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Abstract Iron (Fe) and zinc (Zn) are important

micronutrients for human health and well-being.

Groundnut kernels are good sources of Fe and Zn.

Localization studies of Fe and Zn in the kernel tissues

of ten diverse groundnut genotypes revealed that,

cotyledons contribute nearly 85–90% of total Fe and

Zn in comparison to seed coat and embryo on dry

matter basis. Generation mean analysis revealed the

predominant role of additive gene action for kernel Fe

and Zn concentration in the cross ICGV

06,040 9 ICGV 87,141, and both additive and addi-

tive 9 additive interaction in the cross ICGV

06,099 9 ICGV 93,468. Duplicate epistasis was

observed for kernel Fe and Zn concentrations in both

the crosses. For yield parameters, pod yield per plant

and 100-kernel weight, dominance gene action was

significant. Additive 9 additive interaction was also

found to be significant for these traits which can be

fixed through selection. For days to maturity, additive,

dominance, additive 9 additive and domi-

nance 9 dominance interactions were significant.

The study involved six generations of two crosses

involving parents with contrasting kernel Fe and Zn

concentrations and was conducted for five economi-

cally important traits using a six-parameter model.

There was significant positive association between

kernel Fe and Zn concentration in both the crosses

indicating possibility of simultaneous improvement.

Absence of association of kernel Fe and Zn concen-

tration with pod yield per plant will enable the

development of high pod-yielding varieties with

elevated levels of kernel Fe and Zn concentration.

Keywords Additive � Dominance � Generation mean

analysis � Groundnut � Iron � Zinc

Introduction

Micronutrients deficiencies are predicted to affect half

of the world’s population, especially women and pre-

school children in the developing world (UNSCN

2004). Among the micronutrients, iron (Fe) and zinc

(Zn) deficiencies alone affect over three billion people

around the globe (WHO 2002). Biofortification or

breeding crop plants for higher micronutrient concen-

tration is one of the most successful interventions for

addressing the issues pertaining to micronutrient
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deficiencies. It aims to develop micronutrient-dense

crops using the best traditional breeding practices and

modern biotechnology.

Groundnut (Arachis hypogaea L.) or peanut is one

of the important food, oil seed and fodder crop of the

world. It is utilised for human consumption as a

vegetable oil and food crop, as a green manure for

improving soil fertility and as fodder for livestock.

Groundnut is cultivated all around the world with a

total production of 46 million tons. China ranks first in

groundnut production with a total production of 17

million tons followed by India (9.47 million tons)

(FAOSTAT 2014). Groundnut is highly valued as a

rich source of energy contributed by oil (48–50%),

protein (25–28%) and carbohydrates (10–20%) in the

kernels. In addition, groundnut kernels also contain

antioxidants, vitamins and are rich in mono-unsatu-

rated fatty acids (Janila et al. 2013). They contain

vitamin E and many important B-complex group of

vitamin like thiamin, pantothenic acid, vitamin B-6

and niacin. Of the 20 minerals necessary for normal

body growth and maintenance, seven, including Fe

and Zn are present in groundnut. Developing coun-

tries, where micronutrient deficiencies are widespread,

contribute world’s maximum groundnut area and

production (FAOSTAT 2011). Groundnut is used as

food crop, to prepare food supplements to infants and

elderly people and ready-to-use-therapeutic food

(RUTF) products to treat acute malnutrition under

different programs of UNICEF and others. The food

products based on groundnut meet the key criteria of

availability, affordability, acceptability, nutritional

quality and business interest, the necessary criteria

for foods to contribute to reduce under-nutrition.

Donors including USAID consider groundnut as one

of the important crops for reducing malnutrition.

Projects like ‘SPRING nutrition’ in Ghana and

‘Groundnut Scaling’ in Mali, Ghana and Nigeria

promote home consumption of groundnut for

enhanced nutrition. The RUTF products based on

groundnut are low cost and proven solutions in

treating malnutrition among children and women.

‘PlumpyNut’, a RUTF is used by UNESCO to treat

acute malnutrition in children in Niger. Groundnut and

its products can contribute significantly towards

reduction of protein-energy and micronutrient malnu-

trition (Janila et al. 2014).

The localization of Fe and Zn in the seed tissues

varies depending on the crop species. For example, in

monocots such as rice the highest Fe concentration

was observed in aleuron layers, integument, and in the

scutellum; whereas in dicots Fe is mainly stored within

the embryo. In rice the high Fe containing tissues are

discarded during processing while in dicots raising the

Fe content might be associated with a possible damage

of the embryo by toxic Fe concentration (Grillet et al.

