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ABSTRACT
Rice production in Africa is unambiguously hampered by drought. This study aimed to monitor
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the efficiency of physiological traits (stomatal conductance (gsw), transpiration rate (E)), and
leaf-reflectance (NDVI and RDVI) at vegetative (VS) and reproductive (RS) stages for selection of
drought-tolerant genotypes. To achieve these objectives, we screened 14 rice genotypes under
drought-stress and non-stress conditions in the greenhouse. At VS-drought-stress, the relative-gsw
and relative-E consistently showed efficiency in differentiating drought-tolerant genotypes APO
and UPLR-17 from the drought-sensitive ones at 11-, 18- and 27-days during VS-drought-stress,
while NDVI, CRI1 and CRI2 at 18- and 27-days. At RS-drought-stress, genotypes APO and UPLR-17
were selected as drought-tolerant genotypes based on the multi-trait-genotype-ideotyp
e-distance-index (MGIDI) confirming the selection at 11-, 18- and 27-days during VS-drought-
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stress. This consistency in selecting APO and UPLR-17 as drought-tolerant genotypes at both VS
and RS proved the efficiency of gsw, E, NDVI, RDVI, CRI1 and CRI2 in selecting for drought-tolerant
varieties at VS. Genotypes UPLR-17 and APO consistently showed homozygosity status for the
favorable alleles G, A, G and C for drought-tolerant QTLs DTY1.1 (snpOS00400), DTY1.1
(snp0S00402), DTY1.1 (snpOS00408) and DTY12.1 (snpOS00483), respectively, confirming their
drought tolerance status. At RS, with GYP recorded positive and significant correlation with RDVI,
while regression analysis revealed that 34% of the variability in GYP is explained by RDVI. The
regression analysis coupled with correlation analysis between LDS, DTF, RDVI and GYP implied
that these traits can be used as predictors of GYP at RS-drought-stress. While gsw, E and NDVI
are recommended for monitoring during VS-drought-stress screening.
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1. Introduction

Rice is unambiguously one of the most important
stable food crops in the world, but its production is
hampered by drought (Reynolds et al., 2015), which
is the most important abiotic stress in Africa affect-
ing 33% of production area (van Oort, 2018). The
increasing water deficits associated with the current
climate change scenarios have led rice breeding pro-
grams to invest considerable efforts in the produc-
tion of climate-smart rice varieties suited to grow
under water deficit environments (Sandhu et al,,
2013; Sellamuthu et al., 2015).

Targeted secondary traits have been used for
effective breeding for drought tolerance in rice
amongst which stomatal conductance (Price et al.,
2002; Tiwari et al, 2021), and delayed flowering
(Afiukwa et al., 2016; Lafitte et al., 2003; Pantuwan
et al., 2002). Even though breeding for stomatal con-
ductance is important because of its association with
yield reduction, however, this trait is reported to be
effective during the early drought-stress stage (Price
et al., 2002).

Plant responses to droughts are complex pro-
cesses involving several changes at the physiological,
biochemical and molecular levels (Adnane et al,
2015; Atkinson & Urwin, 2012). Grain yield reduction
is a result of leaf gas exchange parameters disrup-
tion (Farooq et al, 2009) by limiting the photosyn-
thetic rate which leads to the carbon flux reduction
in the reproductive organs, resulting in yield reduc-
tion (Centritto et al., 2009). The impairing effect of
drought-stress on the leaf gas exchange attributes
are reported by some previous works. Some workers
reported that four-week drought-stress induced a
significant reduction in transpiration rate, photosyn-
thetic rate and stomatal conductance amongst 11
genotypes evaluated under field conditions. Genotype
KS-282 displayed a higher transpiration rate, photo-
synthetic rate and stomatal conductance under
drought-stress than the other genotypes (Mumtaz
et al,, 2020). Other authors reported that the physio-
logical performance conducted on two contrasting
rice varieties Heena (drought-tolerant) and Kiran
(drought-sensitive) showed that the photosynthesis
rate decreased by 70% in Kiran and 50% in Heena
after seven days of drought-stress with a net promi-
nent decrease in Kiran than Heena. While comparing
these two varieties to their corresponding non-
droughted plants, both exhibited decreased transpi-
ration rate and stomatal conductance under the
stressed and non-stressed conditions. Moreover, a
significant decrease in Water use efficiency (WUE)

was noticed under drought condition in both variet-
ies with a 41% higher reduction in Kiran than Heena
(Tiwari et al., 2021).

Leaf reflectance is generally estimated through
several vegetative indices. Amongst these vegetative
indices, Normalized Difference Vegetation Index
known as NDVI (Rouse et al, 1974), Renormalized
Difference Vegetation Index known as RDVI (Roujean
& Breon, 1995) and Carotenoid Reflectance Indices
known as CRIT and CRI2 (Gitelson et al., 2002) are
often used to assess the leaf reflectance. The NDVI
measures the greenness and health of a vegetation.
It is the most used index in stress studies. It is a
robust index over a large range of conditions because
it combines normalized difference formulation, the
use of the highest absorption and reflectance regions
of chlorophyll. Under moderate drought-stress a sig-
nificant positive correlation was observed between
NDVI and grain yield, while a relatively weak correla-
tion with grain yield was noted under severe
drought-stress. Under severe drought-stress, geno-
types with high NDVI at early growth stages finished
up with lower yield at the later growth stages of the
plant. This study concluded that NDVI cannot be
suggested in screening genotypes for yield under
severe drought-stress (Thapa et al., 2019). A study
conducted on rice under normal growing conditions
has revealed that NDVI has a significant correlation
with the yield at the flowering and grain-filling
stages during the wet season, whereas during the
dry season it was between panicle initiation and the
booting stage. It was shown that NDVI can be used
in selecting high-yielding cultivars in rice breeding
programs under the tropic. By using portable equip-
ment such as PolyPen RP 410 Photon Systems
Instruments, NDVI could be adopted in breeding pro-
grams (Phyu et al., 2020). Unlike the NDVI, relatively
few studies have been reported on RDVI in assess-
ment of rice under drought-stress. The RDVI is a new
vegetation index to measure the plant health, which
is the index of interest in this study.

Most traits used in selecting for drought-tolerant
genotypes are spikelet fertility score, biomass, grain
yield, plant height, grain length, leaf rolling score,
leaf drying score, recovery from drought, chlorophyll
content index, days to flowering, tiller number, anti-
oxidant and phytohormonal activities etc (Melandri
et al., 2021) and oftentimes the combination of these
traits. Even though these traits were efficient in
selecting the drought-tolerant genotypes, majority of
them were collected at full physiological maturity or
post-harvest phase of the rice cycle. This could be a
disadvantage in a sense that the breeding cycle



became lengthy. The average breeding cycle in
sub-Saharan African countries is 8years, this can be
halved when using omics tools such as genomic
selection, but most breeding programs in Africa, par-
ticularly national agricultural research and evaluation
system (NARES) are yet to have easy and full access
to the omics technologies. In addition, breeding rice
varieties for tolerance to water deficit is a tedious
task since this trait is a complex trait governed by
plethora of genes. Moreover, breeding for drought
tolerance requires screening of large germplasm
making the exercise more troublesome. This requires
the need to establish clear and easy to measure
traits for rapid assessment for drought tolerance
especially at vegetative stage of the rice growing
cycle. Having such traits can help save time in select-
ing potential tolerant genotypes at early stage of the
rice growing cycle. Thus, the measurement of stoma-
tal conductance, transpiration, NDVI and RDVI using
specialized devices (e.g. LI-COR devices) can be one
of the ideal solutions for rapid assessment of drought
tolerance in rice.

A couple of studies used stomatal conductance
and transpiration rate in screening for rice under
drought-stress, but only few works have been
reported on monitoring the variation of stomatal
conductance, transpiration rate, NDVI and RDVI at
vegetative stage drought-stress. The knowledge of
this data will be helpful in targeting the growth
stage of the rice plant for effective selection of the
drought-tolerant genotypes. This study aimed to
monitor the efficiency of stomatal conductance, tran-
spiration rate, NDVI and RDVI at vegetative stage for
potential selection of drought-tolerant genotypes
and recommend the efficient traits to be used for
rapid assessment of rice genotypes for their toler-
ance to drought-stress. We also assessed the effi-
ciency of stomatal conductance, transpiration rate,
NDVI and RDVI in differentiating the drought-tolerant
from the drought-sensitive genotypes at the repro-
ductive stage drought-stress.

