
Received: 5 February 2024 Accepted: 14 August 2024

DOI: 10.1002/tpg2.20515

The Plant Genome

O R I G I N A L A R T I C L E

S p e c i a l S e c t i o n : M o d e r n I m p r o v e m e n t o f Tr o p i c a l C r o p s

Using cross-country datasets for association mapping in Arachis
hypogaea L.

Velma Okaron1 James Mwololo2 Davis M. Gimode3 David K. Okello4

Millicent Avosa3 Josh Clevenger5 Walid Korani5 Mildred Ochwo Ssemakula1

Thomas L. Odong1 Damaris A. Odeny3

1Department of Agricultural Production,
School of Agricultural Sciences, College of
Agricultural and Environmental Sciences,
Makerere University, Kampala, Uganda
2International Crops Research Institute for
the Semi-Arid Tropics (ICRISAT),
Bulawayo, Zimbabwe
3International Crops Research Institute for
the Semi-Arid Tropics- Kenya, Nairobi,
Kenya
4National Semi-Arid Resources Research
Institute, Soroti, Uganda
5HudsonAlpha Institute for Biotechnology,
Huntsville, Alabama, USA

Correspondence
Damaris A. Odeny, International Crops
Research Institute for the Semi-Arid
Tropics- Kenya, P.O. Box 39063-00623,
Nairobi, Kenya.
Email: Damaris.Odeny@icrisat.org

Assigned to Associate Editor Stella Salvo.

Abstract
Groundnut (Arachis hypogaea L.) is one of the most important climate-resilient oil

crops in sub-Saharan Africa. There is a significant yield gap for groundnut in Africa

because of poor soil fertility, low agricultural inputs, biotic and abiotic stresses.

Cross-country evaluations of promising breeding lines can facilitate the varietal

development process. The objective of our study was to characterize popular test

environments in Uganda (Serere and Nakabango) and Malawi (Chitala and Chit-

edze) and identify genotypes with stable superior yields for potential future release.

Phenotypic data were generated for 192 breeding lines for yield-related traits, while

genotypic data were generated using skim-sequencing. We observed significant vari-

ation (p < 0.001; p < 0.01; p < 0.05) across genotypes for all yield-related traits: days

to flowering (DTF), pod yield (PY), shelling percentage, 100-seed weight, and grain

yield within and across locations. Nakabango, Chitedze, and Serere were clustered

as one mega-environment with the top five most stable genotypes being ICGV-

SM 01709, ICGV-SM 15575, ICGV-SM 90704, ICGV-SM 15576, and ICGV-SM

03710, all Virginia types. Population structure analysis clustered the genotypes in

three distinct groups based on market classes. Eight and four marker-trait associa-

tions (MTAs) were recorded for DTF and PY, respectively. One of the MTAs for

DTF was co-localized within an uncharacterized protein on chromosome 13, while

another one (TRv2Chr.11_3476885) was consistent across the two countries. Future

studies will need to further characterize the candidate genes as well as confirm the

stability of superior genotypes across seasons before recommending them for release.

Abbreviations: AP, available phosphorus; BLINK, Bayesian-information and linkage-disequilibrium iteratively nested keyway; BLUP, best linear unbiased
prediction; DAPC, discriminant analysis of principal components; DTF, days to 50% flowering; ESA, eastern and southern Africa; GGE, genotype plus
genotype–environment interaction; GWAS, genome-wide association studies; GY, grain yield; HSW, 100-seed weight; ICRISAT, The International Crops
Research Institute for the Semi-Arid Tropics; IPCA, interaction principal component axis; LD, linkage disequilibrium; MAF, minor allele frequency; MLMM,
multi-locus mixed model; MTA, marker-trait association; PC, principal component; PCA, principal component analysis; PY, pod yield; QTL, quantitative trait
locus; SAT, semi-arid tropic; SH%, shelling percentage; SNP, single nucleotide polymorphism; SSA, sub-Saharan Africa; TN, total nitrogen.
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Plain Language Summary
Most countries in eastern and southern Africa derive their groundnut breeding lines

from International Crops Research Institute for the Semi-Arid Tropics breeding pro-

gram based in Malawi. In some cases, the same genotype is released in several

countries under different names. However, the evaluation of the genotypes is often

taken independently in each of the countries, leading to duplication of work. A more

cost-effective method is to identify similar environments across different countries

and evaluate the same genotypes across such environments. In this study, we evalu-

ated 192 groundnut genotypes across four environments, two each from Uganda and

Malawi. Additive main effects and multiplicative interaction analysis clustered the

Ugandan sites and Chitedze in one mega-environment, implying that future evalua-

tions could take advantage of such environments towards varietal releases. We also

used the same data to detect marker-trait associations across the different locations

for agronomic traits. Our results revealed more consistent results within Uganda than

Malawi.

