaling pathways, including growth,
biotic and abiotic stresses [34]. In rice, the members of this gene family are involved in
panicle, seed developmental stages and drought, salinity and heat stress [35]. In maize,
a similar gene (ZmPP2AA1) is known to be involved in root development and auxin
signaling under low-P responses [36]. In the current study also, a deleterious SNP variant
(5,073,629th position) in this gene caused a significant change in both PY and GYPP. The
nearby gene Os02g09830 (OsZIP16) is also known to be positively regulated under drought
stress [37]. GWAS identified a cinnamoyl CoA reductase gene (Os02g08420) for PUE
within this region. This is a lignin biosynthesis gene involved in the regulation of the
phenylalanine metabolic pathway, and it is reported to be upregulated in copper stress [38],
cell wall-related stress [39] in rice and low-P stress in Pinus massoniana [40].

3.2. Candidate Genes for Higher Yield Under Low-P Acidic Soils Identified Through GWAS

Among five QTNs detected for GYPP, the most significant was QTN11.1. The candidate
gene Os11g34110 (OsHGSNAT) was also detected for the traits PY and DM. The closest
gene, Os11g34120 (exportin 1 protein), is required for various developmental stages, and
it regulates abiotic stress tolerance. OsHGSNAT is a transmembrane enzyme known to
upregulate under low-P starvation, and it causes changes in the cell walls of rice shoots [41].
A GWAS study identified HGSNAT as a putative gene for an increase in the grain yield
of wheat grown under stress [42]. This gene was also reported to be upregulated and
show decreased methylation under cadmium stress in tobacco [43]. HGSNAT is also
known to play a role in sugar metabolism and thereby cause tomato ripening [44]. An
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increase in the sucrose and starch content of rice leaves subjected to P deficiency has been
reported in many studies [45]. Three SNPs in this gene might lead to a change in the
protein conformation and function, which might cause cell-wall remodeling and increase
the carbohydrate metabolism and thereby increase the grain yield of rice. This needs
further validation. A chloroplast synthase gene (OsCHLG) underlies the QTNGYPP5.1
detected in this study. Alternate wetting and drying are known to alleviate low-P stress
in rice, and under these conditions, the OsCHLG gene was upregulated in the flag leaf
of rice [46]. It is downregulated under alkaline stress [47]. Another significant gene in
this QTN, Os05g28180, a nucleotide metabolism-related gene, is downregulated under P
deficiency [48] and upregulated under potassium deficiency [49]. A thioredoxin protein,
Os09g23650, underlies QTNGYPP9.1 which is involved in modulating the redox status
of phosphate over accumulator (OsPHO) gene under P deprivation. SNPs detected in
single-candidate genes are also reported for several stresses. For example, Os06g50360
was upregulated under salt stress [50] and cold stress [51], and nearby Os06g50380 is a
candidate gene for aluminum tolerance [52]. Os02g51670 (OsDREB2B), the candidate gene
underlying QTN for GYPP on chromosome 2 (QTNGYPP2.2), is reported to play a negative
role in rice growth and development [53].

Loci and candidate genes detected for PY were mostly reported to be expressed in
P-related and other stresses, and they indirectly affected the grain yield. Among the four
QTNs detected for PY, the most significant was on chromosome 2. A heat shock protein-
HSP70 (Os02g48110) underlying the QTNPY2.1 is expressed under heat and biotic stress
conditions [54], and various classes of HSP are expressed under low-P stress as well [55].
Three nonsynonymous SNPs in this HSP included a deleterious variant, and they can
change the protein conformation and enhance low-P stress tolerance. Two QTNs on chro-
mosome 2, namely QTNGYPP2.2 and QTNPY2.2, overlap a previously identified QTL in
chromosome 2 governing TN, DM, FGPP and P uptake under low-P stress in rice [56].
Apart from the candidate gene Os02g51670 (OsDREB2B) for QTNPY2.2 and the nearby gene,
Os02g51680 (OsTPP7) too, is reported to be involved in starch mobilization in anaerobic ger-
mination tolerance [57]. The genes in the QTNPY2.2 govern tolerance/responses to many
biotic and abiotic stresses, and therefore, identified ‘desirable’ haplotypic combinations can
be utilized in future breeding programs addressing climate change. QTNPY3.1 harbored
the thionin protein as a candidate gene. Three different thionin proteins were previously
reported to be upregulated in rice shoots under low-P starvation [58]. QTNPY8.1 had a peak
SNP in Os08g43400 (kinesin motor domain), which is involved in cellulose deposition and
microfibril assembly in rice shoots. Other significant genes in this QTN, like Os08g43370
and Os08g43380, affect the shoot biomass under salt stress [59]. This suggests that genes
in this QTN increase the shoot biomass under stress and could thereby increase the grain
yield. Single SNPs detected for PY were also previously identified for various stresses. A
mutation in the Os01g57110 gene resulted in alkaline stress tolerance [60], Os04g38530 was
downregulated under P stress in rice leaves [61] and Os12g05040 is known to be involved
in iron stress [62].

