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1. Introduction
Sweet potato (Ipomoea batatas L.) is considered a “superfood” 
because it is rich in antioxidants, vitamins, minerals, and 
healthy fibers (Alam et al., 2020). Gupta and Mishra (2021) 
highlight that sweet potatoes are an ideal food in terms of 
calories. According to the NIH, baking a sweet potato with 
the skin delivers 1.5 times the recommended daily value of 
nutrients, making it an excellent source of vitamins. The 
antioxidants in sweet potatoes may help prevent diseases 
such as diabetes and cancer (Rumbaoa et al., 2009). In 
Bangladesh, 2% of children aged 1–6 years suffer from night 
blindness due to vitamin A deficiency, resulting in about 
88 children losing their vision each day.1 Implementing 
1Banglapedia (2021). Night Blindness [Online]. Website https://en.banglapedia.org/index.php?title=Night_Blindness [accessed 16 November 23].

nutritional interventions and educational programs to 
promote sweet potato consumption could help mitigate this 
problem. 

Sweet potato production in Bangladesh has steadily 
increased over the past decade. From 2018–19 to 2020–21, the 
overall sweet potato yield in the country rose by a significant 
16% (BBS, 2022). This growth is attributed to the introduction 
and widespread adoption of improved genotypes, which are 
notable for their high vitamin A content and ability to yield 
over 40 t/ha (Alam et al., 2023a, 2023b, 2024a, 2024b, 2024c, 
2024d). However, local farmers still cultivate sweet potatoes 
with an average root yield of about 10.50 t/ha, indicating a 
lack of consistent production (BARI, 2023).

Abstract: The study was carried out in five regions of Bangladesh—Gazipur, Bogura, Jamalpur, Jashore, and Chattogram—utilizing 
a randomized complete block design and involving 17 genotypes of sweet potatoes. The objective was to evaluate their performance, 
environmental adaptability, and stability in terms of root yield. The analysis was carried out using fixed and random effects models. The 
results revealed that BARI Mistialu-12 had the highest storage root yield (45.35 t/ha). Among the locations, Bogura (sandy loam soil) 
achieved the highest yield, at 37.05 t/ha, followed by Jamalpur (36.15 t/ha). ANOVA showed significant variation in root yield across 
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genotypes, with a selection accuracy of 94%, leading to the use of a best linear unbiased prediction (BLUP) index for genotype selection. 
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scores biplot highlighted BARI Mistialu-16 as the most stable variety. In the megaenvironment analysis, BARI Mistialu-11 and BARI 
Mistialu-2 excelled in Jamalpur, while BARI Mistialu-12 and BARI Mistialu-16 led in Gazipur, Bogura, and Jashore. Bogura was the 
best location for production. These findings are crucial for future breeding efforts to expand the sweet potato industry, demonstrating 
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A major issue is that sweet potato genotypes developed 
by the Tuber Crops Research Center (TCRC) of the 
Bangladesh Agricultural Research Institute (BARI) have 
exhibited reduced storage root yields in different areas 
of Bangladesh (Sultana et al., 2019; Mahmud et al., 2021; 
Alam et al., 2023a, 2023b). 

Evaluating sweet potato genotypes in diverse 
agroecological settings is crucial for boosting production, 
offering a cost-effective and sustainable solution to food 
and nutrition issues. This evaluation must consider 
genotype–environment interactions (GEIs) to identify 
the most stable and reliable genotypes (Alam et al., 2024b; 
Habib et al., 2024). Studies indicate that sweet potato 
genotypes react differently to GEIs in various countries 
(Liu et al., 2024; Gurmu et al., 2024; Torres-Ordoñez 
et al., 2024). Global breeding initiatives have primarily 
aimed at enhancing productivity and improving fresh 
root consumption to guide breeding programs (Ebem 
et al., 2021; Alam et al., 2024d). To achieve consistent 
performance and uniform phenotypes, researchers need 
to select genotypes that exhibit stability or adaptability 
to specific environments with minimal GEIs (Hasan et 
al., 2022). The scarcity of research on GEIs among sweet 
potato genotypes in Bangladesh drives researchers to 
identify high-yielding genotypes for multienvironment 
trials (METs).

Researchers have employed two-way ANOVA in a 
fixed-effect model to select high-yielding genotypes (Yan 
and Frégeau-Reid, 2018). Using random effects in a linear 
mixed model (LMM) enhances selection efficiency by 
determining predicted genotypic values for key breeding 
objective traits (Pimentel et al., 2014; Santos et al., 2015; 
Messele et al., 2023). They use restricted maximum 
likelihood (REML) to estimate variance components 
and best linear unbiased prediction (BLUP) to predict 
genotypic values. These methods serve as efficient 
selection models in this context (de Oliveira Silva et al., 
2022; Grüneberg et al., 2022; Norman et al., 2022; Ahsan 
et al., 2024; Khan et al., 2024).

