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Highlights
The rapid advances in plant genome se-
quencing and phenotyping have en-
hanced trait mapping and gene
discovery in crops.

Increasing adoption of machine learning
algorithms is crucial to derive meaningful
inferences from complex multidimen-
sional phenotyping data.

Emerging breeding approaches like opti-
Crop production systems need to expand their outputs sustainably to feed a
burgeoning human population. Advances in genome sequencing technologies
combined with efficient trait mapping procedures accelerate the availability of
beneficial alleles for breeding and research. Enhanced interoperability between
different omics and phenotyping platforms, leveraged by evolving machine
learning tools, will help provide mechanistic explanations for complex plant
traits. Targeted and rapid assembly of beneficial alleles using optimized breed-
ing strategies and precise genome editing techniques could deliver ideal crops
for the future. Realizing desired productivity gains in the field is imperative for se-
curing an adequate future food supply for 10 billion people.
mal contribution selection, alone or in
combination with genomic selection, will
enhance the genetic base of breeding
programs while accelerating genetic
gain.

Integrating speed breeding with new-
age genomic breeding technologies
holds promise to relieve the long-stand-
ing bottleneck of lengthy crop breeding
cycles.

Haplotype-based breeding, genomic
prediction, and genome editing will has-
ten targeted assembly of superior alleles
in future cultivars for sustainable agricul-
tural development and long-term food
security.
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Need for food security
Safeguarding a person’s right to adequate and nutritious food requires intensive research efforts
and innovative solutions to breed nutritious crops with improved productivity and resilience [1].
However, a major challenge is the uneven distribution of resources, resulting in a huge gap in sup-
ply and demand for food. Crop productivity and harvest are improved by access to modern infra-
structure and technologies, including breeding for improved varieties, agronomic practices, and
machinery for farm preparation, harvest, processing, and marketing.

Regions with high populations and low crop production should be studied to address these un-
even distribution challenges and provide equitable opportunities. Lessons learned from the pan-
demic highlight the need for self-sustainability, with less dependence on imports, especially for
agriculture. For instance, a vast portion of the entire global population resides in low-income
food deficit countries (32.23%), least developed countries (12%), and net food-importing devel-
oping countries (20.15%)i,ii. Therefore, enhancing crop productivity and addressing the world-
wide zero hunger and nutrition food security challenges through modern breeding
technologies, infrastructure, agronomic practices, and soil improvement remains essential.

Sequencing and phenotyping technologies for understanding genomic variation
A high-quality reference genome (see Glossary) is a prerequisite for genomics studies in a given
crop to attain accurate and precise results on crop performance [2]. High-confidence variant call-
ing facilitated by the availability of a high-quality reference genome, is crucial for genetic studies
such as gene discovery and manipulation. ‘Democratization’ of sequencing technologies in con-
cert with advanced informatics tools has improved the contiguity and completeness of existing
and genome assemblies. Since a single reference genome cannot capture all genomic variations
of a species, an increased number of gold- or platinum-standard reference genomes have be-
come available for several crops. Long-read or linked-read sequencing platforms, such as
PacBio, 10X Chromium, and Oxford Nanopore, supplemented by short reads from next-gener-
ation sequencing (NGS), allow the assembly of long contigs with high base-to-base precision
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Glossary
Artificial neural network: a machine
learning algorithm inspired by the human
nervous system that includes multiple
processing elements, which receive
inputs and deliver outputs on the basis
of their predefined activation functions.

Breeder’s equation: ΔG ¼ h2σp i
L ; a

simplified form of the quantitative genet-
ics concept to describe change of rate of
genetic gain (ΔG) in a given plant breed-
ing population relying on the parameters
like heritability (h2), phenotypic variation
within the population (σp), selection
intensity (i), and length of the breeding
cycle (L).
Convolutional neural network: a
class of artificial neural networks for pro-
cessing data containing a grid pattern
(e.g., images), which is designed to
automatically and adaptively learn spatial
hierarchies of features ranging from low-
to high-level patterns.
Copy number variation (CNV):
sequences that are present in different
number of copies between individuals
belonging to the same species and
encompass duplications, insertions,
and deletions.
CRISPR activation: a genome editing
method exploiting modified versions of
CRISPR effectors devoid of endonucle-
ase activity, with additional transcrip-
tional activators on catalytically inactive
Cas9 (dCas9) or single guide RNA
(sgRNA).
CRISPR interference: a genome
editing method utilizing catalytically inac-
tive Cas9 (dCas9) and single guide RNA
(sgRNA) to repress sequence-specific
genes without the need of gene knock-
out.
Deep learning: a subfield of machine
learning that deals with algorithms
inspired by the structure and function of
brain known as artificial neural networks.
Doubled haploid technology: a
breeding technique that allows produc-
tion of completely homozygous lines by
chromosome doubling within a short
time and thus dramatically reduces the
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(Figure 1). Hi-C sequencing [3] and Bionano Genomics Optical Mapping [4] have facilitated ge-
nome assemblies with greater contiguity by dramatically improving haplotype phasing and
haplotype scaffolding, especially in polyploid genomes [5].