One of the candidate genes identified for TN present in QTNTN4.1 is an ethyltrans-
ferase (Os04g31000), previously detected in a QTN for root thickness [61]. But the role
of this gene in increasing the tiller number has yet to be identified. The other identified
gene (Os08g42400/Os08g0535800) is a member of NAC transcription family reported to
be involved in various plant physiological processes like tillering and stress response [63].
Close to the methyltransferase gene is a nitrate-induced protein (Os04g31030), which is
significantly connected with Os08g42400 and other genes, as detected via the clustering co-
efficient [64], suggesting a gene co-expression pattern. Hence, both the identified candidate
genes might be activated simultaneously as a network and increase the tiller number, as
well as the panicle number (the QTNs identified for the tiller number in this study were
also observed for the panicle number.
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3.3. Candidate Genes Identified for PUE and Other Related Traits

Five QTNs for PUE were identified in this study were novel, with several underlying
genes reported to be expressed under various biotic and abiotic stresses. The sphingolipid
C4-hydroxylase (OsSUR2) gene identified in QTNPUE6.1 was highly expressed under
heat stress [65], and it is involved in rice blast tolerance and might positively regulate
abiotic tolerance [66]. The mutation in SUR2 genes affected glucosinolate biosynthesis and
increased the auxin accumulation, thereby producing more adventitious roots in Arabidop-
sis [67]. Similar mechanisms might increase the root growth in rice under P deficiency. The
candidate gene serine esterase/hydrolase (OsSH) (Os08g04810) in QTNPUE8.1 is involved
in lipid metabolism, plant development and defense responses [68]. Serine esterase gene is
known for lipid mobilization in growing rice seedlings [69]. An ELF7/PAF1 gene identified
in QTNPUE8.2 was previously identified for BLB resistance in a GWAS study [70]. A
mutation in the PAF1 gene in Arabidopsis increased arsenic tolerance [71]. Phosphorus
uptake suppresses the arsenic uptake in rice [72], and hence, allelic variants identified in
this gene might eventually increase the P uptake and utilization efficiency. Two disease
resistance genes were identified in QTNPUE8.3 and QTNPUE11.1. The NBS-LRR genes are
known to play a role in rice blast disease, and the receptor-like kinase gene, OsRLCK352
(Os11g45540) is reported for bacterial leaf blight [73]. The role of these disease-resistance
genes in governing P utilization, if any, needs to be evaluated.

Almost all the detected SNPs for FGPP were previously reported for different stages
of seed development. Os01g59490 (FAD-dependent oxidoreductase) is expressed in four
out of five stages of seed development [74], and Os08g02996 is essential for stigma and
ovary development [75]. Methyltransferase and cupin genes are also essential in the early
stages of seed development [76,77]. Zinc fingers and C2H2 type zinc fingers are involved
in seed development and abiotic stress tolerance [78]. Os07g43040 (heavy metal-associated
domain-containing protein) is known to increase grain zinc and iron [79]. These genes were
specially activated under low-P stress conditions and increased filled grains per panicle.
The identified haplotypes and the responsible candidate genes though involved in different
pathways can play a crucial role in combating the low-P stress and other related stress in
acidic soils.

4. Materials and Methods
4.1. Planting Material

A subset of 3K RDP, comprising 234 genotypes, was obtained from IIRR (Indian
Institute of Rice Research, Hyderabad) (Supplementary Table S1) and grown at the ex-
perimental farm of College of Post-Graduate Studies in Agricultural Sciences (CPGS-AS),
Meghalaya, India, for two consecutive seasons (kharif, 2020 and kharif 2021) using an
augmented randomized block design with twenty-four plants per genotype. In kharif, 2020,
sufficiently available 208 genotypes (26 genotypes were not included, as sufficient data
were not obtained) were grown in ten blocks with six checks, namely Sahbhagidhan (SD),
Kasalath (PSTOL+), Shasharang (PSTOL−), IR1552—susceptible to low P [25], CAUS105
(PSTOL+)—an advanced breeding line of CPGS-AS, and CGZRI—a low-P susceptible vari-
ety (unpublished data). Checks were replicated and maintained in the middle of all blocks,
whereas genotypes were planted only once. These six checks are the standard checks used
in the rice breeding program at CPGS-AS. In kharif 2021, all 234 genotypes were grown
in the same field with ten blocks and twelve checks (six additional checks included mega
varieties, namely Chandrahasini, CR Dhan 40, DRR Dhan 48, Protazin, Swarna and Zinco
rice ms). Checks like Swarna (PSTOL+) and CR Dhan 40 (PSTOL−) are reported to be
tolerant of low P [6]. However, the status of the remaining four checks with respect to low
P was unknown.

