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Recent NGS progress allows
sequencing multiple genotypes per
species, revolutionizing genomic
analysis.
Pan-genomes capture diverse genetic
variations for comprehensive
comparative analysis, especially in
dioecious plants.
Large plant genomes pose sequencing
and computational challenges,
addressed by methods like skim-
sequencing and RNA-seq
Emergence of specialized software
tools aids in constructing pan-
genomes, enhancing research
efficiency in plant genomics.
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Background: The development of pangenomes has revolutionized genomic studies by capturing the com-
plete genetic diversity within a species. Pangenome assembly integrates data from multiple individuals
to construct a comprehensive genomic landscape, revealing both core and accessory genomic elements.
This approach enables the identification of novel genes, structural variations, and gene presence-absence
variations, providing insights into species evolution, adaptation, and trait variation. Representing pan-
genomes requires innovative visualization formats that effectively convey the complex genomic struc-
tures and variations.
Aim: This review delves into contemporary methodologies and recent advancements in constructing
pangenomes, particularly in plant genomes. It examines the structure of pangenome representation,
including format comparison, conversion, visualization techniques, and their implications for enhancing
crop improvement strategies.
Key scientific concepts of review: Earlier comparative studies have illuminated novel gene sequences, copy
number variations, and presence-absence variations across diverse crop species. The concept of a
pan-genome, which captures multiple genetic variations from a broad spectrum of genotypes, offers a
holistic perspective of a species’ genetic makeup. However, constructing a pan-genome for plants with
larger genomes poses challenges, including managing vast genome sequence data and comprehending
ion for-
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the genetic variations within the germplasm. To address these challenges, researchers have explored
cost-effective alternatives to encapsulate species diversity in a single assembly known as a pangenome.
This involves reducing the volume of genome sequences while focusing on genetic variations. With the
growing prominence of the pan-genome concept in plant genomics, several software tools have emerged
to facilitate pangenome construction.
This review sheds light on developing and utilizing software tools tailored for constructing pan-

genomes in plants. It also discusses representation formats suitable for downstream analyses, offering
valuable insights into the genetic landscape and evolutionary dynamics of plant species. In summary, this
review underscores the significance of pan-genome construction and representation formats in resolving
the genetic architecture of plants, particularly those with complex genomes. It provides a comprehensive
overview of recent advancements, aiding in exploring and understanding plant genetic diversity.
� 2025 Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

The single most important technology that has transformed
genomics in the past decades is high-throughput DNA sequencing
enabling cheap, fast and comprehensive generation of very large
datasets on genomes. The availability of such huge volume of
sequence data has been instrumental in the advancement of geno-
mic studies for a wide range species including economically impor-
tant crop.

Advanced genome sequencing systems incorporating Oxford
Nanopore Technologies (ONT) and PacBio platforms alongside opti-
cal mapping and Hi-C technology have fundamentally transformed
research in plant pangenomics. Further improvements in assembly
technologies provide advanced tools for resolving complex plant
genomes that bring together large amounts of repetitive DNA
sequences and heterogenous structural variations that previous
sequencing approaches could not handle. While initial efforts
focused on generating high-quality reference genome assemblies
for various plant species, such as maize [1], sorghum [2], soybean
[3], potato [4], barley [5], chickpea [6], pigeonpea [7] and huge
hexaploidy genome of bread wheat [8,9]. Recent studies have
revealed the limitations of relying solely on a single reference gen-
ome to capture the extensive genetic diversity present within a
species [10]. The systems developed by ONT and PacBio constitute
leading technologies that generate long-read sequence informa-
tion. ONT provides live sequencing operations through its system
to generate DNA reads measuring between several kilobases. The
direct measurement of DNA molecules using this technology sim-
plifies sample preparation requirements while expanding genomic
analysis capabilities for both large and complex genomes. PacBio’s
premier long-read sequencing performance using SMRT (Single
Molecule Real-Time) technology allows precise identification of
ambiguous genomic regions including repetitive elements together
with structural variants. Highly accurate reads from this technol-
ogy are fundamental for reliable genome assembly and pangenome
research outputs. These technologies have transformed plant
pangenomic research through their ability to sequence complete
genetic information from several different species members. The
sequencing genomes provide information about both genetic
diversity along with structural components and uncommon gene
variants which help understand plant survival abilities. Our under-
standing of plant evolution together with environmental adapta-
tion benefits from comprehensive genome variation detection.
The integration of advanced sequencing technologies such as Pac-
Bio, HiFi, Oxford Nanopore, along with specialized assemblers like
HiCanu [11], Falcon [12], and Hifiasm [13], has significantly
impacted plant pangenomics research.

The technique of optical genome mapping alongside long-read
sequencing serves as an essential tool for visualizing plant genome
spatial arrangements. The technique creates genomic schematic
maps with high-definition detail through visual observation of
2

solitary DNA strands. This method maintains exceptional value
when it functions to resolve gaps that exist in assembled genomes
when sequencing data does not provide clear information. The
Hi-C technology demonstrates extraordinary usefulness by giving
scientists insights into chromosomal layer structures beyond pre-
vious knowledge. The Hi-C technique detects genomic loci spatial
relationships to develop long-range genome interaction maps.
Hi-C delivers significant value for identifying complex genomic
regions containing repetitive elements along with large-scale
structure variants. By capturing chromatin conformation Hi-C has
delivered crucial information that helped reveal the functional
characteristics of plant genomes alongside their pangenomic struc-
tures.Using these technologies, researchers have been able to dis-
sect the complex genetic architectures of plant species
containing brand-new genomic structures and evolved evolution-
ary processes driving fine-scale diversity in plants. In the last few
years these new such sequencing technologies have been deployed
in plant pangenome studies and played a major role driving discov-
eries with regards to important biological processes as well agri-
cultural research providing tools for understanding both crop
traits and mechanisams of adaptation.

The concept of a pan-genome, first introduced by [14], offers a
complete representation of the entire genomic collection of a given
species. A pan-genome is defined as the non-redundant collection
of all DNA sequences present across all individuals within a spe-
cies. This holistic approach to genomic representation has gained
significant power in plant genomics, with pan-genomes being con-
structed for numerous crop species, including maize [15], soybean
[16], rice [17], sorghum [18,19], chickpea [20,21], and wheat
[22,23].

Pan-genome analyses provide insights into the core genome,
comprising the global genes across all individuals, and the dispens-
able or accessory genome, comprising genes specific to a subset of
individuals. This distinction is crucial, as core genes are typically
associated with essential biological functions and phenotypic
traits, while accessory genes often contribute to specific adapta-
tions and environmental responses [24]. By capturing this exten-
sive genetic diversity, pan-genomes offer a powerful resource for
understanding the evolutionary, functional, and phenotypic conse-
quences of genomic variations within a species.