Due to the reduction in sequencing costs, high-density genotyping is now affordable for assaying
large samples with high precision [6]. A large suite of genotyping platforms (e.g., Affymetrix
Axiom, Affymetrix GeneChip, and Illumina Infinium BeadChip) with varying single nucleotide
polymorphisms (SNPs) are now available for most crop species [7]. Several genome-wide
genotyping approaches integrating deep sequencing with reduced representation methods,
such as genotyping-by-sequencing, restriction site associated DNA sequencing, double-digest
RAD, and restriction fragment sequencing, have led to major innovations in marker discovery in
various plant species (Figure 1). Compared with array-based or NGS methods, whole genome
resequencing can simultaneously detect known and uncatalogued SNPs and large structural
variations (SVs), such as presence/absence variations (PAVs) and copy number varia-
tions (CNVs).

Concurrent advances in plant phenotyping driven mainly by innovations in image and sensor
technologies, with cost- and time-efficient acquisition of massive spatial and temporal data,
have leveraged the field of predictive phenomics [8]. Automated platforms equipped with
plant-to-sensor and sensor-to-plant modes can monitor the dynamic response of plant at
the organ, whole plant, and field scales (Figure 1). For instance, 3D structural imaging applica-
tions, such as X-ray computed tomography, allow in situ phenotyping of root system architecture,
alleviating underground phenotyping bottlenecks. The growing need to nondestructively monitor
plant performance in the real world has led to fully automated field-based phenotyping facilities. In
contrast, aerial platforms include unmanned aerial vehicles, manned aerial vehicles, and satellites
with varying levels of payload capacity and image resolution (Figure 1) [9]. Fewer than 20% of
mechanized phenotyping platforms established worldwide are field-based infrastructures [10].
In African countries, instead of such specialized facilities, setting up field stations and surveying
local pathogens with a regional, as opposed to an international foundation, needs to be consid-
ered.

Mining superior haplotypes for breeding traits
Fast-tracking mining of beneficial alleles in plant genetic resources (PGRs), such as wild rela-
tives and landraces conserved in genebanks, is crucial for ensuring future food supplies. Current
crops have accumulated a suite of traits suitable for modern agriculture and human consumption
through human-mediated domestication and improvement of wild species. For trait dissection, a
range of genetic populations, including biparental and multiple parental populations such as
multi-parent advanced generation inter-cross (MAGIC) populations and nested associ-
ationmapping populations, have been developed for many crops [6,11]. With the availability of
new sequencing/genotyping technologies, PGRs and genetic populations can be assayed with
sequencing and genotyping technologies and evaluated for agronomic and nutrition traits in
Figure 1. Accelerating the discovery of beneficial alleles from plant genetic resources. Plant genetic resources
including accessions archived in genebanks and experimental populations, serve as valuable sources of new genetic
variation. Long-read sequencing platforms generate high-quality reference genomes and facilitate pangenomic analyses
High-density genotyping approaches generate genome-wide marker information on these panels. Parallel developments in
image and sensor technologies allow acquisition of precise phenotyping data. New genes/haplotypes discovered from
analyzing sequence information and phenotyping data will pave the way for enhanced crop improvement. Abbreviations
CT, computed tomography; GBS, genotyping-by-sequencing; MAGIC, multi-parent advanced generation inter-cross
NAM, nested association mapping; RAD-seq, restriction site associated DNA sequencing; REST-seq, restriction fragmen
sequencing.

time to establish new cultivars.
Findable, accessible, interoperable,
and reusable (FAIR): a concise and
measurable set of data principles for
helping data producers and publishers
to maximize the added-value gained by
contemporary, formal scholarly digital
publishing.
Genomic selection (GS): a genomics-
assisted breeding approach that utilizes
genome-wide marker data to predict
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Box 1. Pangenomics to bring genes back from the past

Sequencing of multiple plant genomes has popularized the ‘pangenome’ or set of genes present within a species, includ-
ing the core genes present in all individuals and dispensable genes absent from at least one individual. The growing liter-
ature on multiple genome sequencing and pangenomics has provided strong evidence for the contribution of large SVs, to
evolutionary processes that have shaped adaptive diversity in plants. In plants, PAVs within a species range from 7.8% in
rice [80] to up to 40% in wheat [81], with many diploid plants having ~30–50% variable genes [82]. De novo genome se-
quencing of wild species accessions has enabled the development of pangenome of different species, called ‘super-
pangenome’ [83].