2014). Thus, understanding of the inherent processes

involved in mineral localization is useful to devise

breeding strategies that ensure the success of biofor-

tification. For example in rice, to overcome the

processing loss breeding strategies focused on increas-

ing endosperm Fe content in order to enhance Fe

bioavailability (Bashir et al. 2011). In the present

study an attempt was made to identify the distribution

pattern of Fe and Zn concentration on groundnut

kernel tissues viz. seed coat, cotyledon and embryo

and to identify tissues responsible for maximum

accumulation of these minerals.

Significant genetic variations in the seed concen-

trations of Fe and Zn was reported in several crops

such as rice (Anuradha et al. 2012), wheat (Mor-

gounov et al. 2007), maize (Maziya-Dixon et al.

2000), sorghum (Kumar et al. 2009) and groundnut

(Upadhyaya et al. 2012; Janila et al. 2014). The nature

of inheritance and presence of quantitative trait loci

(QTL) for Fe and Zn concentration were also reported

in some crops. In rice, additive and dominant gene

effect besides environmental effect was documented

for grain Fe and Zn concentrations (Gregorio 2002). In

common bean seeds, additive allelic interaction for Zn

concentration, and both additive and dominance

component for Fe concentration was reported (Silva

et al. 2013). Additive gene action and addi-

tive 9 dominance epistasis for kernel Fe, and domi-

nance and additive 9 additive epistasis for kernel Zn

concentration was observed in maize seeds (Chakra-

borti et al. 2009). In sorghum, non-additive gene

action was predominant for Fe concentration, while

additive effects were important for grain Zn concen-

tration (Kumar et al. 2013). Information on the nature

of gene action associated with important target traits is

crucial to decide the breeding procedure to be

followed. Generation mean analysis (GMA) is often

used to estimate the components of gene action

(additive, dominance effects and interactions) of

individual traits. In groundnut, GMA was carried out

to understand the gene action for yield and its

contributing characters (Shobha et al. 2010;
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Venuprasad et al. 2011), resistance to late leaf spot

(Janila et al. 2013) and surrogate traits for water-use-

efficiency (Janila et al. 2015). Though significant

variability for kernel Fe and Zn concentration was

reported in groundnut (Asibuo et al. 2000; Janila et al.

2014) mechanism of gene action associated with these

traits was not reported yet. Hence, the present study

also aimed at understanding the nature of gene action

governing the kernel Fe and Zn concentrations.

Materials and methods

Localization studies for kernel Fe and Zn

concentration

Ten genotypes viz., ICGV 06,099, ICGV 93,468,

ICGV 91,114, TAG 24, ICGV 00,440, ICGV 02,266,

ICGV 05,155, ICGV 06,420, ICGV 06,040 and ICGV

87,141, each differing in their kernel Fe and Zn

concentrations was used in the present study. From

each entry 100 g of kernels was weighed after which

each kernel was manually separated into seed coat,

cotyledons and embryo. Each tissue from each sample

was separately ground into fine powder and used for

estimating Fe and Zn concentration using the Induc-

tively Coupled Plasma Optical Emission Spectrometry

(ICP-OES) method.

Plant material and experiment design

Four generations viz., F1, F2 and first back cross

generations, B1 with first parent and B2 with second

parent along with the two parents P1 and P2 constituted

the six-generations. These generations were derived

from two crosses, ICGV 06,040 9 ICGV 87,141 and

ICGV 06,099 9 ICGV 93,468 and evaluated in a

compact family block design in precision fields on

Alfisol (clayey-skeletal, mixed, iso-hypothermic fam-

ily of Udic Rhodustalfs) at Patancheru (17�530 N,

78�270 E, and 545 m altitude), India during 2013–14

post-rainy season. The two parents in the cross had

contrasting kernel Fe and Zn concentration (Table 1).

The experimental block comprised of one row each of

P1, P2 and F1, two rows each of B1 and B2, and eight

rows of F2. Each row is of 2 m length with a spacing of

30 cm between rows and 10 cm between the plants in

a row. Standard package of practices that included

application of 60 kg P2O5 as basal application, seed

treatment with mancozeb @ 2 g kg-1 of seed and

imidachloprid @ 2 ml kg-1 of seed, pre-emergence

application of pendimethalin @ 1 kg active ingredient

ha-1, irrigation soon after planting and subsequently

as and when needed, application of gypsum @

400 kg ha-1 at the peak flowering and protection

against insect pests and diseases as per the requirement

was followed to raise a healthy crop. The observations

were recorded on days to emergence, days to 75%

flowering, days to maturity, 100-kernel weight (g),

shelling percentage, sound mature kernel percentage,

pod yield per plant (g), kernel Fe and Zn concentra-

tions. The Fe and Zn concentration of parents and

different generations were estimated using the ICP-

OES method.