Moreover, pan-genomes have emerged as vital tools for crop
improvement efforts, enabling the identification of genetic variants
associated with desirable agronomic traits, such as yield, drought
tolerance, and disease resistance. By leveraging the comprehensive
genomic information provided by pan-genomes, researchers can
focus on specific variants and develop molecular markers for
marker-assisted selection or genomic prediction models, accelerat-
ing the breeding process and enhancing crop productivity.

This review provides a comprehensive overview of pan-genome
construction approaches, data representation formats, and visual-
ization tools, highlighting their applications in plant genomics
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and crop improvement. Additionally, it explores the potential of
pan-genomes to revolutionize genomics-assisted breeding strate-
gies, ultimately contributing to the development of improved crop
varieties to address global food security challenges.

Plant pan-genome analysis

Next-generation sequencing technologies have transformed
how researchers study genetic variations across crop species
through developments in NGS technology (Fig. 1). The ongoing
development of sequencing methods has resolved previous
challenges with short read lengths and high error rates and non-
uniform data coverage to facilitate precise genome investigation
[25]. The pan-genome data structure enables storage of crop
species or population genomic sequences which function as a
reference framework to describe genomic collections across the
pan-genome. Pan-genome models let researchers study complete
species-wide genetic diversity through their ability to detect
genomic variations that exist between individual specimens.
Fig. 1. Constructing pangenome from diverse global accessions: A) Representative ge
preserved; C) cultivated to extract the genetic material, and; D) analysed to construct
variations including both core and variable sequences of a species.

3

Constructing a pan-genome necessitates the availability of a
complete set of haplotype-resolved genetic variations. Significant
progress has been made in this regard through various HapMap
projects, which aim to capture linkage information for species such
as cassava [26], maize [27], rice (https://www.ncgr.ac.cn/Rice-
Hap3/), and Cajanusspp. [28]. However, despite these advance-
ments, sequencing reads often lack sufficient length to assemble
all repeat structures, necessitating the integration of complemen-
tary technologies like array comparative genomic hybridization
(aCGH), synthetic long reads, and high-throughput optical genome
mapping to detect larger-scale structural variations (SVs) [1,29,30].

Advanced sequencing methods present opportunities to
integrate additional dimensional data including transcriptome
profiling and DNA-protein interactions with epigenetic data for
pan-genome investigations. Today’s resequencing studies use
whole-genome sequencing technologies to dive into genomic
variations among different genotypes including single nucleotide
polymorphisms (SNPs), insertions/deletions (indels) and large
chromosomal structural variations. A comprehensive understand-
notypes are chosen from genetically diverse global accessions; B) the accessions are
the pangenome through assembling the high-quality genomes and identifying the
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ing of these genetic and genomic variants helps discover hazardous
mutations and reveal plant domestication patterns and agricultural
enhancement approaches [31].

The characterization of species becomes possible through
pan-genome analyses which partition natural populations into
core genome elements found across all individuals and overall
pan-genome dimensions that include all genes or gene families
represented within each population. Genomic and gene family
analyses function at various levels according to the research design
[32]. Essential biological processes along with major phenotypic
traits constitute the core genome which exists alongside the acces-
sory genome that includes genes able to adapt to environmental
conditions and influence trait variability [33].

The research shows that core genes represent significant gene
proportions across plant species where wheat contains 64 % and
rice contains 89 % of total genes. When more genomes are studied
variable genes linked to environmental adaptations become more
prevalent throughout the core genome components.

Research on Brassica napus and wheat alongside sorghum and
chickpea along with soybean has demonstrated that the pan-
genome grows with additional genome sequencing, thus confirm-
ing open pan-genome organization is the dominant structural pat-
tern in living plant species. The detection of additional genetic
elements highlights the need for pan-genome methodologies
which effectively capture a species’ maximal genetic diversity so
researchers can study phenotype-genotype interactions more thor-
oughly and accelerate crop enhancement programs.

How is a pan-genome assembled?

The assembly of a pan-genome can be approached through
either supervised or unsupervised (de novo) methods, depending
on the availability of a reference genome. In the supervised
approach, sequence reads from each cultivar are mapped to the
reference genome, and only the unmapped reads are iteratively
assembled. Conversely, the unsupervised approach does not
require a reference genome, and the assembly process proceeds
entirely de novo (Fig. 2) [32,34].
Fig. 2. Pangenome assembly methods and format: A) Schema showing pangenome as
novo method (each color indicates gene for each individual) and compared to define the c
assembled and used as a reference for assembling the remaining genomes’ unique sequen
nodes and each path represents the genome. In the PHG (practical haplotype graph), the n
B) The number of plant’ pangenomes assembled in each format. The linear format consti
and PHG format of assemblies.
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Several bioinformatics tools have been developed to facilitate
pan-genome construction from sequence datasets or assembled
genomes. PANSEQ [35] and PGAP [36] enable the identification of
novel genomic regions and the determination of additional fea-
tures, such as single nucleotide polymorphisms (SNPs), core gen-
ome sequences, and accessory genome sequences. PANTOOLS
[37], designed to handle large and complex genomes, can detect
and annotate homologous regions within pan-genomic data.

In addition to collecting unique sequences, pan-genome assem-
bly tools also consider minor variants between individuals within a
crop species. These variants, ranging from SNPs and indels to larger
structural variations, are represented as ‘‘bubbles” within a graph
structure ordered by reference genome coordinates. Tools like GEN-
OMEMAPPER [38], PANVC [39], GRAMTOOLS [40], GraphGenome
Pipeline [41], PGGB [42], cactus [43], and VG [44] employ graph-
based approaches to build such pan-genome representations.

The concept of the small variant graph extends further to gen-
ome assembly-level graphs. De Bruijn graph-based assemblers,
such as Cortex [45], SplitMEM [46], TwoPaCo [47], and Bifrost
[48], can adapt to pan-genome construction by assigning colours
(representing specific biosamples) to nodes or unitigs. These
coloured de Bruijn graphs enable population-scale analyses and
facilitate the identification of sample-specific variations.

Furthermore, graph-based pan-genome data structures can be
indexed to support efficient random access to elements and fea-
tures within the graph, enhancing the utility of these resources
for downstream analyses [49].

