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Abstract
As global populations grow and climate change increasingly disrupts agricultural systems, ensuring food security and 
nutritional resilience has become a critical challenge. In addition to grains and legumes, vegetables are very important 
for both human and animals because they contain vitamins, minerals, and fibre. Enhancing the ability of vegetables 
to withstand climate change threats is essential; however, traditional breeding methods face challenges due to the 
complexity of the genomic clonal multiplication process. In the postgenomic era, gene editing (GE) has emerged as 
a powerful tool for improving vegetables. GE can help to increase traits such as abiotic stress tolerance, herbicide 
tolerance, and disease resistance; improve agricultural productivity; and improve nutritional content and shelf-life by 
fine-tuning key genes. GE technologies such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-
associated protein 9 (CRISPR-Cas9) have revolutionized vegetable breeding by enabling specific gene modifications 
in the genome. This review highlights recent advances in CRISPR-mediated editing across various vegetable species, 
highlighting successful modifications that increase their resilience to climatic stressors. Additionally, it explores the 
potential of GE to address malnutrition by increasing the nutrient content of vegetable crops, thereby contributing to 
public health and food system sustainability. Additionally, it addresses the implementation of GE-guided breeding 
strategies in agriculture, considering regulatory, ethical, and public acceptance issues. Enhancing vegetable genetics 
via GE may provide a reliable and nutritious food supply for an expanding global population under more unpredict-
able environmental circumstances.
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Abbreviations
Cas9  CRISPR-associated protein 9 nuclease
CRISPR  Clustered regularly interspaced short palindro-

mic repeat
DSBs  Double-strand breaks
gRNA  Guide RNA
GE  Gene editing
HDR  Homology-directed repair
NHEJ  Nonhomologous end-joining
RBOHD  Respiratory burst oxidase homologue D
PAM  Protospacer adjacent motif
TALENs  Transcription activator-like effector nucleases
ZFNs  zinc-finger nucleases

Vegetable production and its challenges: 
how does climate change impact 
the vegetable industry?

Vegetable crops are plants cultivated primarily for their 
edible parts, such as leaves, stems, roots, flowers, or fruits, 
that are consumed as part of the human diet. These crops are 
rich in essential nutrients, vitamins, minerals, and dietary 
fibre, making them important components of a balanced and 
healthy diet. Vegetable crops are widely grown worldwide 
and are an integral part of global agriculture and food sys-
tems (Roychowdhury and Tah 2011). Approximately forty 
vegetable species are cultivated and consumed worldwide 
in both the summer and the winter (Kumari 2023). Most 
usable vegetable species belong to different families, such 
as Solanaceae, Cucurbitaceae, Leguminoceae, and Cruci-
fereae, and are classified as leafy vegetables (amaranth, let-
tuce, spinach, kale, swiss chard), roots (carrots, potatoes, 
sweet potatoes, beets, radishes, turnips), stems (asparagus, 
celery, sago palm, florence fennel), inflorescences (broccoli, 
cauliflower, cabbage), or fruits (tomato, eggplant, peppers, 
cucurbits).

Vegetable production plays a critical role in global food 
security, nutrition, and economic livelihoods, but it faces 
many challenges that threaten its sustainability and effective-
ness. Despite significant revenues, the irrigation process has 
caused major hurdles in vegetable production under climatic 
changes (Roychowdhury 2014; Roychowdhury et al. 2020). 
The effects of climate change on vegetable production can 
be multifaceted, affecting crop yield, quality, and distribu-
tion. There is an increased likelihood of experiencing poor 
outcomes: either immediate crop loss in the short term or 
prolonged decreases in yields over time due to variations 
in temperature and rainfall (Porter et al. 2019). An altered 
climate also promotes the growth of pathogens, pests and 
weeds (Jasper et al. 2020) and reduces vegetable production. 
Vegetable yields in South and Central Asia are expected to 
decline by up to 10% from 2020 onwards and will reach 30% 

by 2050, of which the estimated potential yield losses are 
17% due to drought, 20% due to salinity, 40% due to high 
temperature and 15% due to low temperature (Rashid et al. 
2020). Climate change will impose multiple stresses that 
should be addressed by a combination of improved varieties 
and management practices (Chakraborty et al. 2014). For 
most crops, tolerance to heat, drought, salinity, and other 
stresses is physiologically and genetically complex, compli-
cating breeding programs (Hasanuzzaman et al. 2015; Anu-
malla et al. 2016). Even if stress-tolerant varieties are devel-
oped, farmer adoption will still be limited until the varieties 
meet the requirements of all the involved stakeholders, such 
as transporters, wholesalers, retailers, and consumers (Para-
juli et al. 2019). The vegetable industry is intricately linked 
to market dynamics (Ma et al. 2024). Climate-related chal-
lenges can result in increased production costs, supply chain 
disruptions, and fluctuations in vegetable prices. Small-scale 
and subsistence farmers may face economic hardships due 
to climate-related uncertainties.

One of the most significant impacts of climate change on 
the vegetable industry is the alteration of growing seasons. 
Changes in precipitation patterns, including variations in 
rainfall frequency and intensity, can affect water for vegeta-
ble crops. This can lead to drought stress or waterlogging, 
which negatively impacts crop yields and quality. Incon-
sistent water availability also increases the likelihood of 
irrigation issues for farmers. Climate change exacerbates 
water scarcity, particularly in regions with constrained 
water resources. Since vegetables are water-intensive crops, 
they may face heightened competition for these resources. 
Farmers might need to modify their irrigation methods and 
implement water-efficient technologies to maintain vegetable 
production (Roychowdhury et al. 2020). Rising temperatures 
can lead to early flowering and fruiting, disrupting the syn-
chronization between crop development and market demand. 
Additionally, changes in precipitation patterns and UV rays 
can result in water scarcity or excessive rainfall, which can 
negatively impact crop growth and survival (Hasanuzzaman 
et al. 2013; Chakraborty et al. 2014). Changes in tempera-
ture and humidity patterns contribute to the geographical 
redistribution of pests and diseases (Skendžić et al. 2021). 
New pests and diseases may emerge, and existing ones may 
proliferate. This requires adjustments in pest management 
strategies, including the development of resistant crop vari-
eties and the use of integrated pest management practices 
(Skendžić et al. 2021). Climate change can disrupt tradi-
tional growing seasons, affecting the planting and harvesting 
times of vegetables. Warmer temperatures may lead to shifts 
in phenological events, influencing the timing of flowering, 
fruiting, and maturation. Farmers may need to adjust their 
planting calendars and explore alternative crop varieties 
suited to changing climatic conditions (Geissler et al. 2023). 
Changes in temperature and precipitation patterns can affect 
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soil structure, nutrient availability, and microbial communi-
ties (Philippot et al. 2024). Extreme weather events such as 
floods and droughts can lead to soil erosion and nutrient 
leaching (Bogati and Walczak 2022). Maintaining soil health 
becomes crucial for sustaining vegetable production under 
changing climatic conditions. Climate change threatens the 
biodiversity of plant varieties, including the diversity of 
species. Certain specific heirloom or traditional vegetable 
varieties may become less viable in altered climates, leading 
to a loss of genetic diversity within crops (Muluneh 2021). 
Preserving and utilizing diverse germplasms has become 
essential for breeding climate-resilient vegetable varie-
ties (Muluneh 2021). Climatic alternation can deteriorate 
soil health through diversification by various minerals and 
heavy metal components. The heavy metal response of dif-
ferent plant parts of Solanum melongena was analysed by 
Roychowdhury and Tah (2011). Adapting to the impacts of 
climate change in the vegetable industry requires a combina-
tion of resilient crop varieties, sustainable agricultural prac-
tices, improved water management, and the implementation 
of climate-smart technologies (Raza et al. 2019). Research, 
innovation, and collaboration across the agricultural value 
chain are essential to build climate-resilient vegetable pro-
duction systems. These climatic instabilities until the harvest 
season can affect flowering, pollination, growth, and fruit 
development, leading to lower vegetable yields (Roychowd-
hury and Tah 2011; Roychowdhury et al. 2011). Such effects 
may vary across regions and crops, but several common 
trends and challenges are observed globally. Consequently, 
both traditional methods and modern plant molecular breed-
ing techniques are being utilized to create vegetable varieties 
that offer improved nutritional value, increased resilience to 
biotic and abiotic stresses, and consistently improved yields 
(Abdallah et al. 2015).