4.2. Phenotyping for Agro-Morphological Traits and Pi Estimation

Data were taken from ten randomly selected plants within each plot and then averaged.
Observations for ten yield-related parameters like the tiller number (TN), panicle length
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(PL) (cm), spikelets per panicle (SPP), filled grains per panicle (FGPP), spikelet fertility
percentage (SF), biological yield (BY) (grams (g)), grain yield per plant (GYPP) (g), dry
matter (DM: aboveground plant without panicles at harvest, dried and weighed in g), plot
yield (PY: weight of threshed grains from 24 plants per plot in g) and harvest index (HI:
[YPP/BY] × 100) were recorded.

Flag leaves of three plants per genotype were collected at harvest, oven-dried, pooled
and weighed. A total of 0.5 g finely chopped shoots were digested using 5 mL of diacid
(3 nitric acid: 1 perchloric acid). The shoot/flag leaf P concentration (PC: soluble Pi
concentration in mg/g) was estimated using the phosphovanadate method [80] for both
seasons, 2020 and 2021. From the PC, the phosphorous utilization efficiency (PUE) at
harvest was calculated as 1/PC [81], which is defined as the dry matter produced per unit
of P accumulated in shoot tissue [82].

4.3. Evaluation for Low-P Tolerance Under Hydroponics Condition

All the 234 genotypes and twelve checks described previously were screened for
low-P tolerance in a hydroponic experiment using a completely randomized design. In
brief terms, initially, the seeds were germinated on germination paper for six days and
then transferred to netted floaters held in individual cups with around 300 mL of Yoshida
nutrient medium (pH 4.5–5) and two replications in both the control and the treatment, with
five plants per replication. For the first seven days, both the control and treatment groups
exhibited an optimum concentration of nutrient solution with pH 5. After seven days, the
treatment cups were filled with nutrient solution with low P by reducing NaH2PO4.2H2O
to 0.015 mM, whereas the control had optimum nutrients with NaH2PO4.2H2O at 0.28 mM.
Both the control and treatment cups were refilled with a freshly made nutrient solution
every fifth day.

After 28–30 days, observations were recorded concerning traits like root length (RL:
length from base of stem to tip of the longest root in cm), shoot fresh weight (SFW: fresh
shoots were removed from roots and weighed in grams), root fresh weight (RFW: weighed
in grams), total fresh weight (TFW: SFW + RFW) and total dry weight (TDW: plants were
dried at 32 ◦C in greenhouse for 7 days and weighed in g) (Supplementary Table S1). The
observations from five plants were averaged for each replication, and relative traits were
calculated (relative trait = ((treatment − control)/control) × 100) [83]. The relative root
length (RRL), relative shoot fresh weight (RSFW), relative root fresh weight (RRFW) and
relative total fresh weight (RTFW) and relative total dry weight (RTDW) were calculated.
Genotypes lacking sufficient plants were excluded from the analysis.

4.4. Statistical Analysis of Phenotypic Data

In this study, mixed linear models were used to obtain the best linear unbiased
prediction (BLUP) values using the lme4 [84] package in RStudio. Combined season
analysis was performed by considering genotype (G), block (B), environment (E), and G
× E (interaction) as random effects, and BLUP values were retrieved for all genotypes.
These values were further used for GWAS, correlation and cluster analysis. The variance
components obtained from the mixed-model analysis were used to calculate heritability (h2

in a broad sense) as h2 = Vg/(Vg + Vgxe + Ve), where ‘Vg’, ‘Vgxe’ and ‘Ve’ are variances of
genotype, genotype x environment and error variances. The model fitting and estimations
were used as mentioned by You et al. [85]. The frequency distribution with a standard
error (Student’s ‘t-test’-one tailed, equal variance) was accomplished using MS Excel. The
hydroponics data were analyzed for a two-way ANOVA with replications using the data
analysis tool pack in MS Excel, where treatments (control and treatment) and genotypes
were considered as factors. The least significant difference was calculated as LSD = t
×

√
2 EMS/r, where ‘t’ is the table ‘t’ value at the 0.05, 0.01 and 0.001 levels, ‘EMS’ is

the error mean sum of the square of the trait and ‘r’ is the number of replications. LSD
values were used to claim significance for hydroponics data. The Euclidean distance-based
wards method of clustering genotypes for the selected traits was plotted using science
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and research online plot (SRplot, 2023) [86], a free R code-based platform for data analysis
and visualization. A correlation analysis was performed in R studio using the corrplot
package [87] and SRplot (2023) [86].