In the pursuit of stable genotypes, researchers utilize 
the additive main effects and multiplicative interaction 
(AMMI) model. They also integrate a new index called 
weighted average absolute scores (WAAS), based on 
the AMMI model, into indices for MET analysis. In 
addition to AMMI, the genotype-genotype environment 
(GGE) biplot graphical model is widely used to identify 
suitable environments and top-performing genotypes 
within specific environments (Gauch and Zobel, 1997; 
Yan et al., 2007; Kulsum et al., 2012; Hossain et al., 2023). 
Researchers employ the GGE biplot method to identify 
stable genotypes and assess their interactions with yield 
and environments. To introduce new crop varieties while 
minimizing the impact of GEIs, they consider both yield 

and stability. Consequently, they have introduced an index 
named WAASBY, which combines WAASB (WAAS + 
BLUP) and yield (Y) (Olivoto et al., 2019).

Introducing and adopting stable and high-yielding 
sweet potato genotypes in Bangladesh that are adaptable 
to a range of agricultural conditions is aimed. It is 
proposed that employing REML, BLUP, AMMI, WAAS, 
and WAASBY to choose genotypes with minimal GEI will 
help identify stable, high-yielding sweet potato genotype 
aiding sustainable cultivation and informed breeding in 
Bangladesh. The aim of the present study was to identify 
high-yielding sweet potato genotypes and assess their 
stability and adaptability in terms of storage root yield. 
This study presents an innovative method for sweet potato 
breeding by integrating AMMI, WAAS, REML, and BLUP 
models to identify high-yielding and stable genotypes. 
The WAASBY index improves selection efficiency for 
sustainable farming by integrating yield and stability 
factors.

2. Materials and methods
2.1. Descriptions of study areas
During the 2022–23 growing season, we conducted the 
study at five locations in Bangladesh: Gazipur, Bogura, 
Jamalpur, Jashore, and Chattogram. These locations were 
selected to represent the diverse environmental contexts 
across Bangladesh. Table 1 provides an overview of the 
GPS coordinates and climate and soil data for these areas, 
and Figure 1 contains a map showing the locations of the 
study sites. 
2.2. Plant materials
We utilized 17 sweet potato genotypes sourced from the 
TCRC, BARI, Bangladesh. Table 2 provides a detailed 
description of the genotypes studied. 
2.3. Experimental design
We utilized a randomized complete block (RCB) design in 
the study. Sweet potato vines were planted in each location 
on October 31, 2022, following the procedure described 
by Alam et al. (2023a). Each plot comprised ten rows, with 
ten vines of each genotype planted in a row, making a total 
of 50 plants per plot across five rows. These plots were 
replicated three times at each location. 
2.4. Crop husbandry and data collection
The research sites were prepared by plowing with oxen to 
create a fine tilth, followed by manual ridge construction 
using traditional hoes, consistent with local farming 
methods. The field was divided into three blocks, each 
with five plots, totaling 15 plots. Each plot measured 3 m 
× 3 m and was arranged in five rows, each containing ten 
plants, with a spacing of 30 cm between plants and 60 cm 
between rows. Treatments were randomly assigned within 
each block, with 1 m and 1.5 m gaps between plots and 
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Locations 
(codes)

GPS 
coordinates

Soil Weather (October, 2022 to March, 2023)

Agro-ecological 
representation

Range of 
altitude

Soil 
texture

pH 
(H2O)

Total 
rainfall 
(mm)

Avg. night 
temperature 
(°C) 

Avg. day 
temperature 
(°C)

Gazipur (E1) 23.9905° N, 
90.3877° E AEZ28 34 SCL 5.73 283.08 17.25 28

Bogura (E2) 24.8526° N, 
89.3730° E AEZ25 20 SL 6.23 163.71 17 27.75

Jamalpur (E3) 24.9270° N, 
89.9480° E AEZ9 24 SL 6.48 182.87 17.75 28.5

Jashore (E4) 23.1641° N, 
89.2065° E AEZ18 6 SL 6.61 272.75 17.25 28.25

Chattogram 
(E5)

22.3752° N, 
91.8349° E AEZ11 29 STL 4.58 218.67 18.75 27

GPS Global Positioning System, AEZ28 Madupur Tract, AEZ25 Level Barind Tract, AEZ9 Old Brahmaputra Floodplain, AEZ18 Young Meghna 
Estuarine Floodplain, AEZ11 High Ganges River Floodplain, SCL silty clay loam, SL sandy loam, STL silty loam.

Table 1. Description of GPS coordinates and soil and environmental conditions in the study areas (Alam et al., 2023a).