Gene PAVs are associated with environmental adaptation, domestication, and breeding [84], and annotations for variable
genes in many pangenomes are often enriched for agronomic traits, such as biotic and abiotic stress. Many variable genes
have been lost during domestication and breeding bottlenecks; identifying and characterizing these genes can support
their targeted reintroduction into breeding programs. Calling PAVs across wild and domesticated lines helps to retrace
the impact of domestication and breeding on the pangenome; genes with negative effects can decrease in frequency dur-
ing selection, while those with agronomic benefits increase (Figure 1). Due to low effective population size in many plant
breeding programs and ineffective recombination, many PAVs between wild and cultivated lines may have been lost
through genetic drift during breeding bottlenecks.

Knowledge of pangenomes enables us to fine-tune breeding outcomes by constructing the optimal gene content for a
crop variety. This requires building species-wide or even genus-wide super-pangenomes representing all genes and allelic
variants for breeding the next generation of crops. Pangenomes teach us which haplotypes to combine to produce supe-
rior haplotype and gene combinations, enabling plant breeders to shift from useful individuals to useful haplotypes and
useful genes when planning breeding programs. Several important agronomic traits have been associated with PAVs
and the selective reintroduction of these genes into elite germplasm has led to improved varieties. This knowledge enables
breeders to quickly breed cultivars with novel phenotypic attributes by simply backcrossingmajor genes into elite varieties.
Alternatively, GE systems now provide precise molecular tools to modify key genes that have been drivers of crop domes-
tication; for instance, de novo domestication of wild rice Oryza alta (CCDD) was achieved through gene editing of six ag-
ronomically important genes [85].

the genetic worth of an unobserved can-
didate in a breeding population via esti-
mating the effects of all genetic markers.
Genome-wide association study
(GWAS): an approach used in genetics
research to detect associations between
genetic variants and traits of interest in
natural population.
Genomics-assisted breeding: a
strategy that integrates genomic tools
with high-throughput phenotyping to
support breeding practices viamolecular
markers and to enable prediction of phe-
notype from genotype.
Haplotypes: a group of alleles within an
organism that are inherited together
from a single parent.
Haplotype-based breeding: a geno-
mic breeding approach for developing
tailored crop varieties, which includes
identification of superior haplotypes and
their deployment in breeding programs.
Haplotype phasing: the process of
reconstruction of haplotype sequences
from the genome data.
Haplotype scaffolding: a technique to
link together a noncontiguous series of
haplotype sequences into a scaffold,
which consists of sequences, separated
by gaps of known length.
Machine learning (ML): the method of
data analysis that provides computers
the capability to learn without being
explicitly programmed.
Multi-parent advanced generation
inter-cross (MAGIC) population: a
multi-parent population design in plants
includes intercrossing of several founder
lines over multiple generations before
selfing to develop inbred lines. Unlike
biparental populations, MAGIC popula-
tions incorporate multiple alleles and
provide enhanced recombination and
mapping resolution.
Nested association mapping
population: an integrated multi-parent
population approach that creates a
series of interconnected families by
crossing multiple founders with a com-
mon parent. Like MAGIC, this strategy
combines the benefits of linkage map-
ping and association mapping for high-
resolution mapping of complex traits.
Optimal contributions selection
(OCS): a selection method that is effec-
tive at increasing genetic gain, controlling
the rate of inbreeding and enabling
maintenance of genetic diversity.
Pangenome: a comprehensive repre-
sentation of the genetic variation present
in the entire species or population as
opposed to a single individual. It consists
of a core genome, comprising of
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multiple environments and seasons [2]. Superior genes/alleles for traits of interest can be identified
through pangenomics (Box 1) or genome-wide association studies (GWAS) (Table S1 in the
supplemental information online, Figure 1). Concerning modernizing agriculture in developing coun-
tries, local needs should be addressed to identify and conserve the germplasm of local crops and
wild relatives and undertake genomic breeding programs for accelerating crop improvement.

Systems biology for identifying genes and pathways
Resolving complex quantitative trait loci (QTLs) at the gene level using multi-omics approaches
Transcriptomics, proteomics, metabolomics, and epigenomics provide windows into molecular
variation in breeding lines beyond the actual or interpretable genetic variation they contain
[12,13]. These windows are closer to phenotype, narrow the genome to phenome divide, and pro-
vide independent sets of markers to complement genetic markers as breeding tools (Figure 2).

Associative transcriptomics examines correlations of phenotypic variation with variations in both
DNA sequence and transcript abundance [14]. In maize, cis expression QTLs (eQTLs) contribute
to phenotypic diversity for several traits, including domestication and adaptation [15]. Expression
read depth GWAS and transcriptome-wide association studies test associations of mRNA ex-
pression with phenotypic diversity [16,17]. Unlike genetic variants, the transcript levels are inde-
pendent of linkage disequilibrium across the genome; these methods provide deep insights
into the regulatory mechanisms of complex traits and enable better prioritization of causal candi-
date genes [17]. Proteomics approaches can also be used in multiple ways for refining the QTLs
underlying complex traits (Box 2).

