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Abstract 

Background  Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress 
like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic under-
pinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) popula-
tion was developed and evaluated for five seasons at two locations for three consecutive years (2018–19, 2019–20 
and 2020–21) under drought stress and normal environments.

Results  Phenotyping data of drought tolerance related traits, combined with the high-quality 10,556 polymorphic 
SNPs, were used to perform multi-locus model genome-wide association study (GWAS) analysis. We identified 37 
significant marker-trait associations (MTAs) (Bonferroni-corrected) accounting, 0.91- 9.82% of the phenotypic vari-
ance. Intriguingly, 26 significant MTAs overlap on four chromosomes (Ah03, Ah07, Ah10 and Ah18) (harboring 70% 
of MTAs), indicating genomic hotspot regions governing drought tolerance traits. Furthermore, important candidate 
genes associated with leaf senescence (NAC transcription factor), flowering (B3 domain-containing transcription factor, 
Ulp1 protease family, and Ankyrin repeat-containing protein), involved in chlorophyll biosynthesis (FAR1 DNA-binding 
domain protein), stomatal regulation (Rop guanine nucleotide exchange factor; Galacturonosyltransferases), and associ-
ated with yield traits (Fasciclin-like arabinogalactan protein 11 and Fasciclin-like arabinogalactan protein 21) were found 
in the vicinity of significant MTAs genomic regions.

Conclusion  The findings of our investigation have the potential to provide a basis for significant MTAs validation, 
gene discovery and development of functional markers, which could be employed in genomics-assisted breeding 
to develop climate-resilient groundnut varieties.
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Introduction
Groundnut or peanut (Arachis hypogaea L.) is an impor-
tant oilseed, and fodder crop, particularly among small-
scale farmers in the SAT regions of Asia and Africa. It is 
cultivated on 32.72 million hectares worldwide, with an 
annual production of 53.93 Mt. [1]. In the past few years, 
global temperature has increased, resulting in drought 
and high temperature stress in SAT regions [2]. Around 
90% of groundnuts is grown under rainfed condition, 
characterized by irregular rainfall following a severe 
drought, mostly in Asia and Africa. Studies on climate 
change prediction in SAT regions have revealed a steady 
decrease in crop production, posing risks to food avail-
ability [3]. Yield loss of up to 33% has been reported due 
to water stress during the reproductive stage [4, 5]. Nota-
bly, groundnut yield has been reported to be reduced by 
70% due to water scarcity [6]. In groundnut, flowering 
and pod filling are the most critical stages under drought 
stress [7], where prolonged drought can diminish root 
density and growth, induce leaf curling and shorten the 
inter-nodal length, consequently impairing water use effi-
ciency and absorption activity, leading to delayed flower-
ing and anthesis, as well as a reduction in pod yield [8]. 
In addition, drought effects symbiotic nitrogen fixation, 
which in turn decreases both the yield and quality. Fur-
thermore, it also affects nitrogen content, and digest-
ibility of haulm fodder [9]. Thus, it is important to breed 
groundnut cultivars that can withstand drought and 
become ideal for the SAT region, to reduce the adverse 
effects of drought on groundnut yield and quality. Previ-
ous studies have reported that groundnut exhibits sub-
stantial variation in drought tolerance-related traits, 
which is important for crop improvement [10, 11].

Substantial advancements have been made in studying 
the genetic nature of drought tolerance via comprehen-
sive approaches including physiology and productivity 
[12, 13]. In groundnut, surrogate traits like transpiration 
efficiency (TE), specific leaf area (SLA), SPAD chloro-
phyll meter reading (SCMR), and relative water content 
(RWC) are considered significant indicators of drought 
tolerance, influencing yield variability under water stress 
conditions [14]. RWC and SLA are critical measures of 
drought tolerance involving water relations and plant 
response. Maintaining higher RWC and minimizing 
specific leaf area to mitigate water loss indicated a toler-
ance to drought. Furthermore, total dry matter content 
(TDMC) and SCMR are also important traits for geno-
type selection, exhibiting significant correlations with 
pod yield under water stress conditions [15]. The conven-
tional breeding approach for improving water stress tol-
erance in groundnut is restricted by the complex nature 
of trait, low heritability, and high genotype × environ-
ment interaction [16].

In last few years, genomics has made major progress 
in the exploration of the genetics underpinnings of 
complex traits [17]. Deployment of genomic resources 
and advanced breeding strategies, such as genomics-
assisted breeding (GAB) [18], genomic selection [17], 
and rapid generation advancements [19], have improved 
the efficacy of the groundnut breeding program. Fur-
thermore, the reduced cost of sequencing, availability of 
reference genomes for cultivated tetraploid groundnut 
[20–22], genotyping platforms and technologies such 
as genotyping-by-sequencing [2, 23] and high-density 
Axiom_Arachis’ single-nucleotide polymorphism (SNP) 
arrays [24] have fasten the speed and accuracy of ground-
nut genomics studies including gene discovery. These 
advancements have made it possible for high-throughput 
genotyping to enable development of high-dense genetic 
maps in groundnut [17]. The constraints of genetic char-
acterization are no longer a bottleneck for discovery of 
genes for traits of interest. Several QTL mapping stud-
ies have been conducted in groundnut for dissecting 
genetic basis of several traits, using bi-parental popula-
tions [25–29], including drought tolerance traits [25, 27], 
productivity traits [26], heat tolerance related traits [2] 
and agronomic traits [29]. Drought is a complex trait, 
consequently, some earlier reports, identify the QTLs 
for drought traits like transpiration efficiency (TE), SLA, 
SCMR, relative water content (RWC), shoot dry weight 
(SDW) [16, 30–32], via low-density genetic maps. Fur-
thermore, there is still need to develop varieties capable 
to withstand drought while providing substantial yields. 
This depends on the identification of yield attributing 
and surrogate traits linked to drought tolerance, as well 
as the transfer of the genomic regions/genes regulating 
such traits. Recently, two studies reported a QTL map-
ping of drought tolerance traits using a dense map [25, 
27]. Similarly, efforts have been undertaken to dissect 
genetic basis of drought tolerance traits in groundnut 
using high-quality SNPs [6]. QTLs identified by utilizing 
bi-parental populations have low resolution and usually 
don’t provide validation in different genetic backgrounds. 
While LD-based mapping employing natural populations 
effectively addresses such limitation, but lack of herit-
ability and the contribution of rare alleles are still unre-
solved. This issue is crucial in crops including groundnut 
because of its narrow genetic base. Thus, it is critically 
important to broaden the genetic base by involving mul-
tiple parents and introducing maximum genetic diversity 
that exists in the diverse germplasm. Consequently, there 
has been a notable rise in the exploitation of diversity 
panels in genetic dissection in recent decades [33, 34].

In recent studies, the  dissection of genetic basis of 
biotic stress and yield related traits has been  employed 
using specialized mapping populations in groundnut, 
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like multi-parent advanced generation intercross 
(MAGIC) [35] and nested association mapping (NAM) 
[36, 37]. Similarly, development of MAGIC populations 
in Arabidopsis thaliana [38] and wheat [39], have pro-
vided important insights into the genetic architecture 
underlying different traits. Multi-parental populations 
have enhanced mapping resolution and effectiveness. 
Of multi-parent population, MAGIC is ideally suitable 
for studying the genomic architecture and provides a 
robust framework for discovery and characterization of 
genes for complex traits with higher precision [40]. Addi-
tionally, it allows for the integration of higher genetic 
diversity, and high recombination rates. Trait integra-
tion, marker-assisted selection, and precision breeding 
in groundnuts need an  understanding of marker-trait 
associations.

This study aims to investigate the genetic basis of 
drought tolerance using the MAGIC population derived 
from eight groundnut genotypes (ICGV 02022, ICG 
7190, ICGV 97183, ICG 3053, ICG 14482, ICG 11515, 
TAG 24 and ICGV 02266) for developing genomic 
resources, MTAs and potential genes for improving cli-
mate resilience in groundnut.