Estimation of kernel Fe and Zn concentration

Kernel Fe and Zn concentrations from individual

samples were estimated using Inductively Coupled

Plasma Optical Emission Spectrometry (ICP-OES)

method (Prodigy High Dispersion ICP, TELEDYNE

Leeman labs, USA). About 0.2–0.3 g of oven-dried

ground sample was weighed and transferred into

labelled tube. To this, 1.5–2.0 ml of nitric acid was

added followed by 0.5 ml of Hydrogen Peroxide

(H2O2). The tube was then closed and allowed to stand

overnight at room temperature, after which the

contents were transferred to heating blocks set at

800C. The cap was loosened to allow release of

pressure during the reaction process. After 30-min of

reaction initiation, the temperature of heating block

was increased to 125 �C and heat digestion was

continued for another 2-h. The sample tubes were

cooled and the volume was made up to 25 ml using

distilled water. The tubes were vortexed for 1–2 min

and the supernatant was collected and used for

estimating Fe and Zn concentration through ICP-

OES. The samples used in this method are non-

defatted, and it is expected that the estimations based

on defatted samples will be higher than the non-

defatted samples (Janila et al. 2014).

Statistical analysis

The mean values from individual plant data were

estimated for all the studied traits, for each generation

separately and used to compute variance (ANOVA)

for compact family design as described by Panse and
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Sukhatme (1985). The traits showing significant

difference between crosses and among the generations

were further subjected to GMA. Six generations, the

parents, F1, F2, B1 and B2 were used to fit in simple

additive-dominance model in the generation means

approach. Scaling tests for five traits of both the

crosses were performed to test the adequacy of the

additive-dominance model (Mather 1949). Six-param-

eter model proposed by Hayman (1958) was used to

estimate mean (m), additive (d) and dominance

(h) effects, and those resulting from their interactions,

additive 9 additive (i), additive 9 dominance (j) and

dominance 9 dominance (l) effects. The validity of

the additive-dominance model for the scaling tests and

non-allelic interactions were examined using

WINDOSTAT 8.5 software. Correlation between the

traits was carried out using GENSTAT 14th edition

software.

Results

Localization of Fe and Zn in groundnut kernels

The concentration of Fe and Zn in different kernel

tissues viz., seed coat, cotyledons and embryo of the

ten tested genotypes is given in Table 2. Estimates of

kernel Fe and Zn concentration in different kernel

tissues revealed that seed coat contributed maximum

towards total kernel Fe accumulation followed by

embryo and cotyledon; whereas for kernel Zn

concentration, embryonic portion contributed maxi-

mum followed by cotyledon and seed coat. The Zn

contributed by the embryonic portion alone was much

higher (65–70%) than the total contribution of both

cotyledons and seed coat.

Among the ten tested genotypes, seed coat of ICGV

02,266 contributed maximum for kernel Fe concen-

tration (527.36 mg kg-1) followed by TAG 24

(272.11 mg kg-1), ICGV 00,440 (261.84 mg kg-1)

and ICGV 05,155 (246.12 mg kg-1). In contrast,

ICGV 06,040 recorded higher Fe concentration in its

embryo (90.50 mg kg-1) than in seed coat

(73.42 mg kg-1), indicating variation among geno-

types with regards to Fe localization. The Fe present in

seed coat is not available for consumption as it will be

removed during processing in case of confectionery

groundnuts. Thus, the presence of high Fe in the

embryo rather than seed coat indicates that the

genotype ICGV 06,040 can be suitably used as parent

in breeding program to develop high Fe containing

lines or varieties. For kernel Zn concentration, embryo

portion of ICGV 06,099 recorded highest value of

138.92 mg kg-1 followed by ICGV 06,040

(128.38 mg kg-1), ICGV 00,440 (94.83 mg kg-1)

and TAG 24 (87.50 mg kg-1). However, considering

each kernel part weight i.e. seed coat, cotyledons and

embryo, cotyledons contribute more than 90% of total

weight of the kernel. Hence, the proportional contri-

bution of cotyledons to the total kernel Fe and Zn will

be more than seed coat and embryo (* 3–4%).

Table 1 Pedigree and characteristics of the groundnut genotypes used as parents in the crossing program

Parental

line

Pedigree Characteristics

ICGV

06,040

[{(ICGS 35 9 NC Ac 1705) 9 CS 16-B2-B2} 9 {(NC

Ac 343 9 (Dh. 3–20 9 Robut 33–1)} 9 {(NC Ac

343 9 (Dh. 3–20 9 Robut 33–1)}]

Spanish bunch, medium duration, slight reticulated pods, tan

colour and medium size seed. High kernel iron and zinc

concentration (Janila et al. 2014)

ICGV

87,141

(TMV 10 9 Chico) Virginia bunch, medium duration, slight reticulated pods, tan

colour and medium size seed. Low kernel iron and zinc

concentration (Janila et al. 2014)

ICGV

06,099

[{(ICGS 35 9 NC Ac 1705) 9 CS 16-B2-B2} 9 {(NC

Ac 343 9 (Dh. 3–20 9 Robut 33–1)} 9 {(NC Ac

343 9 (Dh. 3–20 9 Robut 33–1)}]