1 INTRODUCTION

Groundnut (Arachis hypogaea L.), also known as peanut, is
an important climate-resilient grain legume and oilseed crop,
especially in the semi-arid tropics (SATs). The crop is culti-
vated in more than 100 countries (Pandey et al., 2020) with
China as the largest producer and exporter globally (Bansal
et al., 2017). In Africa, groundnut is mainly produced in Nige-
ria, Senegal, Uganda, Tanzania, South Africa, and Sudan, and
utilized as human food, edible oil, and livestock feed (Okello
et al., 2010). Despite its importance in sub-Saharan Africa
(SSA), groundnut yields remain extremely low in compar-
ison to yields in the West. For instance, the average grain
yield (GY) in the United States was 4072 kg/ha in 2021
(USDA-NASS, 2021), while that in SSA was approximately
886 kg/ha in the same year (FAOSTAT, 2021). This yield gap
is attributed to poor soil fertility (Bekele et al., 2022), low
agricultural inputs (Chapu et al., 2022), biotic (Okello et al.,
2013) and abiotic stresses (Pandey et al., 2014).

Genetic improvement of agronomic traits promises to
address the yield gap and resolve the existing market demand
(Varshney et al., 2013; B. Wang et al., 2020). A better under-
standing of the genetic basis underlying agronomic traits
would focus breeding and enhance the development of innova-
tive breeding tools (Zhang et al., 2017). Among the important
agronomic traits for groundnut in Africa are earliness and
pod yield (PY) (Zongo et al., 2017). Short growing seasons
have become increasingly more frequent and extreme with the
increasing effects of climate change (Cook & Vizy, 2012).
High-yielding, early-maturing groundnut varieties have the
potential of avoiding extended periods of drought and still pro-
viding a reasonable yield to the farmer, especially in Africa

where the crop is grown by smallholder farmers without
irrigation facilities.

Malawi and Uganda are two countries in eastern and
southern Africa (ESA) with strong groundnut breeding pro-
grams. Both programs share the same breeding objectives
and utilize similar breeding lines, usually originating from
the International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT). Cross-country breeding across these two
countries would be vital for the identification of stable and
predictable varieties (Badu-Apraku et al., 2008). In Africa,
cross-country evaluation studies have been limited to a few
major crops such as maize (Zea mays L.) and common bean
(Phaseolus vulgaris L.) (Aggarwal et al., 2004; Kassa et al.,
2013; Mupangwa et al., 2020). Although some cross-country
evaluation of promising groundnut varieties has been done in
Africa (Pandey et al., 2014; Okori et al., 2019, 2014), it is not
a common practice.

Genomic tools offer the potential to significantly accelerate
breeding efficiency, leading to rapid development of improved
cultivars. Molecular markers associated with important yield-
related traits such as pod weight, seed weight, yield per pod,
pod branch number per plant, pod shape, and 100-seed weight
(HSW) have been reported in groundnut using genome-wide
association studies (GWAS) (Wang et al., 2019; Shaibu et al.,
2020; Zhao et al., 2022). Similar studies are yet to be under-
taken across breeding programs in Africa. In the current study,
we generated agronomic data for a diverse set of breeding
lines across Uganda and Malawi. We compared the perfor-
mance of genotypes within and across countries, estimated
the stability in performance, and used genomic tools to deter-
mine relatedness of genotypes as well as establish potential
marker-trait associations (MTAs).
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2 MATERIALS AND METHODS

2.1 Plant material and experimental sites

Note that 192 groundnut genotypes comprising of 82 Vir-
ginia, 78 Spanish, and 32 Valencia were obtained from
ICRISAT Malawi (Table 1) for this study. The germplasm
set included 189 elite cultivars and three high-yielding
commercial varieties, Kakoma (JL 24), CG7, and CHAL-
IMBANA, as local checks. The study was carried out in
four locations, namely, Chitedze and Chitala in Malawi dur-
ing the 2020 cropping season (December–April), and the
National Semi-Arid Resources Research Institute (Serere dis-
trict), and Nakabango (Jinja district) in Uganda during the
long rainy season of 2021 (2021B: September–December)
(Table 1; Figure 1). These locations are representative
of major groundnut producing agroecological zones of
ESA.