Material and methods
Selection of parents and development of MAGIC 
population
Eight well-adapted cultivars/elite lines were used as 
founder parents in the development of MAGIC popula-
tion. Seeds material were collected from the ICRISAT 
Genebank, India and detailed information available in 
Table  S1 and at https://​geneb​ank.​icris​at.​org/​IND/​Refer​
ences​et?​Crop=​Groun​dnut. These included ICGV 02022 
(early maturing with 100–110  days and tolerance to 
drought), ICGV 97183 (high yielding, early maturing 
with 100–111 days and drought tolerance) [41]; ICG 7190 
(medium duration 110–130  days and moderate canopy 
temperature) [34]; ICG 3053 (breeding/research mate-
rial, Origin: India), ICG 14482 (variegated seed colour 
pattern, traditional cultivar/landrace, Origin: Nigeria), 
ICG 11515 (medium duration 110–120 days, traditional 
cultivar/landrace Origin: China)(https://​geneb​ank.​icris​
at.​org/​IND/​Passp​ort?​Crop=​Groun​dnut&​Locat​ion=​
Passp​ort&​mc=​Yes); TAG 24 (semi-dwarf variety with 
high harvest index and better water use efficiency) [42]; 
and ICGV 02266 (high-yielding, drought tolerant vari-
ety with superior haulm quality) [43]. The selected eight 
parents were inter-crossed in all possible combinations, 
excluding reciprocals, by generating 28 two-way (Dec 
2012–May 2013), 14 four-way (June 2013–Oct 2013) 
and 7 eight-way crosses (Dec 2013–May 2014) in field 
(Fig. 1a). All F1s from 7 eight-way crosses were advanced 
to F2s (June 2014–Oct 2014). A total of > 1500 F2 plants 

were grown during Dec 2014–May 2015 in the field. 
These were advanced to F3 (June -Oct 2015), F4 (Dec 
2015–May 2016, F5 (Jun–Oct 2016), and F6 (Dec 2016–
May 2017) using the  single seed descent (SSD) method 
in the field. A total of > 2421 F6 derived F7 MAGIC lines 
were grown (June–Oct 2017) for seed multiplication at 
ICRISAT Patancheru. During Post rainy 2018–19, 500 
MAGIC RILs were randomly selected from each set of 
seven crosses for the phenotyping at UAS-Dharwad (Dec 
2018-May 2019) (Table S2).

Multi‑environment evaluation and phenotyping 
for drought tolerance traits
The 500 MAGIC lines (MLs) were evaluated in five sea-
sons for three consecutive years (Table 1 and Fig. 1a) at 
two field sites, namely, University of Agricultural Sci-
ences (UAS), Dharwad (15.4889′N, 74.9813′E), and 
Regional Agricultural Research Station (RARS), Acharya 
N G Ranga Agricultural University (ANGRAU), Tirupati 
(13.6250′N, 79.3728′E). Three experimental trials were 
conducted during the post-rainy season (second and last 
weeks of January) to expose the MLs to water-stress dur-
ing the pegging and pod formation stage (imposition of 
mid-season stress), and two trials were conducted dur-
ing the rainy season (second week of July). From 40 to 80 
DAS, irrigation was withheld to impose stress conditions. 
Prior to 40 DAS, irrigation was provided as needed; 
and after 80 DAS need-based irrigation continued 
until harvest. The daily rainfall and temperatures were 
recorded for growth seasons over a three years (Fig. 1b). 
A randomized block design was used with a spacing of 
22.5  cm × 15  cm at RARS Tirupati, and 30  cm × 10  cm 
at UAS-Dharwad in two replicates. At each location, 
standard field procedures were followed over the vari-
ous evaluation seasons. The Field Scout TDR 350 Soil 
Moisture Meter was used to measure soil moisture and 
temperatures.

Phenotyping for agronomic traits
The MLs were phenotyped for eight agronomic traits 
such as total pod weight (TPW) (g plant−1), 100-
seed weight (HSW), sound mature kernel percentage 
(SMKWP), pod yield per plant (PYPP) (g plant−1), total 
seed weight (TSW) (g plant−1), shelling percentage (SP) 
(%), immature kernel number (IMKN) and sound mature 
kernel number (SMKN). TPW was measured by weigh-
ing the total pods of the plant/plot/m2 and expressing 
the weight in grams. HSW was determined by randomly 
drawing 100 seeds from each plot yield, weighed and 
expressed as HSW in grams. For SMKP, 100 kernels 
were randomly taken from each genotype, and recorded 
the weight. Bold kernels (smooth seed coat) were sepa-
rated from 100 kernels and take the weight of the bold 

https://genebank.icrisat.org/IND/Referenceset?Crop=Groundnut
https://genebank.icrisat.org/IND/Referenceset?Crop=Groundnut
https://genebank.icrisat.org/IND/Passport?Crop=Groundnut&Location=Passport&mc=Yes
https://genebank.icrisat.org/IND/Passport?Crop=Groundnut&Location=Passport&mc=Yes
https://genebank.icrisat.org/IND/Passport?Crop=Groundnut&Location=Passport&mc=Yes
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seeds. SMKP was measured as the weight of bold kernels 
divided by the weight of 100 kernels, multiplied by 100 
to obtain a percentage. TSW was determined by weigh-
ing the total seeds of the plant/plot/m2 and expressed 
as grams. SP was calculated by collecting random sam-
ple pods, weighted, shelled, and resulted kernels were 
also weighted. SP was calculated as the weight of ker-
nels divided by the weight of pods, multiplied by 100 to 
get percentage. IMKN and SMKN were obtained as the 
number of mature kernel per plant, number of immature 
kernel per plant, respectively.

Phenotyping for phenological and physiological traits
Observations were recorded for phenological and 
physiological traits like plant height (PH) (cm), days to 
50% flowering (DFF), SPAD chlorophyll meter read-
ing (SCMR), specific leaf area (cm2 g−1) (SLA), shoot 
dry weight (gm) (SDW), total dry matter content (gm) 
(TDMC), relative water content (%) (RWC) and canopy 
temperature (0C) (CT) in different growth stages like 
days to fifty percent flowering (DFF), and 70  days after 
sowing (DAS). Ten plants were randomly selected, and 
the average of these plants was used to record data. CT 

Fig. 1  Breeding scheme for the development of groundnut MAGIC population: (a) Individual colour represents one of the eight parents; (b) 
Variability in rainfall and temperature across different locations and seasons: The graph depicts the rainfall and daily maximum temperatures 
recorded during growth stage of groundnut crop over five seasons at two locations (L1: UAS-Dharwad, and L2: RARS-Tirupati)



Page 5 of 21Sharma et al. BMC Plant Biology         (2024) 24:1044 	

was measured using Infrared Gun (Wahl Heat Spy DHS-
10X, Wahl Instruments Inc., USA) and expressed as 0C. 
To determine RWC, leaflets were collected from the third 
leaf from the top of the primary branch of each genotype, 
soaked in water for 6 h to gain turgidity. Turgid weights 
are recorded and dried in hot air oven at 80 °C to a con-
stant weight to record dry weight. RWC was estimated 
using the formula RWC (%) = [(FW– DW)/(TW– DW)] 
* 100, where FW stands for fresh weight, DW for dry 
weight, and TW for turgid weight, as defined by Barrs 
and Weartherley, [44]. SLA is the ratio of leaf area (cm2) 
to leaf dry weight (g). Leaf area was estimated with a 
leaf area meter (LICOR model-3100), and leaf samples 
were oven-dried for at least 48  h at 800C. SCMR (DFF 
& 70DAS) was determined on all four leaflets of third 
leaf from the top of main axis using a SPAD meter of 
Minolta company, NJ, USA (SPAD 502). PH was meas-
ured and expressed in cm from the base of the plant to 
the tip of the terminal bud, with measurements taken 
from five randomly labelled five plants in each net plot 
area. For TDMC, plant samples were collected from the 
field and separated the leaves, stems and root, which 
were dried in oven at 80 0C for 2 days. The dry weights of 
oven dried roots, stems, leaves and pods were recorded 
and expressed as g plant−1. Similarly, for SDW, plant 

samples were collected from the field and separated the 
leaves, stems and root. These plant parts were dried in 
oven at 80 0C for 2 days. The dry weights of oven dried 
stems were recorded and expressed as g plant−1. For DFF 
the number of days taken from sowing to till 50 per cent 
of plants initiated flowering was counted in three replica-
tions of each genotype and expressed as days to 50 per-
cent flowering across all genotypes.