Spanish bunch, medium duration, slight reticulated pods, tan

colour and medium size seed. High kernel iron and zinc

concentration (Janila et al. 2014)

ICGV

93,468

[(ICGS 44 9 TG 2E) 9 {ICGS 30 9 (TMV

10 9 Chico)}]

Spanish bunch, short duration, medium reticulated pods, red

colour and small to medium size seed. Low kernel iron and

zinc concentration (Janila et al. 2014)
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Mean performance of traits across generations

The mean performance of six generations, P1, P2, F1,

F2, B1 and B2 of two crosses for kernel Fe and Zn

concentrations and other traits is given in Table 3. For

days to 75% flowering, variation between the gener-

ations was not observed. The mean performance

across generations varied from 48 to 50 days for the

cross ICGV 06,040 9 ICGV 87,141, and from 47 to

48 days for the cross ICGV 06,099 9 ICGV 93,468.

However, significant variation was observed for days

to maturity (Fig. 1). The mean performance for days to

maturity across the generations varied from 142 to

159 days in the cross ICGV 06,040 9 ICGV 87,141,

and from 133 to 159 days in the cross ICGV

06,099 9 ICGV 93,468. In both the crosses, P2

parents, ICGV 87,141 and ICGV 93,468 were early

maturing, followed by B2 generations, which were

crossed to P2 parent suggesting possible contribution

of alleles for early maturity from P2 parents in the

studied crosses. Significant variation for days to

maturity, despite absence of variation for duration

for 75% flowering, suggests importance of pod-filling

duration to total maturity duration. Pod-filling dura-

tion indicates the stage from fertilisation to formation

of fully filled mature pods. For breeding program

across Asia and Africa, early-maturity is an important

target trait for adaptation to short growing season and/

or as escape mechanism from end-of-season drought.

Observations from the present study suggest the

possibility of using pod filling duration as one of the

useful criteria for selecting early-maturing types.

Among the generations of the cross ICGV

06,040 9 ICGV 87,141, 100-kernel weight (HKW)

varied from 35 to 45 g, and from 36 to 46 g in the

cross, ICGV 06,099 9 ICGV 93,468. Highest mean

HKW of 45 g was recorded by both P1 and B1

generations in the cross ICGV 06,040 9 ICGV

87,141, and 46 g by P1 and F1 in the cross ICGV

06,099 9 ICGV 93,468 (Fig. 2). For shelling per-

centage the mean performance varied from 58 to 75%

in the cross ICGV 06,040 9 ICGV 87,141, and the

highest shelling percentage was observed in F1 (75%)

followed by P1 (72%). No significant variation was

observed for shelling percentage in the cross ICGV

06,099 9 ICGV 93,468. Variation was not observed

for sound mature kernel percentage (SMK) in both the

crosses. Significant variation was observed for pod

yield per plant in both the crosses, and mean

performance varied from 25 to 40 g in ICGV

06,040 9 ICGV 87,141, and from 27 to 38 g in ICGV

06,099 9 ICGV 93,468. Highest pod yield per plant

was recorded for B1 generation of the cross ICGV

06,040 9 ICGV 87,141, while F1 was the best

performer in the cross ICGV 06,099 9 ICGV 93,468

(Fig. 2).

The parents of both the crosses showed variation for

kernel Fe and Zn concentration (Table 1). The high

parents (ICGV 06,040 and ICGV 06,099) had 33 and

25 mg kg-1 kernel Fe, while the low parents (ICGV

87,141 and ICGV 93,468) had 25 and 21 mg kg-1,

respectively. For kernel Zn, high parents (ICGV

06,040 and ICGV 06,099) had 50 and 36 mg kg-1,

while the low parents (ICGV 87,141 and ICGV

93,468) had 36 and 30 mg kg-1, respectively. All

values of Fe and Zn are based on non-defatted

samples. The mean performance for kernel Fe and

Zn concentration varied from 20 to 42 mg kg-1 and

23 to 60 mg kg-1, respectively in the cross ICGV

06,040 9 ICGV 87,141, and from 16 to 49 mg kg-1

and 22 to 61 mg kg-1, respectively in the cross ICGV

06,099 9 ICGV 93,468. Parent, P1 recorded highest

value for both kernel Fe and Zn concentration across

the generations in the cross ICGV 06,040 9 ICGV

87,141, while both P1 and B1 showed similar perfor-

mance in the cross ICGV 06,099 9 ICGV 93,468

(Fig. 2).

In order to test the performance of nine characters

for comparison of crosses and generations of each

cross, analysis of variance (ANOVA) was performed

and the results are presented in Table 4. The mean

squares from ANOVA revealed significant differences

among the crosses for five traits viz., days to maturity,

100-kernel weight, pod yield per plant, kernel Fe and

Zn concentrations which indicated that considerable

amount of variability was present between the crosses

and among the generations of the two crosses for these

traits. So, further genetic analyses of generation means

was carried out for five traits in both the crosses.