Therefore, there is a need to develop next-generation crops 
that can withstand extreme environmental stresses. Traditional 
breeding techniques are commonly employed to increase 
agronomic performance and yield, although these methods 
are often lengthy, labor intensive, and time consuming (Zhang 
et al. 2018). Despite a few exceptions, mutation breeding has 
rarely been employed to improve vegetable crops, as most 
methods are not particularly potent (Roychowdhury and 
Tah 2013; Ray et al. 2012; Basu et al. 2012). Over the past 
few decades, numerous advancements in molecular biology 
techniques have emerged to increase crop yield and quality. 
Recently, site-directed nucleases—a genome editing technol-
ogy that enables swift modification of crops and holds great 
promise for tailoring the specific genotypes of vegetable 
crops—have seen remarkable progress (Tian et al. 2021). 
These genome editing technologies allow for precise altera-
tions of genes by deleting, replacing, or inserting specific 
sequences at targeted locations within the genome, resulting 
in the development of unique traits (Görücü Yilmaz 2021). 

First-generation tools such as zinc finger nucleases (ZFNs) 
and transcription activator-like effector nucleases (TALENs) 
have faced limitations because of their problematic mutagen-
esis, low editing efficiency, and the lengthy and labor-inten-
sive processes involved in selection and screening (González 
et al. 2021). In contrast, CRISPR-Cas9 represents a second-
generation genome editing technology that is more cost-
effective and simpler to design and implement than earlier 
gene or genome editing (GE) tools. According to Wan et al. 
(2021), advancements in CRISPR‒Cas9 technology for veg-
etable crops have rapidly enhanced GE capabilities, enabling 
the development of new genotypes with desirable phenotypic 
traits and base pair-level genomic modifications.

Gene editing tools and technology—
mechanisms, variations and advancements

GE in vegetable crops has emerged as a groundbreaking and 
precise approach to enhance crop characteristics and agricul-
tural productivity. Among all horticultural crops, tomatoes 
have gathered significantly more attention in GE, consti-
tuting nearly 42% of the studies, whereas potatoes account 
for approximately 13%. Although vegetable crops dominate 
GE in horticulture at 72%, successful applications have also 
been made in various leafy and underground vegetables. 
CRISPR-Cas9 and other GE tools have revolutionized plant 
breeding, enabling scientists to modify specific genes with 
unprecedented accuracy (Tuncel et al. 2023; Li et al. 2024). 
GE has various applications in vegetable crops, including 
improving disease resistance, enhancing abiotic stress toler-
ance, increasing nutritional content, and extending shelf-life. 
By targeting and modifying genes responsible for specific 
traits, researchers can develop vegetable varieties that are 
more resilient to environmental challenges, have improved 
nutritional value, and exhibit better postharvest characteris-
tics. However, the responsible use of GE in vegetable crops 
requires careful consideration of ethical, regulatory, and 
environmental implications to ensure its safe and sustainable 
deployment in agriculture. In future agriculture, GE will 
continue to play a transformative role in vegetable breeding 
strategies, pushing the boundaries of crop improvement to 
new heights. Advancements in GE technologies will increase 
precision, efficiency, and versatility, enabling breeders to 
target more complex traits and regulatory elements within 
vegetable genomes (Tuncel et al. 2023). The ability to edit 
multiple genes simultaneously or to precisely control gene 
expression will unlock novel avenues for developing custom-
ized vegetable varieties tailored to specific environmental 
conditions and consumer preferences. As our understand-
ing of the genetic basis of vegetable traits deepens, GE will 
facilitate the identification and manipulation of key genes. 
Moreover, GE has the potential to overcome breeding 
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barriers and accelerate the introgression of beneficial traits 
from wild relatives or distant species, enriching the genetic 
diversity of vegetable crops (Devi et al. 2022). With robust 
ethical frameworks and broad public acceptance, GE will 
empower vegetable breeders to address global challenges, 
such as food security, sustainability, and nutritional defi-
ciencies, paving the way for more resilient and nourishing 
vegetable agriculture in the future (Atia et al. 2024).

CRISPR‑based gene editing and its variation

The recent advent of molecular biology has led to the devel-
opment of modern agriculture with efficient GE technolo-
gies that enable the improvement of vegetable genomes with 
precise (nonrandom) manipulation. GE techniques include 
genome editing and engineering and allow the targeting and 
modification of specific DNA sequences (Devi et al. 2022). 
GE through the CRISPR‒Cas9 system holds considerable 
potential for regulating genomic and epigenetic processes. 
The scaffold formed by the Cas9 and sgRNA components 
enables the targeting of specific DNA sites with various 
effectors or markers. This feature of CRISPR-Cas9 allows 
for the activation or repression of genes (known as CRIS-
PRa and CRISPRi), thereby altering the transcriptional 
levels of genes (Ghavami and Pandi 2021). Although the 
double-strand break (DSB) method has proven to be a suc-
cessful technique for genome editing, it also poses the risk 
of off-target GEs, which can result in unintended alterations. 
One such approach involves a dead Cas9 variant known as 
dCas9, in which the two catalytic domains are rendered 
inactive through point mutations. While dCas9 does not 
create double-strand breaks in the genome, it effectively 
binds to targeted sites. Owing to its unique characteristics, 
dCas9 is often combined with specific enzymes that can 
facilitate necessary genomic modifications. Furthermore, 
the CRISPRa and CRISPRi systems utilize this nuclease-
deactivated Cas9, where the catalytic domains are inacti-
vated and fused with transcriptional modulators (Jensen 
et al. 2021). GE introduces alterations in plant genomes in 
three common steps. An exogenous nuclease first recognizes 
the target DNA sequence; the nuclease then binds to the 
target DNA sequence and introduces DSBs; finally, which 
are repaired via endogenous nonhomologous end-joining 
(NHEJ) or homology-directed repair (HDR) pathways 
(Singh et al. 2020) (Fig. 1). In 2013, the first application of 
genome editing in a vegetable crop (Brassica oleracea) was 
achieved via TALEN technology. While ZFNs and TAL-
ENs are considered first-generation genome editing tools, 
CRISPR-Cas9 is the most recent and advanced tool. A FokI 
nuclease domain and a sequence-specific DNA binding mod-
ule are found in ZFNs and TALENs. However, to become an 
active nuclease, the FokI nuclease domain must dimerize, 
which is both expensive and complicated (Das et al. 2023). 

The CRISPR‒Cas9 system has stepped in to address this 
need and has emerged as a prominent GE tool because of its 
ease of use, low cost, and excellent efficiency (Roychowd-
hury et al. 2020).

The CRISPR‑Cas9 system

The general mechanism of CRISPR involves three phases: 
interference, expression, and adaptability. Bacteria capture 
short, recognizable protospacer sequences from invading 
organisms and integrate them into their genome via adja-
cent CRISPR sites as a form of adaptation. These newly 
acquired sequences are referred to as CRISPR spacer 
sequences and are added to the CRISPR array to encode the 
invader’s memory. After the protospacer from the invading 
organism is assimilated into the CRISPR locus, the subse-
quent phase is expression, during which the CRISPR locus 
is transcribed into precrRNA and subsequently processed 
into mature crRNAs. The final phase entails the creation of 
a complex between the RNA (crRNA) and the Cas protein. 
This complex subsequently aligns complementary bases 
with the invader’s protospacer, enabling a second invasion. 
Ultimately, the Cas endonuclease protein aids in crRNA-
directed cleavage of the DNA. The Cas9 protein, an RNA-
dependent DNA endonuclease, and a guide RNA (gRNA) 
are the two main components of the CRISPR-Cas9 system 
(Fig. 2). The gRNA is a short RNA molecule that comprises 
20 nucleotides that are complementary to target sequences 
and forms a complex with Cas9 to attract it to the target site 