2.2 Baseline soil characterization

Soil sampling was done using a zigzag pattern (Okalebo
et al., 2002). From each point, a soil sample was collected
using an Edelman soil auger at 0- to 20-cm depth and un-
decomposed plant materials removed by hand. Three soil
samples from each field were analyzed for texture, pH, total
C, total nitrogen (TN), available phosphorus (AP), and cation
exchange capacity at the Plant, Soil and Water Analytical lab-
oratory in Makerere University, Uganda. Texture of the soils
was obtained using the hydrometer method, while soil pH
was determined on 2.5:1 water to soil suspension (Okalebo
et al., 2002). AP was determined using the Olsen method
(Estefan, 2013). Exchangeable bases (Ca, Mg, Na, and K)
were extracted using ammonium acetate and determined by
atomic absorption spectrophotometry. The Walkley–Black
wet combustion method was used to determine organic car-
bon, while TN was measured using the Kjeldahl method (va
Reeuwijk, 2002). AP was determined using the bicarbonate
solution (0.5 M NaHCO3 at pH 8.5) method (Hue et al.,
2000).

Core Ideas
∙ One mega-environment was identified between

Nakabango, Serere, and Chitedze.
∙ We identified five Virginia groundnut genotypes

with stability in their performance across Malawi
and Uganda.

∙ Days to 50% flowering quantitative trait loci were
consistent across the two countries, while pod yield
was country-specific.

2.3 Experimental design, trials, and data
collection

The experiment was set using a 14 × 25 alpha lattice design
with two replicates at all locations. The plot size was 1 m
× 0.90 m, and each plot consisted of 3 m rows, with inter-
row spacing of 45 cm. Inter-plot distance was 60 cm and
spacing between replications was 2 m. Agronomic practices
recommended for groundnut production were followed. Har-
vesting and all other postharvest handling processes were
done manually on a plot basis using hand hoes. Stripping was
manually done soon after harvesting. Pods from each plot
were sun-dried to <13% moisture content (Min GAC-Plus
moisture tester, DICKEY-John Corporation) and thereafter
weighed using a weighing scale (LBK, ADAM equipment).
Data on yield and yield-related traits were collected at dif-
ferent stages, which included days to 50% flowering (DTF;
counts), dry PY (kg/ha), HSW (g), shelling outturn (shelling
percentage [SH%]), and GY (kg/ha). GY per plot was con-
verted to kilograms per hectare, according to Rana and Kumar
(2014).

2.4 DNA extraction and genotyping

Groundnut leaf samples were collected into 96-well plates,
2 weeks after planting for DNA extraction. Total genomic
DNA was isolated using the ISOLATE II Genomic DNA

T A B L E 1 Geographical description of the experimental sites.

Locations

Geographical position

Altitude (a.s.l.)
Average annual
temperature (˚C)

Average annual
rainfall (mm)Latitude Longitude

Chitedze (Malawi) 13˚85′ S 33˚38′ E 1146 20.0 892

Chitala (Malawi) 13˚67′ S 34˚27′ E 607 24.0 1200

Serere (Uganda) 1˚39′ N 33˚27′ N 1040 28.0 1150

Nakabango (Uganda) 0˚31′ N 33˚13′ E 1188 22.0 1200

Abbreviation: a.s.l., above sea level.
Source: NASA POWER (https://power.larc.nasa.gov).
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F I G U R E 1 Geographical map showing experimental sites
(highlighted in black circles). Source: Modified from Google map.

extraction kit (Bioline Pty Ltd.) according to the manufac-
turer’s instructions. The purity and quantity of the extracted
DNA were determined using gel electrophoresis and a Qubit
2.0 Fluorometer (Life Technologies), respectively, with final
dilution of 50 ng/μL. DNA samples were sent to Psomagen for
library preparation and whole genome sequencing. Libraries
were constructed using the RIPTIDE kit (Twist Bioscience)
according to the manufacturer’s protocol. The libraries were
subjected to paired-end sequencing on the Illumina Novaseq
6000 equipment (Illumina). Single nucleotide polymorphism
(SNP) calling was done using the Khufu pipeline (Korani
et al., 2021) that is optimized for accurate SNP calling
from low-coverage reads. The raw SNPs were filtered at a
call rate >0.95, minor allele frequency (MAF) > 0.05, and
heterozygosity < 0.2. The distribution of the final filtered
high-quality SNPs was plotted across chromosomes using
CMplot (Yin et al., 2021). Imputation of the ordered marker
data was performed using Beagle version 4 (Browning &
Browning, 2016) before pruning markers that were in com-
plete linkage disequilibrium (LD) with another marker at a
threshold of 0.2. The parameters were set as described by
Jordan et al. (2015).