It is important to note that pan-genome assembly approaches
can also incorporate transcriptomic data, providing an additional
layer of information complementary to whole-genome sequences.
Pan-transcriptome analyses capture partial genome information by
cataloging the gene-level sequences present in each individual of a
species. This approach enables the exploration of presence/absence
variations (PAVs) and gene expression patterns, which can be inte-
grated with genome-based pan-genome assemblies to enhance the
resolution and accuracy of genetic variation detection.

Overall, the assembly of pan-genomes involves a diverse array
of computational tools and methodologies, tailored to accommo-
sembly methods. Sequence reads from individual genomes assembled using the de
ore and variable regions. In the iterative assembly, one of the genomes de novo was
ces. Graph pangenome assembly represents the genes/sequences as interconnected
odes represent the reference ranges sequences and the graph stored in the database.
tutes the major proportion of overall pangenome assemblies, followed by the graph
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date the inherent complexities of genomic data and the specific
requirements of the target species or population under investiga-
tion. These approaches collectively aim to comprehensively cap-
ture and represent the genomic diversity within a species, laying
the foundation for more advanced analyses and applications in
crop improvement and breeding programs.

How is a pan-genome represented?

The representation of a pan-genome can take various forms,
each with its own strengths and limitations. The three primary for-
mats for pan-genome data are: classical linear draft sequence for-
mat, assembly graphs, and practical haplotype graph database
(PHG). Traditionally, the pangenomes are stored in the linear struc-
ture as collections of sequences in FASTA format. The variants in
this linear format are stored in VCF format (small/structural vari-
ants). Whereas for graphical format pangenomes are stored in
Graphical Fragment Assembly format, (GFAv1) (https://github.
com/GFA-spec/GFA-spec/blob/master/GFA1.md) or Graph Align-
ment Format (GAF) (https://github.com/lh3/gfatools/blob/mas-
ter/doc/rGFA.md#the-graph-alignment-format-gaf). The genomic
features on the pangenome assembly are represented in a linear
format (expecting the common co-ordinate system between phys-
ical and genetic position) compared to the other two forms (graph
and PHG) (Fig. 2B). The read alignments on the graph pangenomes
are stored in GAM format [44] and supported by tools such as VG,
and GraphAligner [50].

Linear sequence format pangenomes

A linear string of reference sequence base after the base in the
pan-genome is a classical representation format, a standard FASTA
format allowing visualization in two-dimensional genome brow-
sers. In this representation, a novel sequence is identified from
the individual genome sequence and either appended to the end
of an existing reference sequence or inserted between prior known
sequences. This format maintains the rearranged linear sequence
bases with unique co-ordinate positions. The genetic variations
between the cultivars, which could be as small as SNPs, insertions
and deletions, or copy number variations, to as large as chromoso-
mal rearrangements (deletions, duplications, inversions, and
translocations), can report only one version of variation following
the co-ordinate system (Fig. 1). To represent such a genome in a
single linear format necessarily removes variations or finds an
additional way of reporting such variations, and the co-ordinates
system represents one of the genomic reference individual / par-
ent. However, this format faces challenges in capturing the
species-wide large population’s specific features, like novel
sequence, variations, similarity or functional content, so there is
a need to address these challenges to represent species-wide infor-
mation with proper genomic co-ordinate systems.

A FASTA format is a standard text-based format for representing
nucleotide sequences in a linear format. The first line of each
sequence starts with the ‘>’ symbol, followed by the sequence iden-
tifier (id), and the second line contains the actual series of sequence
base characters. Many such pangenome assemblies have been
developed recently for small genome crop A. thaliana to complex
genomic structures like wheat (Table 1).
Eg:
>scaffold1
CGACGAACA
>NC_003071.7:19472573-19474387 Arabidopsis thaliana chromo-
some 2 sequence
TGATTTTCTAAAAGTAGAAGAAAATAAGTG CAGTCCATAAAATAAAA T
CCTATAAAAATGTTAAAACTAGATTCTTTTTTAAAAAACTAAAATTT GCT
GCAGACATCTAAAATTTTCGAAAATGATTG GGTGGCTAAGA
5

Graph format pangenomes

A graph-based pan-genome is an alternative format addressing
the above issues with the linear format. The sequence graph serves
to collapse the similar sequence into a single unique data structure
that is still representative of the full set [99]. A de Bruijn graphs-
based genome assembly is a popular graph representation in which
each node represents a k-mer, and the edge represents an overlap
of k-1 bases between from and to nodes. A direct walk following
the node labels can be interpreted as a DNA sequence [100].
A graph is bidirectional when it represents both strands of DNA
and the inversions between them. A graph could also represent a
pan-genome of multiple individuals capable of capturing all
sequences and variations between individuals [99]. A genome
graph representing the genome of a species (represents the whole
genome relationship) will grow with genome information as more
data on that species becomes available. Such a graph imposed with
the linear co-ordinate system by constructing a linear ordering of
the nodes can describe the pan-genome [101]. Based on the topo-
logical relationships between each individual graph, it is possible
to construct a compressed graph format as implemented in a few
software like splitMEM and VG, to construct bacterial and human
pan-genome [69]. This is similar to the earlier demonstrated com-
pact representation (splicing graph) for a collection of splicing vari-
ants [102] and its application was also adapted to transcriptome
data [103], highlighting the importance of graph. The tools avail-
able to construct such representations (like cortex) and calling
variants through assembly (like platypus and vg: Variant Graph)
and newer ones are upcoming. A graph can be a solution for a sin-
gle diploid genome, addressing the above-mentioned linear graph
limitations. It can also be used to represent the genomes of multi-
ple individuals, capturing all variation between them [104].

Additionally, a graph could be a coloured path representing a
specific individual, where the path of the graph is annotated.
Such a de Brujin graph has been implemented in software like
cortex and platypus [45]. For graph representation, currently,
three file formats (FASTG, GBZ, and GFA) have been developed
and also implemented by a few assemblers, like ALLPATHS_LG
and SPAdes, which produce fastg format, and ABYSS produces
GFA format. A recently developed GBZ file format is a path-
based format in which the sequences are the objects connected
with the edges. It is a compressed format with a specialized C+
+ library developed for creating and reading the compressed
graph file [105], although, the GBZ was not designed for assembly
graphs. The available graph representation of a genome would
allow mapping reads corresponding to variants available in the
graph. The binary format graph, the ‘vg’ graph, has been devel-
oped to store sequence and variant information and inter-
change the graph format [44].
FastG
FastGwas thefirst format introduced (as FASTG) in2012,which is

an extension of the fasta format. The format mainly differed
by representing edges as sequences, complicating the data
operations (https://lh3.github.io/2014/07/19/a-proposal-of-the-
grapical-fragment-assembly-format). A fastg format requires ‘begin’
and ‘end’ lines with each scaffold line starting with ‘>’ symbol.
The below assembly example has two scaffolds named ‘scaffold1
and ‘scaffold2 in the fastg format.