4.5. Quality Control, Threshold Identification and Association Study

The 29 million SNPs available in the Rice SNP-Seek database (2023) [14] were down-
loaded, and quality control (QC) was performed in the PLINK v2 software [88]. QC was
performed for the SNPs of these 236 genotypes (234 test genotypes + 2 checks (Kasalath and
Swarna)) with a missing rate of 10%, a minor allele frequency of 5% and a missing genotypes
rate of 5%. After the QC, there were 3,443,005 polymorphic SNPs for 235 genotypes (the
genotype ‘puttige’ was removed due to missing data). These 235 genotypes were subjected
to single locus GWAS based on a linear mixed model in the EMMA eXpedited (EMMAX)
software (version emmax-beta-07Mar2010) [89] using kinship matrix and PCA (principal
component analysis) components. A kinship BN (Balding–Nichols) matrix was constructed
using the EMMAX software version emmax-beta, and PCA analysis was performed in the
PLINK software version 1.07 (http://pngu.mgh.harvard.edu/purcell/plink/). The PCA
plot was constructed using eigenvector values in an XY scatter chart, and eigenvalues were
plotted using a line chart in MS Excel, respectively. Based on the eigenvalues screen plot,
first, three components were used as covariates (Q matrix) to account for the population
structure (Supplementary Figure S1). The effective number of independent markers (N)
was identified using the command ‘indep-pairwise 50 10 0.1’ in the PLINK software version
1.07, which identified 107,444 independent marker positions from which the p value was
calculated as (1/N) 9.3 ×10−6. Thus, a threshold of >5 was set in the Manhattan plots
to select for significantly associated SNPs/QTNs [90,91]. The Manhattan plots and their
corresponding Q–Q plots were plotted using the qqman library in R studio (version 4.1.0).
A heatmap of the kinship matrix was plotted using the GAPIT package (version 3) [92] in R
studio. The population structure was identified in the ADMIXTURE software version 1.3.0
(https://dalexander.github.io/admixture/index.html) [93], and the Q matrix was plotted
using a 100% stacked column chart in MS Excel 365.

4.6. Linkage Disequilibrium (LD) Decay, LD Plot, Gene Identification and Haplotype Analysis

LD decay is known to be between 100 and 300 kb in rice, and it varies between
chromosomes and subpopulation types [90]. Hence, a minimum, i.e., 100 kb upstream and
downstream of the peak SNPs, was searched for candidate gene prediction. The LD block
around the peak SNP was plotted using the ‘SNP likelihood LD heatmap’ function in an
SR plot. A QTN/QTL covers all the SNPs located within an LD region, and the SNP with
the smallest P value was considered the peak SNP. The loci carrying the peak SNP were
considered the candidate gene. The locus ID (RAP ID, MSU ID) and its annotations for all
chromosomes were taken from the Rice Genome Annotation Project database (2023) [94].
Loci that were annotated as expressed, unknown, hypothetical and retrotransposon protein
were ignored. The haplotype analysis was performed with peak SNPs and associated SNPs
in the exon; 5′ UTR (untranslated region), 3′ UTR, 2 kb upstream and 1 kb downstream
of an annotated locus were also utilized to find haplotypes [90]. The loci structure image
was taken from the ‘JBrowser’ option available in the Rice SNP-Seek database (2023) [14].
All the details of the SNPs and their SIFT (Sorting Intolerant From Tolerant) scores were
obtained from the Rice SNP-Seek (2023), Gramene (2023) [95] and RiceVarMap2 (2023) [96]
databases. The SNP information available for checks like Swarna and previously known
low-P-tolerant checks, including Kasalath, Dular and IAC47 [10], were also analyzed to
find their corresponding haplotypes.

4.7. Association Study for a 1.847 Mb Region on Chromosome 2

The region from 4,073,883 bp to 5,967,668 bp, spanning a length of 1.847 Mb on
chromosome 2 [10], was analyzed separately to find peak SNPs and associated loci. The
SNP retrieval, QC and association study using EMMAX were performed as mentioned in

http://pngu.mgh.harvard.edu/purcell/plink/
https://dalexander.github.io/admixture/index.html
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the previous section. A total of 16,090 SNPs was used for analysis, and based on identified
independent markers, the threshold was set to be <0.0023.

5. Conclusions

The candidate genes in the identified yield QTNs were previously reported in studies
for low-P tolerance. Genes involved in carbohydrate metabolism, cell wall modification,
heat, salinity, drought, BLB, leaf blast and related stress genes were detected for the traits
grain yield per plant, plot yield and phosphorus utilization efficiency. The haplotypic com-
binations for the important candidate genes like OsHGSNAT, OsCHLG, OsERTF, OsHSP70,
OsSUR2, OsSH and OsPAF1 were shown to significantly increase yield and PUE, and they
could be utilized in future breeding programs.
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