Generation mean analysis by scaling tests

To understand the mechanism of gene action, scaling

test was performed using the mean measurements of

six generations for five traits, days to maturity,

100-kernel weight, pod yield per plant, kernel Fe and

kernel Zn concentrations in both crosses (Table 5).

Significant differences were observed for all five traits
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in both the crosses for the scaling parameters A, B and/

or C, suggesting the presence of non-allelic interac-

tions, and inadequacy of additive-dominance model in

explaining the gene action mechanism.

As the scaling tests revealed significant differences

for days to maturity, 100-kernel weight, pod yield per

plant, kernel Fe and Zn concentration in both the

crosses, the six parameter model was used to identify

the epistatic interactions involved in governing the

above mentioned traits. The parameters viz., mid

parental effect (m), additive (d) and dominance

(h) effects and interactions viz., additive 9 additive

(i), additive 9 dominance (j) and dominance 9 dom-

inance (l) of the two crosses under study are presented

Fig. 3 Mean performance of different generations of two

crosses of groundnut for pod yield/plant a ICGV

06,040 9 ICGV 87,141 (5.3 cm (H) 9 10.4 cm (W)),

b ICGV 06,099 9 ICGV 93,468 (5.3 cm (H) 9 10.4 cm

(W)). Parent 1 (P1), Parent 2 (P2), First filial generation (F1),

Second filial generation (F2), Back cross 1 (B1) and Back cross

2 (B2)

Fig. 1 Mean performance of different generations of groundnut

for days to maturity a ICGV 06,040 9 ICGV 87,141 (5.9 cm

(H) 9 10.8 cm (W)), b ICGV 06,099 9 ICGV 93,468 (5.9 cm

(H) 9 10.9 cm (W)). Parent 1 (P1), Parent 2 (P2), First filial

generation (F1), Second filial generation (F2), Back cross 1 (B1)

and Back cross 2 (B2)

Fig. 2 Mean performance of different generations of groundnut

for hundred kernel weight a ICGV 06,040 9 ICGV 87,141

(5.7 cm (H) 9 10.8 cm (W)), b ICGV 06,099 9 ICGV 93,468

(5.7 cm (H) 9 10.9 cm (W)). Parent 1 (P1), Parent 2 (P2), First

filial generation (F1), Second filial generation (F2), Back cross 1

(B1) and Back cross 2 (B2)
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in Table 6. In both the crosses, the mid-parental values

were highly significant and positive for all the traits

except for pod yield per plant.

Gene action governing pod yield and associated

traits

Positive significant dominance 9 dominance interac-

tion and additive gene action, and negative significant

dominance gene action and additive 9 additive inter-

action were observed for days to maturity in both the

crosses. The higher magnitude of dominance effects in

both the crosses indicated the major role played by

dominance components in determining the maturity

duration followed by additive gene action. Both,

dominance and dominance 9 dominance component

had opposite signs, indicating the involvement of

duplicate epistatic effects. So for earliness, selection

will be effective in early generations as negative

significance was observed for dominance and addi-

tive 9 additive component of epistasis. In both the

crosses, dominance 9 dominance component was

Fig. 4 Mean performance of different generations of two

crosses of groundnut for kernel iron and zinc concentrations

a ICGV 06,040 9 ICGV 87,141 (5.7 cm (H) 9 10.5 cm (W)),

b ICGV 06,099 9 ICGV 93,468 (5.7 cm (H) 9 10.4 cm (W)).

Parent 1 (P1), Parent 2 (P2), First filial generation (F1), Second

filial generation (F2), Back cross 1 (B1) and Back cross 2 (B2)

Table 4 Analysis of variance (ANOVA) for different characters in two crosses in groundnut

Source of

variation

df Days to

maturity

100-kernel

weight (g)

Pod yield/

plant (g)

Kernel iron

concentration

(mg/kg)

Kernel zinc

concentration

(mg/kg)

Analysis of variance between crosses

Rep 2 1.99 0.53 0.40 0.07 1.45

Cross 1 24.2720* 3.3856* 2.783336* 6.881878* 14.65614*

Error 2 0.68 0.18 0.06 0.12 0.54

Analysis of variance between generations within crosses

ICGV 06,040 9 ICGV 87,141

Rep 2 6.33 7.99 7.71 6.23 52.95*

Gen 5 133.75** 57.56** 44.05** 21.17** 72.76**

Error 10 5.36 9.99 7.58 2.38 8.66

ICGV 06,099 9 ICGV 93,468

Rep 2 88.98* 11.04 7.64 0.39 18.61

Gen 5 325.11** 42.10* 62.20** 16.80* 36.09*

Error 10 19.36 10.05 2.45 4.22 10.41

Rep replication, Gen generation, df degree of freedom

* and ** indicates significance at 5% and 1% probability levels, respectively
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found to be governing 100-kernel weight in positive

direction, whereas dominance and additive 9 addi-

tive component were significant in negative direction.