Fig. 1  Graphical abstract showing the successful implementation of 
gene editing tools to incorporate beneficial traits (e.g., abiotic stress 
tolerance, disease resistance, herbicide resistance, agronomic traits or 
yield improvement, quality, and shelf-life improvement) in vegetable 
crops
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(Singh 2020). CRISPR-Cas9, therefore, depends on DNA‒
RNA interactions for target DNA sequence recognition, 
whereas other GE technologies, such as ZFNs and TAL-
ENs, rely on DNA‒protein interactions. Recognizing the 
precise sequence via DNA‒protein interactions necessitated 
designing and producing two distinct DNA-binding domains 
per target site, which was complicated and time-consuming. 
However, because CRISPR-Cas9 interacts with DNA via 
RNA, only an 18–20 bp oligonucleotide is needed. Cas9 
and gRNA attach to a particular protospacer adjacent motif 
(PAM) sequence at the 3′ end of the target region to operate 
as genome editing tools. The CRISPR system was originally 
developed from Streptococcus pyogenes (SpCas9), but many 
different Cas9 orthologues with diverse properties have been 

identified. Within the Class I CRISPR‒Cas system, vari-
ous Cas protein modules form a complex known as the cr-
RNA-binding complex, which is responsible for binding and 
processing the target. In contrast, the Class II CRISPR‒Cas 
system features a single, multidomain cr-RNA-binding pro-
tein that functions similarly to the entirety of the Class I 
complex (Sharma et al. 2023). Class I encompasses Types I, 
III, and IV, whereas Class II consists of Types II, V, and VI 
(Makarova et al. 2020). A key consideration is the efficiency 
with which the CRISPR‒Cas9 system is introduced into the 
target cell. This can be achieved through various forms, such 
as messenger RNA, ribonucleoproteins (RNPs), or plasmid 
DNA. A novel approach to genome editing known as RNP, 
which comprises a gRNA and the Cas9 protein, is also being 

Fig. 2  Working model of 
CRISPR‒Cas-mediated gene 
editing in vegetables and its 
involvement in breeding-medi-
ated improvement
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utilized. RNP-based genome editing boasts several signifi-
cant advantages, such as being a DNA/transgene-free tech-
nique that minimizes off-target effects and reduces toxicity 
owing to its absence of DNA (Zhang et al. 2021).

Base editing (BE), prime‑editing (PE), multiplex 
and epigenome editing

CRISPR modification in base editing modifies nucleotide 
bases with the help of sgRNA and the dCas9 protein, along 
with activation-induced deaminase (AID), such as adenine 
deaminase or cytidine deaminase base editors. This technique 
does not involve double-strand breaks, resulting in greater 
efficiency. Additionally, base editing has been applied for 
precise editing in plants. Base editors, specifically cyto-
sine base editors (CBEs), facilitate the transition of cyto-
sine to uracil through deamination, which is subsequently 
transformed into thymidine via DNA replication or repair 
mechanisms. These editors have gained significant traction 
for modifying the genomes of various plant species. Base 
editing employing the CRISPR-Cas9 system was utilized to 
alter gain-of-function mutations in Arabidopsis (Chen et al. 
2017). Similarly, Azameti and Dauda (2021) accomplished 
targeted base editing for rice and tomato crops by using cyti-
dine deaminase in conjunction with the Cas9 protein. In a 
related process, adenine deaminase (ABE) linked to dCas9 
enables the conversion of adenine to inosine, allowing it to 
pair with cytosine. The guanine pairs of the newly synthe-
sized strand with cytosine, altering the guiding DNA.

Matsoukas (2020) developed prime editing as an inno-
vative tool for CRISPR-mediated genome editing. Prime 
editing involves copying and incorporating desired edits 
within guide RNA without the use of DSBs or donor repair 
templates (Anzalone et al. 2019). Although this technique 
has been reported in a wide variety of cereal crops owing 
to its advantage of encountering fewer bystander mutations, 
it has not been researched in vegetables (Fiaz et al. 2021). 
Thus, for prime editing in vegetable crops, the choice of 
suitable editing strategy should depend on the desired edit, 
availability of PAMs, editing efficiency, and chances of 
generating bystander mutations (Hao et al. 2021). The tech-
nique consists of three main components: a prime-editing 
guide RNA (pegRNA), a Cas9 nickase, and a reverse tran-
scriptase enzyme-linked together. PegRNA is distinguished 
from other sgRNAs by its features, which include a primer 
binding site (PBS) at the 3′ end, a sequence that specifies the 
desired modifications adjacent to the PBS, and a sequence at 
the 5′ end that is complementary to the target site of the tem-
plate DNA. The complementary guide sequence at the 5′ end 
of the pegRNA directs Cas9 to a specific DNA region, where 
it makes a nick in the PAM-containing DNA strand. When a 
nick occurs on the exposed 3′-OH group of the target DNA, 
the 3′ end of the nicked template strand binds with the PBS 

of the pegRNA, utilizing the RT template to create modified 
genetic material. This process results in either the formation 
of a 3′ flap containing the desired sequence or a 5′ flap that 
retains the original sequence, which is achieved through the 
hybridization of target DNA with RT (Wada et al. 2020). 
By selectively cutting the 5′ flaps, endonucleases generate 
a DNA duplex that includes both the original and edited 
strands with the intended modifications. This mismatch is 
rectified through cellular replication or a mismatch repair 
process, facilitating the stable incorporation of the desired 
sequence into the genome.

On the other hand, multiplex gene editing is a powerful 
biotechnological approach that allows simultaneous edit-
ing of multiple genes or genomic loci. In multiplex edit-
ing, sgRNAs are designed to target specific genomic loci. 
Each sgRNA directs the Cas nuclease to a distinct DNA 
sequence. sgRNAs, along with Cas proteins, are delivered 
into cells via vectors (e.g., plasmids, viral systems) or direct 
RNA‒protein complexes. In this process, simultaneous edit-
ing saves time compared with sequential gene editing and 
enables the modification of traits controlled by multiple 
genes (Wu et al. 2024). In addition, advanced tools such as 
CRISPR-Cas12a and multiplexed HDR templates improve 
the targeting accuracy.

Another advanced gene editing tool is epigenome edit-
ing, which is essentially a cutting-edge biotechnological tool 
that allows precise modification of the epigenetic state of 
specific genomic loci without altering the underlying DNA 
sequence (Jogam et al. 2022). This technology focuses on 
altering epigenetic marks such as DNA methylation, his-
tone modifications, and chromatin architecture to regulate 
gene expression. It comprises programmable DNA-binding 
domains (CRISPR-dCas9, i.e., with deactivated or dead 
Cas9), which are fused with epigenetic effectors to modu-
late the epigenome. The epigenetic effectors can be DNA 
modifiers [e.g., DNA methyltransferase (DNMT), TET pro-
teins], histone modifiers [histone acetyltransferases (HATs), 
histone deacetylases (HDACs), histone methyltransferases 
(HMTs)], and chromatic remodellers, which are essentially 
proteins that restructure chromatin to make it accessible. 
These systems have shown remarkable efficacy when used 
to plant RNA virus interference. Furthermore, they can bind 
RNA enough to permit A-to-G nucleotide editing when cou-
pled with a dCas13 deaminase domain, enabling full-length 
transcript editing for harmful point mutations. Crop yields, 
resilience, and consumer preferences for meeting nutri-
tional needs over genetically modified organisms (GMOs) 
have increased because of the rapid development of these 
adaptable modified CRISPR tools (Khan et al. 2024). The 
dCas9-SunTag system increases gene transcription by fus-
ing dCas9 with VP64, hybrid VP64-p65-Rta (VPR) activa-
tors, and a transcription activation domain-like synergistic 
activation mediator (SAM). The dCas9-SunTag system is 
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a powerful transcriptional activator that comprises dCas9 
linked to tandem GCN4 peptide repeats and a scFv GCN4 
antibody coupled to sfGFP and VP64 (Papikian et al. 2019). 
Using dCas9 combined with DNMT or TET, researchers 
created an epigenetic regulator for plants. TET1 demethyl-
ates DNA by oxidizing 5mC to 5-hydroxymethylcytosine 
(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine 
(5caC). This approach revealed heritable DNA methyla-
tion at gene promoters and other off-target regions and thus 
can effectively alter epigenomes to modify plant traits. The 
dCas9–p300 acetyltransferase augments the acetylation of 
histone H3 lysine 27 (H3K27) in proximity to the promoter 
and enhancer regions, hence increasing gene expression.