Alterations in gene expression can be attributed to heritable epigenetic changes that do not in-
volve DNA sequences, including DNA methylation, histone modification, and noncoding RNAs
Trends in Genetics, December 2021, Vol. 37, No. 12 1127
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sequences present in all individuals of
the species, and the dispensable
genome that is shared by only some
individuals.
Pangenomics: the study of all genes
and genetic variation within a species.
Plant-to-sensor: a phenotyping tech-
nique practiced at high-throughput phe-
notyping platforms where the imaging
station occupies a fixed position during
the measurement routine and the plants
are transported to the imaging setup.
Plant genetic resources (PGRs): the
most valuable and crucial basic plant
genetic materials required to meet the
current and future needs of crop
improvement programs.
Presence/absence variation (PAV):
a class of genome structure variation
that is used to describe sequences that
are present in one genome but entirely
missing in the other genome.
Reference genome: a high-quality
genome sequence that is characterized
by its completeness (less number of
gaps), low error rate, and relatively high
proportion of sequence assembled into
chromosomes.
Sensor-to-plant: a phenotyping tech-
nique practiced at high-throughput phe-
notyping platforms where plants occupy
a permanent position during a measure-
ment routine and an imaging setup
moves to each of these locations.
Shuttle breeding: a breeding strategy
that uses diverse ecological environ-
ments to develop improved crop varie-
ties with higher adaptability.
Single nucleotide polymorphism
(SNP): genetic variation of a single base
pair at a specific position in the genome.
Single seed descent (SSD): a breed-
ingmethodusedwith segregating popu-
lations of self-pollinated species in which
plants are advanced by single seeds
from one generation to the next genera-
tion.
Speed breeding: a breeding technol-
ogy that involves growing plant popula-
tions under controlled conditions to
accelerate generation advancement
and shorten the crop breeding cycle.
Structural variations: large-scale
structural differences in the genomic
DNA, which are inherited and polymor-
phic in a particular species.
Super-pangenome: an approach of
developing a pangenome of the
pangenomes of diverse species for a
given genus. It offers a comprehensive
genomic variation repertoire of a genus
and provides exceptional opportunities
for crop improvement.
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[18]. Recent advances in NGS-based protocols, including methylated DNA immunoprecipitation and
bisulfite sequencing, have facilitated large-scale analysis of methylation levels, themost common form
of epigenetic polymorphisms. In plants, there is evidence for the role of epigenetic modifications on
gene expression regulation. High-throughput analysis can screen many lines during breeding cycles,
and proteomics andmetabolomics have reached a technical standard for application in these studies.
Specific metabolomic technologies, such as gas chromatography or liquid chromatography, coupled
with mass spectrometry, allow a more cost-effective analysis than NGS techniques [12]. Metabolites
are not only important traits in GWAS but are causally involved in stress resistance and thus could
serve as important biomarkers that can be rapidlymeasured and implemented in breeding cycles [19].

Deep learning and artificial intelligence
Machine learning (ML) uses statistical techniques so that computer systems can ‘learn’ from
current data and make predictions on new data [20]. ML tools allow systematic integration of in-
formation flowing across the multiple omics layers to provide a comprehensive view of biological
mechanisms involving causative genes and regulatory networks (Figure 2). In this context, data-
driven network analysis such as multiplex network and the interconnected network would help to
elucidate the genes and their complex functional relationships at the systems level [21]. To relieve
the ‘big-data’ challenge while dealing with high-throughput phenotyping data, advanced ‘com-
putational ecosystems’ backed by deep ML tools allowing storage, processing, and analysis of
the data will remain pivotal to derive meaningful inferences from the multidimensional datasets
[22]. This is exemplified by the recent use of artificial neural network/convolutional neural
network and support vector machine for the identification and prediction of pests and dis-
eases in plants from high-throughput image/hyperspectral data (Table 1). High-throughput
image recognition has fueled the recent advancements in ML [23]. Besides its role in geno-
type–phenotype associations, the performance of ML tools has been assessed for genome-
wide predictions [24], and ‘deepGS’ has outperformed the traditional genomic selection (GS)
models in cases where nonadditive variances had significant influence [25]. An array of ML appli-
cations in plant science and breeding include its use in defining genomic regions and genome
function, regulatory network inference, and understanding the complexity in plant response to
stresses [23]. However, the current lack of high-quality labeled data on large populations pre-
sents the major challenge in adopting ML for accelerating crop breeding [26]. Auto ML ap-
proaches and synthetic data generation may help to alleviate this bottleneck.