2.5 Statistical analysis

2.5.1 Phenotypic data analysis

Analysis of variance (ANOVA) was done on all the traits eval-
uated from each test location using “R” statistical software,
version 4.0.3 (R Core Team, 2020). A linear mixed effects
model using the “lmerTest” package in “R” (O. K. Bates et al.,
2020) was used to estimate variance components. Combined
ANOVA over locations was conducted using a mixed model
as indicated below:

𝑌𝑖𝑗 = 𝜇 + 𝛽𝑖 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝑖𝑗 + 𝑒𝑖𝑗 ,

where Yij is the trait value of genotype, μ is the grand mean,
ßi is the random effect of the ith genotype, Gi is the fixed
effect of the ith genotype, Ej is the jth environmental effect,
GEij is the ijth genotype× environment (G×E) effect, and ij is
the treatment × block interaction, treated as an error term.

Means generated from analyses of variance were sepa-
rated using Duncan’s new multiple range test at a 5% level
of significance. Pearson’s correlation was used to determine
the relationship among variables. To assess and quantify the
genetic variability among inbred breeding lines, heritability
in the broad sense (H2) was estimated as follows:

𝐻2 = 𝜎2𝐺∕(𝜎2𝐺 + 𝜎2𝐺𝐸∕𝑒 + 𝜎2𝜀∕𝑟𝑒),

where H2 is the broad-sense heritability, σ2G is the geno-
typic variance, σ2GE is the variance of G × E interaction,
σ2ε is the error variance, e is the environment number, and
r is the number of replications. The heritability estimates
were classified as described by Johnson et al. (1955): low (0–
30), medium (30.1–60), high (≥60.1). Accordingly, best linear
unbiased predictions (BLUPs) for each variety were gener-
ated using the ranef function in lme4 package (Bates et al.,
2015). BLUPs were used to derive correlation, stability, and
GWAS analyses as they provide better estimates of genotype
performance for unbalanced datasets (Piepho et al., 2008).

2.5.2 Yield stability across sites and countries

Adaptability and stability of different groundnut genotypes
were determined using the “Metan” package in R software
(Olivoto & Lúcio, 2020) with the model:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 +
𝑀∑

𝐾 = 1
𝜆𝑘 × 𝛼𝑖𝑘 × 𝛾𝑗𝑘 + 𝜌𝑖𝑗,

where Yijk is the yield of the ith genotype in the jth envi-
ronment, Gi is the effect of the ith genotype (genotype mean
minus the grand mean), Ej is the effect of the jth environment
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(environment mean minus the grand mean), λk is the square
root of the eigenvalue of the kth interaction principal com-
ponent axis (IPCA), αik and γjk are the principal component
(PC) scores for IPCA k of the ith genotypes and the jth envi-
ronment, respectively, and ρij is the deviation of genotype ith
on environment jth from the model. To determine the mega-
environments and visualize the “which-won-where” pattern,
genotype plus genotype–environment interaction (GGE) anal-
ysis was performed using Metan package in R software
(Olivoto & Lúcio, 2020). The GGE biplot was based on sin-
gular value decomposition of PCs, as described by Yan and
Tinker (2006) and the GGE model below implemented:

𝑌𝑖𝑗 = 𝜇𝑖 + 𝛽𝑗 +
∑

𝜆𝑘 × 𝛼𝑖𝑘 × Υ𝑗𝑘 + 𝜀𝑖𝑗 ,

where Yij is the performance of the ith genotype in the jth
environment, μ is the grand mean, ßj is the main effect of jth
environment, k is the number of PC, λk is the singular value
of the kth PC, αik and γjk are the scores for PC of the ith geno-
types and jth environment, respectively, and ɛij is the residual
associated with the ith genotype and jth environment.