Eg:
Fastg graph format
#FASTG:begin
#FASTG:version = 1.0:assembly_name=‘example’;
>scaffold1:scaffold1;
ACGANNNNN[5:gap:size=(5,4..6)]CATGGC

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
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Table 1
The plant pangenomes published in linear format, graph and PHG format.

Species Domestication status Ploidy Number of accessions Reference

Linear format
Arabidopsis thaliana Crop Diploid 69 [58]
Brachypodium distachyon Wild Diploid 54 [90]
Brassica napus Crop Tetraploid 53 [52]
B. napus Crop Tetraploid 50 [93]
B. napus Crop Tetraploid 9 [68]
B. oleracea Crop Diploid 10 [32]
Banana (Musa and Ensete) Crop, hybrids Triploid 15 [72]
B.napus, rapa, oleracea Crop Diploid, diploid, amphidiploid 87, 77 and 79 [97]
B.rapa Crop Diploid 3 [56]
Pepper (Capsicum) Crop Diploid 383 [62]
Chickpea (Cicer arietinum) Crop Diploid 3,366 [20]
Cowpea (Vigna unguiculata) Crop Diploid 6 https://doi.org/10.1101/2022.08.22.504811
Cowpea (Vigna unguiculata ) Crop Diploid 6 [57]
Eggplant (Solanum melongena) Crop Diploid 23 [86]
Soybean (Glycine soja) Wild Tetraploid 7 [16]
Sunflower (Helianthus annuus) Crop Diploid 493 [51]
Walnut (Juglan ssp.) Wild Diploid 6 [77]
Medicago truncatula Wild Diploid 15 [88]
Melon (Cucumis melo) Wild, landrace Diploid 2 [63]
Mung bean (Vigna radiata) Crop Diploid 217 [54]
Oryza sativa Crop Diploid 3 [17]
O. sativa (indica/japonica) Crop Diploid 1,483 [30]
O. sativa Crop Diploid 3010 [85]
O. sativa/ O. rufipogon Crop Diploid 67 [79]
Pea (Pisum sativum) Wild, Crop Diploid 118 [84]
Pecan (Carya illinoinensis) Tree Diploid 4 [64]
Pigeon pea (Cajanus cajan) Crop Diploid 89 [80]
Populus Tree Diploid 19 [71]
Populus Wild Diploid 7 [74]
Potato (Solanum tuberosum) Wild, Crop Diploid 44 [67]
Sesame (Sesamum indicum) Crop Diploid 5 [82]
Tomato (Solanum lycopersicum) Crop Diploid 725 [91]
Sorghum (Sorghum bicolor) Crop Diploid 354 [19]
Bread wheat (Triticum aestivum) Crop Hexaploid 19 [22]
White lupin (Lupinus albus) Crop Diploid 39 [53]
Maize (Zea mays) Crop Tetraploid 503 [15]
Maize (Zea mays ) Crop Diploid 721 [89]
Graph format
Arabidopsis thaliana Crop Diploid 32 [61]
Broomcorn millet (Panicum miliaceum) Wild Diploid 32 [96]
Chickpea (Cicer arietinum) Wild Diploid 8 [21]
Cucumber (Cucumis sativus) Crop Diploid 11 [59]
Soybean (G. max) Crop Diploid 29 [55]
Grapevine (Vitis vinifera) Wild Diploid 9 [94]
Melon (Cucumis melo) Crop Diploid 3 [76]
Rice (O. sativa) Crop Diploid 33 [73]
Pepper (Capsicum) Crop Diploid 3 [62]
Radish (Raphanus sativus) Crop Diploid 11 [81]
Rice (O. sativa) Crop Diploid 251 [54]
Rice (O. sativa) Crop Diploid 12 [69]
Sorghum (Sorghum bicolor) Crop/Wild Diploid 16 [78]
Tea (Camellia sinensis) Elit cultivars Diploid 22 [95]
Tomato (Solanum lycopersicon) Wild/Cultivated Diploid 11 [60]
Tomato (Solanum lycospersicum) Crop Diploid 838 [87]
Grapevine (Vitis vinifera ssp. Vinifera ) Crop Diploid 29 [66]
Brassica genomes Crop Tetraploid 41 [70]
Lattuce (Lactuca sativa ) Crop Diploid 474 [83]
Barley (Hordeum vulgare) Wild/Cultivated Diploid 76 [92]
PHG format
Cassava (Manihot esculenta) Crop Diploid 241 [65]
Maize (Zea mays) Crop Diploid 27 [75]
Sorghum (Sorghum bicolor) Crop Diploid 398 [18]
Wheat (Triticum aestivum) Crop Hexaploid 65 [98]
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>scaffold2;
CGA[1:alt:allele|A,T]CGATCA
#FASTG:end;
Linear format (fasta)

>scaffold1
ACGANNNNNCATGGC
6

>scaffold2
CGACGATCA

Graphical format assembly (GFA)
Alternative to FastG, gfa is another format of a graph that is

represented as a tab-delimited field like header (H), segment
(S), link (L), containment (C) and path (P). GFA format was intro-

https://doi.org/10.1101/2022.08.22.504811
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duced in 2014, compatible with de Bruijn and string graphs. More
specifications of this format are available at https://github.com/
GFA-spec/GFA-spec, and the tools and API listed are available at
the same link. Fig. 5. A and B below are the simple gfa format
graph assembly with a string in reverse complement and a base
mismatch.

Eg:
Fastg graph format
#FASTG:begin
#FASTG:version=1.0:assembly_name=‘example’;
>scaffold1:scaffold1;
CGACGA[1:alt:allele|A,T]CA
>scaffold2
ACGANNNNN[5:gap:size=(5,4..6)]CATGGC
#FASTG:end;
Linear format (fasta)
>scaffold1
CGACGAACA
>scaffold2
ACGANNNNNCATGGC

Practical haplotype graph (PHG)

Compared to the genome assembly graphs, the haplotype graph is
a collection of nodes and edges for the sequence within the organism
inherited from a single parent. The PHG is built from a subset of
sequences (conserved sequences with genetic variations) called ref-
erence ranges. Such sequence ranges are represented as graph node,
and the nodes are connected with edges, which do not contain the
sequence range but indicate the two haplotypes were together in a
particular individual [106]. The PHG represents the sequence of hap-
lotypes instead of the complete nucleotide sequences and stores the
data in the relational database format. For example, the existing
genomic resources of the breeding program founder line (whole gen-
ome sequence data or whole genome assemblies) are loaded into a
graph database. Such a database supports genomic analysis such as
imputation of low sequence coverage (as low as 0.01x coverage) of
individuals in the breeding population achieved based on consensus
haplotypes derived from the graph database (https://bitbucket.org/
bucklerlab/rphg/wiki/Home). The input sequence can be a whole
genome sequence, a reduced representation sequence, or SNPs called
from population data. The PHG database also stores an additional
layer of genomic features with genic and intergenic haplotypes,
assisting in annotating the haplotypes. The data is stored in the com-
pact format of haplotypes in the form of an imputed path through the
graph, resulting in a very compact storage of the graph path list of
haplotypes for many genotypes in a relational database. Thus, the
organized pangenome is finally formed by storing the node and edge
relationship as the path for each individual.