Gene editing in vegetables enables 
the ability to cope with climate change 
effects

Vegetables are vital to the human diet because they contain 
cellulose, vitamins, trace elements, minerals, and other essen-
tial nutrients (Septembre-Malaterre et al. 2018). Therefore, 
scientists are continually attempting to improve vegetable 
varieties in terms of various yields and quality-related traits, 
such as increasing various dietary and agronomic values and 
tolerance to biotic and abiotic stresses (Abdallah et al. 2015). 
In this review, we address the application of genome editing, 
specifically CRISPR-Cas9, to vegetable crops to improve the 
traits enumerated in Table1.

Abiotic stress tolerance

Vegetable crops are subjected to numerous abiotic stresses, 
such as temperature, drought, salinity, and humidity, which 
negatively impact their production. It is estimated that 
drought stress has led to a yield reduction of 42% in soy-
beans and approximately 68% in cowpeas (Farooq et al. 
2017). CRISPR-Cas9 allows the creation of more abiotic 
stress-tolerant vegetable varieties. In tomato, bzr1 and 
Slmapk3 mutants exhibit both heat and drought stress tol-
erance (Yu et al. 2019). In addition, tomato plants exhibit 
elevated leaf water content under drought conditions and 
have undergone GID1GE via CRISPR-Cas9 (Illouz-Eliaz 
et al. 2020). Moreover, Liu et al. (2020) demonstrated that 
CRISPR-mediated mutation of the SlLBD40 gene signifi-
cantly improved the drought resistance of tomatoes. Further-
more, Wang et al. (2017) identified SlMAPK3 as a modu-
lator of drought stress by using the CRISPR‒Cas method 
to alter mitogen-activated protein kinases (MAPKs). Yin 
et al. (2018) reported the Agrobacterium-mediated heat 
stress tolerance target gene (BZR1) knockout from toma-
toes. Knockout of the SINPR1 gene resulted in the down-
regulation of drought-related genes and increased drought 

resistance (Li et al. 2019). In 2021, Wang et al. (2017) and 
Chen et al. (2017) described two diverse target genes, FDM1 
and ARF4, that are involved in the development of drought 
sensitivity and drought stress tolerance in tomato. Similarly, 
CRISPR-Cas9-mediated gene knockout of 9-cis-EPOXYCA-
ROTENOID DIOXYGENASE4 (LsNCED4) enabled high-
temperature germination in lettuce (Bertier et al. 2018). 
Like excessive temperature, chilling stress hinders the 
development of certain vegetable crops, including tomato, 
eggplant, and pepper. GE techniques for the CBF1 gene are 
being used to generate new cold-tolerant germplasms (Li 
et al. 2018e). Furthermore, these modified plants presented 
significant increases in indole acetic acid and hydrogen per-
oxide contents, contributing to the development of tomato 
plants capable of enduring chilling stress. To place EPSPS in 
chili under the control of glyphosate, CRISPR-Cas9 was 
employed to induce a mutation in the gene promoter region 
(Shimatani et al. 2017). The modified crops exhibited a 
degree of resistance to glyphosate, and subsequent stud-
ies indicated that selecting an alternative promoter might 
enable the development of chilli that are entirely resistant to 
glyphosate (Shimatani et al. 2017). Makhotenko et al. (2019) 
reported osmotic and salinity stress-tolerant potato cultivars 
through “Colin” knockout. Additionally, measures were 
taken to protect the plants from excessive UV-B exposure. 
UV-B photoreceptors in tomato were modified via CRISPR-
Cas9 to generate sluvr8 mutants with tolerance to high 
UV-B concentrations (Liu et al. 2020). High salt concentra-
tions are also detrimental to plant survival (Petretto et al. 
2019). RBOHD gene deletion through CRISPR-Cas9 confers 
 K+uptake and salinity tolerance in pumpkin (Huang et al. 
2019). Similarly, salinity stress tolerance in sugar beets was 
reported by Pattanayak et al. (2023). Numerous gene types in 
sugar beets are associated with salt tolerance, including the 
recently discovered BvbHLH93gene, which features a helical 
structure linked to salt response or tolerance. Makhotenko 
et al. (2019) investigated CRISPR-Cas9 modification with 
RNP delivery via biolistic or vacuum infiltration methods 
for the salinity stress- and osmotic stress-responsive gene 
“Colin” in Solanum tuberosum.

Herbicide resistance

Weeds reduce vegetable yields because they compete 
together for space, light, water, and nutrients, and during 
cultivation, selective herbicides and pesticides are employed 
to suppress weed growth. The development of herbicide-
resistant vegetables necessitates precise and straightforward 
GE, a capability provided by the CRISPR‒Cas tool (Xie 
and Yang 2013). Two pathways led to the development of 
herbicide-resistant vegetable crops: the HDR pathway and 
the NHEJ pathway. Only the development of vegetable 
resistance to glyphosate, ACCase-inhibiting herbicides, 
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and ALS-inhibiting herbicides has proven to be effective 
in producing herbicide-resistant crop varieties. However, 
there is limited research on the extensive application and 
successful management of weeds via the use of protoporphy-
rinogen oxidase and 4-hydroxyphenyl pyruvate dioxygenase, 
which inhibit herbicides. The NHEJ mechanism can also 
facilitate precise gene substitution and insertion mediated by 
introns through the CRISPR-Cas9 system. HDR events are 
significantly less frequent than NHEJ events and allow for 
precise modifications of endogenous genes through targeted 
gene replacements or insertions, unlike NHEJ. In tomato 
and potato, amino acid mutations are achieved via cytidine 
base editing (CBE) at key ALS sites. Yang et al. (2022) used 
GE to incorporate herbicide resistance genes such as ALS 
and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) 
in tomato along with the marker gene phytoene desaturase 
(PDS). Furthermore, a chimeric Cas9-VirD2 protein was 
developed to increase HDR efficiency in vegetable plants. 
This protein merges Cas9 with VirD2, a virus protein that 
cleaves the lower strands of the Ti plasmid at both the left 
and right borders. Similarly, in potato, herbicide-inhibiting 
point mutations in the StALS1 template were successfully 
achieved via the CRISPR‒Cas system (Butler et al. 2015). 
A similar investigation was carried out in tomato for the 
gene encoding acetohydroxy acid synthase (AHAS) (Danilo 
et al. 2019). To modify herbicide-related genes such as ALS 
and EPSPS in tomatoes, Yang et al. (2022) recently devel-
oped and assessed the effectiveness of sgRNA. The results 
revealed that the target sites could be altered during the 
transformation process. Furthermore, it has been demon-
strated that sgRNAs targeting ALS2P or ALS1W successfully 
edited 19 different transgenic tomato plants, with two of 
these exhibiting three nucleotide changes that could affect 
herbicide resistance. However, the metabolic degradation of 
glyphosate is often slow or absent in many other plant spe-
cies. Rapeseed (Brassica napus) and soybean (Glycine max) 
exhibit substantial transformation of the herbicide into its 
primary metabolite, aminomethylphosphonic acid (AMPA) 
(Correa et al. 2016). The advancement of the CRISPR-Cpf1 
system has broadened the applicability of GE technology 
reliant on the HDR pathway due to its extended 5′-pro-
truding ends (Zetsche et al. 2015), which may enhance the 
alignment and incorporation of repair templates; however, 
the system is hindered by its nonspecific cleavage activity 
toward single-stranded DNAs.