For mega-environment delineation, the “which-won-
where” scatter plot was constructed based on an irregular as
recommended by Yan and Kang (2002). Which-won-where
was proposed by Gauch and Zobel (1997) as a criterion
for mega-environment delineation. The GGE biplot (Yan &
Kang, 2002) is considered the most effective 2D chart to
display the G and GE as it displays the “which-won-where”
in the form of an irregular polygon (Yan et al., 2023).
The polygon is formed by connecting the cultivars placed
furthermost from the biplot origin in all directions so that
all other genotypes are contained within the polygon (Yan
et al., 2023). Then radiant lines perpendicular to each of
the polygon sides are drawn from the biplot origin, and the
genotype placed at the vertex of a sector is the nominal
winner in the environments that fall in the sector (Yan et al.,
2023).

The comparison plot of genotype ranking relative to ideal
genotype was generated by symmetrical scaling, using the
same concept of average environment coordinate to draw an
analogy between genotypes and an ideal genotype (Nduwu-
muremyi et al., 2017). Yan and Tinker (2006) described
the ideal genotype as both high yielding and stable across
environments. Genotype stability was analyzed using the
Anniccharico stability index (Silva, 2008). GGE type 8
analysis was used to display the genotype stability rank.

2.5.3 Population structure and linkage
disequilibrium

The population structure was analyzed by discriminant anal-
ysis of principal components (DAPC) using the adegenet

package (Jombart et al., 2010) in the R 3.0.2 software (R Core
Team, 2013). The function DAPC was executed using clus-
ters identified by K-means (Legendre & Legendre, 1998). The
number of clusters in the population was assessed using the
function “find.clusters.” The optimal number of clusters was
chosen on the basis of the lowest associated Bayesian informa-
tion criterion. The LD statistics were computed in TASSEL
V 5.0 using a sliding window of 50 SNPs and MAF = 0.05.
The LD decay rate was estimated by plotting r2 values versus
corresponding physical distances between the SNP pairs in R
(R Core Team, 2020) using the methodology implemented in
Remington et al. (2001).

2.5.4 Genome-wide association analysis

Genome-wide association analysis was carried out using
markers that passed the SNP filtering and quality control (QC)
step. Calculated BLUPs for the 192 genotypes were combined
with genotypic data and MTAs calculated using the multi-
locus mixed model (MLMM; Segura et al., 2012) as well
as the Bayesian-information and linkage-disequilibrium iter-
atively nested keyway (BLINK) (Liu et al., 2016). MLMM
follows a stepwise approach to incorporate SNPs as covari-
ates in the GWAS model. BLINK is an improved model of
the fixed and random model circulating probability unifica-
tion and is statistically powerful and efficient in identifying
significant SNPs associated with a trait of importance (Huang
et al., 2019). Both models used principal component analy-
sis (PCA) as the fixed effect. All analyses were carried out
in R using the genome association and prediction integrated
tool version 2 (Tang et al., 2016), and the resulting associ-
ations displayed as Manhattan plots alongside Q–Q plots to
demonstrate model fitness. The significance of MTAs was
determined using the false discovery rate (α = 0.05). Puta-
tive candidate genes within LD distance of the significant
SNPs were identified based on the Tifrunner 2.0 reference
genome.

3 RESULTS

3.1 Soil characteristics of the test locations

Based on classification of natural fertility level (Rosen
et al., 2008), soil pH at Nakabango, Chitala, and Chitedze
were slightly acidic, while Serere consisted of alkaline soils
(Table 2). Organic matter content was low across sites as was
available soil P status in all the sites, except Chitedze. All
sites registered medium to high levels of K. Serere and Naka-
bango scored very high Mg content compared to Chitala and
Chitedze. Calcium ranged from low to high across the four
sites.
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T A B L E 2 Characteristics of the test locations soils.

Parameter Serere Remarks Nakabango Remarks Chitala Remarks Chitedze Remarks
pH (H2O) 6.9 Medium 5.2 Low 5.7 Low 5.3 low

Organic matter % 1.1 Very low 3.1 Low 0.9 Very low 1.9 Very low

Phosphorus (mg/kg) 3.5 Very low 3.7 Very low 0.7 Very low 4.0 low

Exchangeable K (cmols(+)/kg) 0.6 High 0.3 Medium 0.4 Medium 0.3 Medium

Exchangeable Ca (cmols(+)/kg) 9.0 Medium 16.5 High 3.6 Low 7.8 Medium

Exchangeable Mg (cmols(+)/kg) 36.4 Very high 28.8 Very high 1.6 Very low 1.9 Very low

% Sand 44.0 High 48.6 Medium 68.0 Very high 54.8 Very high

% Clay 14.0 Low 46.0 Medium 28.0 Low 39.6 Medium

Texture class Sandy loam Clay loam Clay Crystalline

T A B L E 3 Combined analysis of variance for yield and related traits of 192 groundnut genotypes across Malawi and Uganda.