2. Materials and methods
2.1. Plant materials

Fourteen diverse West Africa rice genotypes sourced
from Crops Research Institute (CSIR-CRI), Kumasi,
Ghana and AfricaRice rice genebank was used for this
experiment. The genotypes consisted of Togo Marshall
(G6), KE40 (62), SR35266-2-12-1-1 (G73), UPLR-17
(G100), APO (G99), GR18-SARI (G65) and CRI-Enapa
(G11), ARICA 3 (G5), ARICA 2 (G63), CRI-AgraRice (G2),
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Jasmine 85 (G22), WAB 2085-TGR2-WAT4-1-1 (G53),
ART132-35-1-1-B-B (G36) and SA68-SARI (G78). In this
study, APO, a well-known drought-tolerant check is
used as a tolerant check. Results showed that the
strong antioxidant power of APO gives it the ability to
maintain a stable grain yield under drought-stress
(Melandri et al., 2021). This experiment was conducted
at the Institute for Agronomy and Plant Breeding of
Justus-Liebig-Universitat, Giessen, Germany.

2.2. Drought-stress treatment at vegetative
stage and reproductive phases

Twelve-day-old seedlings were transplanted into pots
filled with ready topsoil for potting on 24/Aug/2022.
The topsoil is prepared following the mixture of 30
litters of organic soil plus 10 litters of ceramic soil
plus 160 grams of slow-release fertilizer (15-9-
11+2MgO+TE) following Wu et al. (2021). The
humidity of the soil in the pots was measured every
two days during the drought-stress phases and once
a week during the whole experiment using the soil
moisture meter (TRIME-PICO TDR, IMKO, Ettlingen,
Germany). Thirty-three days after transplanting (veg-
etative stage), drought-stress was applied on 26/
Sept/2022 by withholding the water until the plants
showed clear symptoms of drought-stress on 22/
Oct/2022 (27-days since watering was withheld). At
the reproductive stage (when the plants started
flowering), drought-stress was applied on 01/
Dec/2022 by withholding the water until the plants
showed clear symptoms of drought-stress on 16/
Dec/2022 (16-days since watering was withheld).
Non-stressed plants were kept under well-watered
condition at 100% field capacity (FC). Throughout
the experiment the soil moisture content was kept
equal or above the field capacity (FC) of the soil
(57.75vol/vol) except during the drought-stress
phases in the stressed pots. In all the stressed pots,
it was ensured that the soil moisture content is not
below the wilting point (10.66vol/vol) before
re-watering. All the rice genotypes were grown in
the greenhouse with an average temperature
between 25 to 30°C with 70% relative humidity with
the light on from 8 a.m. to 4 p.m. A completely ran-
domized block design (RCRD) with 6 replications is
used. Each replication contained both the non-stress
and the drought-stress plates. Each plate contained
four of five litre pots with one plant per genotype
per pot. Pots were watered every three days with
approximately one litre of water per pot at vegeta-
tive and reproductive stages except the drought-stress
pots during the stress periods.
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2.3. Data collection

Number of tillers was counted on all the 14
genotypes at the end of the vegetative stressed
phase on each plant per treatment (non-stress
and drought-stress) per genotype and per
replicate.

Days to flowering (DTF) was recorded when the
first panicle on each plant per pot has shown
flowering.

Leaf drying score (LDS) was recorded on all 14
genotypes at the end of the reproductive
stressed phase on each plant per treatment
(non-stress and drought-stress) per genotype
and per replicate. Leaf drying is scored as fol-
lows: 0 (no symptoms), 1 (slight tip drying), 3
(tip drying extended up to %), 5 (one-fourth to
¥ of all leaves dried), 7 (more than 2/3 of all
leaves fully dried), and 9 (all plants apparently
dead, length in most leaves fully dried) accord-
ing to SES (2002).

Aboveground biomass yield (Bio): The abo-
veground biomass (grains+ stover) was harvested
and weighed to record the biomass weight on
all the 14 genotypes at the maturity stage on
each plant per treatment (non-stress and
drought-stress) per genotype per replicate. The
average of the six replications was recorded as
aboveground biomass yield.

Grain yield per plant (GYP): The panicle was
harvested at full maturity stage, manually
threshed and weighed to record the grain weight
on all the 14 genotypes at the maturity stage on
each plant per treatment (non-stress and
drought-stress) per genotype per replicate. The
average of the six replications was recorded as
grain yield per plant.

Leaf gas exchange parameters: Throughout the
drought-stress period, leaf gas exchange attri-
butes were measured using the LI-600 portable
photosynthesis meter (LI-COR Inc., Lincoln, NE,
USA). The medium portion of the 2" fully
expanded leaf of each genotype per treatment
(non-stress and drought-stress) per replicate was
used to measure the following physiological
parameters between 9 AM and 1PM: stomatal
conductance (gsw) in mol m=2 s, transpiration
rate (E) in mol m=2 s7', electron transport rate
(ETR) in umol m=2 s! and the quantum yield of
fluorescence (PhiPS Il). The leaf gas exchange
parameters were measured 4 times respectively
on 5-, 11-, 18- and 27-days on the same rice
plant per genotype during the vegetative

drought-stress period noted as 5D, 11D, 18D and
27D, respectively. While, during the reproductive
drought-stress period, the leaf gas exchange
parameters were measured on 14 day after the
stress initiation on the same plant used at vege-
tative stages measurements.

« Leaf reflectance parameters: Throughout the
drought-stress period, leaf reflectance parameters
were measured using the PolyPen RP 410 Photon
Systems Instruments (Czech Republic). The medium
portion of the 2" fully expanded leaf of each gen-
otype per treatment per replicate under both
non-stress and drought-stress conditions were
used to measure the following parameters
between 1PM and 4PM: normalized difference
vegetation index (NDVI), (Rouse et al., 1974), renor-
malized difference vegetation index (RDVI),
(Roujean & Breon, 1995) and carotenoid reflec-
tance indices (CRIT and CRI2), (Gitelson et al,
2002). The CRI 1 and 2 were calculated to estimate
carotenoid concentration in relation to chlorophyll
concentration. The leaf reflectance parameters
were measured 4 times respectively on 5-, 11-, 18-
and 27-days on the same rice plant for each gen-
otype during the vegetative drought-stress period
noted as 5D, 11D, 18D and 27D, respectively.
While, during reproductive drought-stress period,
the leaf reflectance parameters were measured on
14% days after the stress initiation on the same
plant used for measurements at vegetative stage.

The leaf reflectance parameters were estimated
using the following parameters:

NDV = RNIR — RRED
RNIR + RRED
RDVI = R780 - R670

JR780 + R670

crn=— L

“R510 R550

1 1

CR2=—————
R510 R700

Where, R stands for a given wavelength reflec-
tance; NDVI stands for normalized difference vegeta-
tion index; RDVI stands for renormalized difference
vegetation index; CRIT and CRI2 stand for carotenoid
reflectance indices 1 and 2; RNIR stands for a wave-
length reflectance in near infrared; RRED stands for
wavelength reflectance in red.



2.4. Effectiveness of KASP-SNP markers in
selecting for drought-tolerant genotypes

To confirm the tolerance of the selected drought-
tolerant genotypes, QTL profile using known drought
tolerance yield QTL (gDTY1.1, gDTY12.1) was used. The
QTL profile of each genotype was retrieved from the
QTL profiling data obtained from the KASP genotyp-
ing of 300 genotypes of the core breeding germ-
plasm of CSIR-CRI, Ghana using KASP-SNP markers
according to Asante et al. (2024). The QTL profiling
was done using the service of INTERTEK (ScanBi
Diagnostics AB, Alnarp-Sweden), Sweden. The sam-
ples collection and preparation were done in the Lab
at CSIR-CRI, Ghana. Leaves that were not too young
or too old were collected on three biological repli-
cates at the reproductive stage. Three leaf disks (6 mm
in diameter) of samples were collected in 96-well
plates and oven-dried for 24hours at 50°C. The sam-
ples were then packaged and shipped to INTERTEK,
Sweden, for KASP genotyping and analysis. The QTL
profile data were then sent back to the Lab at
CSIR-CRI, Ghana, where this information was used to
assist in the selection of the genotypes with toler-
ance to drought. The information on QTLs (gDTY7,
gDTY12.1) and SNPs used are summarized in Table 1.
To confirm the effectiveness of KASP-SNP markers in
selecting for drought-tolerant genotypes, we con-
ducted a hierarchical cluster from KASP genotyping
by using Euclidean distance with average UPGMA
method, with the aim to classify the genotypes into
their tolerance clusters.

2.5. Statistical analysis

Analysis of variance (ANOVA) for each trait was done
by using the GLM procedure of the Statistical Analysis
System (SAS) version 9.4 for Windows. To ensure nor-
mal distribution of the traits, before the analysis of
variance, all the traits collected were transformed
using z-score standardization in Microsoft Excel.
Duncan’s multiple rank test was used to separate the
means among the genotypes screened in the
drought-stress and non-stress experiments after the
significance of the ANOVA. Graphics were made
using R and Microsoft Excel. Pearson correlation and
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multiple linear regression analysis (R software) were
done to understand variations and relationships
among various traits and treatments.