The first step of the PHG database is to assign the reference ranges
in user-defined groups (e.g., gene and non-gene co-ordinates) followed
by uploading to the database with haplotypes from other individuals
[107] (Fig. 3). The database can be updated with either consensus hap-
lotypes built from aligned genome assemblies or variants from WGS/
reduced representation (GBS) data [107]. The PHG database has been
implemented in sorghum [18], maize [75], wheat [98], and cassava
[65] using the SNPs from diverse accessions WGS data and imputed
with GBS/skim sequence data from inbred lines (Table 1). The PHG
is deployed as a Docker image and available at https://hub.docker.-
com/r/maizegenetics/phg. Alternatively, a statistical programming lan-
guage R package for PHG is available at https://bitbucket.org/
bucklerlab/rphg/wiki/Home. HaploCart, working on the Bayesian
inference principle is available in command-line and web interfaces
[108].
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Formats comparison (linear vs graph)

The choice between linear and graph-based representations of
pan-genomes has significant implications for capturing and ana-
lyzing genomic diversity within a species. Each format presents
distinct advantages and limitations, shaping the types of analyses
and applications that can be effectively performed.

The linear sequence format, typically represented as FASTA files,
has been the classical approach for representing genomic
sequences. The first line of each sequence starts with the ‘>’ symbol,
followed by the sequence identifier (id), and the second line con-
tains the actual series of sequence base characters (Fig. 4). Many
such pangenome assemblies have been developed recently for
small genome crop A. thaliana (1001 genome project in Arabidopsis)
to complex genomic structures like wheat [23] (Table 1).

Linear format offers several advantages, such as maintaining a
straightforward coordinate system, enabling easy mapping of
genomic features such as annotations, variants, and structural vari-
ations. The position of each base and the distance between bases
are readily interpretable. Numerous bioinformatics tools and
pipelines have been developed over decades to operate on linear
sequence data, ensuring widespread compatibility and ease of inte-
gration with existing workflows (Compatibility). FASTA files are
human-readable and require minimal computational resources,
making them accessible and easy to manipulate.

However, linear representations also face significant limitations
when it comes to capturing the full extent of genomic complexity
within a species. The strictly linear nature of sequence representa-
tion forces assemblers to make arbitrary choices when encounter-
ing ambiguities, such as uncertain bases, single nucleotide
polymorphisms (SNPs), or tandem repeats. This can lead to the loss
of genetic information or the introduction of errors (Loss of infor-
mation). Linear formats struggle to accurately represent structural
variations, inversions, and complex haplotype relationships, as
they can only accommodate a single representation of variations
at a given coordinate (Inability to represent variations). As more
genomes are added to a pan-genome, the linear representation
becomes increasingly fragmented, reducing its utility and compli-
cating downstream analyses (Limited scalability).

Graph-based representations, such as assembly graphs and
variation graphs, offer an alternative approach that addresses
many of the limitations of linear formats. Plant graph construction
tools play a crucial role in capturing the complex genetic variations
present in plant genomes, leading to the development of plant
pangenomes. Recent advancements in graph construction tools
have enabled researchers to construct comprehensive plant graph
pangenomes, offering a more nuanced understanding of genetic
diversity and evolutionary relationships within plant species.

Tools such as Cortex [45] and SplitMEM [46] have traditionally
been used for graph construction in genomic studies, but their
applicability in plant genomics may be limited due to the unique
complexities of plant genomes. However, newer tools and method-
ologies tailored for pangenomes, such as VG (Variation Graph
Toolkit) [44], PGGB [42], ODGI [109], cactus [43], and GraphAligner
[50], have emerged to address these challenges more effectively.
The tools like PGGB, cactus, and Minigraph-Cactus are alignment
based graph generating tools applied for vertebrate and human
pangenome studies [110,111].

Graph structures can faithfully represent the non-linear com-
plexities of genomes, including ambiguities, repeats, inversions,
and structural variations, without the need for arbitrary decisions
or loss of information (Preservation of complexity). Graph repre-
sentations can accommodate variations across multiple individuals
within a population, enabling population-scale analyses and the

https://github.com/GFA-spec/GFA-spec
https://github.com/GFA-spec/GFA-spec
https://bitbucket.org/bucklerlab/rphg/wiki/Home
https://bitbucket.org/bucklerlab/rphg/wiki/Home
https://hub.docker.com/r/maizegenetics/phg
https://hub.docker.com/r/maizegenetics/phg
https://bitbucket.org/bucklerlab/rphg/wiki/Home
https://bitbucket.org/bucklerlab/rphg/wiki/Home


Fig. 3. A graph-based visualization in: A) dot format viewer; B) graph format in Bandage The PHG database construction includes; C) identification of reference ranges/
intervals sequences (conserved regions); D) identify the haplotypes and calling consensus for each group (of a population) and storing in the database; E) map the sequence
read of a query individual of a population and follow the path to find the haplotypes from the database.
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identification of sample-specific variations (Population-scale anal-
ysis). As new genomes are added to the pan-genome, graph struc-
tures can dynamically incorporate and represent the additional
variations, providing a scalable framework for capturing genomic
diversity (Scalability).

However, graph-based representations also face challenges.
Unlike linear sequences, graph representations often lack a
straightforward coordinate system for mapping genomic features,
complicating analyses and requiring the development of special-
ized tools and methodologies (lack of coordinate system). Graph
structures can be computationally intensive to construct, manipu-
late, and analyze, particularly for large and complex genomes
(computational complexity). Effectively visualizing and interpret-
ing the intricate patterns and relationships within graph-based
pan-genomes can be challenging, requiring the development of
specialized visualization tools (visualization challenges) listed in
the Table 2.