SOV df DTF PY (kg/ha) SH% HSW (g) GY (kg/ha)
Rep 1 12.0* 24,380.0ns 37.0ns 672.0** 252,931.0ns

Rep/Blk 68 3.2* 707,132.0ns 102.0* 86.0ns 302,959.0ns

Genotype 191 15.5*** 2,116,808.0*** 348.0*** 212.0*** 1009,561.0***

Loc 3 2399*** 494,165,869.0*** 34,993.0 *** 13,536.0*** 256,904,619.0***

Genotype:Loc 573 3.7*** 1,197,170.0*** 329.0*** 122.0*** 660,791.0***

Residuals 677 2.3 660,573.0 38.0 85.0 293,160.0

Mean 32.3 1508.0 50.0 38.0 896.0

LSD 1.7 735.0 5.0 8.0 476.0

CV% 4.7 50.0 12.0 24.0 58.0

H2 0.7 0.4 N.A 0.4 0.3

Abbreviations: Blk, block; CV, coefficient of variation; df, degree of freedom; DTF, days to 50% flowering; GY, grain yield; HSW, 100-seed weight; Loc, location; LSD,
least significant difference; ns, nonsignificant; PY, pod yield; Rep, replicates; SH%, shelling percentage; SOV, source of variation.
***, **, and * depict significance at p < 0.001, p < 0.01, and p < 0.05, respectively.

3.2 Analysis of phenotypic data

3.2.1 Overall performance across sites

We observed significant (p < 0.001; p < 0.01; p < 0.05) vari-
ation across genotypes for most of the traits for both single
site and across site analysis (Table S2). For Ugandan sites,
no significant variation was observed across genotypes for
SH% (both sites) and for HSW (Serere). Significant variations
(p < 0.001) were, however, observed for all traits measured
across Malawi sites except GY in Chitedze (Table S2). DTF
recorded the highest heritability estimates (70%) across sites
(Table 3) with Chitala site having the highest value (0.82;
Table S2). Ugandan sites reported the lowest broad-sense her-
itability (H2) values in comparison to Malawi with Serere
having the lowest figures overall. Chitala had the highest H2

values for all traits. We also observed significant (p < 0.001)
positive correlations across all yield-related traits (PY, SH,
HSW, and GY). DTF revealed significant (p < 0.001) posi-
tive correlation with HSW but not for the other yield-related
traits (Table 4).

T A B L E 4 Pearson’s correlation coefficient (r) for yield and yield
components across environments.

DTF PY (kg/ha) SH% HSW (g)
GY
(kg/ha)

DTF 1

PY (kg/ha) −0.009 1

SH% −0.032 0.525*** 1

HSW 0.367*** 0.312*** 0.337*** 1

GY (kg/ha) −0.026 0.974*** 0.599*** 0.301*** 1

Abbreviations: DTF, days to 50% flowering; GY, grain yield; HSW, 100-seed
weight; PY, pod yield; SH%, shelling percentage.
***Significant at p < 0.001.

AMMI ANOVA showed that the genotype, environ-
ment, and G × E interaction effects were highly significant
(p < 0.001) for GY (Table 5). Genotype explained 13.2%
of the total sum of squares, while environment and G × E
interaction contributed 50.8% and 22.4% to the total sum
of squares, respectively (Table 5). The G × E interaction
partitioned among the first two IPCAs. IPCA1 was highly
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OKARON ET AL. 7 of 18The Plant Genome

T A B L E 5 AMMI ANOVA for grain yield of 192 groundnut lines across environments.

Source df SS MS F-value PR (< F) TSS (%)
Total 1535 3,448,419,104 2,246,527

Treatments 767 2,985,872,380 3,892,924 6.5 0.001*** 86.5

Genotypes 191 458,051,921 2,398,178 4.0 0.001*** 13.2

Environments 3 1,752,666,032 584,222,011 42.3 0.001*** 50.8

Block 4 55,159,414 13,789,853 23.1 0.001*** 1.5

Interactions 569 775,154,426 1,362,310 2.2 0.001*** 22.4

IPCA 1 193 612,681,395 3,174,515 5.3 0.001*** 17.7

IPCA 2 191 112,704,313 590,075 0.9 0.523* 3.2

Residuals 185 49,768,718 269,020 0.4 1

Error 684 407,387,310 595,595

Abbreviations: ANOVA, analysis of variance; df, degrees of freedom; F, Fisher value; IPCA, interaction principal component axis; MS, mean square; ns, nonsignificant;
PR, probability; SS, sum of squares; TSS (%), percentage of total sum square.
*p < 0.05. ***p < 0.001.