Figure 1. Map of the study areas.
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blocks, respectively. Vine cuttings, each 30 cm long, were 
planted with two-thirds of their length buried in the soil, 
with one cutting per ridge hole. Dead vines were replaced 
1 week after planting. Throughout the growing season, 
the plots were kept free of weeds by hand hoeing. Soil 
earthing-up was done three times at monthly intervals 
starting from the second month after planting to prevent 
root exposure. The fertilization regime included 260 kg/
ha urea, 150 kg/ha triple superphosphate (TSP), 250 kg/
ha muriate of potash (MOP), 75 kg/ha gypsum, 12 kg/ha 
zinc sulfate, 10 kg/ha boric acid, and 10 t/ha cow dung. The 
TSP, gypsum, zinc sulfate, boric acid, and cow dung were 
applied in full doses during the final land preparation, 
along with half of the urea and MOP doses. The remaining 
urea and MOP were top-dressed 40 days after planting, 
followed by watering and additional earthing-up (Alam et 
al., 2023a). Disease and insect infestations were managed 
through regular inspections and pesticide applications. 
Harvesting occurred when the leaves turned yellow, with 
the roots carefully dug out using hoes, hand-picked, 
and with vines and leaves removed. After 130 days from 
planting, sweet potato storage roots from one row in each 
plot were harvested. The average weight of storage roots 
from ten plants was used to calculate the yield per hectare, 
reported as storage root yield (YLD) in tons per hectare 
(t/ha).
2.5. Statistical analysis 
The replication mean was calculated by averaging the row 
data from each replication (Sarker et al., 2022a, 2022b). 
Statistical and biometrical analysis of the average data for 
various traits was conducted (Prodhan et al., 2022; Azad et 

al., 2022; Hassan et al., 2022; Hossain et al., 2022; Rahman et 
al., 2022; Akter et al., 2024). ANOVA and mean separation 
were employed to assess genotypes, environments, and 
their interaction (GEI). The least significant difference 
(LSD) test was utilized to distinguish mean values at 
a significance level of p < 0.05. Furthermore, AMMI 
ANOVA, calculation of interactive principal component 
axis (IPCA) values for tested genotypes and environments, 
and determination of the AMMI stability value (ASV) 
were performed. The WAAS biplot, BLUP index, WAASBY 
index, and GGE biplot were generated using the metan 
package in R software, version 4.2.0 (R studio, 2020). 

3. Results 
3.1. Estimation of variance and mean performance
Significant differences (p ≤ 0.001) in sweet potato storage 
root yield (YLD) were observed among the various 
genotypes (G), environments (E), and their interactions 
(GEI) (Table 3). The greatest variation was attributed to G 
(54.17%), followed by the GEI (25.25%), residuals (10.99%), 
and E (8.65%). The coefficient of variation (CV) was 8.14%. 
Table 4 presents the mean YLD of 17 sweet potato genotypes 
across five distinct locations. Bogura exhibited the highest 
yield (GY), at 37.05 t/ha, followed by Jamalpur (36.15 t/
ha) and Gazipur (34.70 t/ha). Among the genotypes, 
BARI Mistialu-12 recorded the highest YLD, at 45.35 t/ha, 
followed closely by BARI Mistialu-16, at 44.64 t/ha. In terms 
of GEI, the highest mean yield was observed in Gazipur 
with genotype BARI Mistialu-12 (55.08 t/ha), followed by 
Jamalpur with genotype BARI Mistialu-11 (49.74 t/ha). 

SV DF SS MSS PV (%) CV (%)
E 4 1049 262.4*** 8.65

8.14
R 2 113 56.6*** 0.93
G 16 6567 410.4*** 54.17
GEI 64 3061 47.8*** 25.25
Residuals 168 1332 7.9 10.99

SV source of variation, E environment, G genotype, R replication, DF degrees of freedom, SS sum of squares, MSS mean sum of squares, PV 
proportional variation of total variation, *** significant at p ≤ 0.001, CV coefficient of variation.

Table 3. ANOVA of root yield for 17 sweet potato genotypes studied in five locations.

Table 4. Interactional mean performance of genotype and environment studied in five locations. 

Genotypes
YLD (t/ha)

MeanR

Gazipur Bogura Jamalpur Jashore Chattogram
BARI Mistialu-12 51.85 47.64 48.19 42.18 36.9 45.351

BARI Mistialu-16 42.15 46.86 45.31 47.78 41.09 44.642

BARI Mistialu-11 34 45.16 49.74 32 37.67 39.713

BARI Mistialu-8 41.15 44.85 35.84 37.3 35.88 39.004

BARI Mistialu-2 42.82 32.78 44.86 30.74 29.59 36.165

BARI Mistialu-13 33.7 38.4 47.14 32.96 28.55 36.156
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3.2. Genetic parameters and mean performance 
estimation using a linear mixed model (LMM)
The likelihood ratio test (LRT) revealed a significant 
effect (p < 0.001) of both G and GEI on YLD (Table 
5). G contributed the highest percentage of variance 
(53.58%), followed by E (29.78%), with the residual 
variance accounting for 16.64%. The broad-sense 
heritability of YLD was calculated to be 54%. The 
GEI correlation coefficient was 0.30, and the selection 
accuracy was 94% (Table 5). Figure 2 presents the BLUP 
values used to evaluate the average performance of 
sweet potato genotypes. Blue circles denote instances 
of significantly superior mean performances, while red 
circles indicate below-average performances. Genotypes 
located at the lower end of the scale exhibited the least 
favorable performances (Figure 2). The horizontal error 
bars in Figure 2 represent 95% confidence intervals 
for the predicted YLD values. Among the genotypes 
tested, BARI Mistialu-12 showed the highest predicted 
mean YLD, followed by BARI Mistialu-16, BARI 
Mistialu-11, BARI Mistialu-8, BARI Mistialu-2, and 
BARI Mistialu-13—all of which exceeded the mean. In 
contrast, the lowest predicted mean YLD was observed 
in BARI Mistialu-1, followed by BARI Mistialu-17, BARI 
Mistialu-4, BARI Mistialu-3, and BARI Mistialu-14.
3.3. AMMI ANOVA and AMMI stability 
Table 6 presents the results of the AMMI ANOVA 
conducted on the YLD of 17 sweet potato genotypes. 
Significant effects (p ≤ 0.001) were observed for E, G, 
and GEI. The total variance was partitioned as follows: 
6.91% attributed to E, 43.25% to G, and 47.82% to GEI. 
The GEI variance was further decomposed into two 
significant (p ≤ 0.001) principal components (PCs): PC1 
accounted for 44.00% of the variance and PC2 accounted 
for 30.50%. The remaining 25.4% of the variance was 
attributed to residual noise components. Table 7 