Making themost of thesemultiscale experiments calls for the development of cross-scalemeta-anal-
yses [27]. Equally important is enhanced accessibility to highly valued molecular- to field-scale
datasets that strictly follow agreed standards, such as findable, accessible, interoperable, and
reusable (FAIR) norms [28]. Realizing the enormous potential of fast-forward breeding needs effec-
tive communication and collaboration among the diversity of disciplines involving end-users, biolo-
gists, engineers, data scientists, and manufacturers. Improved understanding of the genomic basis
of plant traits of agronomic relevance is crucial for accelerating breeding, along with implementing
cutting edge ‘black box’ approaches, such as GS and ML. For instance, novel insights into global
translational reprogramming during growth-to-defense switch in plants [29] paved the way for re-
searchers to use ‘TBF1 cassette’ to obtain immune-boosted rice with no associated penalty in agro-
nomic performance [30]. Previous research on engineering rice with the NPR1 gene could enhance
disease resistance; the engineered rice had significant fitness costs associated with the resistance.

Accelerated development of crop varieties
Once superior haplotypes/alleles and causal genes for agronomic, climate resilience, and nutri-
tion traits are identified by pangenomics, GWAS, and systems biology approaches, the following
breeding approaches can be used to accelerate the development of superior varieties (Figure 3).
1128 Trends in Genetics, December 2021, Vol. 37, No. 12
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Support vector machine: a super-
vised machine learning algorithm that
provides analysis of data for classifica-
tion and regression analysis.
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Haplotype-based breeding
While genomics-assisted breeding has successfully developed superior cultivars through
marker-assisted selection (MAS) and backcrossing [31], most of these studies have identified
trait-associated DNA markers using biparental populations. In recent years, whole genome se-
quence combined with extensive phenotypic records can identify the diversity and structures of
key haplotypes associated with breeding decisions and validate their phenotypic effects [32].
The corresponding haplotypes with well-known phenotypic effects are then assembled precisely
using the genetic variants that define them.Haplotype-based breeding has shown potential for
trait improvement in several crops (e.g., rice [33], wheat [34], and pigeonpea [35]). Targeted as-
sembly of haplotypes can reduce the trade-offs of conventional introgression methods to incor-
porate ‘compound’ loci into different genetic backgrounds.

Genomic prediction
Advances in sequencing technologies have augmented the speed, throughput, and cost-effec-
tiveness of genotyping. In many cases, it is now cheaper to genotype a breeding line at high den-
sity than to evaluate its performance in the field. Access to improved sequencing and genotyping
technologies at lower cost has developed ways to leverage genotypic information in breeding
programs. The use of new cost-effective genome-wide sequencing combined with precise phe-
notype data allows calculating genomic estimated breeding values (GEBVs) that help the breeder
to identify offspring that can serve as parents for the next generation (improvement cycle). The
TrendsTrends inin GeneticsGenetics

Figure 2. Multi-omics platforms and machine learning tools to develop a systems-level understanding of complex plant phenotypes. Recent advances in
high-throughput technologies covering various layers of ‘central dogma’, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, facilitate
analysis of global genetic diversity (variomes). Modern machine learning tools and artificial intelligence approaches systematically integrate the deluge of information
flowing through these multiomics layers. Thus, system-level understanding will help elucidate functional variations and regulatory networks underlying complex
phenotypes of agricultural importance. Abbreviations: eQTL, expression qualitative trait locus; EWAS, epigenome-wide association study; mGWAS, metabolite
genome-wide association study; PWAS, proteome-wide analysis of SNPs.
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Box 2. Proteomics to refine QTLs for complex traits

Proteomics, based on mass spectrometry identification of peptides and matching them to translated gene sequences,
can be used for resolving QTLs for complex traits in various ways:

1. Reference crop proteomes can be compared with actual or predicted proteomes of crops to evaluate species or
genotype-specific protein differences via their orthology [86,87] and identify INDELS (missing or additional proteins)
that are translated in genotypes.

2. Quantitative proteomics approaches can be used in the same way as gene expression studies in breeding for single
or multiple gene discoveries associated with specific traits [88]. Proteomics can identify genes of interest that have
not been identified through other means because variation in protein abundance can be difficult to detect from gene
structure or gene expression studies due to post-transcriptional modification processes [89].

3. Major proteomics-based resources such as protein–protein interaction maps and protein coexpression maps can
link gene products as functional units or responses [90]. This can help reduce the solution space to resolve single
mechanisms that underlie multiple QTL associations with a trait that may fail to reach statistical significance on its
own [91].

4. Specific traits that are traditionally poorly accessible to QTL analysis (e.g., postharvest physiology and seed germi-
nation traits) can be sought using proteomics because the accumulated proteome of plant tissues is critical for the
timing of traits [92].

5. Traits involving post-translational processes, such as cascades of activation/deactivation by kinases/phosphatases
or protein degradation studies, are usually resolved by gene loci studies alone, needing direct analysis of
phosphopeptides [93] or protein turnover [94]. Such analyses can provide insight into potential solutions for main-
taining target levels (e.g., stabilizing target protein, overexpression of target protein) or altering signaling
(phosphomimic alterations), which are important for gene editing in plant breeding.