DNA isolation, library construction, sequencing, and SNP 
calling
DNA extraction was performed using the Nucleospin 
Plant II reagent kit (Macherey–Nagel, Düren, Germany; 
https://​guest.​link/​UM6) from young leaves of each MLs 
(25–30  days old), as detailed in Pandey et  al. [25]. The 
DNA quality was analysed using a 0.8% agarose gel, and 
DNA quantification was assessed with Thermo Scientific 
Nanodrop 2000 Spectrophotometer. Whole-genome re-
sequencing (WGRS) of 8 MAGIC parents and 14 other 
genotypes representing parental lines of mapping popu-
lations was performed with the HiSeq 2500 Sequencing 
System. The library construction, sequencing, and variant 
analysis was performed using pipeline described by Thudi 
et  al. [45]. The Genotype-by- sequencing (GBS) proce-
dure was executed in accordance with the methodology 

Table 1  Summary of phenotyping data for 18 drought tolerance traits (agronomic, physiological, and phenological traits) in MAGIC 
population across two locations and five seasons

PR post-rainy, R rainy, S season, L1 UAS-Dharwad, L2 RARS-Tirupati, -, not available, DAS days after sowing

Traits PR 2018–19 
(S1)

R 2019 (S2) PR 2019–20 (S3) R 2020 (S4) PR 
2020–
21 (S5)

Agronomic Traits
  Total Pod weight (g plant−1) L1 L1 - - -

  100-seed weight (g) L1 - - L1 L1

  Sound mature kernel weight percentage (%) L1 - - L1 L1

  Pod yield per plant (g plant−1) - L2 L2 L1 L1

  Total Seed weight (g plant−1) - - L2 L1 -

  Shelling percentage (%) - - L2 L1 L1

  Immature kernel number - - - L1 L1

  Sound mature kernel number - - - L1 L1

Physiological and Phenological Traits
  SPAD chlorophyll meter reading_ Days to 50% flowering L1 L1 L1 L1 L1

  Specific leaf area_ Days to 50% flowering (cm2 g−1) - - L1 L1 L1

  SPAD chlorophyll meter reading (70 DAS) L1 L1 L1 & L2 L1 L1

  Specific leaf area (cm2 g−1) (70 DAS) L1 - L2 L1 -

  Plant height (cm) - - - - L1

  Shoot dry weight (gm) - - - - L1

  Total dry matter content (gm) - - - - L1

  Canopy temperature ( 70 DAS) (0C) - - L2 - -

  Relative water content (%) - - L2 - -

  Days to 50% flowering` L1 - - - L1

https://guest.link/UM6
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described by Elshire et al. [46]. DNA was digested using 
the restriction enzyme ApeKI for GBS (recognition G/
CWCG site), and T4 DNA ligase ligates barcoded adapt-
ers to the DNA fragments. The equal proportion of 
adapter-ligated fragments utilized in the construction of 
the library. After removing additional adapters by ampli-
fication, these libraries were sequencing on a HiSeq 2500 
(Illumina Inc., San Diego, CA, USA).

SNPs were identified using the GBSv2 [47] work-
flow, which was executed in TASSEL v5 [48], employing 
the sequence reads from the fastq files. The reference 
genome used for SNP calling was allotetraploid progeni-
tor (AABB; 2n = 4x = 40) of the cultivated groundnut 
A. hypogaea var. Shitouqi (http://​peanu​tgr.​fafu.​edu.​cn/​
index.​php) [22]. The in-house script was utilized to verify 
if the sequencing reads had barcodes exactly matching 
the expected four-base remnant of the enzyme cut site. 
The reads were initially checked for barcode information, 
and reads with ’N’ within first 64 bases were rejected. The 
reads containing barcodes were subsequently demulti-
plexed based on the barcode sequence. The Burrows-
Wheeler Alignment Tool [49] was employed to aligned 
the remaining good-quality and distinct reads, referred 
to as tags, against the reference genome. Afterwards, the 
alignment file underwent the GBSv2 workflow to carry 
out SNP calling and genotyping. In order to minimize 
the false positive, samples having less than 80 MB of data 
were excluded from further analysis. SNPs with low call 
rates were excluded based on criteria of missing call rate 
(more than 20%) and minor allele frequency (MAF) less 
than 5%. Filtering resulted in 10,556 high-quality SNPs 
across 449 MLs for further analysis.

Genetic structure and LD decay
The genetic diversity of the MLs was analysed using the 
high-quality 10,556 polymorphic SNPs. The population 
structure was evaluated using Bayesian Markov Chain 
Monte Carlo model (MCMC) in STRU​CTU​RE v2.3.4 
[50]. Three independent runs for K values ranging from 
1 to 10 were conducted with the parameters using burn-
in length of 1,00,000 and 3,00,000 iterations, respectively. 
Through the log probability of the data [LnP(D)] and 
delta K (ΔK), which is determined by the rate of change 
in [LnP(D)] between consecutive K-values, Structure 
Harvester estimated the K-value. Principal Component 
Analysis (PCA) was performed with plink (version 1.9) 
and visualized using the R (https://​www.r-​proje​ct.​org). 
The neighbor-joining (NJ) clustering method in TAS-
SEL 5 [48] was used for construction of tree. The results 
were visualized using iTOL v6 (https://​itol.​embl.​de). The 
default parameters were used to calculate LD decay sta-
tistics using the software PopLDdecay (v3.41).

GWAS analysis and identification of candidate genes
For GWAS analysis, this investigation used the phe-
notyping data generated in five seasons across three 
consecutive years (excluded the MLs with missing and 
insufficient data). Finally, 449 MLs comprising 10,556 
SNPs were employed for performing GWAS analysis. The 
multiple loci mixed linear model (MLMM) was imple-
mented using the R/GAPIT 3.0 package to find significant 
MTAs. The false-positives were corrected using “Bonfer-
roni Correction” (5% level of significance), considering 
SNPs significant only when they met the correction cri-
teria. Candidate genes associated with the corresponding 
traits were detected in the vicinity of significant SNP trait 
associations, examining 1 Mb window (500 kb on either 
side of SNP) of the genomic regions using annotated ref-
erence genome A. hypogaea var. Shitouqi (http://​peanu​
tgr.​fafu.​edu.​cn/​index.​php). Moreover, gene expression 
atlas (AhGEA) [51] was utilized to examine the expres-
sion of candidate genes in the tissues.

Results
Whole genome resequencing (WGRS) of founder parents 
and genotyping‑by‑sequencing of MAGIC lines
A total of 607.89  Gb sequencing data was gener-
ated for eight MAGIC founder parents and fourteen 
additional genotypes, namely ICG14482 (24.24  Gb), 
ICG7190 (25.37 Gb), ICG11515 (25.72 Gb), ICGV97183 
(25.93  Gb), TAG24 (28.41  Gb), ICG3053 (30.31  Gb), 
ICGV02022 (33.72  Gb), and ICGV02266 (33.74  Gb). 
55–437 (18.32 Gb), ICGV 86031 (12.38 Gb), ICGV02251 
(28.43  Gb), ICGV12014 (18.04  Gb), ICGV88145 
(36.70  Gb), ICGV91278 (34.93  Gb), ICGV97045 
(25.77  Gb), ICV89104 (18.59  Gb), GPBD4 (33.53  Gb), 
U47-5 (18.44 Gb), VRR245 (16.66 Gb), ICG51 (19.32 Gb), 
GIRNAR-4 (26.94 Gb), GIRNAR-5 (29.62) for the identi-
fication of genome-wide structural variations. As a result, 
a total of 7755.4 million reads of data was generated with 
a read length ranging from 150 to 250 (Table S3). Across 
all 22 accessions, 5432.5 million reads were mapped onto 
the reference genome. Of these, 5,432.5 million mapped 
reads, 5404.5 million reads were uniquely mapped onto 
the reference genome, while rest of reads were mapped to 
the various regions within the genome. The average effec-
tive mapping depth was 10.94X, with a range of 4.91X 
(ICGV 86031) to 18.14X (TAG24). The average genome 
coverage of each accession against the reference genome 
was 84.8%, with a range of 46.5% to 97%. Comprehen-
sive data analysis identified a total of 270,232 SNPs. The 
majority of the SNPs on twenty chromosomes were iden-
tified on Ah19 (19,237), while the least were identified 
on Ah08 (5,998), accounting for 7.11 and 2.21% of the 
SNPs, respectively (Table S4, Fig. S1). In addition, efforts 

http://peanutgr.fafu.edu.cn/index.php
http://peanutgr.fafu.edu.cn/index.php
https://www.r-project.org
https://itol.embl.de
http://peanutgr.fafu.edu.cn/index.php
http://peanutgr.fafu.edu.cn/index.php
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were undertaken to identify miscellaneous variations, 
including deletions (DEL), inter-chromosomal variations 
(CTX), intra-chromosomal variations (ITX) and inver-
sions (INV). Of 5639 structural variations, 1289, 2595, 
1634 and 121 were DEL, CTX, ITX and INV respectively 
(Table S5 and S6). The variants identified through the re-
sequencing of 22 accessions offer valuable information 
into the loci across the groundnut genome, underlining 
the unique accession signatures and high diversity.