Disease resistance

Owing to the diverse range of diseases caused by fungi, 
bacteria, viruses, and nematodes, numerous attempts have 
been made to improve vegetable disease resistance. Broad-
spectrum resistance to both fungal (Phytophthora) and bac-
terial pathogens (such as Pseudomonas and Xanthomonas Ta
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spp.) is produced in tomato by a mutation generated in 
SlDMR6-1 via CRISPR-Cas9-driven knockout (Thomazella 
et al. 2016). Similarly, GE for disease-resistant cucumber 
production against Potyvirus and Ipomovirus was carried 
out (Chandrasekaran et al. 2016). Additionally, CRISPR-
mediated mutation of the SlMlo1gene resulted in toler-
ance to powdery mildew in tomato (Nekrasov et al. 2017). 
Gomez et al. (2019) demonstrated resistance to Cassava 
brown streak disease (CBSD) via the use of CRISPR-Cas9 
to knockout the eIF4E gene associated with the disease. 
Tashkandi et al. (2018) presented tomato yellow leaf curl 
virus (Begomovirus) resistance through CRISPR-Cas9. 
Similarly, Sun et al. (2018b) reported that introducing a 
mutation in BnWRKY70 enhanced rapeseed resistance to 
Sclerotinia spp. The viral genes P3, CI, Nib, and CP have 
been effectively targeted via CRISPR-Cas13a to confer 
resistance to three PVY strains (Zhan et al. 2019). A potato 
virus Y (PVYO-FL, PVYN-Jg, PVYN: OMb112)-resistant 
potato cultivar was created by knocking out the Colin gene, 
which is responsible for CRISPR-Cas9 (Makhotenko et al. 
2019). Ortigosa et al. (2019) reported resistance to bacte-
rial speck disease by targeting Jasmonate ZIM-domain 2 
via CRISPR. Ghorbani Faal et al. (2020) reported tomato 
yellow leaf curl disease resistance through GE. Resistance 
to powdery mildew was investigated in tomato against the 
responsible gene Powdery mildew Resistance 4 (PMR4). 
Atarashi et al. (2020) reported resistance to mild mosaic 
disease in tomato via CRISPR via the targeting of eukaryotic 
translation initiation factor 4E1. A Botrytis cinerea-resistant 
tomato cultivar was produced by targeting the MYC2 gene 
via CRISPR-mediated editing (Shu et al. 2020). Further-
more, CRISPR uses Pectate Lyase and Histone H3 Lysine 
methyltransferase genes for knockdown to develop resistant 
tomato lines to gray mold and Botrytis cinerea, respectively 
(Silva et al. 2021; Bvindi et al. 2022). Mishra et al. (2021) 
revealed anthracnose resistance in chili by knocking out eth-
ylene response factor 28 via CRISPR editing.

Improving agronomic traits and yields

Vegetable domestication affects a number of agronomic 
traits as well as yield. In tomato, artificial domestication 
was achieved via CRISPR‒Cas-mediated GE (Soyk et al. 
2017). To facilitate the de novo domestication of wild Sola-
num pimpinellifolium, Zsogon et al. (2018) applied CRISPR-
Cas9 to target six key loci essential for yield and productiv-
ity in contemporary tomato varieties. Compared with the 
wild parent, the engineered lines presented a tenfold increase 
in fruit quantity and a threefold increase in fruit size. Zheng 
et al. (2020) knocked out the BnaMAX1 gene via CRISPR 
to increase yield in rapeseed. In cucumber, Cswip1 mutants 
were developed via the CRISPR‒Cas9 technique and were 
further used in heterosis breeding to generate high-yielding 

hybrids (Hu et al. (Hu et al. 2017)). Additionally, shorter 
flowering and earlier harvesting were achieved in tomatoes 
by generating CRISPR-induced  SP5G  mutations (Soyk 
et al. 2017). Both tomato and Arabidopsis have blade-on-
petiole (BOP) genes related to leaf complexity and silique 
dehiscence. The absence of the BOP gene, which may be 
achieved by CRISPR-based knockout, leads to morphologi-
cal differences in the inflorescence. Compared with wild-
type plants, CRISPR-Bop1/2/3 triple mutants blossom more 
quickly because of accelerated gene expression (Xu et al. 
2016). Indeed, a range of cis-regulatory alleles were gener-
ated through multiplexed CRISPR‒Cas9 mutagenesis in the 
promoter region of SlCLV3 (Rodríguez-Leal et al. 2017). 
These genes caused a number of changes, such as changes in 
the expression levels of SlCLV3 and changes in the number 
of locules, the size of the fruit, and the shape of the flower. 
Parthenocarpy is a crucial agronomic characteristic of veg-
etables. To produce seedless tomatoes, auxin response factor 
7 (SlARF7) and indole-3-acetic acid inducible 9 (SlIAA9) 
have been effectively knocked out in tomato (Ueta et al. 
2017). Klap et al. (2017) successfully achieved partheno-
carpy under high-temperature stress by using CRISPR-Cas9 
to knock out the tomato gene SlAGAMOUS-LIKE6 (SlAGL6) 
without compromising fruit weight, shape, or pollen viabil-
ity. This technique can also induce parthenocarpy in various 
vegetable crops.

Improvements in quality and shelf‑life

Consumer choice is significantly influenced by the quality 
of vegetables, including their flavour, color, and presence 
of nutrient-rich, health-promoting components. CRISPR-
Cas9, an innovative GE technology, has transformed 
numerous areas of biological research and has profound 
implications for agriculture, especially concerning the 
enhancement of vegetable quality and longevity by modify-
ing genes related to amino acids, carbohydrates, vitamins, 
fatty acids, and carotenoids in vegetables. Yellow, pink, and 
purple tomatoes were created via the use of CRISPR‒Cas 
to modify the genes encoding phytoene synthase 1 (PSY1), 
MYB transcription factor 12 (MYB12), and anthocyanin 2 
(ANT2) (Deng et al. 2018). Solanine and chaconine, two 
bitter and poisonous glycoalkaloids, were unable to accu-
mulate in potato tubers after CRISPR-mediated silencing 
of the St16DOX gene (Nakayasu et al. 2018). Similarly, in 
eggplant, three polyphenol oxidase (PPO) genes, SmelPPO4, 
SmelPPO5, and SmelPPO6, were eliminated via CRISPR-
Cas9-mediated mutagenesis to limit the browning of fruit 
flesh (Maioli et al. 2020). Using granule-bound starch syn-
thase I (Ib-GBSS I) and starch branching enzyme II (Ib-SBE 
II) as target genes, along with seed fatty acid reducer 4 (BnS-
FAR4) and seed fatty acid reducer 5 (BnSFAR5) as additional 
targets, CRISPR technology successfully increased the total 
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starch and seed oil contents in sweet potato and rapeseed, 
respectively (Wang et al. 2019b). A similar study involving 
the complete knockout of the GBSS, SS6, SBE1 and SBE2 
genes was performed on potatoes to improve the quality of 
their starch (Sevestre et al. 2020; Zhao et al. 2021). Malate 
and gamma-aminobutyric acid (GABA) in vegetables offer 
various health benefits for humans. Tomatoes engineered 
with CRISPR-Cas9 to alter Al-activated malate transporter 9 
(SlALMT9) were found to accumulate higher levels of malate 
(Ye et al. 2017). Tomato leaves and fruits contain elevated 
levels of the nonproteinogenic amino acid GABA (Nonaka 
et al. 2017). Various efforts have been undertaken to modify 
the genes associated with fatty acid metabolism in rapeseed 
and camelina to increase oil quality (Okuzaki et al. 2018). 
Another problem in the vegetable industry is browning in 
cuts, which decreases market value. The primary cause of 
browning is the enzyme polyphenol oxidase (PPO), which 
accelerates the oxidation that changes polyphenols into qui-
nones. In eggplant, CRISPR-mediated editing of three target 
PPO genes, SmelPPO4, SmelPPO5, and SmelPPO6, results 
in nonbrowning of the cut parts (Maioli et al. 2020). Simi-
lar outcomes were observed when the RNP complex was 
composed of two sgRNAs and the Cas9 nuclease was used 
to target StPPO2 in potatoes (González et al. 2021). Lyco-
pene, a pigment that enhances the visual appeal of tomatoes, 
also offers nutritional benefits by serving mainly as a source 
of antioxidants. Thus, increasing lycopene accumulation is 
beneficial for both crop yield and consumer attractiveness. 
The carotenoid metabolic pathway converts lycopene into 
α- and β-carotene. Consequently, the goal is to increase lyco-
pene levels by promoting lycopene biosynthesis and inhibit-
ing lycopene conversion, with a focus on the key enzymes 
involved in the pathway. When multiplex genome editing via 
CRISPR was employed, thestay green-1 (SGR1) genes were 
mutated, and as a consequence of this silencing, the mutants 
presented a notable increase in lycopene content, which 
improved the activity of enzymes such as phytoene synthase 
(PSY1), lycopene β-cyclase 1 and 2 (LCY-B1, LCY-B2), and 
lycopene ε-cyclase (LCY-E) (Ku and Ha 2020). By utiliz-
ing targeted site-specific CRISPR, a bidirectional approach 
can promote lycopene accumulation in carrot plants while 
inhibiting lycopene conversion to β- and α-carotene (Li et al. 
2018d). In a different approach, CRISPR targets ANT1, a 
transcription factor that regulates anthocyanin biosynthe-
sis, resulting in increased accumulation of anthocyanins and 
creating purple tomatoes (He et al. 2023). Klimek-Chodacka 
et al. (2018) reported that a mutation in the anthocyanin 
biosynthesis gene F3H resulted in reduced accumulation of 
anthocyanin and a discoloured callus in carrots. Compared 
with their wild relatives, commercial cultivars present a vari-
ety of fruit colours, textures, and sizes. The pink phenotype 
in tomatoes arises partly from a deficiency of yellow fla-
vonoids, such as naringenin chalcone. In a previous study, 