The results indicated that selection for seed weight

will not be effective in early generations, since the

dominant and additive 9 additive component have

negative effect on seed size.

For pod yield per plant significant positive domi-

nant gene action and additive 9 additive interaction

were observed for both the crosses and significant

Table 5 Results of scaling tests for five agronomic traits including kernel iron and zinc concentrations in both the crosses evaluated

during post-rainy season, 2013–14

Scaling

test

Days to maturity 100-Kernel weight

(g)

Pod yield/plant (g) Kernel iron concentration

(mg/kg)

Kernel zinc concentration

(mg/kg)

ICGV 06,040 9 ICGV 87,141

A - 1.302 ± 0.28** 4.336 ± 3.90 23.489 ± 6.96** - 2.976 ± 1.57 - 6.271 ± 2.82*

B - 7.650 ± 2.27** - 15.835 ± 3.17** 5.478 ± 7.79 8.949 ± 1.80** 7.636 ± 3.25*

C - 2.628 ± 0.91** - 0.792 ± 4.42 6.346 ± 8.62 - 2.335 ± 1.71 - 8.305 ± 4.09*

ICGV 06,099 9 ICGV 93,468

A 6.401 ± 2.91* - 0.795 ± 3.75 - 7.855 ± 5.16 5.051 ± 1.67** 5.943 ± 2.46*

B - 9.417 ± 6.48 - 3.40 ± 3.39 5.664 ± 5.53 5.371 ± 1.77** 3.421 ± 2.04

C 37.528 ± 4.08** 11.891 ± 2.25* - 19.70 ± 7.32* 10.550 ± 2.30** 12.197 ± 3.16**

* and ** indicates significance at 5% and 1% probability levels, respectively

Table 6 Results of genetic components for five agronomic traits including kernel iron and zinc concentrations in both the crosses

evaluated during post-rainy season, 2013–14

Genetic

component

Days to maturity 100-Kernel weight

(g)

Pod yield/plant (g) Kernel iron

concentration (mg/kg)

Kernel zinc

concentration (mg/kg)

ICGV 06,040 9 ICGV 87,141

m 186.299 ± 6.84** 59.984 ± 4.67** 13.210 ± 7.60 23.294 ± 0.36** 36.324 ± 2.93**

d 12.006 ± 0.72** - 1.193 ± 1.20 1.972 ± 1.90 2.334 ± 0.703** 3.096 ± 0.88**

h - 82.191 ± 20.17** - 32.293 ± 12.61* 46.154 ± 21.03* 8.957 ± 6.56 2.220 ± 8.03

i - 40.543 ± 6.80** - 16.085 ± 4.51** 15.537 ± 7.36* - 0.128 ± 2.32 - 2.834 ± 2.79

j 7.909 ± 3.35 1.303 ± 2.11 - 4.371 ± 3.58 - 0.160 ± 1.15 1.261 ± 1.43

l 43.559 ± 13.71** 20.280 ± 8.83* - 21.851 ± 14.66 - 10.295 ± 4.32* - 6.529 ± 5.49

Epistasis Duplicate Duplicate Duplicate Duplicate Duplicate

ICGV 06,099 9 ICGV 93,468

m 164.022 ± 2.45** 53.599 ± 4.96** 5.336 ± 9.63 21.129 ± 2.47** 33.815 ± 3.84**

d 3.825 ± 1.13** 0.508 ± 1.23 - 3.135 ± 1.93 3.891 ± 0.42** 7.431 ± 0.73**

h - 17.694 ± 7.06* - 30.219 ± 13.71* 77.922 ± 27.64** 21.647 ± 6.97** 17.496 ± 10.88

i - 5.022 ± 2.45* - 10.706 ± 4.81* 22.621 ± 9.43* 8.308 ± 2.44** 9.671 ± 3.77**

j 3.825 ± 1.13 10.085 ± 2.35 9.006 ± 4.682 - 5.963 ± 1.15 - 6.953 ± 1.80

l 12.672 ± 4.63** 22.205 ± 9.15* - 51.588 ± 19.11** - 14.281 ± 4.61** - 11.036 ± 7.74

Epistasis Duplicate Duplicate Duplicate Duplicate Duplicate

* and ** indicates significant at 5% and 1% probability levels, respectively

m = mean; d = additive; h = dominance; i = additive 9 additive; j = additive 9 dominance; l = dominance 9 dominance
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negative dominant 9 dominant interaction was

observed only for ICGV 06,099 9 ICGV 93,468.