GBS generated 1192.43 million reads (120.68  GB) for 
498 MLs and eight parental genotypes. Across the MLs, 
the number of reads from individual lines varied from 
0.54 to 5.90 million (Table S7). On average, 2.35 million 
reads (0.23  GB) of data were generated for each sam-
ple. The sequence reads were mapped to the reference 
genome A. hypogaea var. Shitouqi (http://​peanu​tgr.​fafu.​
edu.​cn/​index.​php), and aligned, cleaned GBS reads were 
used in the pipeline for SNP calling. A total of 35,347 
raw SNPs were detected. Following filtering procedures 
(samples and SNPs), a total of 10,556 high-quality poly-
morphic SNPs were used for downstream analysis. These 
SNPs were distributed across the chromosomes, ranging 
from 240 (Ah08) to 1721 (Ah18).

Phenotypic diversity and heritability for drought tolerance 
traits
The phenotypic observations of the eight agronomic, 
ten phenological and physiological traits were utilized 
to determine the possible presence of significant pheno-
typic variation among MLs. Transgressive segregation 
was observed for some traits (Fig.  2, Fig. S2). For agro-
nomic traits; HSW of MLs showed significant difference 
across season (24 g-64.3 g in S1; 20.1 g-85.7 g in S4, and 
20.8  g-65.0  g in S5). The average values observed were 
37.2  g,  56.5g and 37.6  g, respectively. MLs showed a 
wide range of variation for TPW (32–272 g plant-1 in S1; 
21–254 g plant-1 in S2), SMKWP (70.0–99.0% in S1; 24.3- 
87.0% in S4 and 27.1- 77.2% in S5); PYPP (7.2–21.1  g 
plant-1 in S2; 4.8–11.3 g plant-1 in S3; 4.4–24.0 g plant-1 
in S4 and 3.5–29.0 g plant-1 in S5), TSW (2.1–7.3 g plant-1 
in S3 and 3.2–25.4 g plant-1 in in S4), SP (15.7–93.0% in 
S3; 20.1–94.7% in S4 and 20–84.7% in S5), IMKN (21–
56 in S4 and 28–61 in S5), and SMKN (19–42 in S4 and 
27–59 in S5). Similarly, the wide genetic diversity created 
in the MLs produced broad phenotypic variation for phe-
nological and physiological traits; SCMR_DFF (27–73.5 
in S1; 21.5–61.2 in S2; 27.3–59.5 in S3; 17.8–57.5 in S4 
and 21.5–59.5 in S5), SLA_DFF (17.1–88.3 cm2 g-1 in S3; 
10.9–111.7 cm2  g-1 in S4 and 16.8–84.3 cm2  g-1 in S5), 
SCMR_70DAS (22.8–65.8 in S1; 17.9–44.4 in S2; 25.6–
75.0 in S3; 31.6–64.4 in S3 and L2; 19.9–46.9 in S4 and 
25.6–75.0 in S5), SLA (39.0–352.9 cm2  g-1 in S1; 50.9–
347.5 cm2  g-1 in S3 and 28.6–392.0 cm2  g-1 in S4), PH 

(14.5–50.5 cm in S5), SDW (0.2–14.5 gm in S5), TDMC 
(1.1–19.4 gm in S5), CT_70DAS (27–42.00C) and RWC 
(25.3–87.9%) in S3, and DFF (29–43 in S1 and 31–43 in 
S5). Traits such as, TPW (g plant-1), PYPP (g plant-1), 
TSW (g plant-1), IMKN, SLA_DFF (cm2 g-1), SLA_70 
DAS (cm2 g-1), SDW (gm), TDMC (gm) exhibited higher 
phenotypic coefficient of variation (PCV) and genotypic 
coefficient of variation (GCV) (> 20%) across seasons. 
The broad sense heritability (h2) of eight agronomic traits 
ranged with traits average value 34.5% (IMKN) – 49.5% 
(TPW (g plant-1) and ten phenological and physiologi-
cal traits ranged from 50% (DFF) – 90% (CT_70 DAS 
(0C) across seasons, indicating that the phenotypes of 
these traits were primarily determined by genetic fac-
tors (Table S8). To estimate the correlation among agro-
nomic, phenological and physiological traits Pearson’s 
correlation analysis was performed. A total of 171 pos-
sible correlations were observed, with 17 pairs signifi-
cantly correlated at the 5% level of probability (Fig.  3). 
Correlation studies revealed a significant positive corre-
lation between SMKWP and HSW, SMKN and SMKWP, 
PYPP TSW and SP, suggesting that selection for these 
attributes would concurrently contribute towards higher 
yield, and these traits should be given more weight-
age in the selection process. A negative correlation was 
observed for TPW and PH, possibly due to the geocarpic 
nature of groundnut, where aerial flowering and under-
ground pods formation. As the plant height increases, 
the probability of number of pegs penetrating the soil 
to make pods decreases. The strong positive correlation 
was between TDMC and SDW (r = 0.86), while the high-
est negative correlations were found between IMKN and 
SMKWP, (r = -0.38). Furthermore, a principal component 
analysis (PCA) biplot provided an overview of the rela-
tionships between different agronomic, phenological and 
physiological phenotyped under the drought condition. 
The 45.2% of cumulative variability by PC1 and PC2 was 
observed (Fig. S3).

Linkage disequilibrium, genetic diversity and population 
structure
A total of 10,556 curated SNP markers were retained, 
each of which had a genotype call rate > 0.80 and MAF 
5%. The SNPs were evenly distributed across the 20 chro-
mosomes (Fig. S4a), with an average SNP density of 4.1 
SNPs/Mbp. The overall LD decay across the 20 chromo-
somes was estimated at 180 kbp (Fig. S4b). Population 
structure among the 449 MLs, derived from seven eight-
way crosses, was determined using Admixture, identify-
ing 4 sub-groups (i.e., K = 4) (Fig. 4a and 4b). As shown 
in Fig. 4b, sub-group I comprised 233 lines, sub-group II 
contained 88 lines, sub-group III included 71 lines, and 
sub-group IV consisted of 40 lines, all derived from seven 

http://peanutgr.fafu.edu.cn/index.php
http://peanutgr.fafu.edu.cn/index.php
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eight-way crosses (Table  S9). Allelic admixture among 
the seven groups derived from eight-way crosses was 
indicative of substantial proportion of genome reshuf-
fling in the MLs. The PCA also identified the existence 
of four sub-groups within the 449 MLs. The PCA anal-
ysis explained, first two components (PC1 and PC2) 
accounted for 34.9% and 10.7% of the total genetic vari-
ability, respectively (Fig.  4c). Similarly, the NJ tree clus-
tered the 449 MLs into four sub-groups based on the 
distance matrix (Fig. 4d).

Genome‑wide association (GWAS) analysis
GWAS for drought tolerance traits
A total of 37 significant MTAs were detected for 12 
traits for five seasons at two locations (L1, and L2). 
Of 37 MTAs, 21 MTAs were identified for agronomic 
traits, and 16 MTAs were for phenological and physi-
ological traits (Table 2).

Fig. 2  Phenotypic variation in MAGIC population for drought tolerance traits: Violin plot showing variation for agronomic (100-seed weight (g); pod 
yield per plant (g plant−1); total seed weight (g plant−1), shelling percentage (%), physiological traits (SPAD chlorophyll meter reading (DFF and 70 
DAS); and specific leaf area cm2g−1 (45 and 70 DAS) for the mean value of the MAGIC population consecutively evaluated 3 years at two locations. 
Significance is based on Kruskal Wallis test
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GWAS for agronomic traits
Twenty-one MTAs identified for six agronomic traits, 
explaining 0.91–9.82% PVE with p-value range of 
4.73 × 10–6 to 7.32 × 10–7 (Fig.  5; Fig. S5). Three MTAs 
detected for HSW on chromosome Ah03 among 3 sea-
sons, explaining the phenotypic variance of 2.29–6.24% 
during S1, S4 and S5 seasons. For TPW, two MTAs 
were identified (S3_44143351 and S3_44143344) on 
same chromosome (Ah03) with PVE of 4.63 and 8.92% 
over two different seasons (S1 and S2). A total of six 
MTAs were identified for PYPP, of which four MTAs 
were identified on chromosome Ah18 and two MTAs 

(S20_28650521 and S20_28863197) identified on chro-
mosome Ah20. Additionally, the PVE for these six 
MTAs, accounting 0.92% to 8.51%. Five MTAs were 
detected on chromosome Ah18 and Ah19 for TSW and 
SP, accounting 0.91–9.14% PVE during S3, S4 and S5 
seasons, respectively. Under two seasons (S4 and S5), 
five MTAs for SMKWP were detected on chromosome 
Ah04, Ah15, Ah18 and Ah20, with PVE ranging from 
2.08–9.82%. The associated MTAs of agronomic traits 
were primarily found on chromosomes Ah18 and Ah03, 
with a fewer detected on Ah20, Ah19, Ah15, Ah04. 
The highest numbers of MTAs identified for PYPP and 
SMKWP in S4 and S5 seasons, respectively.