when the carotenoid isomerase gene (BoaCRTISO) in Chi-
nese kale was inactivated via CRISPR, the plants changed 
from green to yellow, resulting in an accumulation of lyco-
pene (Sun et al. 2020). On the other hand, yellow tomatoes 
were generated via the use of CRISPR to knock out two 
genes related to carotenoid biosynthesis, namely, Psy1 and 
CrtR1-b2 (Li et al. 2018e). Additionally, tomatoes with a 
tangerine hue were developed because of a gain-of-function 
mutation in carotenoid isomerase (CRTISO) (Ben Shlush 
et al. 2020). Similar methods were employed to downregu-
late DcMYB7, an R2R3-MYB regulator linked to structural 
genes that facilitate anthocyanin production in carrots, 
resulting in yellow-rooted carrots (Wang et al. 2020). The 
ripening inhibitory gene (RIN) in tomato is responsible for 
controlling ripening; CRISPR-mediated knockout muta-
tion of RIN-producing mutants results in longer shelf lives 
and a delay in ripening (Xu et al. 2020). One such mutation 
in alcobaca (alc) occurs when adenine is substituted for thy-
mine at position 137 in the coding region of the nonripen-
ing (NOR) gene. Modification of the ALC gene via CRISPR 
led to the development of tomato alc mutants that exhibit 
longer shelf lives (Yu et al. 2017). Compared with the rin 
mutants, the alc mutants presented a significantly enhanced 
flavour. Additionally, research on the LeMADS-RIN gene in 
the tomato varieties ‘Mamirio’ and ‘Golden bell’ demon-
strated that the mutants presented lower ethylene levels and 
prolonged shelf lives compared with their wild-type coun-
terparts (Ku and Ha 2020). The remodelling of vegetable 
cell walls also influences shelf-life, and pectin-degrading 
enzymes are integral to this process. This extended shelf-
life is due to the presence of three specific genes, pectate 
lyase (PL), polygalacturonase (PG2a), and β-galactanase 
(TBG4), which are associated with pectin degradation and 
were selected for mutagenesis through CRISPR (Wang et al. 
2019a).

Vegetable breeding strategies 
through genome editing

The global population is growing, demanding increased 
food production while climate change intensifies, posing 
significant challenges to agriculture. Vegetables are culti-
vated and consumed worldwide, as they are rich sources of 
vitamins, minerals, dietary fibre proteins, and other impor-
tant phytochemicals (Ahmad 2023). To date, techniques of 
conventional plant breeding have played important roles in 
the qualitative and quantitative improvement of major veg-
etable crops. Conventional breeding techniques utilize avail-
able genetic variation in the population and generate new 
improved vegetables by combining the desired gene pools. 
Backcrossing or introgression breeding, inbreeding, hybrid 
breeding, and mutation breeding are some conventional 
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breeding strategies that traditional plant breeders have suc-
cessfully employed for vegetable improvement (Rajasree and 
Pugalendhi 2021; Wang and Zhang 2022). However, con-
ventional breeding methods are more time-consuming and 
laborious, and vegetable breeders are continuously looking 
for new and advanced breeding strategies (Mirza and Ghuge 
2021). Moreover, owing to genetic erosion, hybridization 
bottlenecks, genetic drag, and complex selection processes, 
traditional vegetable breeding programs have achieved lim-
ited success in the postgreen revolution era. Through tar-
geted genetic improvement, breeders can develop vegetable 
varieties with increased nutritional content, disease and pest 
resistance, and adaptability to changing climates (Ndudzo 
et al. 2024). In such a way, improved cultivars contribute to 
food security by increasing crop yield and reducing posthar-
vest losses. Additionally, vegetable breeding plays a vital 
role in sustainable agriculture, enabling the development of 
resource-efficient varieties that require less water, fertilizer, 
and pesticides. The genetic diversity of vegetables serves 
as a valuable resource for breeders, allowing them to select 
desirable traits and address specific challenges faced by 
farmers and consumers (Salgotra et al. 2024).

Advanced breeding methods

Modern plant breeding approaches have developed due 
to the rise of plant genome engineering technologies and 
tremendous progress in plant biotechnological approaches 
such as molecular marker systems and transgenics methods. 
Unlike in the pregenomic era, where important agroeco-
nomic traits are blindly incorporated into crops, modern sci-
entists have identified and incorporated the desired genomic 
regions for the qualitative and quantitative improvement of 
vegetables (Zhang et al. 2018). The next-generation breed-
ing strategies include sophisticated technologies such as 
genomic-assisted breeding (GAB), genome editing, artifi-
cial intelligence (AI) and machine learning (ML) as alterna-
tives to speed up complex and lengthy breeding programs 
(Devi et al. 2022). A number of cutting-edge technologies, 
such as genotyping by sequencing (GBS) coupled with 
next-generation sequencing (NGS), genome-wide associa-
tion studies (GWAS), and marker-assisted selection (MAS), 
have facilitated multitrait gene identification and alteration. 
Thus, comprehensive knowledge of key genes and their 
regulatory pathways has assisted multidisciplinary breed-
ing programs for the development of next-generation crop 
varieties (Razzaq et al. 2021). The available technologies 
can be broadly classified into three categories: novel breed-
ing techniques, which have been introduced; established 
genetic modification techniques; and conventional breeding 
procedures. The methods involving site-directed nucleases 
(SDNs) and oligonucleotide-directed mutagenesis (ODM) 
allow a range of techniques for genome editing, such as 

precision-directed mutagenesis and gene transfer, along 
with control over gene expression (Liu et al. 2017). These 
transgenic materials, as in the case of nuclease genes, can 
be expressed, delivered into plant cells, and produced, either 
transientlyly or after stable genome integration, via a vari-
ety of transformation techniques. The direct methods used 
were PEG-mediated protoplast transformation and biolis-
tic-based techniques; among the indirect methods, Agro-
bacterium and viral vector-based methods using TRV and 
Geminiviruses were applied. Recently, the direct delivery 
of pure, preassembled Cas9-sgRNA RNP complexes into 
a variety of species by protoplast transfection or biolistics 
has been demonstrated to be successful (Altpeter et al. 
2016). Marker-assisted selection (MAS) is a cornerstone 
of modern breeding, allowing for the identification and 
selection of desired traits on the basis of specific genetic 
markers. This accelerates the breeding process by enabling 
breeders to focus on individuals with the desired genes, 
reducing the time and resources required (Roychowdhury 
2014; Roychowdhury et al. 2014). Genome-wide selection 
(GWS) takes this concept further, analysing an organism’s 
entire genome to predict its performance for multiple traits 
simultaneously, leading to even more efficient breeding 
programmes.