The higher magnitude of dominance effect indicated

the key role played by dominance gene effect in

governing pod yield per plant as a consequence of this

gene action, B1 and F1 recorded highest pod yield.

However, the additive 9 additive component, which

can be fixed was significant in both the crosses and it is

possible to improve pod yield per plant through

selection.

Gene action governing kernel Fe and Zn

concentration

Significant additive gene action for kernel Fe and Zn

concentrations and negative dominance 9 dominance

epistasis for kernel Fe concentration was observed in

both the crosses (Table 6). Both dominant and

additive 9 additive epistasis was significant for ker-

nel Fe concentration in the cross ICGV

06,099 9 ICGV 93,468. The significance of domi-

nance 9 dominance epistasis for kernel Fe concen-

tration in both the crosses suggested the presence of

genotypic variation and different sets of alleles in the

genotypes selected for study. In breeding program,

targeting enhancement of kernel Fe concentration,

parental selection becomes an important criterion,

wherein selection of contrasting parents is desirable.

The results suggested that selection for kernel Fe and

Zn concentrations in the segregating populations

would be effective in the early generations.

Correlation studies

The correlation estimates of different trait-pairs are

given in Table 7. Kernel Fe concentration showed

highly significant positive association with kernel Zn

concentration in both the crosses; 0.59 and 0.55 in the

crosses, ICGV 06,040 9 ICGV 87,141 and ICGV

06,099 9 ICGV 93,468, respectively. Significant cor-

relation (0.196) was also observed between 100-kernel

weight and pod yield per plant for the cross ICGV

06,040 9 ICGV 87,141, but it was non-significant for

ICGV 06,099 9 ICGV 93,468. No significant corre-

lation was observed for 100-kernel weight and pod

yield per plant with kernel Fe and Zn concentrations.

Discussions

Studies on Fe and Zn accumulation/localization have

indicated that different tissues are involved depending

on the crop species (Grillet et al. 2014). In groundnut,

among the kernel tissues viz., seed coat, cotyledons

and embryo, cotyledons contribute more than 90% of

total weight of the kernel which means that its

proportional contribution to the total kernel Fe and

Zn will be higher than seed coat and embryo. Thus, in

case of processed/confectionery groundnut where

removal of seed coat is mandatory during processing,

it is still possible to retain * 85–90% of total Fe and

Zn in the cotyledon and embryo portion of the kernels.

This is in contrast to processed cereals and millets

wherein most of the Fe which was present in the

aleuron layer will be lost during milling (Wang et al.

2011). Thus, groundnut based food products such as

RUTFs and RUSFs developed using seeds of high Fe

and Zn containing genotypes can be a suitable alter-

native to reducing micronutrient malnutrition largely

prevalent in the developing and under developed

world.

Groundnut is a self pollinated crop, therefore

genetic variation governed by additive gene action

and additive 9 additive genetic interaction effects can

be exploited for trait improvement. A combination of

early generation selection to tap the genetic variation

governed by additive genetic effects, combined with

Table 7 Correlation between different pairwise traits in F2:3

generation of crosses ICGV 06,040 9 ICGV 87,141 and ICGV

06,099 9 ICGV 93,468

Traits Correlation

ICGV 06,040 9

ICGV 87,141

ICGV 06,099 9

ICGV 93,468

HKW-PY 0.196** - 0.018 ns

HKW-Fe - 0.225** - 0.100 ns

HKW-Zn 0.134* 0.175**

PY-Fe - 0.082 ns - 0.103 ns

PY-Zn - 0.077 ns - 0.002 ns

Fe-Zn 0.590** 0.549**

* and ** indicates significance at 5% and 1% probability levels
ns = Non-significant; HKW = 100-kernel weight (g);

PY = Pod yield/plant (g/plant); Fe = Kernel iron

concentration (mg/kg); Zn = Kernel zinc concentration (mg/

kg)
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selections in advanced generations to exploit addi-

tive 9 additive epistatic effects will be desirable to

maximize the genetic gain for kernel Fe and Zn

concentration in groundnut improvement programs.

For pod yield per plant the duplicate epistasis caused a

higher degree of reduction of the positive effects of

dominant genes, leading to smaller yield which might

be a reason for failure/difficulty in attaining higher

yield in groundnut. This kind of epistasis generally

hinders the improvement through selection and hence,

a higher magnitude of dominance and domi-

nance 9 dominance type of interaction effects would

not be expected (Table 6). The role of additive 9 ad-

ditive epistasis in governing yield was reported in

groundnut (Shoba et al. 2010) and other crops that

include, maize (Azizi et al. 2006), sesame (Sundari

et al. 2012; Jawahar et al. 2013), and chickpea

(Biranvand et al. 2013). Whereas, additive gene action

governing yield per plant was reported in groundnut

(Ali et al. 1999), pea (Kalia and Sood 2009), and lentil

(Akbari et al. 2013). Negative significance was

observed for dominance and additive 9 additive

component of epistasis which was similar to the

findings reported in of in garden pea (Singh et al.