Fig. 3  Pearson correlation matrix of drought tolerance traits
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GWAS for phenological and physiological traits
For the one phenological and five physiological traits, 
a total of 16 MTAs were identified (Fig.  5; Fig. S5), 
which included two MTAs for DFF, seven for SCMR_
DFF, three for the SCMR_70DAS, two for SLA_70DAS, 
one for SLA_DFF, and one for RWC. On chromosome 
Ah16, two MTAs (S16_25822849 and S16_25939461) 
for DFF were identified, explaining 1.73–6.26% PVE 
during S1, S4 and S5 seasons. Ten MTAs were detected 
for two traits SCMR_DFF and SCMR_70DAS on 
chromosome Ah07, Ah10, Ah12 and Ah18, with PVE 
ranging from 1.21–6.26%. Under two seasons (S4 and 
S5), three MTAs (S10_83718580, S10_75209380, and 
S10_75209366) for two traits (SLA_70DAS and SLA_
DFF) were detected on chromosomes Ah10, with PVE 
ranging from 1.47% to 5.93%. One MTA (S8_27982767) 
was detected for RWC on chromosome Ah08, account-
ing 3.12% PVE.

To visualize the allele effects of a SNP on a trait, we 
extracted the genotyping calls of significant SNP and 
phenotyping data for each trait. Phenotypic variations 
of alleles of associated SNPs were statistically significant 
and depicted in Fig. 6 and Fig. S6.

Candidate genes underlying significant MTAs
We investigated a 500  kb region upstream and down-
stream of the significant MTAs in the annotated refer-
ence genome Arachis hypogaea var. Shitouqi (http://​
peanu​tgr.​fafu.​edu.​cn/​index.​php) to identify candidate 
genes associated with drought tolerance traits.; a total 
of 480 genes were found in 34 MTAs genomic region. 
Of 480 candidate genes identified, 86 were unchar-
acterised while an additional 83 with unknown func-
tion (Table S10). Functional annotation revealed genes 
found in the genomic region are linked with biological 
processes. Thirty-five candidate genes were prioritized 
according to their functions in controlling drought tol-
erance traits (Table 3). Moreover, gene expression atlas 
(AhGEA) was utilized to examine the expression of 
candidate genes in the tissues. Among the 35 candidate 
genes identified in this study, 26 genes exhibited dif-
ferentially expression in at least one tissue during key 
developmental stages, across 20 tissues (Fig. 7).

Fig. 4  Genetic diversity and population structure of MAGIC population: (a) Line graph of delta K over K from 2 to 9. Highest peak was observed 
at delta K = 4, which indicated the MAGIC population formed four subgroups; (b) Population structure using ADMIXTURE analysis (k = 4), optimal 
with lowest cross-validation error; (c) Variation depicted as PCA plot and first two principal components (PC1 and PC2) accounted the maximum 
overall variability of 45.77%; (d) Genetic diversity among MLs using unweighted neighbour-joining tree method, MLs were grouped into four 
subgroups and admixtures, are denoted in different colour

http://peanutgr.fafu.edu.cn/index.php
http://peanutgr.fafu.edu.cn/index.php
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Discussion
Key goal in crop breeding is to find the genes (or 
sequence variants, including non-coding regions) which 
are liable for phenotypic variation linked to traits. The 
comprehensive dissection of the genetic basis of complex 

traits is primarily influenced by a low diversity of the 
mapping population, a minor effect of QTL, and a low 
frequency of the causative variants. Nowadays, it’s pos-
sible to creating and harnessing the genetic diversity by 
developing inbred lines derived from multi-parent cross 

Table 2  MTAs detected for drought tolerance traits using multi-locus model in MAGIC population

S1: Post-rainy 2018–19; S2: Rainy 2019; S3: Post-rainy 2019–20; S4: Rainy 2020; S5: Post-rainy 2020–21; L1: UAS-Dharwad; L2: RARS-Tirupati; R2: Phenotypic variation 
explained

Trait abbreviations Season & Location SNP Chromosome Position P.value FDR_
Adjusted_P.
values

R2

Agronomic Traits
  100 seed weight (g) S1 & L1 S3_44143348 Ah03 44,143,348 4.73E-06 0.002 6.24

S4 & L1 S3_44143344 Ah03 44,143,344 5.01E-06 0.015 3.14

S5 & L1 S3_44143348 Ah03 44,143,348 5.34E-06 0.016 2.29

  Total pod weight (g plant−1) S1 & L1 S3_44143351 Ah03 44,143,351 4.48E-06 0.001 4.63

S2 & L1 S3_44143344 Ah03 44,143,344 5.13E-06 0.017 8.92

  Pod yield per plant (g plant−1) S3 & L2 S18_9448921 Ah18 9,448,921 4.46E-06 0.001 6.23

S3 & L2 S20_28650521 Ah20 28,650,521 5.53E-06 0.007 0.92

S4 & L1 S18_9591418 Ah18 9,591,418 4.78E-06 0.016 3.06

S5 & L1 S18_9448928 Ah18 9,448,928 7.32E-07 0.007 8.51

S5 & L1 S18_9591418 Ah18 9,591,418 5.37E-06 0.007 2.08

S5 & L1 S20_28863197 Ah20 28,863,197 4.81E-06 0.011 5.13

  Total seed weight (g plant−1) S5 & L1 S18_9591418 Ah18 9,591,418 4.82E-06 0.016 3.05

S4 & L1 S18_9601124 Ah18 9,601,124 4.73E-06 0.018 0.97

  Shelling percentage (%) S3 & L2 S19_19362948 Ah19 19,362,948 5.08E-06 0.001 9.14

S4 & L1 S18_9407788 Ah18 9,407,788 5.26E-06 0.044 0.91

S5 & L1 S19_19362920 Ah19 19,362,920 5.35E-06 0.016 5.31

  Sound mature kernel weight percentage (%) S4 & L1 S4_93879142 Ah04 93,879,142 7.19E-07 0.006 9.82

S4 & L1 S18_9755376 Ah18 9,755,376 5.16E-06 0.006 2.08

S4 & L1 S20_106582234 Ah20 106,582,234 5.44E-06 0.015 5.37

S5 & L1 S15_39620138 Ah15 39,620,138 5.28E-07 0.001 4.29

S5 & L1 S18_9781860 Ah18 9,781,860 5.89E-07 0.001 3.31

Phenological and Physiological traits
  Days to 50% Flowering (days) S1 & L1 S16_25939461 Ah16 25,939,461 5.65E-06 0.049 1.73

S5 & L1 S16_25822849 Ah16 25,822,849 5.54E-06 0.012 2.09

  SPAD chlorophyll meter reading _Days to 50% 
flowering

S3 & L1 S7_14672883 Ah07 14,672,883 6.33E-07 0.006 4.23

S3 & L1 S7_14694892 Ah07 14,694,892 5.66E-07 0.007 1.89

S3 & L1 S10_56679980 Ah10 56,679,980 4.85E-06 0.007 4.22

S3 & L1 S12_52937509 Ah12 52,937,509 4.88E-06 0.007 3.1

S2 & L1 S7_14694892 Ah07 14,694,892 5.54E-06 0.007 1.21

S5 & L1 S7_14672883 Ah07 14,672,883 6.33E-07 0.006 6.1

S5 & L1 S18_9598417 Ah18 9,598,417 5.01E-06 0.031 2.08

  SPAD chlorophyll meter reading _70 DAS S1 & L1 S7_14694292 Ah07 14,694,292 5.14E-06 0.029 2.91

S3 & L2 S7_14694903 Ah07 14,694,903 4.85E-06 0.001 6.09

S5 & L1 S10_25185440 Ah10 25,185,440 5.59E-07 0.002 6.26

  Specific leaf area _70DAS (cm2 g−1) S4 & L1 S10_83718580 Ah10 83,718,580 5.55E-06 0.007 3.24