Future developments in plant graph pangenomes may involve
incorporating diverse genomic and epigenomic data (integration
of multi-omics data) into plant graph pangenomes can provide a
more holistic view of plant genomes. Advancements in graph algo-
rithms and tools tailored for plant genomics (development of effi-
cient graph algorithms) can enhance the accuracy and scalability of
plant graph pangenome construction. Utilizing plant graph pan-
genomes for marker-assisted breeding and trait mapping can
accelerate genetic improvement efforts in crops (application in
breeding and crop improvement).
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As pan-genome analyses continue to evolve, the choice between
linear and graph-based representations will depend on the specific
research objectives, the complexity of the target species, and the
desired balance between comprehensiveness, computational effi-
ciency, and interpretability.
Is it possible to toggle between the formats?

The linear sequence and graph-based representations of
pan-genomes are not mutually exclusive, but rather comple-
mentary approaches that can be leveraged in a coordinated
manner. As Iain MacCallum and David B. Jaffe (from Broad Insti-
tute of MIT and Harvard, Cambridge) indicated, while each for-
mat has its unique strengths and limitations , it is possible to
transition between them, capitalizing on their respective
advantages for different stages of analysis or specific applica-
tions (Fig. 4).
From linear to graph

Genome assembly tools, such as cloudSPAdes [147], ALLPATHS-
LG [148], Cuttlefish 2 [149], and Minigraph-Cactus [111], typically
employ a graph-based approach during the initial assembly
process. These tools build assembly graphs by identifying
overlapping sequence reads and representing them as nodes and
edges. Subsequently, the optimal path through the graph is



Table 2
Plant pangenome visualization tools for linear and graph format assemblies.

Software Available site Reference

Linear format
ABrowse (genome browser) https://www.abrowse.org/ [116]
BasePlayer https://github.com/rkataine/BasePlayer [142]
Biodalliance https://github.com/dasmoth/dalliance [128]
Ensembl genome browser https://useast.ensembl.org/Homo_sapiens/Location/View?r = 17:63992802-64038237 [143]
GBrowse 2 https://github.com/GMOD/GBrowse [117]
GeneViTo https://athina.biol.uoa.gr/bioinformatics/GENEVITO/ [126]
GenomeMaps https://github.com/opencb/genome-maps [125]
Gosling https://gosling.js.org/ [113]
HiGlass https://github.com/higlass/higlass [145]
IGB https://bioviz.org/ [123]
IGV https://github.com/igvteam/igv [121]
IGV.js https://github.com/igvteam/igv.js/ [144]
JBrowse 2 https://jbrowse.org/jb2 [129]
Kero-BROWSE https://kero.hgc.jp/examples/CLCL/hg38/index.html [114]
NCBI Genome Data Viewer https://www.ncbi.nlm.nih.gov/genome/gdv/ [140]
Nucleome browser https://vis.nucleome.org/v1/main.html [135]
pyGenomeTracks https://github.com/deeptools/pyGenomeTracks [127]
Tablet https://ics.hutton.ac.uk/tablet/ [131]
Trackplot (python) https://github.com/ygidtu/trackplot [137]
Trackster https://galaxyproject.org/learn/visualization/ [132]
UCSC genome browser https://genome.ucsc.edu/ [146]
UTGB https://utgenome.org/ [141]
Zenbu https://fantom.gsc.riken.jp/zenbu/ [112]
Graph format
AbySS-Explorer https://github.com/bcgsc/ABySS-explorer [134]

Assembly Graph Browser https://www.github.com/almiheenko/AGB [124]
Bandage https://github.com/rrwick/Bandage [119]
GfaViz https://github.com/ggonnella/gfaviz [133]
Icarus https://bioinf.spbau.ru/icarus [130]
IGV https://igv.org/ [121]
MoMI-G https://github.com/MoMI-G/MoMI-G [139]
Panache github.com/SouthGreenPlatform/panache [122]
PanGraphViewer https://github.com/TF-Chan-Lab/panGraphViewer [136]
PGGB https://github.com/pangenome/pggb [42]
Ray Cloud Browser https://deNovoAssembler.sf.Net/ [120]

SGTK https://github.com/olga24912/SGTK. [118]
VAG https://ricegenomichjx.xiaomy.net/VAG/sequenceextraction.php [115]
viralFlye https://github.com/Dmitry-Antipov/viralFlye [138]
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selected to generate the final non-branching assembly in a linear
contig sequence format.

As more genome sequences become available for a species, the
linear representation can be extended to accommodate variations
from additional individuals by introducing ‘‘bubbles” or branches
within the graph structure. This process effectively transitions
from a linear format to a graph-based representation, enabling
the capture of population-level variations and structural
complexities.

From graph to linear

Conversely, graph-based pan-genome representations can be
linearized by exporting specific paths or haplotypes as linear
sequences. This approach is particularly useful for integrating
graph-based pan-genomes with existing bioinformatics pipelines
and tools that operate on linear sequences.

For instance, in the construction of the wheat graph pan-
genome, the gfatools gfa2bed utility was employed to linearize
the graph representation, allowing the integration of genomic fea-
tures and annotations from the linear coordinate system
(https://doi.org/10.5281/zenodo.6085239).

In the case of Practical Haplotype Graphs (PHGs), the graph
database can be queried with aligned sequence reads (e.g., from
whole-genome sequencing or reduced representation sequencing)
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to extract linear haplotype sequences corresponding to specific
individuals or accessions.

Hybrid approaches

In many cases, a hybrid approach that leverages the strengths of
both linear and graph-based formats may be advantageous. Linear
representations can serve as a familiar coordinate system for
mapping genomic features, annotations, and small-scale varia-
tions, while graph structures can capture the broader genomic
diversity, including structural variations, inversions, and complex
haplotype relationships.

This hybrid approach allows researchers to seamlessly transi-
tion between formats, utilizing linear sequences for downstream
analyses and feature mapping, while leveraging graph structures
for comprehensive representation of pan-genomic diversity and
population-scale analyses.