T A B L E 6 AMMI ranking of the four best performing genotypes per environment based on grain yield.

Environment Mean yield (kg/ha)
Score of G × E
cross-over 1 2 3 4

Chitala 3264 −114.4 ICGV 01276 ICGV-SM 16596 ICGV-SM 16637 ICGV-SM 15559

Chitedze 1175 34.2 ICGV-SM 15579 ICGV-SM 15578 ICGV-SM 16627 ICGV-SM 03710

Nakabango 454 42.7 ICGV-SM 15611 ICGV-SM 15621 ICGV-SM 15514 ICGV-SM 15598

Serere 993 37.4 ICGV-SM 15611 ICGV-SM 01709 ICGV-SM 15621 ICGV-SM 15587

Abbreviations: E, environment; G, genotype.

significant (p < 0.001) (Table 5), while IPCA2 was signif-
icant at p < 0.523 (Table 5). Both IPCA1 and IPCA2 jointly
accounted for 20.9% of the total G × E interaction sum of
squares, with 17.7% and 3.2% accounted by IPCA1 and
IPCA2, respectively (Table 5).

3.2.2 Genotype performance and stability
within and across environments

The overall mean yield was higher in Malawi sites, with Chi-
tala recording the highest mean yield and Nakabango the
lowest (Table 6). The top four performing genotypes in each
environment as revealed by AMMI ANOVA for GY indicated
similarities in performance across Ugandan sites with two
(ICGV-SM 15611 and ICGV-SM 15621) of the top four geno-
types being common (Table 6). None of the top four genotypes
in either Chitala or Chitedze were common across the two
environments. The differences in ranking of genotypes across
the environments indicated the presence of G × E cross-over,
with Chitala reporting the highest (−114.4) G × E interaction
compared to the other three sites (Table 6).

The first PC of the AMMI biplot explained 82.4% of the
total G × E interaction sum of squares and further revealed

the best-performing genotypes across all the four locations
(Figure 2A). The three locations, Chitedze, Nakabango, and
Serere, were reported as a mega-environment, which revealed
similar high performing genotypes (Figure 2A; Table S3).
The results of “which-won-where” biplot revealed ICGV-SM
15578 (G93) as the winning genotype in terms of overall per-
formance, with ICGV-SM 10044 (G79) reporting the worst
overall performance (Figure 2B).

In terms of yield stability, ranking biplot and Anniccha-
rico stability index recorded genotypes ICGV-SM 01709,
ICGV-SM 15575, ICGV-SM 90704, ICGV-SM 15576, and
ICGV-SM 03710, all Virginia market types, as the top five
most stable across the mega-environment (Figure 3A,B).

3.3 Genotypic data analysis

3.3.1 Genetic diversity, population structure,
and linkage disequilibrium

Skim-sequencing led to the calling of 39,254 raw SNP mark-
ers from 192 genotypes. After filtering the raw SNPs at a
call rate of >0.95, MAF > 0.05, and heterozygosity < 0.2,
we retained 25,101 high quality SNPs. The distribution of the
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8 of 18 OKARON ET AL.The Plant Genome

F I G U R E 2 Biplots revealing performance of the genotypes across the four environments and the effects of the environments. (A) AMMI-1
model biplot for grain yield (kg/ha) showing the means of 192 genotypes across four environments against their corresponding interaction principal
component axis (IPCA-1) scores. Groundnut genotypes placed on the right-hand side of the midline (vertical) reported higher grain yield compared
to those on the left-hand side. Out of the four locations used, three clustered into one mega-environment. (B) Genotype plus genotype–environment
interaction (GGE) scatterplot based on symmetrical scaling for the “which-won-where” pattern of the 192 groundnut genotypes evaluated in four
environments. G93 (ICGV-SM 15578) is highlighted as the overall winner across all environments. PC, principal component; SVP, singular value
partitioning.