S4 & L1 S10_75209380 Ah10 75,209,380 5.13E-06 0.001 5.93

  Specific leaf area _Days to 50% flowering 
(cm2 g−1)

S5 & L1 S10_75209366 Ah10 75,209,366 5.13E-06 0.014 1.47

  Relative water content (%) S3 & L2 S8_27982767 Ah08 27,982,767 5.24E-06 0.015 3.12
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designs. By introducing several founders with broader 
genetic and phenotypic diversity, and performing several 
cycles of inter-crossing and selfing, the number of accu-
mulated recombinant events is increased, resulting in 
improved mapping accuracy [40]. MAGIC populations 
have enabled understanding of the genetic architecture 
underlying many traits. Over the past decade, several 
research groups have developed MAGIC populations in 
various crop species like rice [52], cotton [53], tobacco 
[54], eggplant [55]. One of the most severe stresses which 
threaten sustainable crop  production in SAT regions 
is water scarcity, as the yields are reduced annually as 
a result of drought [56]. Integrating drought surro-
gate traits is important for successful drought tolerance 
breeding, including groundnut. Previous studies have 
demonstrated quantitative nature of drought tolerance 
traits and difficulties in selection for it poses challenges, 
resulting in conventional breeding approach for develop-
ing drought-tolerant crops being laborious and time-con-
suming [32]. However, progress in breeding and releasing 
drought-tolerant varieties has been hindered by the com-
plex nature of gene action and combined influence of 
genotype- environment interactions [31]. Improving the 
resilience of groundnut cultivars to drought is crucial 
for improving productivity, as water-stress tolerance is a 
major constraint. It is crucial to understand that relying 
solely on phenotypic data for selection is not enough and 
unreliable due to the substantial influence of environ-
mental variables on the trait. Moreover, understanding 
the genetic underpinning of physiological, and yield-
related traits in groundnut might offers possibilities to 
develop drought-resilient varieties [4]. WGRS analysis 
reveals a total of 270,232 SNPs and 5639 other miscella-
neous genome wide variations among 22 groundnut gen-
otypes studied. There is a significant amount of variation 
in the genomes of the founder parents and other parental 
lines. The primary goal of developing MAGIC popula-
tions is to exploit and utilize genetic variations to facili-
tate crop improvement. As a result, the MLs derived from 
multiple-parental populations will exhibit significant 
variation, which can be exploited for gene discovery and 
allele mining. Our study on a MAGIC population dem-
onstrated wide variability in agronomic, phenological 
and physiological traits. It clearly indicates that repeated 
recombination events among the parents resulted in a 
diversity of several combinations of alleles for the trait, 
under the  existence of distinct genetic backgrounds. 
The current investigation revealed significant genetic 
variability in the evaluated agronomic, phenological and 
physiological traits. Previous studies were also reported 
similar results for heritability (h2) across various loca-
tions for physiological, and yield related traits in ground-
nut [16, 57]. These findings support the understanding 

Fig. 5  Marker-Trait Associations (MTAs) for drought tolerance 
traits identified using genome-wide association study in MAGIC 
population: Manhattan plots showing association in the MAGIC 
population for agronomic and phenological and physiological traits, 
Red solid line represents Bonferroni threshold at a significance level 
of 5%, The x-axis illustrates the SNP position on twenty chromosomes 
(each represented by different colours) and the y-axis depicts − log (p 
value) of corresponding SNP in GWAS analysis. SNPs on chromosome 
highlighted with colours indicate consistently and common 
significant association for traits across the seasons
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of the heritability of complex traits exhibit higher degree 
of variability in response to varied environmental condi-
tions compared to simple inherited traits. Consequently, 
the breeding lines selected for specific season/location 
may not exhibit similar performance in another season/
location. The situation poses a substantial challenge for 
breeders to develop resilient varieties with consistent 
performance.

The results of correlation indicated significant positive 
associations among several traits i.e., SMKWP and HSW, 
SMKN and SMKWP, PYPP, TSW and SP. Furthermore, 
PYPP and TSW revealed significant positive correlations 
with the physiological trait PH. This suggests increase 
in plant height resulted in higher pod and seed weight. 
As expected, a positive correlation was found between 
SP and HSW. Highest negative correlation was found 
between IMKN and SMKWP, with a r value of -0.38 com-
pared to other traits, highlighting the highly influential 
nature of this trait. These findings correspond with the 
results reported by Gomes and Almeida Lopes, [58] and 
Gandhadmath et al. [59]. In addition, a bi-plot resulting 
from principal component analysis (PCA) depicted the 
relationship between agronomic, phenological and physi-
ological traits. Significant variation in the performance 
of MLs across different locations/seasons was observed, 
attributed to complex nature of traits, and large geno-
type-environment (G × E) interaction.

In association mapping studies, understanding of 
the pattern of LD is crucial as it determines the resolu-
tion and magnitude of the association analysis within a 
given population. Our investigation revealed an over-
all LD decay of 180 kbp. This is most likely due to the 
occurrence of effective recombination events during the 

development of the MAGIC population. The genome-
wide LD decay varied between 14 and 38 Mbp was found 
in barley MAGIC [60], while common bean MAGIC 
showed rapid LD decay (51 to 154  kb) was reported by 
Diaz et al. [61]. In another investigation, faster LD decay 
was observed in an African core groundnut collec-
tion, possibly due to a slightly less markers [62]. Gener-
ally, a large number of recombination’s allowed during 
the MAGIC development, will result in a decrease in 
the LD decay, enhancing the population’s utility for fine 
mapping of traits. Examining the genetic structure of a 
population can provide insights into its origin, composi-
tion, and evolutionary history, while also minimizing the 
false positives among associated markers [63]. Population 
structure among the 449 MAGIC lines was examined 
using Admixture, revealing the presence of 4 subgroups 
(i.e., K = 4). The allelic admixture resulting from eight-
way crosses in the MAGIC population showed a large 
proportion  of genome reshuffling. Similarly, population 
structure was assessed performing PCA and by con-
structing a neighbour-joining tree, confirming the pres-
ence of four subgroups. In this investigation, GWAS 
analysis detected 37 significant MTAs associated with 
12 traits, including 21 for six agronomic traits and 16 for 
six phenological and physiological traits. Direct selection 
for yield under drought conditions is efficient; however, 
it is resource-intensive and lacks stability across varying 
environments. To address these challenges, physiological 
and surrogate traits like RWC%, SLA, CT, and SCMR can 
be used as selection criteria alongside yield related traits 
[64]. MTAs for HSW and TPW were closely linked and 
identified on Ah03 between 44,143,344 and 44,143,351 
chromosomal regions. Two stable MTAs were identified 

Fig. 6  Allelic segregation of associated MTAs detected for drought tolerance traits: Phenotypic variations of allelic differences of associated SNPs 
for the traits
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Table 3  Candidate gene for significant MTAs identified for drought tolerance traits in the MAGIC population

TPW total pod weight, HSW 100-seed weight, SMKWP sound mature kernel percentage, PYPP pod yield per plant, TSW total seed weight, SP shelling percentage, DFF 
days to 50% flowering, SCMR_DFF SPAD chlorophyll meter reading_ days to 50% flowering; SCMR_70DAS: SPAD chlorophyll meter reading_70 days after sowing; 
SLA_70DAS: specific leaf area_70 days after sowing; RWC: relative water content

Trait SNP ID Chromosome Gene ID Position (Start–End) (bp) Functional Annotation

HSW, TPW S3_44143344; S3_44143348; 
S3_44143351

Ah03 AH03G23100 43,671,670..43,674,051 Cytochrome P450

AH03G23450 44,082,648..44,085,344 Protein LATERAL ORGAN 
BOUNDARIES

AH03G23460 44,098,126..44,109,126 Tryptophan aminotransferase-
related protein 2

AH03G23640 44,472,040..44,487,712 Myosin-17

SMKWP S4_93879142 Ah04 AH04G19090 93,683,461..93,684,312 Beta-galactosidase

AH04G19110 93,912,058..93,915,888 Leucine-rich repeat receptor-like 
protein kinase

SCMR_DFF, SLA_70DAS S7_14672883, S7_14694892, 
S7_14694292, S7_14694903

Ah07 AH07G10620 14,198,065..14,199,936 Pentatricopeptide repeat-contain-
ing protein