The classification of the genotypes into their toler-
ance classes was done based on the relative value
for each trait per genotype between non-stress and
drought-stress management. The relative trait value
is calculated as trait value under drought-stress over
trait value under non-stress conditions.

If the relative trait value is equal to 1, that trait is
not affected by drought-stress, and if it is equal to 0,
complete failure of that trait due to drought-stress.
The multi-trait genotype-ideotype distance index
(MGIDI) implemented in R, was also used to select
the genotypes showing tolerance to drought (Olivoto
& Nardino, 2021). To compute the MGIDI index, the
trait relative value (drought risk index) was used as
input data. The following parameters LDS, DTF, gsw,
Et, PhiPS2, ETR, NDVI, CRI1, CRI2, RDVI, TN, Biomass
and GYP were inputted in the computation of the
MGIDI index. The selection intensity of 15 and REML/
BLUP method were used. Genotypes were considered
as random effects and repetitions as fixed effects.
Genotypes and repetitions were used as factors.

Heritability in the broad-sense (h7) was computed
following Allard (1960):

2 _ g
hbs_

ol+—=
nreps

Where, Gj and aj are the genotypic and error
variances respectively; and nreps is the number of
replications. Broad-sense Heritability (G;) estimates
were categorized as: Low (0-30%), moderate (30-
60%) and High (above 60%) according to
Johnson (1955).

3. Results

3.1. Changes in moisture content of the soil
under drought-stress at vegetative and
reproductive stages

Under vegetative stage drought, there was a pro-
gressive decrease in the soil moisture with an

Table 1. List of rice KASP-SNP markers used for genotyping known drought-tolerant QTLs for grain yield.

Target QTL Intertek SNP ID Chromosome number Position (bp) Favorable allele  Unfavorable allele
DTY1.1 snpOS00400 1 38081544 G C
DTY1.1 snp0S00402 1 39014751 A G
DTY1.1 snpOS00408 1 39610271 G T
DTY12.1 snp0S00483 12 17393569 G C
DTY12.1 snp0S00484 12 17396363 A G
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average soil water loss of 6.09vol/vol, while under
reproductive stage drought, a rapid soil moisture loss
is observed with an average soil water loss of
9.99vol/vol every three to four days. The rice plants
started to show severe drought-stress symptoms
when the soil moisture reached 18.14vol/vol at the
vegetative stage and 18.33vol/vol at the reproduc-
tive stage on average.

3.2. Weekly changes in physiological and leaf
reflectance parameters of the genotypes during
the vegetative drought stage

The data were collected on the different genotypes
at a time interval of 5-, 11-, 18- and 27-days after the
stress initiation (5D, 11D, 18D and 27D, respectively)
on drought-stressed rice plants to determine the
changes in the physiological and leaf reflectance
parameters. For the physiological parameters, stoma-
tal conductance (gsw) in mol m=2 s™' recorded a pro-
gressive decrease from 5D to 27D on all the
genotypes except G100 and G99. Genotype (G100)
recorded an increase of 29.28% from the 18D
(0.158mol m=2 s71) to 27D (0.205mol m=2 s7') while
G99 recorded the lowest reduction of 17.89% from
the 18D (0.25Tmol m=2 s7') to 27D (0.206 mol m™2
s7"), (Additional file 1_S1). For the quantum yield of
fluorescence (PhiPS II), a progressive reduction was
equally observed from 5D to 27D on all the geno-
types except G100 and G99, and G63 which recorded
a slight increase over the time interval of 5D to 27D
(Additional file 1_S1). Transpiration rate (E) in mol
m~2 57! recorded the similar pattern as stomatal con-
ductance. A progressive and rapid decrease was
recorded from 5D to 27D on all the genotypes except
G100 and G99. Genotype G100 recorded an increase
of 89.97% of transpiration rate from 18D (1.726mol
m~2s7") to 27D (3.279 mol m~2 s7') while G99 recorded
an increase of 20.33% from 18D (2.447mol m=2 s77)
to 27D (2.944mol m=2 s7"), (Additional file 1_S1).
Electron transport rate (ETR) in umol m=2 s7' recorded
high ETR values at 5D and 27D for all the genotypes
except G100 which recorded a progressive decrease
in ETR from 5D to 27D (Additional file 1_S1). For leaf
reflectance parameters, NDVI recorded high values at
5D followed by a progressive decrease from 11D to
27D in all the rice genotypes expect G99 and G78
which recorded a slight and progressive increase at
11D to 27D (Additional file 1_S2). Renormalized dif-
ference vegetative index (RDVI) recorded higher val-
ues on 5D and 27D while the lowest values were
obtained on 11D (Additional file 1_S2). Carotenoid
reflectance index 1 and 2 (CRI1 and CRI2) displayed

similar pattern. Both indexes (CRI1 and CRI2) scored
highest at 5D followed by a rapid decrease at 11D,
18D and 27D. The previously selected two
drought-tolerant genotypes, namely G99 and G100,
and G78 maintained the highest CRI1 and CRI2 val-
ues at 27D (Additional file 1_S2). In this study, CRI1
and CRI2, stomatal conductance, transpiration rate,
Electron transport rate and PhiPS Il exhibited enough
variation and pattern for tolerance to drought among
the genotypes and therefore can be used as a selec-
tion criterion at the vegetative stage drought-stress.

3.3. Mean performances of the rice genotypes
under vegetative stage drought-stress and
non-stress conditions

Overall genotypes mean for each trait, coefficient of
variations (C.V.%) and broad-sense heritability (h%,)
from the analyses of variances of 14 rice genotypes
evaluated for eight physiological and leaf reflectance
traits under non-stress and drought-stress conditions
at 5-, 11-, 18- and 27-days after the drought-stress
initiation is presented in Table 2.

3.3.1. Five days (5D) after the drought-stress
initiation

The analysis of variance (ANOVA) revealed the presence
of significant differences among the rice genotypes for
NDVI, CRIT and CRI2 under non-stress conditions, while
under drought-stress, significant differences were
observed on stomatal conductance, NDVI and RDVI at
5D (Additional file 1_S3). Under both non-stress and
drought-stress conditions, NDVI and RDVI recorded low
C.V. and moderate to high broad-sense heritability. Low
to moderate C.V. were obtained under non-stress con-
ditions (NDVI=1.87 and RDVI=3.95) and drought-stress
(NDVI=2.01 and RDVI=4.48). Moderate to high CV.
were obtained under non-stress conditions (CRIT1=13.43
and CRI2=13.63) and drought-stress (CRIT=13.09 and
CRI2=12.97) combined with moderate to heritability
values (Additional file 1_S3). High C\V. and moderate
heritability were also recorded for stomatal conduc-
tance under both drought-stress and non-stress
conditions.

The means performance with the ranking of the
genotypes using the Duncan multiple rank test is pre-
sented in Table 3. Genotypes G63 recorded the high-
est stomatal conductance value of 0.763mol m=2 s~
under drought-stress and 0.749mol m=2 s~' under
non-stress conditions. Genotype G63 is followed by
G65 under both water regimes and both genotypes
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are not statistically different in their mean perfor-
mance at 5-days after the drought-stress initiation
(5D). The lowest value of 0.254mol m=2 s~ of stomatal

conductance under 5-days drought-stress was occu-

pied by G53, while Togo Marshall recorded the lowest

value (0.287 mol m=2 s7') under non-stress conditions.

Statistically, G53 showed a difference in the mean per-

formance with G63 and G65. Genotype G6 recorded
the highest NDVI of 0.780 under both drought-stress

and non-stress conditions. Genotype G6 is followed
by G2 and G78 under drought-stress. Under non-stress

otypes are not statistically different in their mean per-
formance at 5D. The lowest value of 0.747 of NDVI
under 5-days drought-stress was occupied by G63,

conditions, SA68-SARI topped first (0.783) followed by
G6 and G2. Under both water regimes the three gen-

while G11 recorded the lowest value (0.736) under
non-stress conditions. Statistically, G63 showed a dif-
ference in the mean performance with G6 but not
with G2 and G78 under 5-days drought-stress. On the
other hand, under the non-stress conditions G11

showed a statistical difference in the mean perfor-

mance with G6, G2 and G78.

3.3.2. Eleven days (11D) after the drought-stress

initiation
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At 11-days after the drought-stress initiation (11D),
ANOVA revealed the presence of significant differ-

Under

drought-stress conditions, ANOVA showed significant

).

file 1.S4

ences among the rice genotypes for NDVI under

non-stress conditions (Additional

Additional file 1_S4).

Under both non-stress and drought-stress conditions

differences for CRI1 and CRI2 (

all the leaf reflectance parameters namely NDVI, RDVI,

CRI1 and CRI2 recorded low to moderate CV. and

moderate to high heritability. Low to moderate C.V.