Incorporation of genome editing in vegetable 
breeding

Genome editing is revolutionizing vegetable breeding 
by offering unprecedented precision and efficiency. This 
approach significantly reduces the time required for tra-
ditional breeding methods, accelerating the development 
of new and improved vegetable cultivars. As research 
progresses, genome editing holds immense potential to 
address global food security challenges and provide sus-
tainable solutions for agriculture. Owing to the avail-
ability of large amounts of genomic data on vegetables, 
genome editing has emerged as the most potent option 
for the development of new crop varieties with targeted 
gene modification(s). Genome editing technologies enable 
plant breeders to develop new and improved plant varie-
ties with high speed and precision. Genome editing tools 
enable the engineering of plant genomes via the insertion, 
deletion, or replacement of desired DNA sequences at spe-
cific locations in the target genome (Anzalone et al. 2020). 
Both spontaneous and induced mutations have been exten-
sively utilized to develop genetic resources with a range 
of characteristics for breeding purposes. The infrequency 
and unpredictability of these mutations have led scientists 
to seek methods for introducing precise mutations at spe-
cific target sites. Currently, plant breeders are increasingly 
utilizing genome editing technologies for two reasons: 
first, tools for genome editing enable the identification of 
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candidate genes associated with any desired trait, increas-
ing genetic diversity; second, genome editing helps in 
understanding gene function, which is necessary for direct 
conventional breeding techniques.

Evolution of plant breeding in vegetable crops

The evolution of plant breeding in vegetable crops has 
been a transformative journey that has significantly shaped 
global agriculture, enhancing food security, nutrition, and 
crop resilience. Vegetable crop improvement programs 
can be broadly categorized into three groups, i.e., tradi-
tional breeding methods, biotechnological innovations, 
and new breeding techniques, each involving the use of 
several other alternative methods (Cardi et al. 2017). The 
traditional plant breeders select natural populations and 
intraspecific cross hybrids and use mutagenesis and wide 
hybridization methods involving interspecific hybrids for 
the breeding and improvement of vegetable crops. On 
the other hand, biotechnological innovations rely on tis-
sue culture technologies such as somatic hybridization of 
both sexually compatible and noncompatible species and 
transgenic approaches for achieving similar objectives. 
Interestingly, recent advancements in molecular biology 
and the emergence of different omics approaches offer a 
wide range of precise techniques to plant breeds. Some of 
the new methods used in the breeding of vegetable crops 
include oligonucleotide-directed mutagenesis (ODM), 
nuclease-based genome editing, cisgenesis and intragen-
esis, grafting, RNA-dependent DNA methylation (RdDM), 
reverse breeding, agroinfiltration, and synthetic genomics.

Domestication of vegetable crops

Domestication is the process by which wild crop plants are 
adapted and made suitable for human use. Plant domestication 
involves the accumulation and alteration of numerous agro-
economic traits, such as the time of flowering and maturation, 
seed setting, fruit size and nutritional value, and photoperi-
odic activity. Such vegetable domestication involves millennia 
of selective breeding, where cultivated plants with desirable 
traits, such as increased yield, larger size, and improved taste 
with nutritive benefits, are cultivated. For example, cabbage, 
broccoli, cauliflower, and kale all share a common ances-
tor—wild mustard. Over time, farmers have carefully selected 
plants with specific characteristics, leading to the develop-
ment of these distinct vegetables. The process often includes 
genetic modifications, either through natural selection or, more 
recently, through advanced biotechnological techniques. This 
domestication not only provided a reliable food source but also 
shaped agricultural practices, economies, and cultures, mak-
ing it a cornerstone of human civilization. For a very long 

time, traditional plant breeders augmented the domestication 
process by introducing favourable genes and alleles from wild 
relatives into cultivated species. Owing to its rapid and precise 
genome editing ability, CRISPR-Cas9 has substantially accel-
erated the de novo domestication process (Ledford 2017; Soyk 
et al. 2017). Research indicates that through precise genetic 
manipulation of domesticated genes, significant phenotypic 
changes can be achieved in wild tomatoes, which exhibit strong 
potential for natural stress tolerance (Chen et al. 2019).

Efficiency of genetic transformation

An efficient genetic transformation and plant regenera-
tion system is a prerequisite for the accurate modification 
of plant genomes by GE tools. However, the accuracy and 
efficiency of genetic transformation and regeneration vary 
among genotypes. Therefore, the success of genome editing 
is often limited due to the availability of compatible geno-
types. Thus, effective genome editing requires the develop-
ment of methods that overcome the genotype bottleneck. 
Presently, two different methods are being used to overcome 
this genotype limitation: one involves the overexpression 
of key genes associated with plant development, and the 
other involves the coexpression of developmental regulatory 
genes. To date, a number of genes, such as LEAFY COTY-
LEDON1, LEAFYCOTYLEDON2, WUSCHEL, GRF-GIF 
chimeric protein, and BABY BOOM, have been successfully 
overexpressed and shown to improve plant regeneration effi-
ciency in tissue culture media (Debernardi et al. 2020). On 
the other hand, numerous attempts have been made for the 
direct production of genome-edited plants through bypassing 
the tissue culture stage via the coexpression of developmen-
tal regulatory genes (Maher et al. 2020).

Production of nongenetically modified (transgene-free) 
vegetables

To date, selfing or hybridization after genetic transforma-
tion is the routine procedure for eliminating foreign genes 
and obtaining transgene-free modified vegetables via GE. 
However, this is quite hard in a few notably heterozygous 
and clonally propagated vegetable species. The advance-
ment of genetic engineering accelerated crop improvement 
programs by generating different transgenic lines, which 
were developed by inserting foreign DNA fragments into 
endogenous genes that affect adjacent gene expression. 
Cardi et al. (2017), on the other hand, show how easy it is 
to obtain multiple homozygous mutations in a single gen-
eration that can be passed down to offspring via stable or 
temporary transformation methods that do not require the 
addition of foreign DNA. Moreover, CRISPR-Cas9 expres-
sion systems can be removed by subsequent selfing or 
crossing due to the different locations of the CRISPR-Cas9 
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expression cassettes and their target sites in the genome. 
Therefore, the CRISPR system can produce transgene-free 
genome-edited plants due to the degradation of foreign 
DNA molecules by endogenous proteases and the nonin-
tegration of the CRISPR-Cas9 expression cassette into the 
genome (Malnoy et al. 2016). To date, two CRISPR-Cas9-
mediated genome editing methods have been successfully 
used to produce transgene-free plants. Transient delivery 
techniques have potential advantages in the editing of 
transgene-free and DNA-free genes. Preassembled RNPs 
with Cas9 and sgRNA have been used for the development 
of an efficient plasmid-free system for genome editing in 
plants. In the case of lettuce, a rate as high as 46% was 
reached for regenerated mutants. This expanded technique 
is now ready to be applied to some Brassica vegetable 
crops and potatoes. The plant breeding of vegetable crops 
involves the same important task of genome editing in non-
coding regions. GWAS provide data that noncoding plant 
areas instrumentally promote domestication, breeding, and 
evolution. Compared with coding sequence changes, muta-
tions in the noncoding regions of genes tend not to abolish 
gene functions. In general, these noncoding region muta-
tions influence gene expression levels, patterns, or tim-
ing and lead to only slight phenotypic changes. The use 
of the CRISPR-Cas9 system in conjunction with sgRNA 
libraries to screen noncoding genomic regions can help 
pinpoint functional areas associated with phenotypes and 
genes. The first is the Flp/FRT system, which involves the 
recognition of 34 bp-long flippase recognition target site 
(FRT) sequences by a site-specific recombinase flippase 
(Flp) and the removal of specific foreign DNA sequences 
(Pompili et al. 2020). The second method is based on Cas9 
enzyme-mediated T-DNA removal at cleavage target sites 
(Dalla Costa et al. 2020).