Ongoing bioinformatics developments create tools that enable
researchers to switch between linear and graph-based analytical
formats through data structures which bridge the two methods.
Pan-genomic data analysis becomes more comprehensive through
ongoing tool improvements which allow researchers to leverage
both formats’ therapeutic possibilities [150]. Effective format
interoperability techniques will unlock the complete potential of
pan-genome analyses to push forward crop breeding research

https://doi.org/10.5281/zenodo.6085239)
https://www.abrowse.org/
https://github.com/rkataine/BasePlayer
https://github.com/dasmoth/dalliance
https://useast.ensembl.org/Homo_sapiens/Location/View?r
https://github.com/GMOD/GBrowse
https://athina.biol.uoa.gr/bioinformatics/GENEVITO/
https://github.com/opencb/genome-maps
https://gosling.js.org/
https://github.com/higlass/higlass
https://bioviz.org/
https://github.com/igvteam/igv
https://github.com/igvteam/igv.js/
https://jbrowse.org/jb2
https://kero.hgc.jp/examples/CLCL/hg38/index.html
https://www.ncbi.nlm.nih.gov/genome/gdv/
https://vis.nucleome.org/v1/main.html
https://github.com/deeptools/pyGenomeTracks
https://ics.hutton.ac.uk/tablet/
https://github.com/ygidtu/trackplot
https://galaxyproject.org/learn/visualization/
https://genome.ucsc.edu/
https://utgenome.org/
https://fantom.gsc.riken.jp/zenbu/
https://github.com/bcgsc/ABySS-explorer
https://www.github.com/almiheenko/AGB
https://github.com/rrwick/Bandage
https://github.com/ggonnella/gfaviz
https://bioinf.spbau.ru/icarus
https://igv.org/
https://github.com/MoMI-G/MoMI-G
http://github.com/SouthGreenPlatform/panache
https://github.com/TF-Chan-Lab/panGraphViewer
https://github.com/pangenome/pggb
https://deNovoAssembler.sf.Net/
https://github.com/olga24912/SGTK
https://ricegenomichjx.xiaomy.net/VAG/sequenceextraction.php
https://github.com/Dmitry-Antipov/viralFlye


Fig. 4. Comparison of linear and graph formats in pangenome representation: A) The linear and graph format sequence comparison. The linear format (FASTA) force to
choose a random base (in case of SNP variant), a single path for uncertain repeat and haplotype patterns at a sequence position, whereas graph format (FASTG) encodes and
store the genome complexity; B) A pangenome can be represented in a linear format, graph and PHG can interchange with few additional steps. A linear format can be
converted to a graph with identified haplotypes/variants and export genotypes into a linear format. Similarly, a list of haplotypes called on reference ranges which are based
on the linear format can be imported into PHG database in graph format and can export the imputed consensus haplotype path back to a linear format.
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and agricultural development through paramount insights into
species genetics.
Visualization

Effective visualization is pivotal for interpreting and under-
standing the intricate relationships and patterns within pan-
genomic data. While most visualization tools initially focused on
linear reference genome structures, the increasing adoption of
graph-based representations has necessitated the development of
10
novel visualization approaches to capture the complexities inher-
ent in these non-linear data structures (Table 2).

Linear genome visualizers: Adapting to pan-genomic representations

Traditional linear genome visualizers, such as GBrowse,
JBrowse2, and Circos, have been adapted to accommodate linear
pan-genome representations (Fig. 5). These tools have been
employed in various studies, including the visualization of pan-
genomes for species like Brassica napus, Brassica oleracea, and
wheat. While effective for linear sequences, these tools may strug-



Fig. 5. Pangenome visualization of A) a linear format pangenome in Gbrowse (Brassica napus pangenome); B) Panache screenshot of wheat pangenome.
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gle to accurately represent the intricate details and complexities
present in graph-based pan-genomes.

Graph-based genome visualization: Capturing non-linear complexities

To address the challenges of visualizing graph-based pan-
genomes, several specialized tools have been developed for assem-
bly graphs and variant graphs. Bandage is a visualization tool
designed specifically for assembly graphs, capable of displaying
connections and patterns within the graph structure. ODGI (Open,
Decentralized Genomic Research) is a command-line tool for visu-
alizing and analyzing assembly graphs. The tool for visualizing and
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exploring genome assembly graphs in the Graphical Fragment
Assembly (GFA) format is possible with GfaViz.

Additionally, tools like vg view (part of the Variant Graph tool
suite) and the Sequence TubeMap have been developed to visualize
variation graphs at different scales, ranging from individual varia-
tions to larger structural variations. More tools are listed in Table 2.

Network analysis and heatmap visualizations

Network analysis packages, such as igraph (available in Python,
R, and C/C++), provide tools for visualizing and analyzing graph-
based pan-genome data structures.
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Moreover, heatmap visualizations have emerged as a powerful
technique for representing shared genomic regions among individ-
uals within a species. Tools like Panache can generate interactive
web-based heatmaps, highlighting regions of similarity and diver-
gence across different accessions or individuals.

Visualizing practical haplotype graphs (PHGs)

For representations like Practical Haplotype Graphs (PHGs),
which focus on capturing haplotype variations within a
pan-genome, specialized visualization approaches are required.
While tools exist for visualizing the linear components of PHGs
(e.g., conserved sequence ranges), visualizing the haplotype con-
nectivity and relationships within the graph structure remains an
active area of development.
Integrating multiple visualization approaches

As pan-genome analyses continue to advance, the development
of effective visualization tools will be crucial for interpreting the
intricate patterns of genomic diversity within species. By integrat-
ing multiple visualization approaches, ranging from linear genome
browsers to graph-based representations and heatmaps, research-
ers will gain a comprehensive view of the genetic landscape,
enabling deeper insights into the evolution, adaptation, and func-
tional implications of genomic variations.

Pangenomes towards the crop improvement

The introduction of pangenomic approaches may transform
crop improvement by revolutionizing how we understand and uti-
lize genetic diversity within species. Unlike traditional methods
that depend on a single reference genome, pangenomics captures
the full range of genetic variations, including both core genes found
in all individuals and accessory genes present in only some. This
comprehensive view of a species’ gene pool provides new opportu-
nities for identifying genetic variants linked to valuable agronomic
traits, making crop improvement more precise and effective.

Pangenomics for trait discovery

Pangenomics represents a powerful crop improvement method
because it enables researchers to study the actual genetic variants
which determine traits including yield productivity mixed with
drought resilience and disease immunity. Pan-genome-wide single
nucleotide polymorphisms (SNPs) along with presence/absence
variations (PAVs) provide high-density molecular markers which
enable researchers to run powerful genome-wide association stud-
ies (GWAS) and quantitative trait locus (QTL) mapping analyses
(Fig. 6). Through these methods scientists can discover quantita-
tive trait nucleotides (QTNs) that correspond with desired pheno-
typic features to develop useful markers and genomic prediction
models [66].