details the IPCA1 and IPCA2 values across different 
environments—Gazipur, Bogura, Jamalpur, Jashore, 
and Chattogram—which ranged from –0.03 to 1.48 
for IPCA1 and from –3.68 to 0.50 for IPCA2. Smaller 
IPCA1 and IPCA2 values were observed in Bogura, 
Jashore, and Chattogram. The AMMI analysis results for 
the genotypes BARI Mistialu-5, BARI Mistialu-7, BARI 
Mistialu-10, and BARI Mistialu-14 indicated relatively 
low values for both positive and negative IPCA1 and 
IPCA2. The ASV parameter rankings identified five 
genotypes with values below 1 as the highest ranked, 
namely BARI Mistialu-14, BARI Mistialu-5, BARI 
Mistialu-10, BARI Mistialu-7, and BARI Mistialu-16. 
In contrast, the lowest-ranked genotypes were BARI 
Mistialu-2, followed by BARI Mistialu-13 and BARI 
Mistialu-11.
3.4. WAAS biplot stability analysis
Figure 3 illustrates the average YLD across all 
environments on the vertical axis, with genotypes 
positioned further to the right indicating higher 
YLD and those to the left indicating lower YLD. The 
horizontal axis represents the mean WAAS, dividing 
the biplot into four quadrants. Genotypes in different 
quadrants are categorized based on their stability 
and yield performance. Quadrant I typically contain 
genotypes with low stability and low yield, such as BARI 
Mistialu-15. Genotypes located in quadrant II exhibit 
elevated WAAS values, suggesting a significant impact 
of GEI and high YLD. This quadrant includes genotypes 
like BARI Mistialu-12, BARI Mistialu-13, BARI 
Mistialu-2, and BARI Mistialu-11. Quadrants III and IV 
display lower WAAS values, indicating higher stability. 
However, genotypes within quadrant III demonstrate 
YLD below the average. Genotypes in quadrant IV, such 
as BARI Mistialu-8 and BARI Mistialu-16, exhibit both 
high YLD and stability across diverse environments. 

BARI Mistialu-15 42.59 34.58 29.71 29.89 32.74 33.907

BARI Mistialu-7 32 35.88 36.88 32.33 29.77 33.378

BARI Mistialu-6 31.37 39.44 31.34 33.07 31.18 33.289

BARI Mistialu-5 31.67 32.21 37.05 35.26 29.16 33.0710

BARI Mistialu-10 31.56 37.6 34.86 32.41 27.18 32.7211

BARI Mistialu-9 31.44 37.98 29.25 34.07 28.78 32.3112

BARI Mistialu-14 33.3 35.36 32.68 28.34 29.63 31.8613

BARI Mistialu-3 26.67 37.78 29.79 31.22 30.21 31.1414

BARI Mistialu-4 30.57 31.67 30.68 33.93 28.59 31.0915

BARI Mistialu-17 27.02 24.99 26.85 32.22 26.46 27.5116

BARI Mistialu-1 26 26.74 24.33 24.63 28.25 25.9917

MeanR 34.703 37.051 36.152 33.554 31.275

YLD storage root yield, R ranking of mean value (high to low).

Table 4. (Continued.)
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Components Value
Genotype variance (%) 53.58
GEI variance (%) 29.78
Residual variance (%) 16.64
Heritability 0.54
r2(GEI) 0.30
Selection accuracy 0.94
Mean yield (t/ha) 34.54
LRT (GEN) 39.44***
LRT (GEI) 89.82***

r2(GEI) GEI correlation of coefficient, ***Significant at 0.1% probability level by chi-square (X²) test in likelihood ratio test (LRT).

Table 5. Estimation of variance and variance components using LMM for sweet potato storage root yield. 

Figure 2. BLUP values for the average storage root yield (YLD) of 17 sweet potato genotypes. 
G1 BARI Mistialu-1, G2 BARI Mistialu-2, G3 BARI Mistialu-3, G4 BARI Mistialu-4, G5 BARI 
Mistialu-5, G6 BARI Mistialu-6, G7 BARI Mistialu-7, G8 BARI Mistialu-8, G9 BARI Mistialu-9, 
G10 BARI Mistialu-10, G11 BARI Mistialu-11, G12 BARI Mistialu-12, G13 BARI Mistialu-13, G14 

BARI Mistialu-14, G15 BARI Mistialu-15, G16 BARI Mistialu-16, G17 BARI Mistialu-17.