6. Proteomics now offers data-independent acquisition modes that allow targeted analysis of protein abundance in
breeding populations of hundreds to thousands of lines [e.g., sequential window acquisition of all theoretical frag-
ment ion spectra (SWATH) and multiple-reaction monitoring (MRM)] to directly assess protein markers in line selec-
tion during breeding cycles (e.g., Jacoby et al. [95]).

Trends in Genetics
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use of GEBVs in the context of genome-wide prediction promises to help accelerate the rate of
genetic gain in breeding [36]. Heffner et al. [37] showed that genomic prediction accuracy of
0.5 in maize and wheat increases genetic gains per year in two- to three-fold compared with
MAS and traditional selection methods (phenotypic and pedigree based).

The development of sequencing technologies delivered a large amount ofmarker data, posing chal-
lenges when incorporating these into prediction models. GS calculates the GEBV of lines using ge-
nome-wide marker profiling and allows the selection of lines prior to field-phenotyping, thereby
shortening the breeding cycle. GS techniques are already used in commercial crop breeding pro-
grams [38] and are currently being established in many public programs [39]. One of the main ad-
vantages of GS is the time saved by selecting parents earlier in the variety development pipeline by
predicting the genetic merit of untested individuals or lines. One challenge that GS has already been
shown to be well-suited for is the prediction of GEBVs across multiple environments [40]. To accu-
rately make such predictions, GSmodels are typically augmented with additional terms to account
for variability attributable to environments and their interaction with the genotype.

The breeder’s equation indicates that response to selection is dependent on interactions be-
tween selection intensity, the accuracy of prediction, genetic variation, and duration of cycles
[36]. Response to selectionmay be accelerated in the short-term by increasing selection intensity,
but linear increases in selection intensity are accompanied by exponential increases in population
inbreeding and loss in genetic diversity [41], which compromises long-term genetic gain. GS is
very efficient at detecting high-performing crossing candidates, but these tend to be closely re-
lated, especially when selection is based on the truncation of GEBVs [42]. In summary, fast-for-
ward breeding for grain yield and abiotic stress tolerance will require some form of assisted
ML, based on the evolutionary algorithm (EA) or deep learning, to ensure that breeding goals
are achieved in the long term.
1130 Trends in Genetics, December 2021, Vol. 37, No. 12
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Table 1. Machine learning for plant phenotyping

Machine
learning
algorithm

Sensor type Crop Trait(s) Refs

Abiotic stress

Object-based
image
analysis

Trichromatic (RGB) images
and multispectral
unmanned aerial vehicle
images

Wild tomato
(Solanum
pimpinellifolium)

Salinity and yield [67]

NN and RF RGB images and red,
green, near infrared images

Soybean Iron deficiency chlorosis [68]

SVM variant Scanning images Rice Nitrogen, phosphorus, and potassium
stress

[69]

Biotic stress

CNN RGB images Cucumber Powdery mildew [70]

SiVM and
SVM

Hyperspectral images Barley Powdery mildew [71]

DCNN RGB images Soybean Bacterial blight (Pseudomonas savastanoi
pv. glycinea), bacterial pustule
(Xanthomonas axonopodis pv. glycines),
sudden death syndrome (Fusarium
virguliforme), Septoria brown spot (Septoria
glycines), frogeye leaf spot (Cercospora
sojina), iron deficiency chlorosis, potassium
deficiency, and herbicide injury

[72]

Genetic
algorithm and
SVM

Hyperspectral images Soybean Charcoal rot [73]

CNN RGB images Maize Northern leaf blight [74]

SVM Hyperspectral images Rice Bakanae disease, Fusarium fujikuroi [75]

Crop quality and agronomy

SVM Hyperspectral images Cotton Crop quality (common types of botanical
and nonbotanical foreign matter that are
embedded inside the cotton lint)

[76]

CNN Normalized difference
vegetation index images

Lettuce Crop counting and yield-related traits [77]

SfM Multiview images Sugar beet Plant height, maximum canopy area,
convex hull volume, total leaf area, and
individual leaf length.

[78]

FCN and
R-CNN

RGB images Tomato Plant-part segmentation [79]