AH07G10680 14,337,461..14,344,617 Potassium channel SKOR

AH07G10860 14,635,741..14,637,912 Zinc finger protein 4

AH07G10980 14,829,455..14,830,060 FAR1 DNA-binding domain 
protein

AH07G11020 14,911,068..14,914,316 Polygalacturonase

RWC​ S8_27982767 Ah08 AH08G13340 27,500,259..27,502,710 3-ketoacyl-CoA synthase 4

AH08G13510 27,847,417..27,849,771 Aquaporin PIP2-7

AH08G13550 27,874,616..27,875,895 Transmembrane protein

AH08G13630 27,942,994..27,944,077 Fasciclin-like arabinogalactan 
protein 11

AH08G13680 27,977,685..27,979,944 NAC transcription factor ONAC010

AH08G13690 27,982,127..27,983,025 Syntaxin-71

AH08G13730 28,019,641..28,023,425 Auxin response factor 4

AH08G13740 28,024,078..28,032,472 E3 SUMO-protein ligase SIZ1

AH08G13770 28,068,814..28,071,247 Elongation factor 1-alpha

AH08G13830 28,196,453..28,198,830 Interactor of constitutive active 
ROPs 3

AH08G13890 28,280,194..28,282,987 DDB1- and CUL4-associated 
factor 8

SLA_70DAS S10_83718580 Ah10 AH10G18010 83,666,969..83,670,578 Brassinosteroid LRR receptor 
kinase

SCMR_DFF S10_56679980 Ah10 AH10G15190 56,393,742..56,394,466 Receptor-like protein kinase 
FERONIA

SCMR_70DAS S10_25185440 Ah10 AH10G12170 24,733,907..24,736,057 Rop guanine nucleotide exchange 
factor 2

AH10G12310 25,423,719..25,429,494 Auxin transporter-like protein 1

DFF S16_25822849, S16_25939461 Ah16 AH16G14600 25,497,953..25,500,823 B3 domain-containing transcrip-
tion factor

AH16G14690 25,576,160..25,578,683 Ulp1 protease family

AH16G14810 25,819,838..25,823,949 Ankyrin repeat-containing protein

PYPP,TSW,SMKWP, SP S18_9448921, S18_9591418, 
S18_9448928, S18_9601124, 
S18_9407788, S18_9755376, 
S18_9781860

Ah18 AH18G08770 10,233,052..10,236,486 Probable galacturonosyltrans-
ferase

AH18G08780 10,237,345..10,239,790 QWRF motif-containing protein 3

AH18G08800 10,248,622..10,252,201 Beta-glucuronosyltransferase 
GlcAT14B

AH18G08420 9,817,549..9,818,538 Fasciclin-like arabinogalactan 
protein 21

PYPP S20_28650521, S20_28863197 Ah20 AH20G15910 28,607,531..28,608,601 Probable carboxylesterase 1

AH20G16040 29,244,237..29,244,831 DEAD-box ATP-dependent RNA 
helicase
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for HSW on the Ah03 in two different seasons (S1 and 
S5). This suggested expression of these MTAs was not 
influenced by environmental factors, as reported in other 
studies. The MTAs identified for HSW and TPW on 
chromosomes Ah03 in this investigation were consist-
ent with the previously reported genomic region [25]. 
Furthermore, MTAs for highly correlated traits, such as; 
PYPP, TSW, SP, and SMKWP, shared a common chromo-
some Ah18. In agronomic terms, yield is a key criterion 
of drought tolerance [65]. Identifying drought-tolerance 
groundnut genotypes usually rely on biomass produc-
tion and yield related traits under water stress [66, 67]. 
Drought-stressed genotypes losses moisture, resulting 

in impaired physiological activity, adversely impacts 
overall production and nutritional quality [68]. Total 10 
MTAs were pinpointed within 374  kb genomic regions. 
Similarly, many studies also explored QTL clustering 
across various traits [2, 69, 70], emphasizing the signifi-
cance of simultaneous assessment of multiple traits and 
identifying associated genomic regions to traits of inter-
est. In recent studies, four QTL clusters associated with 
saturated fatty acid content and three hotspot genomic 
regions for heat traits were reported in groundnut [2, 
70]. Similarly, MAGIC population developed in common 
bean reported a major QTL-hotspot genomic region 
on chromosome Pv01 for yield and phenological traits 

Fig. 7  Tissue-specific expression of candidate genes underlying significant MTAs genomic regions: Heatmap shows the expression of 34 candidate 
genes across 16 different tissues, including flower, immature bud, leaves senescence, leaves veg, nodules, peg, pod wall immature, pod wall mature, 
pre-soaked seeds, root seedling, root veg, Seeds_15, Seeds_25, Seeds_5, shoot seedling, and stem veg
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[71]. Two MTAs (S19_19362948 and S19_19362920) for 
SP with 9.14 and 5.13% PVE were detected on Ah19. In 
previous studies, a QTL associated with SP was detected 
on chromosomes A09, B02, Ah10, and Ah20 [2, 72]. 
For PYPP, two more associations (S20_28650521 and 
S20_28863197) and one for SMKWP (S20_106582234) 
were identified on chromosome Ah20. For DFF we iden-
tified two MTAs on chromosome Ah16 across two sea-
son (S1 and S5) explaining, 1.73% and 2.09% phenotypic 
variation. Six significant associations for two physiologi-
cal traits (SCMR_DFF & SCMR_70DAS) (S7_14672883, 
S7_14694892, S7_14694892, S7_14672883, S7_14694292, 
and S7_14694903) were co-localized in 22  kb genomic 
region of Ah07 chromosome. Further, five MTAs were 
for different physiological traits were identified on Ah10, 
for instance, SCMR-DFF, SCMR_70DAS, SLA_70DAS, 
and SLA_DFF. Clustering of MTAs for traits may occur 
due to changes in gene frequency at closely linked loci, 
as well as the pleiotropic effects of genes. Moreover, the 
occurrence of this event may have been influenced by 
pleiotropy and/or linked genes [73]. One significant MTA 
(S8_27982767) was detected for RWC% on chromosome 
Ah08, accounting 3.12% phenotypic variance. Likewise, 
previous studies have reported QTL for RWC% on same 
chromosome by QTL mapping [2]. Recent investigation 
demonstrates traits like SCMR, SLA, and RWC are effec-
tive traits  for drought tolerance [64, 74]. Several studies 
reported that, under drought stress, chlorophyll levels 
in drought-tolerant cultivars were significantly higher 
compared to those in drought-sensitive genotypes [75]. 
Consequently, SCMR could be used as reliable basis for 
assessing drought tolerance, as shown in prior studies 
[76]. RWC and SLA used as surrogate traits for WUE, 
which can be effectively measured to detect drought-tol-
erant genotypes and assess leaf water status [65]. SLA is 
often used for selecting groundnut genotypes with higher 
WUE. Genotypes with thicker leaves showed higher 
WUE, resulting in the inference that SLA acts as reli-
able surrogate traits [77]. The decrease in RWC during 
the stress phase is a result of a decrease in water uptake 
under insufficient soil moisture conditions. RWC, indi-
cates the plant water status. It is a substantial factor of 
the survival of tissue/organs and metabolic activity [78]. 
However, selecting drought-tolerant genotypes based 
on traits such as, SCMR, SLA, and RWC would pro-
vide more tolerant lines [78]. Interestingly, 26 significant 
MTAs (approx. 70% MTAs) were found to overlap for 
drought tolerance traits on chromosomes Ah03, Ah07, 
Ah10 and Ah18. These genomic regions seem to be hot-
spot regions that may contribute to the simultaneous 
improvement of two or more traits in groundnut breed-
ing. This study provided a comprehensive understanding 
of the relationships between agronomic, physiological, 

and phenological traits under water stress. The detected 
MTAs may facilitate understanding of the genetic under-
pinnings of genomic regions associated with key traits, 
hence facilitating the development of drought-tolerant 
and high-yielding groundnut varieties. Additionally, 
the markers can be validated and utilized in groundnut 
breeding programs to facilitate trait integration and gene 
pyramiding.