SV DF SS MSS VT (%) VP (%) CP (%)

E 4 1049.41 262.35*** 6.91 - -

R(E) 10 244.65 24.47*** 1.61 - -

G 16 6567.11 410.44*** 43.25 - -

GEI 64 3060.52 47.82*** 20.16 - -

PC1 19 1347.95 70.94*** 8.88 44 44

PC2 17 934.44 54.97*** 6.15 30.5 74.6

Noise 28 778.12 27.79 5.12 25.4 -

Error 160 1200.90 7.51 7.91 - -

Total 318 15183.10 47.75 - - -
SV source of variation, E environment, R replication, G genotype, GEI genotype-environment interaction, PC principal component, DF degrees 
of freedom, SS sum of squares, MSS mean sum of squares, VT variation percentage of total, VP variation percentage of total GEI, CP cumulative 
variation of PCs, *** significant at p ≤ 0.001.

Table 6. AMMI ANOVA of storage root yield for sweet potato genotypes studied in five locations. 
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3.5. Mean plus stability using WAASBY
Figure 4 ranks and selects genotypes based on their storage 
root yield and stability, represented by the WAASBY index. 
Genotypes with higher WAASBY values are indicated by 
blue circles, while those with lower WAASBY values are 
marked by red circles. The genotypes BARI Mistialu-16, 
BARI Mistialu-12, BARI Mistialu-7, BARI Mistialu-8, BARI 
Mistialu-10, BARI Mistialu-14, BARI Mistialu-5, and BARI 
Mistialu-4 all exceeded the mean WAASBY index (Figure 
4).
3.6. Identification of winner genotypes using 
megaenvironment analysis
The polygonal biplot in Figure 5 illustrates a polygon formed 
by connecting the vertices of key genotypes, including 
BARI Mistialu-12, BARI Mistialu-16, BARI Mistialu-8, 
BARI Mistialu-15, BARI Mistialu-1, BARI Mistialu-13, 
and BARI Mistialu-11. This polygon is divided into seven 
distinct sectors by rays extending from the plot’s origin, 
perpendicular to the sides of the polygon. The sectors where 
environments are located and genotypes are positioned above 
them indicate the superior performance of those specific 
genotypes in those environments. Conversely, genotypes 

located in sectors without any environments are considered 
unsuitable for cultivation in the tested environments and 
are classified as weak performers in most settings. For 
example, genotypes BARI Mistialu-11 and BARI Mistialu-2 
demonstrated superior yield performance in Jamalpur, while 
genotypes BARI Mistialu-12 and BARI Mistialu-16 exhibited 
desirable yield in Gazipur, Bogura, Jashore, and Chattogram. 
The remaining five sectors comprise genotypes that are not 
specifically associated with any particular environment.
3.7. Discriminativeness vs. representativeness of tested 
environments and their relationship
In Figure 6a, the line extending from the origin of the biplot 
and marked with an arrow is referred to as the average 
environment axis (AEA). The AEA forms the smallest 
angle with the Bogura environment, followed by Gazipur, 
Chattogram, Jashore, and Jamalpur. In Figure 6b, the 
longest environmental vector is associated with Jamalpur, 
followed by Gazipur, Bogura, Jashore, and Chattogram. The 
angles between the Jamalpur vector and those of Gazipur, 
Bogura, Chattogram, and Jashore are larger compared to the 
angles between the vectors of Gazipur, Bogura, Jashore, and 
Chattogram. 

Genotypes Average root yield (t/ha) IPCA1 IPCA2 ASV Rank
BARI Mistialu-1 25.99 0.90 –0.14 1.31 7
BARI Mistialu-2 36.16 –2.10 –1.85 3.55 17
BARI Mistialu-3 31.14 0.92 1.32 1.87 12
BARI Mistialu-4 31.09 0.71 0.05 1.02 6
BARI Mistialu-5 33.07 –0.29 0.24 0.49 2
BARI Mistialu-6 33.28 0.91 0.67 1.47 10
BARI Mistialu-7 33.37 –0.38 0.40 0.67 4
BARI Mistialu-8 39.00 0.91 –0.35 1.37 9
BARI Mistialu-9 32.31 1.17 0.40 1.74 11
BARI Mistialu-10 32.72 –0.13 0.48 0.52 3
BARI Mistialu-11 39.71 –1.96 1.64 3.27 15
BARI Mistialu-12 45.35 –0.80 –1.52 1.91 13
BARI Mistialu-13 36.15 –2.22 0.74 3.29 16
BARI Mistialu-14 31.86 0.02 –0.29 0.29 1
BARI Mistialu-15 33.90 0.88 –2.28 2.62 14
BARI Mistialu-16 44.64 0.51 0.65 0.98 5
BARI Mistialu-17 27.51 0.93 –0.13 1.35 8
Environments
Gazipur 34.70 –0.03 –3.68 - -
Bogura 37.05 0.59 1.63 - -
Jamalpur 36.15 –3.90 0.82 - -
Jashore 33.55 1.86 0.74 - -
Chattogram 31.27 1.48 0.50 - -

ASV AMMI stability value.