Nonspecific (off-target) gene editing

The CRISPR system often results in nonspecific editing at 
nontarget sites, which are also known as off-target effects. 
Off-target effects result in undesirable genome mutations, 
which are in many cases uncontrollable and greatly affect 
the editing specificity of the CRISPR-Cas system. Although 
much emphasis has been given to improving its specificity, 
CRISPR technologies are still not able to eliminate the impact 
of off-target effects. Therefore, genome editing technologies 
such as CRISPR systems need optimization to minimize or 
completely avoid off-target effects (Nerkar et al. 2022).

Gene knock-in by CRISPR for gain of function

Gene insertion via CRISPR‒Cas has made significant pro-
gress, particularly in vegetable crops, primarily through site-
directed mutations that result in loss-of-function alterations 

to improve certain traits. CRISPR-mediated knock-in experi-
ments rely on HDR, where double-strand breaks (DSBs) in 
DNA are precisely repaired by using homologous templates. 
In-frame gene knock-ins by CRISPR‒Cas resulted in a gain 
of function” and often produced new alleles in breeding prac-
tices (Zhang et al. 2021). Furthermore, knock-ins that aggre-
gate multiple genes within a single variety can be leveraged 
to modulate several elite traits in crops, offering substantial 
benefits for crop trait enhancement (Chen et al. 2019). As a 
result, the potential for the use of a GE tool for precise substi-
tution or insertion at specific sites has increased. However, the 
efficiency of plant GE technology in terms of fragment site-
directed insertion, substitution, and single-base gene substitu-
tion remains relatively low. This poses significant challenges 
in effectively and accurately editing most positive regulatory 
genes that govern key agronomic traits. Consequently, this 
limitation could significantly hinder the practical and large-
scale use of gene-editing technologies in the genetic engineer-
ing of vegetables.

Government regulation and safety guidelines 
for gene-edited vegetables

The regulation of gene-edited plants varies widely across 
countries, reflecting diverse perspectives on agricultural 
innovation and food safety. Countries such as the United 
States and Canada have adopted relatively lenient regula-
tions, often exempting gene-edited crops without foreign 
DNA from rigorous approval processes. This approach is 
based on the argument that these plants are indistinguish-
able from those produced through traditional breeding 
methods. On the other hand, the European Union has taken 
a more cautious stance, classifying gene-edited plants 
(GEPs) as GMOs and subjecting them to strict regulations. 
This decision stems from concerns about potential envi-
ronmental and health risks, despite the lack of scientific 
consensus on these issues. Australia and Argentina repre-
sent intermediate positions, with regulatory frameworks 
that consider the specific nature of the GE technique and 
the potential risks associated with the modified plant. This 
global patchwork of regulations highlights the challenges 
of balancing agricultural advancement with public safety 
and environmental protection. The development of innova-
tive plant breeding technologies such as GE enables quick 
and accurate changes in plant genomes without the need to 
insert any foreign DNA sequences. While CRISPR‒Cas 
can mediate the loss of gene function editing, Cas cuts the 
target sequence and produces double-strand breaks, whereas 
gene knock-ins by CRISPR involve homologous sequences 
derived from the same species or related interbreeding spe-
cies. Therefore, GE technologies result in small targeted 
genetic changes in the genome that can also be induced 
by natural methods. Thus, there is great controversy over 
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whether genome-edited plants are transgenic. Neverthe-
less, this lack of clear and consistent conclusions regard-
ing genome-edited plants makes their consideration criti-
cal owing to the management and evaluation of traditional 
and GMOs (Globus and Qimron 2018). According to the 
United States Department of Agriculture (USDA), US Food 
& Drug Administration (FDA), and Environmental Protec-
tion Agency (EPA), plant GE via the CRISPR‒Cas system 
is equivalent to crop improvement via conventional breed-
ing programs; therefore, genome-edited plants are not con-
sidered GMOs for regulatory purposes (Wan et al. 2021). 
This regulatory approval from United States regulatory 
agencies not only accelerated the genetic improvement of 
crops but also promoted the introduction of an increasing 
number of genome-edited crops to the market (Callaway 
2018; Metje-Sprink et al. 2020). In Europe, the rules for 
CRISPR-Cas9 are quite strict, and the European Court of 
Justice has already ruled that gene-edited crops are subject 
to GM crop regulation. It is a decision that has previously 
seen Australia take a more measured approach, allowing GE 
but not including any foreign genetic material. There are 
reports that gene-edited crops have already been planted in 
the field; additionally, gene-edited crops have gained fewer 
rigid attitudes in countries such as China and Japan. Moreo-
ver, some countries apply their frameworks on a case-to-
case basis, considering the methodology of breeding, newly 
added traits or characteristics, and indications of genetic 
modification in the product.

Future challenges of CRISPR‒cas genome editing 
in vegetables

After several positive results from whole-genome 
sequencing and functional genomics studies in vegetable 
crops were obtained, it became clear that the CRISPR-
Cas9 GE method could be used to obtain many genetically 
diverse crop resources. Two major challenges prevent its 
future application: first, how precisely the target changes 
are identified and the types of changes associated with 
key genes. Modification of a single gene does not affect 
the phenotype, but key agronomic traits are often complex 
quantitative traits. Therefore, pyramiding mutant alleles 
via efficient target site-specific insertion mediated by 
CRISPR‒Cas and chromosomal recombination methods 
is theoretically possible. GE techniques, which suppress 
the expression of some genes, have produced less adapt-
able plants. Thus, efficient and specific regulation of 
gene activities is essential for precision GE. Mutations 
in gene exons alter protein function, but mutations in the 
exon‒intron splice site produce alternative splicing vari-
ants. The targeted induction of DSBs via CRISPR‒Cas 
can lead to significant genome rearrangements, includ-
ing large deletions, chromosomal translocations, and 

inversions, in addition to smaller mutations such as base 
substitutions and InDels. Such editing provides an effec-
tive means of eliminating unwanted allergenic genes in 
vegetable crops. However, the incidence of these chro-
mosomal rearrangements is lower than what is typically 
achieved through conventional targeted mutagenesis. The 
second challenge in the use of gene-editing technology 
lies in the intricate process of introducing the CRISPR‒
Cas system into plant cells and subsequently producing 
regenerated plants. The precise GEs using cytosine base 
editors (CBEs) and adenine base editors (ABEs), along 
with prime editing and genetic mutation vectors mediated 
by traditional Cas9 or its variants through various meth-
ods, including Agrobacterium-mediated transformation, 
gene gun techniques, polyethylene glycol treatments, and 
electroporation, have been successfully applied. These 
studies have thus established a groundwork for potential 
applications in other vegetables. However, creating an 
efficient and universally applicable system for genetic 
transformation and regeneration in vegetable crops pre-
sents significant challenges. Specifically, the ability of 
CRISPR‒Cas cassettes to facilitate genetic transforma-
tion and the capacity of modified tissues to produce new 
plants have emerged as limiting factors. By overexpress-
ing genes that regulate plant morphogenesis during the 
transformation of the CRISPR‒Cas expression cassette, 
it is possible to improve the regeneration potential of 
explants following transformation, as well as enhance 
meristem induction. This describes the genetic transfor-
mation and regeneration process using CRISPR‒Cas, 
where plant RNA and DNA viruses serve as vectors 
for the transformation of plant cells. Consequently, this 
approach is appropriate for in planta transformation and 
simplifies the process of developing gene-edited plants 
that lack transgenic elements.

Conclusion

In conclusion, GE holds immense potential for enhancing 
the nutritional quality and food security of vegetable crops in 
the face of a changing climate. Techniques such as CRISPR-
Cas9 allow for targeted modifications that can improve crop 
resilience to environmental stresses, increase yield, and 
enhance nutrient profiles. These innovations are crucial, as 
global agriculture faces challenges such as rising tempera-
tures, unpredictable weather patterns, and declining arable 
land. By leveraging GE, researchers can develop vegetable 
varieties that are more adaptable to these shifts, ensuring a 
stable food supply and addressing malnutrition. However, 
the successful integration of GEs into agricultural systems 
will require careful consideration of regulatory policies, 
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ethical concerns, and equitable access to these technologies. 
As we move forward, GE stands as a vital tool for building 
sustainable and resilient food systems in a rapidly evolving 
climate.
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