=7.62) and
CRI1=5.96

CRI2

CRIN=737 and

3.94,

obtained under non-stress conditions (NDVI=1.62,

RDVI

RDVI=3.94,

(NDVI=1.51,
6.63) were obtained at 11D. Moderate her-

itability under non-stress conditions (CRI1=42.24 and

drought-stress
and CRI2

64.34) were recorded at 11D

44.66) and high heritability under drought-stress
(CRI1=68.77 and CRI2=

CRI2

in this study (Additional file 1_S4). High CV. and

moderate heritability were also recorded for stomatal

both

rate under

drought-stress and non-stress conditions. The means
In general, the mean performance of all the gen-

performance with the ranking of the genotypes using
the Duncan multiple rank test is presented in Table 4.
otypes has been decreased notably under drought-

conductance and transpiration

stress compared to the non-stress conditions for


https://doi.org/10.1080/23311932.2025.2453086
https://doi.org/10.1080/23311932.2025.2453086
https://doi.org/10.1080/23311932.2025.2453086

stomatal conductance and transpiration rate for all
the genotypes except G100 and G6. Genotype G22
recorded the highest stomatal conductance (0.340 mol
m= s7') and transpiration rate (4.593mol m=—=2 s7)
under drought-stress and 0.557mol m= s7' and
6.504mol m=2 s7' respectively for stomatal conduc-
tance and transpiration rate under non-stress condi-
tions. Genotype G22 was followed by G100 and G6
under drought-stress for stomatal conductance while
G100 and G99 for transpiration rate. Under non-stress
conditions, G22 was followed by G63 and G65 for
stomatal conductance and G63 and G99 for transpi-
ration rate. The lowest stomatal conductance
(0.116mol m=2 s7') and transpiration (1.875mol m=
s7") under 11-days drought-stress was occupied by
G53, while G6 recorded lowest value for stomatal
conductance (0.184mol m=2 s') and transpiration
rate (2.659mol m—-2s-1) under non-stress condi-
tions. Statistically, there was no difference in the
mean performance among all the genotypes at 11D
under each water regime for the stomatal conduc-
tance and transpiration rate. Genotype G53 recorded
the highest NDVI of 0.695 under drought-stress.
Genotype G53 was followed by G6, G5 and G65
recording NDVI of 0.694 each under drought-stress.
Under non-stress conditions, G78 topped first (0.698)
followed by G53, G2 and G6.

Under non-stress conditions, these four genotypes
showed statistical differences in their mean perfor-
mance at 11D, while no statistical difference was
seen under drought-stress conditions. The lowest
value of 0.678 of NDVI under 11-days drought-stress
was occupied by G99, while G11 recorded the lowest
value (0.662) under non-stress conditions. Statistically,
G99 showed no significant difference in the mean
performance with other genotypes under 11-days
drought-stress. On the other hand, under non-stress
conditions G11 showed a statistical difference in the
mean performance with G53, G6, G2 and G78.
Genotype G99 recorded the highest CRI1 (5.382) and
CRI2 (5.173) under drought-stress. Genotype G99 is
followed by G5 recording CRI1 of 5.259 and by G53
recording CRI2 of 5.016 under drought-stress. Under
non-stress conditions, G99 topped first for both CRI1
(5.421) and CRI2 (5.185) followed by G53. Under both
water regimes, these genotypes showed no statistical
differences among themselves in their mean perfor-
mance at 11D. The lowest value of CRI1(4.682) and
CRI2 (4.404) under non-stress conditions was occu-
pied by G63, while G73 recorded the lowest value of
CRI1 (4.643) and CRI2 (4.440) under non-stress condi-
tions. Statistically, G73 showed a significant differ-
ence in the mean performance with other genotypes

COGENT FOOD & AGRICULTURE . 9

under 11-days drought-stress. On the other hand,
under non-stress conditions, G73 showed no statisti-
cal difference in the mean performance with other
genotypes.

3.3.3. Eighteen days (18D) after the drought-stress
initiation

At 18-days after the drought-stress initiation (18D),
ANOVA revealed the presence of significant differ-
ences among the rice genotypes for transpiration
rate, CRI1, CRI2 and RDVI under non-stress condi-
tions. Under drought-stress, ANOVA revealed signifi-
cant differences for PhiPS I, NDVI, RDVI, CRI1 and
CRI2 (Additional file 1_S5). Under both non-stress
and drought-stress conditions all the leaf reflectance
parameters namely NDVI, RDVI, CRIT and CRI2
recorded moderate C.V. and moderate to high herita-
bility. Moderate C.V. was obtained under non-stress
conditions (CRI1=7.65 and CRI2=8.34) and
drought-stress (CRI1=6.67 and CRI2=7.24), and mod-
erate heritability under non-stress conditions
(CRIT=51.63 and CRI2=49.18) and high heritability
under drought-stress (CRI1=61.74 and CRI2=60.54)
was obtained at 18-days drought-stress in this study.
High C.V. and moderate to high heritability were also
recorded for stomatal conductance and transpiration
rate under both drought-stress and non-stress condi-
tions. The means performance with the ranking of
the genotypes using the Duncan multiple rank test is
presented in Table 5 at 18D.

In general, the mean performance of all the geno-
types has been reduced notably under drought-stress
compared to the non-stress conditions for stomatal
conductance and transpiration rate for all the geno-
types. Genotype G99 recorded the highest stomatal
conductance (0.251mol m=2 s7") and transpiration rate
(2447mol m=2 s and PhiPS2 (0.726) under
drought-stress. Genotype G99 was followed by G2
under drought-stress for stomatal conductance, tran-
spiration rate while G62 and G100 for PhiPS2. Under
non-stress conditions, the genotypes G63 recorded
the highest stomatal conductance (1.003mol m=2 s7")
and transpiration rate (4.929mol m=2 s7") and G99 for
PhiPS2 (0.732). Genotype G63 is followed by G78 for
stomatal conductance and G5 for transpiration rate
and G99 is followed by G62 and G100 for PhiPS2. The
lowest stomatal conductance (0.086mol m=2 s~') and
transpiration rate (0.981mol m=2 s7') under 18-days
drought-stress was occupied by G53 and G65 (0.652)
for PhiPS2, while G53 recorded lowest value for sto-
matal conductance (0.295mol m=2 s7') and transpira-
tion rate (2.459mol m=2 s7') and G63 (0.626) for PhiPS2
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under non-stress conditions. Statistically, there were
differences in the mean performance at 18D between
G99 and G53 for transpiration rate under non-stress

conditions and PhiPS2 under drought-stress. The gen-

otype G5 recorded the highest NDVI of 0.697 under
drought-stress. Genotype G5 was followed by G65

and G6 recording NDVI of 0.694 and 0.693, respec-
tively under drought-stress. Under non-stress condi-

tions, G6 topped first (0.697) for NDVI followed by
G78. Under drought-stress conditions, these geno-

performance at 18D, while no statistical difference

types showed statistical differences in their means
was seen under non-stress conditions. The

lowest

value of 0.675 and 0.680 of NDVI was occupied by
G99, under non-stress and 18-days drought-stress,
respectively. Statistically, G99 showed a significant dif-

ference in the mean performance with other geno-
types under 18-days drought-stress. On the other
hand, under non-stress, no statistical difference was

observed among the genotypes.

Genotype G100

recorded the highest value of CRI1 (5.149) and CRI2
(4.944), while G73 and G5 recorded the highest value

4911).

for RDVI (0.563) under drought-stress. Genotype G100

was followed by G36 (CRI1=5.112 and CRI2

Under non-stress, G5 topped first for both CRI1(5.196)
and CRI2(4.909) followed by G100, while G6 topped

first for RDVI (0.553) followed by G11.

Under both

water regimes, these genotypes showed no statistical
differences among themselves in their means perfor-

mance at 18D. The lowest value of CRI1(4.442) and

CRI2 (4.129) under non-stress was occupied by G11,
while G99 showed the lowest value for RDVI (0.517).

and CRI2 (4.165) under drought-stress, while G36

Genotype G73 recorded lowest value of CRI1(4.377)
showed the lowest value for RDVI (0.514).

3.3.4. Twenty-seven days (27D) after the drought-

stress initiation
At 27-days after the drought-stress initiation (27D),

ANOVA revealed the presence of significant differences

among the rice genotypes for TN, CRI1, CRI2 and RDVI

under non-stress conditions.