Table 7. Mean yield and IPCA 1 and IPCA 2 values of 17 sweet potato genotypes and five tested environments and AMMI stability value 
(ASV) along with ranks of the studied genotypes.
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Figure 3. The WAAS biplot with the average performances of the 
storage root yield (YLD). G1 BARI Mistialu-1, G2 BARI Mistialu-2, 
G3 BARI Mistialu-3, G4 BARI Mistialu-4, G5 BARI Mistialu-5, G6 

BARI Mistialu-6, G7 BARI Mistialu-7, G8 BARI Mistialu-8, G9 

BARI Mistialu-9, G10 BARI Mistialu-10, G11 BARI Mistialu-11, G12 

BARI Mistialu-12, G13 BARI Mistialu-13, G14 BARI Mistialu-14, 
G15 BARI Mistialu-15, G16 BARI Mistialu-16, G17 BARI Mistialu-17, 
E1 Gazipur, E2 Bogura, E3 Jamalpur, E4 Jashore, E5 Chattogram.

Figure 4. The WAASBY index for the root yield of 17 sweet potato genotypes. G1 BARI 
Mistialu-1, G2 BARI Mistialu-2, G3 BARI Mistialu-3, G4 BARI Mistialu-4, G5 BARI Mistialu-5, 
G6 BARI Mistialu-6, G7 BARI Mistialu-7, G8 BARI Mistialu-8, G9 BARI Mistialu-9, G10 BARI 
Mistialu-10, G11 BARI Mistialu-11, G12 BARI Mistialu-12, G13 BARI Mistialu-13, G14 BARI 
Mistialu-14, G15 BARI Mistialu-15, G16 BARI Mistialu-16, G17 BARI Mistialu-17.
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Figure 5. GGE biplot of winner in respective megaenvironments for storage 
root yield. G1 BARI Mistialu-1, G2 BARI Mistialu-2, G3 BARI Mistialu-3, 
G4 BARI Mistialu-4, G5 BARI Mistialu-5, G6 BARI Mistialu-6, G7 BARI 
Mistialu-7, G8 BARI Mistialu-8, G9 BARI Mistialu-9, G10 BARI Mistialu-10, 
G11 BARI Mistialu-11, G12 BARI Mistialu-12, G13 BARI Mistialu-13, G14 

BARI Mistialu-14, G15 BARI Mistialu-15, G16 BARI Mistialu-16, G17 BARI 
Mistialu-17, E1 Gazipur, E2 Bogura, E3 Jamalpur, E4 Jashore, E5 Chattogram.

Figure 6. Discrimination ability vs. representativeness for five testing environments (a) and relationship 
between the environments (b) through biplot examination for the root yield performance. G1 BARI 
Mistialu-1, G2 BARI Mistialu-2, G3 BARI Mistialu-3, G4 BARI Mistialu-4, G5 BARI Mistialu-5, G6 BARI 
Mistialu-6, G7 BARI Mistialu-7, G8 BARI Mistialu-8, G9 BARI Mistialu-9, G10 BARI Mistialu-10, G11 BARI 
Mistialu-11, G12 BARI Mistialu-12, G13 BARI Mistialu-13, G14 BARI Mistialu-14, G15 BARI Mistialu-15, 
G16 BARI Mistialu-16, G17 BARI Mistialu-17, E1 Gazipur, E2 Bogura, E3 Jamalpur, E4 Jashore, E5 Chattogram.
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4. Discussion
4.1. Genetic and environmental regulation on sweet 
potato root yield
In Bangladesh, there is an ongoing need to identify sweet 
potato genotypes with high yield potential and stability 
across various environments (Mahmud et al., 2021). The 
present study confirms that the yields of genotypes differ 
depending on the genotype, environmental conditions, 
and genotype–environment interactions (Table 3). 
These results align with previous studies on sweet potato 
(Sultana et al., 2019; Alam et al., 2023a) and research on 
rice genotypes (Hasan-Ud-Daula and Sarker, 2020; Hasan 
et al., 2020, 2022; Faysal et al., 2022; Kulsum et al., 2022), 
Zea mays (Azam et al., 2014, 2022a), mung beans (Azam et 
al., 2022b; 2023), field pea (Azam et al., 2024), and various 
Amaranthus species (Rashad and Sarker, 2020; Sarker et al., 
2022c, 2022d, 2022e, 2022f; Jahan et al., 2023; Sarker et al., 
2023, 2024). The observed yield variations are influenced 
by factors such as meteorological conditions, drought, soil 
texture, soil nutrient composition, genetic traits, and pest 
pressures (Mao et al., 2001; Fan et al., 2023; Daemo and 
Ashango, 2024; Halpin-McCormick et al., 2024; Qiu et al., 
2024). 