Abbreviations: CNN, convolutional neural network; DCNN, deep convolutional neural network; FCN, fully convolutional net-
work; NN, neural network; R-CNN, region-based convolutional neural network; RF, random forest; SfM, structure from mo-
tion; SiVM, simplex volume maximization; SVM, support vector machine.
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Optimal contributions selection
Crop improvement programs continue to remain interested in enriching the genetic base with ex-
otic alleles through prebreeding. However, the genetic exchange between exotic and elite pools
is hampered by various factors, including linkage drag associated with positive alleles, unantici-
pated outcomes resulting from exotic loci interaction with elite background, and loss of target
locus due to drift in small prebreeding populations [43]. The migration of exotic alleles to the
elite pool can be accelerated using efficient approaches, such as optimal contributions selec-
tion (OCS), that strike a balance between genetic gain and genetic relatedness in exotic × elite
populations. Based on different types of assisted ML, several OCS methods can optimize
Trends in Genetics, December 2021, Vol. 37, No. 12 1131
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Figure 3. Fast-forward breeding to develop cultivars for future food supply. Rapid, precise, and targeted manipulation of important plant traits is crucial for
delivering new cultivars. Haplotype-based breeding and genomic editing approaches rely on a set of significant genes, whereas breeding methods such as genomic
selection use genome-wide marker information rather than a priori gene-trait associations. Genomic selection is likely to reduce the genetic diversity of a breeding
program in the long-term. Hence, maintaining genetic diversity in breeding programs will be crucial for sustaining genetic gains from breeding innovations. Integrating
optimal selection contributions with these approaches may help retain genetic diversity while improving genetic gains. Abbreviations: GEBV, genomic estimated
breeding value.
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contributions from individuals over multiple breeding cycles [44]. An important area of application
for assisted ML is the genetic algorithm from which the EA was derived. EA-based search strat-
egies can be integrated with several ML and DL techniques to assist optimization. EA has been
adapted for the complex problem of mate selection in animal and plant breeding; one such devel-
opment uses differential evolution (DE) in the optimization engine [45]. DE-based OCS was used
in the simulated genetic improvement of complex traits in self-pollinating grain crops with pedi-
gree and genomic information [42,43]. The same approach was used to model genetic improve-
ment in heat-stress tolerance of wheat, together with grain yield, disease resistance, and other
complex traits, to protect wheat yields for the next 60 years of global warming [46]. Simulated
stacking of beneficial wheat haplotypes showed the value of genetic algorithms in crossing de-
signs for long-term genetic gain [47].

ML can be used to optimize mating designs with non-inbred lines, reduce cycle time, and accel-
erate breeding [48]. Typically, non-inbred lines have lower prediction accuracy than pure lines but
may improve with pedigree or genomic information as in animal breeding [49]. Cowling et al. [43]
used pedigree information and Gorjanc et al. [42] used genomic information, combined with
OCS, to model long-term genetic progress in selfing crops based on S0 (F1) recurrent selection.
The time taken to double the economic index (including yield, disease resistance, and other eco-
nomic traits) was similar in S0- and S3-derived recurrent selection combined with OCS when ac-
counting for an additional year per cycle selfing the S3 [43]. These studies confirm that non-inbred
1132 Trends in Genetics, December 2021, Vol. 37, No. 12
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selection is valuable for ‘fast-forward breeding’ for grain yield and abiotic stress tolerance com-
bined with OCS.

Genome editing
Genome editing (GE), based on CRISPR-Cas9, is a revolutionary tool for editing the plant genome
directly. Continuous technological breakthroughs in the GE toolkit have expanded the scope of
this technique in crops. For instance, cytosine and adenine base editors are being used to gen-
erate point mutations in important field-grown crops [50,51]. Conventional CRISPR-Cas9-medi-
ated delivery technologies, mainly based on DNA, are associated with obnoxious genetic
changes [52]. Hence, DNA-free GE holds great potential for developing edited crops with a re-
duced risk of obnoxious off-target effects. DNA-mediated or DNA-free GE is being applied in
crops using delivery systems such as particle bombardment [53], nanoparticles [54], and plant
viruses [55] (Figure 3). While the type II CRISPR-Cas9 system is straightforward and efficient, it
is limited to target sites upstream of 5′-NGG-3′ protospacer adjacent motifs (PAMs). To this
end, type V CRISPR-Cas12a (formerly Cpf1) [56] and Cas12b (formerly C2c1) [57] systems
can target T-rich PAMs and create cohesive ends for plant GE.

The efficient application of GE in crops requires detailed knowledge of genetic content to mini-
mize off-target effects and optimize phenotypic outcomes. An exciting update to the CRISPR-
Cas9 protocol called ‘prime editing’ has enabled search-and-replace-editing instead of single
base substitutions [58], allowing for small insertions, deletions, point mutations, and combination
edits. This mechanism has so far been used in human cells but is expected to work in plants. This
has brought us one step closer to the complete fine-grained control of gene content in crops.
Pangenomes can teach us about the required prime editing changes. It is feasible to use
prime editing to transform one resistance gene into a different allelic version, as identified from
the pangenome, than cross-breed that resistance gene into elite lines, since cross-breeding
takes and can lead to random changes in the resulting cultivars. Furthermore, GE plays a key
role in regulating gene expression in crops. For example, CRISPR activation and CRISPR in-
terference systems have been used to activate or repress transcription of plant genes with Cas9
[59], Cas12a [56], and Cas12b [57]. With the advances being made at a breathtaking pace, GE
holds enormous potential in expediting design-based crop improvement and in meeting future
food security.