Under drought-stress,

ANOVA showed significant differences among the rice
genotypes for TN, stomatal conductance, and transpi-

). Under both non-stress
6.76) and drought-stress

Additional file 1_S6
and drought-stress, all the leaf reflectance parameters

namely NDVI, RDVI, CRI1 and CRI2 recorded low to
moderate CV. and moderate to high heritability.
Moderate C.V. was obtained under non-stress condi-

tion (CRI1=6.47 and CRI2

ration rate (

79.28)

(CRIN=16.11 and CRI2=12.02), while high heritability

under non-stress condition (CRI1=78 and CRI2
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and moderate heritability under drought-stress
(CRI2=35.86) were obtained (Additional file 1_S6).
High C.V. and moderate to high heritability were also
recorded for tiller number, stomatal conductance and
transpiration rate under both drought-stress and
non-stress conditions. The means performance with
the ranking of the genotypes using the Duncan multi-
ple rank test is presented in Table 6 under 27-days
drought-stress. In general, the mean performance of
all the genotypes has been reduced notably by more
than 60% under drought-stress compared to the
non-stress conditions for stomatal conductance and
transpiration rate for all the genotypes except G99 and
G100. Genotype G99 recorded the highest stomatal
conductance (0.206mol m=2 s7') followed by G100
(0.205mol m=2 s71) and G78 (0.080mol m=2 s71), while
G22 recorded the lowest value of 0.031mol m=2 s
under the 27-days drought-stress. Genotype G100
recorded the highest transpiration rate (3.279mol m=
s7") followed by G99, G78 and G6 under drought-stress,
while G22 recorded the lowest value of 0.599mol m=2
s7!. Genotype G100 recorded the highest PhiPS2
(0.738) followed by G99, G11 and G62 under
drought-stress, while G73 recorded the lowest value of
0.609. Under non-stress conditions, the genotype G22
recorded the highest stomatal conductance (0.869 mol
m~2 s71) followed by G63 and G78, while G73 recorded
the lowest value of 0.314mol m=2 s~'. Genotype G22
recorded the highest transpiration rate (5.705mol m=
s7") followed by G78, G6 and G100 under non-stress
conditions, while G11 recorded the lowest value of
2.112mol m=2 s7'. Genotype G36 recorded the highest
PhiPS2 (0.711) followed by G100, G6 and G62 under
non-stress conditions, while G11 recorded the lowest
value of 0.556. Statistically, there was a significative dif-
ference in the mean performance at 27D between G99
and G22, and between G100 and G22 for stomatal
conductance  and  transpiration  rate  under
drought-stress, respectively.

Genotype G53 recorded the highest NDVI of 0.701
under drought-stress. Genotype G53 was followed by
G5 and G99 recording NDVI of 0.697 and 0.694,
respectively under drought-stress conditions. Under
non-stress conditions, SA68-SARI topped first (0.704)
followed by G53 for NDVI. The lowest value of 0.678
and 0.649 of NDVI was occupied by G11 and G63,
under non-stress conditions and 27-days drought-stress,
respectively.

Under both water regimes no statistical difference
was observed between G11 and G63 with other gen-
otypes. Genotype G99 recorded the highest value of
CRI1 (4.902) followed by G78 and G100, while G63
recorded the lowest value of CRI1 (3.705) under
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27-days drought-stress. Genotype G78 recorded the
highest value of CRI2 (4.689) followed by G100 and
G99 while G63 recorded the lowest value CRI2 (3.706)
under 27-days drought-stress. Genotype G73 recorded
the highest value of RDVI (0.573) followed by G5 and
G53, while G2 recorded the lowest value of RDVI
(0.536) under 27-days drought-stress. Under non-stress
conditions, G99 recorded the highest value of CRI1
(5.652) followed by G65 and G53, while G63 recorded
the lowest value of CRI1 (4.389) under non-stress con-
ditions. Genotype G99 recorded the highest value of
CRI2 (5.492) followed by G100 and G53, while G63
recorded the lowest value of CRI2 (4.128) under
non-stress conditions. Genotype G78 recorded the
highest value of RDVI (0.566) followed by Togo
Marshall and G2, while G99 recorded the lowest value
of RDVI (0.492) under non-stress conditions.

Based on the relative value of the leaf gas exchange
attributes and leaf reflectance parameters (Additional
file 1_S7), G11 and G73 were best performing under
5-days drought-stress based on high relative NDVI,
relative CRI, relative CRI2, relative stomatal conduc-
tance and relative transpiration rate. Genotypes G6
and G100 were best performing under 11-days
drought-stress based on high relative RDVI, relative
stomatal conductance and relative transpiration rate.
Genotypes G99 and G100 were best performing to
18-days drought-stress based on high relative NDVI,
relative CRI, relative CRI2, relative stomatal conduc-
tance and relative transpiration rate. Genotypes G99
and G100 were best performing under 27-days
drought-stress based on high relative NDVI, relative
CRI, relative CRI2, relative stomatal conductance and
relative transpiration rate. Genotypes G11 and G78
were also considered among the best performing
under 27-days drought-stress based on high relative
PhiPS2, relative CRI, relative CRI2, relative stomatal
conductance and relative transpiration rate.

3.4. Mean performance of the rice genotypes
under both reproductive stage drought-stress
and non-stress conditions

During the reproductive stage of drought-stress, ANOVA
revealed the presence of significant differences among
the rice genotypes for ETR and RDVI under non-stress
conditions. Under drought-stress conditions, ANOVA
revealed no significant differences for all the traits
among the genotypes. Under both non-stress and
drought-stress conditions, all the physiological and leaf
reflectance parameters recorded moderate to high CV.
and low to moderate heritability (Additional file 1_S8).
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The means performance with the ranking of the geno-
types using the Duncan multiple rank test is presented

the

all

rate and PhiPS2 for

genotypes except G11 for stomatal conductance and

pared to the non-stress conditions for stomatal conduc-
transpiration

in Table 7 under reproductive drought-stress stage. In
general, the mean performance of all the genotypes
has been reduced notably under drought-stress com-

tance,

m=2 s7'), while G53 recorded the lowest value of
0.090mol m=2 s7' under reproductive drought-stress.

recorded the highest stomatal conductance (0.353 mol
Genotype G100 recorded the highest transpiration rate

PhiPS2, and G100 for transpiration rate. Genotype G100

(2.948mol m=2 s7"), while G5 recorded the lowest value
of 0.919mol m=2 s7" under reproductive drought-stress.

Genotype G11 recorded the highest PhiPS2 (0.689) fol-

reproductive

by G100 (0.645) under
drought-stress, while G36 recorded the lowest value of

lowed

0.379. Genotype G100 recorded the highest NDVI of
0.693 under drought-stress followed by G78, G99 and
G11 with the lowest value of 0.628 for G36. Under

drought-stress conditions, G11 topped first for RDVI

(0.571) followed by G62 and G99 with the lowest value

of 0.513 for G2. Genotype G11 recorded the highest
drought risk index for stomatal conductance or relative

stomatal conductance (1.135), relative PhiPS2 (1.172),
relative CRIT (1.104), relative CRI2 (1.063) and topped
second for relative transpiration rate (0.980), third for

relative RDVI (1.035). Genotype G100 recorded the
highest relative transpiration rate (1.020), relative ETR

(1.553), relative NDVI (1.035), and topped second for
relative stomatal conductance (0.754), relative PhiPS2
(0.950), relative CRI1 (1.051), relative CRI1 (1.039) with a

high value of relative RDVI (1.001). Based on the above
results from the physiological and leaf reflectance

parameters analysis using the relative value of the
traits, the following genotypes namely, CRI-Enapa (G11),

the best performing under the reproductive stage

UPLR-17 (G100), APO (G99) and SA68-SARI (78) were
drought-stress.

3.5. Mean performance of the rice genotypes

Id and yield-related traits

under drought-stress and non-stress based on
grain yie

ences among the rice genotypes for all the grain
yield and yield-related traits namely days to flow-
ering (DTF), leaf drying score (LDS), aboveground
biomass (grain +stover) and grain yield per plant

ANOVA revealed the presence of significant differ-
under both drought-stress and non-stress condi-

non-stress conditions.
and  drought-stress

non-stress

tions except DTF under
both

Under
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Table 7. Mean performance of 14 rice genotypes evaluated for eight physiological and leaf reflectance traits under reproductive drought-stress and non-stress conditions at the

Institute for Agronomy and Plant Breeding of Justus-Liebig-University of Giessen, Germany in 2022.