2001); in lentil (Akbari et al. 2013) and mung bean

(Noorka et al. 2014).

Thus for improving traits with high dominance or

additive 9 additive and dominance 9 dominance

interaction components in groundnut it is suggested

to defer selection till later generations until a high

level of gene fixation is attained. Also, maintenance of

large populations prior to selection can be useful as it

provides the maximum opportunity for advantageous

combination of genes to occur. For both the crosses,

the additive 9 dominance interaction effect was not

significant for any of the studied traits.

Comparison of gene actions revealed that both

additive and dominance components are important

with the dominance genetic effects playing a major

role for most of the studied traits viz., days to maturity,

100-kernel weight and pod yield per plant. However,

in both crosses the influence of additive gene effect

was noteworthy for kernel Fe and Zn concentrations.

The importance of additive gene action in governing

kernel Fe and Zn concentrations was also reported in

other crops including common bean (Silva et al. 2013),

sorghum (Gayathri 2012; Kumar et al. 2013), pearl

millet (Velu et al. 2011a; Rai et al. 2012), maize

(Chakraborti et al. 2011; Long et al. 2004) and rice

(Zhang et al. 2004). For kernel Fe concentration,

significant dominance gene effect was observed only

for the cross ICGV 06,040 9 ICGV 87,141, indicat-

ing the presence of different sets of alleles for this trait

among the parents used in the crossing program. So, to

improve the kernel Fe and Zn concentrations in

groundnut selection among parental lines and pedigree

method of breeding may be adopted to exploit additive

component of gene effect for bringing about improve-

ment in the target traits. Such a strategy will help in

increasing the frequency of favourable alleles while

maintaining a high degree of genetic variability in

breeding population (Doerksen et al. 2003).

For reliable estimates of genetic effects using

generation mean analysis, genes of like effects must

be completely associated with the parents. Therefore,

selection of parents contrasting for the trait being

measured is crucial for this type of investigation. The

results also indicated the important role of digenic

non-allelic interactions (epistasis), among which

additive 9 additive component was found to be

influencing more number of traits especially kernel

iron and zinc concentrations in the cross ICGV

06,040 9 ICGV 87,141 compared to domi-

nance 9 dominance component of epistasis. This

assumes significance as it is very difficult to exploit

the dominance component due to difficulties in

developing hybrids in groundnut.

From the results obtained in the present investiga-

tion it can be concluded that there was significant

influence of additive gene component for expression

of kernel Fe and Zn concentrations and scope to

enhance kernel Fe and Zn concentration in breeding

populations through choice of parents and selections

exercised in both, early and later generations. How-

ever, considering that these results are based on

digenic interaction model using only two crosses,

there is a scope for further study using crosses

developed from contrasting parents to fit a trigenic

interaction and linkage model.

Earlier studies on correlation analysis in groundnut

have also showed positive association between kernel

Fe and Zn concentration in selected set of germplasm

and advanced breeding lines (Upadhyaya et al. 2012;

Janila et al. 2014). Thus, there exists a distinct

possibility of improving both traits by selecting for

either of the nutrients. However, when attempting to

improve both Fe and Zn concentrations in the kernels,

it is suggested to base selections based on the
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concentration of Fe and Zn in the kernels, as

independent studies on high Fe and Zn groundnut

genotypes have not revealed any significant correla-

tion between Fe and Zn concentrations (Janila et al.

2014). Similar positive association between grain Fe

and Zn concentration was reported in pearl millet

(Govindaraj et al. 2009; Kanatti et al. 2014), sorghum

(Ravikiran et al. 2014; Susmitha and Selvi 2014),

wheat (Ghanbari and Mameesh 1971; Velu et al.

2011b; Badakhshan et al. 2013) and rice (Bekele et al.

2013).

Absence of association between kernel Fe

(- 0.082 ns and - 0.103 ns) and Zn (- 0.077 ns and

- 0.002 ns) concentrations with pod yield per plant in

both the crosses viz., ICGV 06,040 9 ICGV 87,141

and ICGV 06,099 9 ICGV 93,468, respectively sug-

gested the possible simultaneous improvement of

kernel iron and zinc concentration along with pod

yield. Significant positive correlation of Zn concen-

tration with pod yield with an r2 value of 0.168 was

reported earlier in groundnut (Janila et al. 2014).

However, negative significant association was

observed between grain Fe concentration and yield

per plant (- 0.29) in pearl millet (Kanatti et al. 2014),

whereas a significant positive association of grain Fe

(0.374) and Zn (0.270) concentrations with yield per

plant was observed in sorghum (Susmitha and Selvi

2014). In both the crosses kernel Zn concentration

showed significant positive association with 100-ker-

nel weight, however the magnitude was low.
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