Sweet potato genotypes showed the highest mean 
root yield in Bogura and Jamalpur, likely due to favorable 
environmental conditions (Table 1). Conversely, lower 
yields in Gazipur, Jashore, and Chattogram were linked 
to high rainfall during the growing season, ranging 
from 218.67 to 283.07 mm (Table 1). Flooding stress can 
severely diminish sweet potato root yield, with Roberts 
and Russo (1991) reporting reductions of up to 57%, 
as noted by Lin et al. (2006). Adubasim et al. (2017) 
recommended optimizing resource use in well-drained 
sandy loam soils for maximizing tuber yield in the humid 
tropics. Burbano-Erazo et al. (2020) found significant 
ecophysiological variability among sweet potato genotypes 
from various altitudes, with some adapting well to low-
altitude conditions, consistent with our observations of 
genotypes at lower elevations. These findings highlight the 
vulnerability of sweet potatoes to adverse environmental 
conditions and emphasize the importance of identifying 
resilient genotypes. Developing genotypes with high yield 
potential and stability across different environments is 
crucial for producing resilient cultivars that can withstand 
challenging weather and soil conditions.

The nutrient absorption and utilization abilities of 
different sweet potato cultivars play a crucial role in 
determining root yield, which directly affects overall 
crop productivity (Alam et al., 2024b). In our research, 
BARI Mistialu-12 exhibited the highest storage root yield, 
highlighting the differences in nutrient absorption and 
utilization across cultivars. These variations stress the 
importance of developing agronomic practices that are 

specifically tailored to each genotype’s unique needs. By 
optimizing fertilizer use and other inputs accordingly, 
crop productivity and sustainability can be significantly 
improved. 
4.2. Assessment of variability and genotypic prediction 
The analysis of the CV (8.14%) indicated its distribution, 
with the lowest values associated with GEI, followed by 
the environment and genotype (Table 3). This finding 
was corroborated by the LMM examining random effects 
detailed in Table 5. Similarly, Gemechu et al. (2022) 
reported that environmental variance significantly 
influenced sweet potato root yield (83.35%), while GEI 
(8.83%) and genotype (3.49%) had smaller effects. 

The incorporation of previously released genotypes is 
anticipated to minimize environmental variation due to 
their broad adaptability across diverse agroecologies in 
Bangladesh. This makes the selection of high-performing 
genotypes, which exhibit high genetic variance, 
heritability, selection accuracy, and a weak correlation 
with GEI (Table 5), particularly effective in Bangladeshi 
conditions. Saremirad et al. (2021) emphasized that 
greater genetic variability and heritability enhance the 
feasibility of identifying high-performing genotypes. 
The BLUP method is optimal for predicting random 
effects on genotype performance when an LMM effect is 
present (Smith et al., 2005; Taleghani et al., 2023). In the 
present study, BARI Mistialu-12, BARI Mistialu-16, BARI 
Mistialu-11, BARI Mistialu-8, BARI Mistialu-2, and BARI 
Mistialu-13 demonstrated the highest predicted root 
yields (Figure 2). The use of the BLUP method, which has 
consistently produced promising results in crops such as 
rice, corn, cotton, sugarcane, and sugar beet (Barbosa et 
al., 2014; Baretta et al., 2016; Huang et al., 2021; Vineeth et 
al., 2022; Taleghani et al., 2023), reinforces its reliability in 
sweet potato breeding. Choosing sweet potato genotypes 
with high genetic variance and heritability, especially those 
resilient to environmental changes, is crucial. Supported 
by BLUP predictions, this strategy fosters the development 
of robust cultivars that adapt well to varied conditions, 
thereby improving yield stability and sustainability within 
Bangladesh’s diverse agroecological settings.
4.3. Genotypic stability and performance analysis
The AMMI analysis showed a nonsignificant error mean 
sum of squares for root yield, reflecting the model’s high 
accuracy with minimal variation (Table 6) (Omrani et 
al., 2019; Taleghani et al., 2023). This finding is consistent 
with Sadabadi et al. (2018), who noted that the first two 
interaction principal component axes (IPCAs) explained 
71.60% of the GEI variability. Conversely, Omrani et 
al. (2019) and Rajabi et al. (2023) observed that the first 
four and six IPCAs explained 83% and 98.80% of the GEI 
variability, respectively. These results highlight the model’s 
effectiveness in evaluating GEI and support the selection 
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of genotypes with stable root yields across diverse 
environments. The criteria for selecting stable genotypes 
align with those outlined by Purchase et al. (2000) and 
are further validated by de Oliveira et al. (2014) and 
Karuniawan et al. (2021) in their research on passion fruit 
and sweet potatoes. Unlike AMMI, the WAAS method 
considers all IPCA scores, not just the first two. WAAS 
biplot analysis highlighted BARI Mistialu-16 and BARI 
Mistialu-8 for their low GEI influence and high stability, 
surpassing the overall yield average (Figure 3). Similar 
findings were reported by Alam et al. (2024a) using the 
WAAS biplot.