Overcoming biases and capturing comprehensive genetic diversity

Pangenomics addresses the biases and limitations of using just
one reference genome for genetic studies. It allows scientists to
capture and study genetic variants that might be missing or under-
represented in a single reference genome. This leads to a more
accurate and complete identification of genes linked to important
traits. Additionally, pangenomics helps explore large genetic
changes, such as copy number variations (CNVs) and gene pres-
ence/absence variations (PAVs), which significantly affect traits
like leaf growth and disease resistance in crops like maize.
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Unleashing the potential of evolutionary dynamics and functional
implications

Pangenomics allows scientists to study the differences in gene
content across various plant types, including wild relatives. This
helps them understand how these differences evolved and their
impact on plant functions. By pinpointing gene families or specific
genes linked to beneficial traits, researchers can use this informa-
tion to introduce or edit these genes, speeding up the creation of
better crop varieties with improved performance and desirable
characteristics.

Integrating pangenomics with advanced statistical models and
machine learning

Combining pangenomic data with advanced statistical models
and machine learning can greatly improve the accuracy of predict-
ing genetic traits. By including structural variations, CNVs, and
PAVs along with traditional SNP data in their models, researchers
can get a fuller picture of the genetic makeup behind complex
traits. This makes it easier to select and breed crops more accu-
rately and efficiently, leading to better crop improvement
programs.

Fueling future advancements in crop improvement

The advancement of sequencing technology and wider avail-
ability of pangenomic crop species resources will allow more
extensive utilization of pangenomic information for crop improve-
ment programs. Pangenomic data integration alongside modern
techniques including genome editing combined with genomic
selection and gene introgression enables scientists to develop
climate-adapted crop varieties exceeding the current yield limits
and containing essential nutritional components that serve food
security and environmentally-friendly farming systems [31,151].

The future of modern agriculture depends heavily on pange-
nomic intervention to address genetic diversity needs and identify
traits and create breeding precision methods while investigating
genome-environment relationships and discovering new genetic
material [150]. The wide-ranging genetic composition of crop spe-
cies becomes accessible through pangenomics so it reshapes plant
breeding approaches while fostering sustainable crop development
suitable for evolving global agricultural requirements.
Conclusion and future perspectives

Recent technological advancements have revolutionized the
field of pangenomics, enabling the comprehensive representation
of genetic variation within species through pangenome assemblies.
These innovative approaches encompass both linear and graphical
models, supporting sophisticated algorithms for sequence read
mapping, visualization, and association studies. While graph-
based pangenomes exhibit the capability to effectively relate mul-
tiple sequences, the debate persists regarding whether they will
supplant the traditional linear reference genomes. Linear refer-
ences offer the advantage of maintaining coordinate systems,
enhancing their utility across diverse applications.

Identifying dispensable genes or sequences throughout a spe-
cies’ complete germplasm is a vital component of pan-genome
research. However, the field faces notable challenges stemming
from the limitations of existing technologies and computational
programs. These limitations encompass issues such as the accuracy
of gene annotations, the complexity of analyzing large-scale geno-
mic data, the computational resources required for comprehensive
pan-genome studies, and the need for standardized methodologies



Fig. 6. The comparison of genetic variants in pangenome formats: A) The variation was ignored between the 2nd and 3rd variation; B) whereas in graph format the same
missing variation was captured; C) at the downstream analysis the haplotypes were missing leading to a wrong pattern of haplotypes and; D) With more accurate genetic
information, breeders can utilize it to identify variants involved in MAS/GS and make alterations to the genome through genome editing.
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to ensure reproducibility and comparability across different stud-
ies. Overcoming these hurdles necessitates a detailed examination
and refinement of current approaches to enhance the robustness
and reliability of dispensable gene identification in pan-genome
research.

Pangenome analysis offers valuable insights and tools that can
significantly enhance crop breeding by facilitating the recovery of
favorable genes lost in elite lines and integrating genome editing
to guide future breeding strategies. Through pan-genome analysis,
breeders can identify dispensable genes or sequences that are not
present in all accessions but may confer beneficial traits under
specific conditions. By investigating the functional roles of these
dispensable genes, breeders can strategically reintroduce them
into elite lines to enhance agronomic performance and resilience.
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The comprehensive understanding of dispensable genes provided
by pan-genome analysis guides breeders in selecting and intro-
gressing valuable genetic variants for trait improvement.

The genome editing method CRISPR-Cas9 creates precise and
focused modification techniques to manipulate specific genes
located in crop genomes. The utilization of pan-genome information
helps breeders choose target genes for desired traits which they can
modify using genome editing tools for novel alleles and deleterious
mutation correction and gene expression level optimization in elite
genetic lines. Through the use of this approach researchers can
develop improved crop varieties with tailored benefits by accelerat-
ing breeding production and development cycles [151].

A critical challenge in pangenomics lies in addressing heterozy-
gosity issues, where the presence of alternative alleles complicates
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variant identification. Strategies must be developed to differentiate
true single nucleotide polymorphisms (SNPs) from variants arising
exclusively due to heterozygosity during pangenome construction.
Furthermore, there is a growing interest in generating taxonomi-
cally stratified pangenomes to elucidate variable genomic regions
distinguishing taxa at species or family levels. Concurrently, con-
served genomic regions hold promise for marker development to
classify species taxonomically. Looking ahead, the prospect of cre-
ating pangenomes at higher taxonomic levels, such as the genus or
family, or even a unified pangenome for viridiplantae, emerges as a
fascinating avenue for future research endeavors with profound
implications for evolutionary studies and biodiversity conservation
efforts.

Machine learning and artificial intelligence (ML/AI) promise to
enhance formatting and haplotype graphing operation (HG) within
plant pangenomes through forthcoming studies that show predic-
tive capabilities for genomic analysis techniques. Genomic
research benefits increasingly from ML/AI technologies which cre-
ate streamlined data analysis solutions for enhanced annotation
accuracy alongside genome assembly results. In the realm of pan-
genome analysis, ML/AI algorithms can be leveraged to enhance
the formatting of complex genomic data and improve the construc-
tion of haplotype graphs. By developing ML models that can recog-
nize patterns in genomic sequences and structural variations,
researchers can optimize the representation of pangenome graphs
and accurately capture genetic diversity within plant species.

Moreover, the application of ML/AI in pan-genomic research
extends to transcriptome assembly and annotation. By incorporat-
ing ML algorithms trained on small RNAs/microRNAs data,
researchers can improve the efficiency and accuracy of pan-
transcriptome assembly and annotation processes.

Future genomic endeavors will benefit from adding ML/AI
methodologies to pangenome and pan-transcriptome analysis
which provides enhanced accurate annotations combined with
more advanced comparative genomics capabilities to reveal func-
tional plant population variation.Embracing these technologies in
future research endeavors can pave the way for innovative discov-
eries and transformative insights into plant genomic diversity and
evolution.
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