We mined candidate genes by the functional anno-
tation of gene models in the vicinity of identified sig-
nificant MTAs genomic regions potentially associated 
with drought tolerance traits. Within co-localized 
genomic region on chromosome Ah03 for HSW and 
TPW, four genes were identified. The Cytochrome P450 
71A1 (AH03G23100) gene identified in this study was 
reported in regulation of grain size and development in 
rice [79]. For instance, a gene encoding Lateral organ 
boundaries domain (AH03G23450) proteins was found 
to be linked with improved grain width in wheat [80]. 
Similarly, the Tryptophan aminotransferase-related pro-
tein 2 (AH03G23460) genes have demonstrated a role 
in increasing yield in wheat [81]. Additionally, the Myo-
sin-17 (AH03G23640) gene was found essential for pol-
len tube elongation in rice, and involved in seed-setting 
rate [82]. Likewise, plausible candidate genes underly-
ing the MTAs identified on chromosome Ah07 such as; 
Putative pentatricopeptide repeat-containing protein 
(AH07G10620) and Zinc finger protein 4 (AH07G10860) 
play a role in the development of chloroplasts in soy-
bean and the regulation of chlorophyll content in pep-
per [83, 84]. Potassium channel SKOR (AH07G10680) 
is known to be involved in promoting efficient pho-
tosynthesis [85]. FAR1 DNA-binding domain protein 
(AH07G10980) encoding gene play a key role in chlo-
rophyll biosynthesis during deetiolation in Arabidopsis 
[86]. The AH07G11020 gene encodes a Polygalacturonase 
that regulates cell wall biosynthesis and leaf morpho-
genesis in response to water-stress [87]. Moreover, four 
potential genes were found in the Ah10 chromosome 
genomic region. Receptor-like protein kinase FERONIA 
(AH10G15190) is involved in regulating flowering dura-
tion in Arabidopsis [88], while a Rop guanine nucleotide 
exchange factor (AH10G12170) is involved in develop-
mental stages such as root and stomatal development, 
as well as pollen tube growth in Arabidopsis [89], Simi-
larly, Auxin transporter-like protein (AH10G12310) gene 
plays various physiological functions in water-stress 
tolerance and hormonal transport [90]. Another, Brassi-
nosteroid LRR receptor kinase (AH10G18010) gene is 
involved in photosynthesis and leaf growth/vasculariza-
tion in Arabidopsis [91]. Furthermore, several genes were 
identified underlying the Ah18 chromosome genomic 
region, including Probable Galacturonosyltransferase 
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(AH18G08770), QWRF motif-containing protein 3 
(AH18G08780), and Beta-glucuronosyltransferase 
GlcAT14B (AH18G08800). Galacturonosyltransferases 
are known to role in plant growth, and stomatal devel-
opment [92], and QWRF motif-containing protein is 
involved in plant fertility and floral organ development in 
Arabidopsis [93]. An, Beta-glucuronosyltransferase pro-
tein regulates plant growth, development, reproduction, 
and stress responses in Arabidopsis [94]. Furthermore, 
Beta-galactosidase (AH04G19090) gene was involved in 
early growth and development stages in orange flowers 
and fruitlets [95].

Interestingly, fasciclin-like arabinogalactan protein 11 
(AH18G08420) gene found in the present investigation 
was reported to mediate plant development and cell wall 
synthesis [96] and control pod shell thickness in ground-
nut [97]. Additionally, three important genes underlying 
the MTAs (S16_25822849 and S16_25939461) identified 
for Days to 50% flowering on chromosome Ah16 were 
pinpointed. The B3-Domain Transcription Factor 
(AH16G14600) gene controls the floral transition [98]. 
The Ulp1 protease (AH16G14690) family genes encodes 
SMALL UBIQUITIN-RELATED MODIFIER (SUMO), 
role in regulation of flowering time [99]. Similarly, 
Ankyrin repeat-containing protein (AH16G14810) modu-
lates the flowering process through its interaction with 
FT [100]. The Probable carboxylesterase (AH20G15910) 
encoding gene is involved in regulating strigolactone and 
increasing tillers and branches in maize under drought 
response [101]. In Arabidopsis, leucine-rich repeat recep-
tor-like kinase (AH04G19110) is involved in regulating 
abscisic acid signaling and controls seed maturation, 
dormancy, stomatal closure, and stress response [102]. 
Furthermore, DEAD-box ATP-dependent RNA helicase 
(AH20G16040) gene are involved in regulating water-
stress tolerance and stress-related genes in tomato [103]. 
Moreover, 11 candidate gene were mined in the vicinity of 
MTA (S8_27982767) identified for RWC. The Ketoacyl-
CoA synthase (AH08G13340) gene regulates the drought 
stress response and increases leaf epicuticular wax accu-
mulation [104]. The Aquaporin PIP2-7 (AH08G13510) 
gene is involved growth, morphology, root architecture 
and relative water content in Arabidopsis [105]. Genes 
such as Transmembrane protein, putative (AH08G13550) 
and E3 SUMO Ligase SIZ1 (AH08G13740) plays major 
roles in regulating plant growth and drought responses 
in Arabidopsis [106, 107]. In barley NAC transcription 
factor (AH08G13680) gene is involved senescence of flag 
leaves [108]. The Fasciclin-like arabinogalactan protein 
21 (AH08G13630) gene is involved in the composition 
of primary cell wall matrix in cotton [109]. Moreover, 
Auxin response factor 4 (AH08G13730) regulates the sto-
matal function in response to osmotic stress in tomato 

[110]. In rice, Elongation factor 1-alpha (AH08G13770) 
gene involved in drought tolerance and yield enhance-
ment [111]. The Syntaxin-71 (AH08G13690) gene plays 
a role in plant development and stress response by reg-
ulating pH homeostasis in Arabidopsis [112]. In cotton, 
Interactor of constitutive active ROPs 3 (AH08G13830) 
gene is involved in drought tolerance via interaction 
with GhGGB Protein [113]. Similarly, DDB1- and CUL4-
associated factor 8 (AH08G13890) gene plays a role in 
improving drought tolerance in Arabidopsis [114].

Moreover, gene expression atlas (AhGEA) [51] was uti-
lized to examine the expression of candidate genes in the 
tissues. This analysis revealed twenty-six genes exhibited 
differentially expression in at least one tissue during key 
developmental stages. These genes take part in various 
processes including photosynthesis, seed emergence, 
plant architecture, grain number, plant genesis, desic-
cation mechanisms, and the flowering time. Notably, 
higher expression levels of the B3 domain-containing 
transcription factor, Ulp1 protease family, and Ankyrin 
repeat-containing protein were observed in flower tissue. 
Fasciclin-like arabinogalactan protein 11 and Fasciclin-
like arabinogalactan protein 21 exhibited higher expres-
sion at all stages of the pod wall, while NAC transcription 
factor showed high expression in leaf senescence stage. 
These results suggest, its important prioritised genes 
for precise mapping and cloning to understand their 
genetics/biological connections of traits. Additionally, 
examining haplotypes in these genes utilizing diverse 
germplasm sequencing data could potentially facilitate 
genetic improvements of these trait. The introgression 
of detected genes to develop drought-tolerant cultivars 
through genetic engineering/molecular breeding in an 
efficient way would provide effective and sustainable 
solutions to the growing challenges of climate change.

Conclusion
In this study, we identified 37 significant MTAs asso-
ciated with 12 drought tolerance traits. Notably, 26 
significant MTAs were found to overlap on four chro-
mosomes (Ah03, Ah07, Ah10 and Ah18), indicating 
genomic hotspot regions that govern traits related to 
drought tolerance. These hotspot genomic regions 
collectively provide a basis for simultaneous improve-
ment of different traits; however, precise mapping of 
these genomic regions  is required to facilitate their 
use for candidate gene cloning and MAS. Moreover, 
these genomic regions harbour important candidate 
genes associated with various functions, including leaf 
senescence (NAC transcription factor), regulation of 
flowering (B3 domain-containing transcription factor, 
Ulp1 protease family, and Ankyrin repeat-containing 
protein), chlorophyll biosynthesis (FAR1 DNA-binding 
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domain protein), stomatal regulation (Rop guanine 
nucleotide exchange factor; Galacturonosyltransferases), 
and yield traits (Fasciclin-like arabinogalactan pro-
tein 11 and Fasciclin-like arabinogalactan protein 21). 
The AhGEA expression atlas revealed the expression 
of twenty-six potential candidate genes during impor-
tant stages of development, providing key insights 
into their unique functions. These candidate genes are 
useful in the discovery of molecular targets, offering 
information into the biological pathways underpinning 
the traits of interest, and understanding the molecu-
lar basis of complex traits. Prioritizing these genomic 
regions in subsequent investigations will help elucidate 
the drought tolerance mechanism and aid in identifying 
functional markers. This could accelerate the breeding 
for drought-tolerant lines/varieties through genomics-
assisted breeding.
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