RDVI

CRI2

CRIN

NDVI

ETR

PhiPS2

gsw

DS
0.536a
0.556a
0.542a
0.542a
0.551a
0.532a
0.516a
0.544a
0.513a
0.571a
0.541a
0.536a
0.526a
0.526a

NS
0.543acd
0.513abd
0.552ac

DS
3.712a
3.227a
3.662a
4.234a
3.664a
3.643a
4.052a
3.555a
3.868a
3919
3.902a
3.828a
3.355a
4.116a

NS
3.962a
4.068a
4.083a
4.073a
3.981a
4.297a
4.371a
3.682a
3.881a
3.686a
3.795a
4.403a
4.513a
4.211a

DS
3.827a
3.232a
3.744a
4.460a
3.897a
3.854a
4.204a
3.673a
3.948a
4.277a
4,018a
3.921a
3.059a
4.386a

NS
4.160a
4.243a
4.255a
4.242a
4.269a
4.460a
4.571a
3.854a
4.060a
3.875a
4.011a

DS
0.660a
0.638a
0.664a
0.693a
0.674a
0.655a
0.670a
0.659a
0.652a
0.673a
0.659a
0.664a
0.628a
0.677a

NS
0.676a
0.660a
0.681a
0.669a
0.687a
0.680a
0.685a
0.651a
0.679a
0.666a
0.682a
0.685a
0.663a
0.688a

DS
19.28a
27.26a
19.27a
29.40a
23.60a
22.79a
22.36a
16.96a
26.96a
23.47a
30.55a
24.52a

NS
12.57¢

DS
0.539a
0.615a
0.460a
0.645a
0.582a
0.601a
0.589a
0.390a
0.618a
0.689a
0.554a
0.486a
0.379a
0.497a

NS
0.652a
0.683a
0.617a

DS
1.865a
2.289%
1.230a
2.948a
1.162a
1.901a
0.919a
1.673a
1.235a
1.797a
1.836a
0.927a
2.347a
1.216a

NS
3.367a
3.204a
3.074a
2.889a
2.426a
3.041a
4111a
3.945a
3.705a
1.835a
3.345a
3.806a
3.473a
3.886a

DS
0.260a
0.278a
0.116a
0.353a
0.160a
0.225a
0.100a
0.227a
0.159a
0.314a
0.242a
0.090a
0.350a
0.113a

NS
0.638a
0.568a
0.608a
0.468a
0.390a
0.591a
0.895a
0.743a
0.532a
0.276a
0.521a
0.662a
0.620a
0.688a

Genotype

ID
G6

Togo Marshall

KE40

20.83abc
17.19ac
18.94ac

G62
G73

SR35266-2-12-1-1

G100 UPLR-17

0.547acd
0.548acd

0.679a
0.652a
0.683a
0.644a
0.648a
0.676a
0.588a
0.587a
0.677a
0.754a
0.697a

19.33ac

APO

G99
G65

0.527abcd

19.36ac

GR18-SARI
ARICA 3

0.532abcd
0.510bd
0.539acd
0.552ac
0.556¢

22.01abc

G5

27.54ab
31.27b

ARICA 2

G65
G2

CRI-Agrarice
CRI-Enapa

20.95abc
21.76abc
21.99abc
20.55ac

Jasmine 85

G22

0.526abcd
0.496b

4.599a
4.788a
4.399a

WAB 2085-TGR2-WAT4-1-1
ART132-35-1-1-B-B

SA68-SARI

G53
G36

7.77a
25.66a

0.542acd

19.49ac
gsw-Stomatal conductance; E-transpiration rate; PhiPS Il-Quantum yield of fluorescence; ETR-Electron transport rate; NDVI-Normalized difference vegetative index; CRI1-Carotenoid reflectance index 1; CRI2-Carotenoid

G78

reflectance index 2; RDVI-Renormalized difference vegetative index; abcde- letter used to rank the genotypes based on the Duncan multiple rank test, the mean value with the same letter for a particular trait under

the drought-stress or non-stress means these genotypes are not statistically different in their mean performance for that trait under weather the drought-stress or non-stress conditions; ID-Genotype Identity; NS-Non-

stress; DS-Drought-stress.
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conditions for all the grain yield and yield-related
traits namely LDS, aboveground biomass and grain
yield per plant recorded high C.\V. except DTF
which had moderate C.V. High heritability was
obtained for all the grain yield and yield related
traits namely DTF, LDS, aboveground biomass and
grain yield per plant under both non-stress and
drought-stress except DTF which recorded moder-
ate heritability under non-stress conditions indi-
cating that selection will be effective for these
traits (Additional file 1_S9&10).

In general, the flowering date of all the geno-
types has been delayed at least by more than
5-days under drought-stress compared to the
non-stress conditions except G99, G100 and G11
which flowered earlier under drought-stress com-
pared to the non-stress conditions with 1.17 days,
3.37days and 6.00days, respectively. Genotype G5
recorded the highest delay in DFT (14.67 days) fol-
lowed by G36 (13.50days), while G2 recorded the
lowest value of 5.67 days under drought-stress. On
the other hand, the highest LDS were obtained on
G36 (7.00) and G53 (5.67), while G78, G100 and
G11 ranked lowest with LDS of 1.17, zero and zero,
respectively. Genotype G99 recorded an LDS of
2.50, while G6 scored 3.00. The mean performance
of all the genotypes has been reduced notably
under drought-stress compared to non-stress con-
ditions for the aboveground biomass except G100
which recorded a similar aboveground biomass
under non-stress (109.16g) and drought-stress
(108.719) conditions with a relative biomass of
1.00. Second to G100, G11 recorded a relative bio-
mass of 0.87 with aboveground biomass of 239.52¢g
under drought-stress and 275.53 g under non-stress
conditions. Genotype G53 ranked lowest for a rel-
ative biomass value of 0.43 with aboveground bio-
mass of 279.65 g under drought-stress and 643.32g
under non-stress conditions, implying its high sen-
sitivity to drought-stress. The mean performance
of all the genotypes has been notably reduced
under drought-stress compared to the non-stress
conditions for grain yield. Genotype G100 recorded
the highest relative grain yield value of 0.62 with
the grain yield of 8.18g per plant under
drought-stress and 13.26g per plant under
non-stress conditions, confirming its tolerance to
drought-stress.

Genotype G73 ranked second to G100 with a rel-
ative grain yield of 0.34, a grain yield per plant of
11.83g under drought-stress and 34.53g under
non-stress conditions. Next to G73, was G99 which
scored 0.32 of relative grain yield with the grain yield
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per plant of 9.33g under drought-stress and 29.52¢g
under non-stress conditions. The lowest relative grain
yield of 0.03 was recorded by G5 with a grain yield
per plant of 0.29g under drought-stress and 9.60g
under non-stress conditions. The genotypes perfor-
mances in the greenhouse under drought-stress and
non-stress conditions after two weeks of drought-
stress at the reproductive stage are presented in
Figure 1. The means performance with the ranking of
the genotypes under drought-stress using the
Duncan multiple rank test is presented in Figure 2.
Based on the above results from grain yield and rel-
ative vyield-related traits analysis, UPLR-17 (G100),
APO (G99), SR35266-2-12-1-1 (G73) and CRI-Enapa
(G11) were the best performing genotypes.

On the other hand, MGIDI index using the rela-
tive values of all the traits (LDS, DTF, gsw, Et,
PhiPS2, ETR, NDVI, CRI1, CRI2, RDVI, TN, Biomass
and GYP) was employed to select for the
drought-tolerant genotypes at reproductive stage
drought-stress (Figure 3). The following genotypes
were selected in the chronological order: APO
(G99) and UPLR-17 (G100).

3.6. Relatedness and regression analysis among
the traits under reproductive stage drought-
stress and non-stress

The Pearson correlation analysis conducted at
reproductive stage drought-stress revealed that
under drought-stress, grain yield has a negative
significant correlation with delay in flowering and
DTF, and positively significantly associated with
RDVI, while negatively with no significance related
to LDS. This implies that the genotypes with early
flowering under drought-stress and low leaf drying
score tended to have a high relative grain yield
and high aboveground relative biomass values,
therefore showing more tolerance to drought. This
confirms the consistent tolerance shown by G100,
G11 and G99 throughout the analysis of the vari-
ous traits and parameters under various numbers
of days after the drought-stress initiation (5D, 11D,
18D & 27D) at vegetative stage and reproductive
stage drought. The LDS, DTF and delay in flower-
ing recorded a positive significant correlation
among themselves. Pearson correlation analysis
revealed under both water regimes, a strong posi-
tive significant correlation between stomatal con-
ductance and transpiration rate (Figure 4). Both
indexes (CRI1 and CRI2) had a strong positive sig-
nificant correlation with each other, and both were
negatively correlated with RDVI and positively

correlated with NDVI, whereas NDVI and RDVI
recorded a positive association with each other
and with grain yield under both water regimes.