Bogura, Jashore, and Chattogram were identified as 
key testing sites, reflecting the genetic potential of the 
sweet potato clones evaluated (Table 7). This aligns with 
Karuniawan et al. (2021), who utilized IPCA values from 
AMMI analysis to select optimal environments for sweet 
potato cultivation. Genotypic impact on root yield was 
most pronounced in BARI Mistialu-5, BARI Mistialu-7, 
BARI Mistialu-10, and BARI Mistialu-14, as evidenced 
by their lower IPCA values (Table 7). Stability analysis via 
ASV confirmed the reliability of BARI Mistialu-14, BARI 
Mistialu-5, BARI Mistialu-10, BARI Mistialu-7, and BARI 
Mistialu-16, with BARI Mistialu-16 exhibiting an above-
average root yield. Sultana et al. (2019) found that BARI 
Mistialu-8 exhibited the highest stability and root yield 
among 15 BARI-released sweet potato genotypes using 
AMMI1 biplot analysis. 

The WAASBY index, which evaluates genotypes based 
on both yield and stability, ranked BARI Mistialu-16, BARI 
Mistialu-12, BARI Mistialu-7, and BARI Mistialu-8 as top 
performers (Figure 4). BARI Mistialu-7, in particular, 
was noted for its stability and potential across various 
conditions (Table 7; Figures 3 and 4). The effectiveness 
of the WAASBY index for selecting stable and high-
performing genotypes is corroborated by Karuniawan et 
al. (2021) and Memon et al. (2023). This can assist farmers 
in choosing reliable, high-yielding sweet potato genotypes 
that maintain productivity and adaptability in various 
conditions, ultimately supporting more sustainable 
farming practices.
4.4. Megaenvironments and genotypic performance 
analysis
Estimating GEI is crucial for enhancing crop adaptation and 
performance across varying environmental conditions. The 
polygonal biplot method, as outlined by Gauch and Zobel 
(1997), is effective in identifying genotypes best suited 
for specific environments. Our study used biplot analysis 
to distinguish two primary megaenvironments. The first 
megaenvironment, including Gazipur, Bogura, Jashore, 
and Chattogram, was linked to high-yielding genotypes 
BARI Mistialu-12 and BARI Mistialu-16. On the other 
hand, Jamalpur emerged as a separate megaenvironment 

where BARI Mistialu-11 performed best. Genotypes 
BARI Mistialu-7, BARI Mistialu-5, and BARI Mistialu-10, 
situated near the biplot’s origin, showed stability across 
all tested environments, making them suitable for less 
favorable conditions. Genotypes outside the specific 
environmental influences in the biplot generally exhibited 
poorer performance, consistent with findings from other 
studies on different crops, including sweet potatoes (Nzuve 
et al., 2013; Nagdeve and Deshmukh, 2018; Karuniawan 
et al., 2021; Hasani et al., 2021; Saremirad and Taleghani, 
2022). Furthermore, Mahmud et al. (2021) found that 
BARI Mistialu-12, among four BARI-released genotypes, 
yielded the highest root yield, surpassing the local 
control cultivar by 57.89% across nine locations and was 
recognized for its outstanding stability and yield potential.
4.5. Test environments optimization
The GGE biplot method provides a comprehensive 
evaluation  of  test environments  by  balancing  discriminativeness 
and representativeness. Discriminativeness measures how 
effectively environments can distinguish between superior 
genotypes, while representativeness assesses how well 
environments reflect typical conditions (Yan and Tinker, 
2006; Oladosu et al., 2017; Khan et al., 2021). A longer 
environmental vector indicates greater ability to differentiate 
genotypes, and a smaller angle between this vector and the 
AEA denotes better representativeness (Yan and Kang, 
2002). In the present study, Jamalpur was characterized 
by high discriminativeness but was less representative of 
general conditions. Consequently, Bogura was identified 
as the optimal environment, excelling in both aspects for 
assessing sweet potato root yield (Figure 6a). The strong 
correlation observed between Gazipur, Bogura, Jashore, 
and Chattogram indicates that genotypes responded 
similarly at these locations. In contrast, Jamalpur exhibited 
a unique response compared to the other sites (Figure 
6b). These findings are consistent with earlier research by 
Oladosu et al. (2017) and Khan et al. (2021), showcasing the 
GGE biplot’s effectiveness in mapping relationships among 
locations in METs. Assessing environmental correlations 
provides valuable insights into their relationships, which 
can guide future trial designs and optimize resource use 
(Taleghani et al., 2023).

5. Conclusions
Our study highlights the importance of GEIs for the 
adaptation and performance of sweet potato genotypes in 
Bangladesh. Notable genotypes, such as BARI Mistialu-12 
and BARI Mistialu-16, were found to offer high storage 
root yields and stability across various conditions. Bogura, 
Jashore, and Chattogram were identified as essential 
testing locations, with Bogura proving particularly 
effective for both distinguishing and representing optimal 
yields. Analysis with fixed and random effects models 
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revealed GEI variance, validated the model’s accuracy, 
and supported targeted decision-making to identify high-
performing and stable genotypes. Future breeding efforts 
should prioritize adaptable genotypes with high yield 
potential. Ongoing research and validation in additional 
regions will further improve sweet potato cultivation, 
promoting sustainable practices and enhancing global 
food security.
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