Speeding up the breeding cycle
While any of the above-mentioned genomic breeding approaches can be used for trait improve-
ment, it is important to reduce generation cycle time to enhance the rate of genetic gain [60]. In
the last half of the 20th century, doubled haploid technology revolutionized the time required
to achieve genome fixation for many crop species. Unfortunately, most key crops in developing
countries remain largely recalcitrant to doubled haploid techniques [61]. Further, in species re-
sponsive to doubled haploidy, the linkage of genes, need for further recombination, or lack of
specialized tissue culture facilities demands an alternative approach to gene fixation. In such sit-
uations, modified pedigree breeding methods, such as single seed descent (SSD), facilitated
faster generation cycling and, combined with shuttle breeding between complementary envi-
ronments, were a key component of genetic improvements that led to crop productivity gains
during the Green Revolution. Accelerated SSD can be achieved in some plant species by rapidly
completing the full plant cycle in vitro. Difficulties with in vitro genotype dependence, the require-
ment for specialized facilities, and the need to reduce costs per plant for large-scale breeding
have driven the development of alternative platforms, such as fast generation cycling system
[62] and speed breeding [60]. Species important within global agricultural systems from the
Poaceae, Fabaceae, and Brassicaceae families are amenable to rapid generation turnover in
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Outstanding questions
Transcriptomic, proteomic, and
metabolic variations during crop
domestication and improvement
processes are different in diverse
species. Can these variations be
dissected at a greater resolution by
including additional landraces/wild
relatives to identify if the
domestication process triggered
similar changes at the transcriptome,
proteome, or metabolome level? Can
such variations contribute towards
designing climate-resilient crops for
the future?

What are the effective methods to
integrate CRISPR/Cas systems into
large-scale breeding programs for
accelerating crop genetic
improvement?

How can the rate of deployment of
machine learning algorithms be
enhanced across different crops and
program goals to help diverse
research objectives by developing
beneficial evaluation technologies?

To what extent can present and future
genetic gain in crop productivity be
fully realized by optimizing the length
of breeding cycles via speed breeding
and its integration with modern
genomic breeding technologies?

How can we ensure that modern
genomic breeding technologies will
actually reach the resource poor via
favorable technology transfer
processes?
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soil under controlled environment conditions. These ‘speed breeding’ conditions can be rudi-
mentary and within reach of all genetic improvement programs (e.g., day length extension im-
proving generation turnover by one or two generations per year).

More complex SSD platforms have recently arisen that use high-quality controlled environments
[62] or a combination of temperature and photoperiod control with light quality manipulation to
exploit ancient plant light responses, such as shade avoidance, to achieve rapid, synchronized
flowering across varied phenotypes [63,64]. The optimal conditions for rapid elicitation of
flowering time vary with species; however, there are opportunities within related species to create
broadly applicable growth conditions. The accelerated SSD strategy is particularly beneficial in
situations where simultaneous selection is required for several characteristics with different heri-
tability and is more efficient than conventional in-season generation turnover.

‘Speed breeding’ or other ‘SSD platforms’ can be combined with proposed breeding ap-
proaches such as OCS, HHB, GS, andGE. For instance, simulation studies suggest that combin-
ing GS with rapid gene fixation techniques can reduce the length of the breeding cycle and
maximize genetic gain per unit time [47,65]. This represents a powerful new integrative approach
to plant improvement, particularly in neglected species such as food legumes, and represents the
next step-change in genetic improvement.

Concluding remarks
Extracting novel genetic variation from wide germplasm for plant breeding applications has now
become a reality, owing to the recent breakthroughs in sequencing and phenotyping. In this con-
text, learning-based approaches allow understanding and integration of large-scale datasets to
find meaningful patterns for guiding future breeding strategies. Also, GE in combination with
pangenomics and systems biology provides an alternative route to engineer designer crops. As
the paradigm shifts from individual DNA marker to haplotypes, future cultivar development will
be driven by the breeding strategies that expeditiously create and incorporate superior haplo-
types in breeding populations. The efficient crop breeding programs with an enhanced genetic
base will accelerate the progress of forward breeding. By rapid production of climate-resilient
crop varieties, the above-mentioned approaches offer huge opportunities to improve breeder’s
response to growing challenges that crop improvement faces. While private sector and several
public sector breeding programs are already deploying these approaches in crop improvement
programs, public breeding programs, especially in developing countries, need to accelerate
adoption of these approaches. However, there are still some outstanding questions on the utili-
zation of these approaches for molecular dissection of complex traits and development of climate
resilient varieties in the face of a rapidly changing world (see Outstanding questions). Furthermore,
it is important to note that sustainable food security requires more than development of superior
varieties. For example, a robust seed system for delivering improved varieties to replace old cul-
tivars, appropriate agronomy practices, and mechanization is required for harvesting higher pro-
duce [66]. Similarly, farmers’ access to better markets, value addition, and food processing will
generate more income to farmers and deliver better products to consumers. Notwithstanding
this, the approaches mentioned here and their integration will fast-forward breeding for acceler-
ated crop improvement to contribute to a food-secure world.
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