The regression analysis using grain yield as
dependent variable and RDVI as explanatory vari-
able recorded R?=0.3366 with the model signifi-
cance, implying that close to 34% of the variability
of the dependent variable grain yield was explained
by the explanatory variable RDVI (Figure 5). This
confirmed the significant positive correlation
(r=0.555) recorded between grain yield and RDVI
under drought-stress (Figure 4). Given the
R2=0.3140, 31% of the variability of the dependent
variable grain yield was explained by the explana-
tory variable delay in flowering, but the model
underlying this relationship between them was not
significant (Additional file 1_S11). However, this
confirmed the negative significant correlation of
r=-0.559 recorded between grain yield and delay
in flowering under drought-stress. Taken together,
delay in flowering and RDVI explained 43% of the
variability of the dependent variable grain yield
confirming the correlation pattern depicted
between grain yield, delay in flowering and RDVI
under drought-stress (Additional file 1_S11). On the
other hand, 44% of the variability of the dependent
variable grain yield was explained by the two
explanatory variables aboveground biomass and
delay in flowering, while the leaf drying score
explained close to 15% of the variability of the
dependent variable grain yield under drought-stress
(Additional file 1_S11), implying that the ability of
the genotype to maintain its water status and pre-
vent leaf drying under drought-stress contributed
up to 15% to the final yield performance of the
genotype.

3.7. Effectiveness of KASP-SNP markers in
selecting drought-tolerant genotypes

Genotypes G100 and G99 consistently showed homo-
zygosity status for the favorable alleles G, A, G and C
for DTY1.1 (snp0S00400), DTY1.1 (snp0OS00402), DTY1.1
(snp0S00408) and DTY12.1 (snpOS00483), respectively
(Table 8). None of the genotypes showed homozy-
gosity for favorable allele T for DTY12.1 (snpOS00484).
Based on the cluster analysis, the genotypes were
classified into three clusters where the drought-tolerant
genotypes G100 and G99 were grouped in cluster |,
G53 and G6 in Cluster Il and while the remaining
genotypes in Cluster Ill, confirming the greenhouse
screening results (Figure 6).
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Figure 1. Performance of genotypes UPLR-17 (G100) and WAB 2085-TGR2-WAT4-1-1 (G53) under drought-stress and non-stress
conditions evaluated for physiological and leaf reflectance parameters at the reproductive stage at 14days of drought-stress
at the Institute for Agronomy and Plant Breeding of Justus-Liebig-University of Giessen, Germany in 2022. Genotype UPLR-17
(G100) under drought-stress (A1), UPLR-17 (G100) under non-drought (A2), WAB 2085-TGR2-WAT4-1-1 (G53) under drought-stress
(B1), WAB 2085-TGR2-WAT4-1-1 (G53) under non-drought (B2). In this study UPLR-17 (G100) was selected as drought-tolerant
genotype while WAB 2085-TGR2-WAT4-1-1 (G53) was among the drought-sensitive ones.
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Figure 2. Mean performance of 14 rice genotypes evaluated for days to flowering (A), leaf drying score (B), aboveground biomass
(Q) and grain yield (D) at the reproductive stage under drought-stress and non-stress at the University of Giessen, Germany, in 2022.
Data presented are means+SE (n=6). Genotypes with different letters above the error bar under each water regime (non-stress or
drought-stress conditions) are significantly different in their mean performance, based on Duncan multiple rank test (P<5%). From
left to right, genotypes are classified from best to worst performance, respectively, based on delay in flowering, leaf drying score,
relative aboveground biomass and relative grain yield for each genotype. Delay in flowering is calculated as number of days to
flowering under drought-stress - number of days to flowering under non-stress conditions per genotype. Wherever, the delay in
flowering is negative, indicating that the genotype flowered early under drought-stress than under non-stress conditions. For the leaf
drying score, the lower the score, the better the performance of the genotype under drought-stress. Relative values were calculated
as value under drought-stress/value under non-stress conditions per genotype. The genotypes with their corresponding ID: Togo
Marshall (G6), KE40 (62), SR35266-2-12-1-1 (G73), UPLR-17 (G100), APO (G99), GR18-SARI (G65), CRI-Enapa (G11), ARICA 3 (G5), ARICA
2 (G63), CRI-AgraRice (G2), Jasmine 85 (G22), WAB 2085-TGR2-WAT4-1-1 (G53), ART132-35-1-1-B-B (G36) and SA68-SARI (G78).

Figure 3. Ranking of the 14 genotypes in ascending order based on the multi-trait genotype-ideotype distance index (MGIDI).
The genotypes were evaluated under both drought-stress and non-stress conditions at the Institute for Agronomy and Plant
Breeding of Justus-Liebig-University of Giessen, Germany in 2022. The selected genotypes are shown in red. The circle rep-
resents the cut-point according to the selection pressure, and the selection intensity is 15. The following genotypes were
selected as drought-tolerant genotypes in chronological order of tolerance level: APO (G99) and UPLR-17 (G100).



4, Discussions

This study not only gave information about monitor-
ing variation of leaf reflectance (gsw, E, PhiPS2, ETR)
and physiological (NDVI, CRI1, CRI2, RDVI) parameters
under vegetative stage drought stress but also gave
the predictors used in selecting drought-tolerant
genotypes.

Under both non-stress and drought-stress condi-
tions, all the leaf reflectance parameters (NDVI, RDVI,
CRI1 and CRI2) and PhiPS Il recorded low to moder-
ate C.V. and moderate to high heritability at 5D, 11D,
18D and 27D. High C.V. and moderate to high heri-
tability were recorded for stomatal conductance,
transpiration rate, ETR and tiller number under both
drought-stress and non-stress conditions at 5D, 11D,
18D and 27D. Moderate to high C.V. coupled with
high heritability indicate the presence of enough
variability among the genotypes for these traits
(Asante et al., 2019) and therefore, suitable for selec-
tion. But the combination of low C.V. with low heri-
tability like in case of NDVI at 27D doesn’t give room
for selection in population improvement. Furthermore,
no consistent reductions in heritability under
drought-stress were visible across the entire stress
period, in some cases, the heritability increased
under drought-stress. Proximal heritability estimates
for stomatal conductance, transpiration rate, ETR and
tiller number under drought-stress and non-stress
conditions indicate that selection for these traits
under drought-stress at the vegetative stage in rice
will be rewarding with the same level of accuracy as
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that under non-stress conditions, as suggested by
Kumar et al. (2008) for grain yield.

A progressive and rapid decrease in transpiration
rate (E) and stomatal conductance was recorded from
5D to 27D on all the genotypes except on the two
drought-tolerant genotypes G100 and G99 implying
increase in water use efficiency in these genotypes as
observed by Khan et al. (2017) in evaluating two con-
trasting rice cultivars for their tolerance to drought
where the water use efficiency increased in
drought-tolerant PR-115, while it rapidly decreased in
a drought-sensitive Super-7 at 4-, 7- and 10-days of
drought-stress. While other genotypes continued to
decrease 18-days after the stress initiation, genotypes
G100 and G99 recorded an increase of 89.97% and
20.33% for transpiration rate, from the 18D to 27D,
respectively. For stomatal conductance genotype
G100 recorded an increase of 29.28%, while genotype
G99 recorded the lowest reduction of 17.89% from
the 18D to 27D. These results indicate that after
18-days of drought-stress where the average mois-
ture content of the soil dropped from 60.78 vol/vol to
32.80vol/vol, rice plant started to feel the severity of
the imposed drought-stress. At these points, tolerant
genotypes like G100 and G99 could start producing
phytohormones and compounds such as proline, ABA
to trigger their tolerance mechanisms and regulate
their photosynthesis rate and stomatal conductance
to improve their water use efficiency as reported by
previous studies (Khan et al., 2017). In this study, CRI1
and CRI2, physiological parameters such as stomatal

Figure 4. Pearson correlations among 14 rice genotypes evaluated for 13 grain yield and its related traits, physiological and leaf
reflectance parameters and biochemical traits under non-stress (A) and drought-stress (B) conditions at the Institute for Agronomy
and Plant Breeding of Justus-Liebig-University of Giessen, Germany in 2022. X-Insignificant labeled with X; * Significance at 5% level;
gsw-Stomatal conductance; E-transpiration rate; PhiPS ll-Quantum vyield of fluorescence; ETR-Electron transport rate; NDVI-Normalized
difference vegetative index; CRI1-Carotenoid reflectance index 1; CRI2-Carotenoid reflectance index 2; RDVI-Renormalized difference
vegetative index; GYP- Grain yield per plant in gram; DTF- Days to flowering; Biomass- Aboveground biomass yield in gram;
Delay-Delay in flowering; TN-Tiller number; LDS-Leaf drying score; NS-Non-stress; DS-Drought-stress.
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Figure 5. Regression analysis between grain yield (GYP) and renormalized difference vegetative index (RDVI) among 14 rice
genotypes evaluated under drought-stress and non-stress at the Institute for Agronomy and Plant Breeding of Justus-Liebig-
University of Giessen, Germany in 2022: Regression of grain yield (GYP) by RDVI (A); Predicted grain yield with the regression
model (B). Equation of the model is GYP=-77.938+ 155.082 x RDVI. This regression model is significant at 5% level.

Table 8. QTL results of the 14 genotypes retrieved from the QTL profiling data obtained from the KASP genotyping of 300
genotypes of the core breeding germplasm of CSIR-CRI, Ghana using KASP-SNP markers according to Asante et al. (2024), 2019.

QTL ID DTY1.1 DTY1.1 DTY1.1 DTY12.1 DTY12.1

SNP ID snp0S00400 snp0S00402 snp0S00408 snp0S00483 snp0S00484
Genotype FAVORABLE ALLELE G A G C T
G2 CRI-AgraRice CC G:G TT GG AA
G5 ARICA 3 CC GG G:G GG AA
G6 TogoMarshall CC GG TT CC GA
G111 CRI-Enapa G:G G:G TT GG G:G
G22 Jasmine 85- SARI CC G:G TT GG G:G
G36 ART132-35-1-1-B-B G:G G:G TT GG AA
G53 WAB 2085-TGR2-WAT4-1-1 G:G G:G TT CC G:G
G62 KE40 cC G:G TT GG AA
G63 ARICA 2 CC G:G TT GG AA
G65 GR18-SARI cC G:G TT GG AA
G73 SR35266-2-12-1-1 CC G:G TT GG G:G
G78 SA68-SARI cC G:G TT GG AA
G99 APO G:G AA G:G CC G:G
G100 UPL R17 G:G AA G:G CC G:G
Percentage of drought-tolerant favourable alleles 36% 14.29% 21.43% 28.57% 0%

per QTL, SNP and genotype

conductance, transpiration rate, electron transport
rate and PhiPS Il exhibited enough variation and pat-
tern for tolerance to drought among the genotypes
as reported by previous studies (Tiwari et al, 2021)
and therefore can be used as a selection criterion at
vegetative stage drought-stress.

In general, the mean performance of all the geno-
types has been reduced notably under 11-, 18- and
27-days drought-stress compared to the non-stress
conditions for stomatal conductance and transpiration
rate for all the genotypes except G99, G100 and G6.
It has been reported that drought-stress has induced
a significant decrease in photosynthetic rate, stomatal
conductance, transpiration rate, and significant geno-
typic variations were observed among different rice

genotypes for these leaf gas exchange parameters
(Khan et al., 2017; Mumtaz et al., 2020). When the soil
moisture content reached 18.14vol/vol and the stress
became severe at 27D, significative difference in the
mean performance were observed between G99 (best
performing) and G22 (waste performing), and between
G100 (best performing) and G22 (waste performing)
for stomatal conductance and transpiration rate under
drought-stress, respectively. Gaballah et al. (2022)
reported that cultivars ET1444, Egyptian Yasmine, and
Giza177 exhibited similar performance under both
non-stress and drought-stress conditions for stomatal
conductance and transpiration rate implying their
ability to tolerate drought-stress like genotypes G99
and G100 in this current study.
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Figure 6. Cluster analysis among the 14 genotypes based on QTLs retrieved from the QTL profiling data obtained from the
KASP genotyping of 300 genotypes of the core breeding germplasm of CSIR-CRI, Ghana using KASP-SNP markers according
to Asante et al. (2024), 2019. Cluster | [APO (G99) and UPL R17 (G100)]; Cluster Il [TogoMarshall (G6) and WAB 2085-TGR2-WAT4-1-1
(G53)]; Cluster Il [CRI-AgraRice (G2), ARICA 3 (G5), CRI-Enapa (G11), Jasmine 85- SARI (G22), ART132-35-1-1-B-B (G36), KE40
(G62), ARICA 2 (G63), GR18-SARI (G65), SR35266-2-12-1-1 (G73) and SA68-SARI (G78)].

At 5D, the genotype G63 (waste performing)
showed a difference in the mean performance
with G6 (best performing) for NDVI. On the other
hand, under non-stress conditions G11 (best per-
forming) showed a statistical difference in the
mean performance with G6, G2 and G78 (best per-
forming). At 27D, under both water regimes no
statistical difference was observed among the
worst performing genotypes (G11 and G63) with
the best performing genotypes (G53, G5 and G99).
Other studies such as (Phyu et al., 2020) reported
similar results for NDVI in evaluation of 36 geno-
types under non-stress conditions and suggested
that NDVI can be used in screening for high yield
rice genotypes in tropical agriculture. Till date, few
works have been reported about the screening of
genotypes using NDVI under drought-stress in
rice, however it has been demonstrated that NDVI
can be used for high yield wheat genotypes selec-
tion under mild drought-stress (Naser et al., 2020),
while it is not recommended under severe
drought-stress (Thapa et al,, 2019).

The results revealed significant variability among
the rice genotypes for all the grain yield and
yield-related traits under both drought-stress and
non-stress conditions, indicating the presence of
large variability among the genotypes (Asante
et al, 2019) at the reproductive stage, which can

be used for effective selection for tolerance to
drought-stress among the genotypes used in this
study. The approximate heritability values of bio-
mass and grain yield obtained under drought-stress
and non-stress conditions in this study show that
selection for biomass and grain yield under
drought-stress in rice will give outcomes with the
same level of precision as under non-stress condi-
tions (Kumar et al., 2008) provided that the screen-
ing process is well managed.

In general, the flowering date of all the genotypes
was delayed for more than 5-days under drought-stress
compared to that under non-stress conditions, except
in G99, G100 and G11, which flowered earlier under
drought-stress compared to non-stress conditions.
These three genotypes that flowered earlier seem to
have exhibited drought escape ability to produce
grain before the drought became severe at the late
maturing stage. Additionally, these three genotypes
G99, G100 and G11 exhibited a typical characteristic
of drought escape by maintaining high stomatal con-
ductance and transpiration rates associated with
effective photosynthesis under drought, resulting in
rapid plant development to produce early flowers, as
suggested by Kooyers (2015) and Shavrukov et al.
(2017). Furthermore, similar observations were made
by Sahoo et al. (2023), where at the reproductive
stage, DTF were delayed in all genotypes, except
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Anjali and N22, which flowered earlier. Moreover, the
low leaf drying score obtained for these traits con-
firmed their predisposition to tolerate drought-stress.
A notable reduction in the mean performance for all
the genotypes was registered under drought-stress
compared to the non-stress conditions for the abo-
veground biomass and grain yield, except G100,
which recorded a similar biomass under non-stress
and drought-stress. Similar results for grain yield and
other vyield-related traits were reported by previous
studies (Gaballah et al., 2021, 2022; Huang et al.,
2019; Sahoo et al.,, 2023; Yang et al., 2019).

The negative correlation obtained between grain
yield and delay in DTF tended to prove that the gen-
otypes with early flowering under drought-stress
compared to the non-stress conditions manifested
drought escape abilities rather than 100% tolerance
capacities. The LDS, DTF and delay in DTF showed
positive correlations among themselves, confirming
that the genotypes with early flowering under
drought-stress and low leaf drying are better in
maintaining their leaf water status to withstand
drought-stress by effectively fine adjusting their tran-
spiration rate and stomatal conductance. Grain yield
showed a positive correlation with NDVI and RDVI, as
reported by Phyu et al. (2020) in a wet season
drought-free trial and concluded that NDVI can be
used as a screening criterion in varietal selection for
high yield. However, in the present study, RDVI has
shown more promising results to be used as a
screening criterion for selecting high-yielding geno-
types under drought-stress. This is confirmed by the
regression analysis using grain yield as dependent
variable and RDVI where close to 34% of the variabil-
ity in grain yield is explained by RDVI. The correlation
analysis between LDS, DTF, and RDVI implied that
these traits can be used as predictors of grain yield
and drought-tolerant genotypes.

5. Conclusion

One of the major challenges is to increase rice pro-
duction under increasing drought as result of climate
change, however, the use of drought-tolerant rice cul-
tivars can be one of the solutions as they could secure
high yield under drought. This study aimed to assess
the impact of drought-stress on physiological and leaf
reflectance traits among the rice genotypes and
appraise the effectiveness of these traits in selecting
the genotypes that showed enhanced tolerance to
drought-stress. A progressive decrease in transpiration
rate and stomatal conductance was recorded from 5D

to 27D on all the genotypes except on G100 and G99
implying increase in water use efficiency in these gen-
otypes. Transpiration rate and stomatal conductance
have consistently separated drought-tolerant G99 and
G100 out of the 14 genotypes during the 11D, 18D
and 27D vegetative stage drought-stress. At reproduc-
tive stage drought-stress, regression analysis revealed
that 34% of the variability in grain yield is explained
by RDVI. The regression analysis coupled with correla-
tion analysis between LDS, DTF, RDVI and grain yield
implied that these traits can be used as predictors of
grain yield in selecting for drought-tolerant geno-
types. Genotypes G100 and G99 were selected as
genotypes with enhanced tolerant to drought using
MGIDI index based on the relative value of the leaf
gas exchange attributes, leaf reflectance parameters,
grain yield and yield-related traits under the repro-
ductive stage drought.
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