F I G U R E 3 Performance of genotypes based on both high yield and stability across the mega-environment. (A) Ranking plot showing the best
genotypes based on mean performance and stability. The most stable genotypes are highlighted in blue. (B) A chart showing the top most stable
genotypes and unstable genotypes. PC, principal component; SVP, singular value partitioning.
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OKARON ET AL. 9 of 18The Plant Genome

F I G U R E 4 Population structure analysis of the genotypes. (A) Principal component analysis (PCA) plot with three principal components
(PCs) showing the genetic variation across the genotypes studies. Three clusters corresponding to Valencia (green), Spanish (red), and Virginia
(blue) market classes are observed. (B) Discriminant analysis of principal components (DAPC) for the 192 genotypes. Each cluster is represented by
blue (predominantly Virginia), yellow (mainly Valencia), and red (predominantly Spanish).

final filtered high-quality SNPs was plotted across chromo-
somes using CMplot (Yin et al., 2021) and used for GWAS.
PCA revealed that the markers retained were of high quality,
with the first two PCs explaining 61.5% of genetic variation
across the genotypes used (Figure 4A). PCA clustered the
genotypes into three groups based on their market classes
(Figure 4A). Virginia market class (58 genotypes) was pre-
dominant in cluster 1, followed by Valencia (19 genotypes)
and Spanish (61 genotypes) market classes in clusters 2 and
3, respectively.

DAPC further confirmed the optimal number of subpop-
ulations at K = 3 (Figure 4B). Cluster 1 of the DAPC plot
comprised of 72 genotypes, which were mainly of Virginia
market class and corresponded with the blue cluster in the PC
plot (Figure 4B). Cluster 2 was predominantly Valencia, while
cluster 3 was mainly Spanish types (Figure 4B).

The overall density of SNPs used across the groundnut
genome was approximately 9.4 SNPs/Mbp (Figure 5A), with
an average decay distance of approximately 2.8 Mb at r2 = 0.2
(Figure 5B).

3.3.2 Quantitative variation and marker-trait
associations

MTAs were detected only for PY and DTF. Both traits
exhibited quantitative variation in each of the countries
(Figure 6).

A summary of the significant MTAs is presented in Table 7
and Table S4. Eight markers were significantly associated
with DTF either in one location or across locations (Table 7).

The most consistent marker associated with DTF across loca-
tions was TRv2Chr.11_3476885, when datasets across all
four locations were analyzed with both BLINK and MLMM
models (Figure 7), or when data for Nakabango or Chitedze
locations were analyzed independently (Figures S1 and S2).
The markers on chromosomes 2 (TRv2Chr.02_5893782)
and 5 (TRv2Chr.05_102793211) were associated with DTF
across Ugandan locations only, while markers TRv2Chr.13_
6535112, TRv2Chr.15_90096196, and TRv2Chr.18_
16912352 were exclusive to Malawi sites only (Figures S1
and S2).

PY MTAs were country-specific. Two markers,
TRv2Chr.03_139043669 (BLINK and MLMM models) and
TRv2Chr.15_19961316, were detected across Ugandan sites
only (Table 7; Figure S3), while the marker TRv2Chr.10_
115356321 was associated with PY across Malawi sites only
using the BLINK model (Table 7; Figure S4).

4 DISCUSSION

4.1 Overall performance across the sites

The overall goal of this study was to compare the performance
of a diverse set of breeding lines within and across Uganda and
Malawi, as well as stability in performance, and the genetic
basis underlying agronomic traits. There was significant vari-
ation across genotypes for all the traits in both single-site and
across-site analyses. G × E effects were highly significant for
all traits studied, indicating significant variations in genotype
mean performance across environments. We also identified
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10 of 18 OKARON ET AL.The Plant Genome

F I G U R E 5 The locations and distribution of retained single nucleotide polymorphisms (SNPs) after filtering. (A) The distribution of retained
SNPs across the 20 chromosomes of groundnut. (B) Linkage disequilibrium (LD) decay plot using the retained SNPs. An overall LD decay distance
of 2.8 Mb was observed.

T A B L E 7 Marker-trait associations for DTF and PY across Malawi and Uganda.

Trait SNP p-value
FDR-adjusted
p-value MAF Model Location

DTF TRv2Chr.02_5893782 1.99E-07 0.005 0.422 BLINK Across Uganda

TRv2Chr.05_102793211 1.72E-07 0.004 0.270 BLINK Nakabango

TRv2Chr.08_27036796 4.38E-12 1.12E-07 0.130 BLINK Across Uganda and Malawi

TRv2Chr.11_3476885 7.74E-07 0.009 0.338 BLINK Nakabango

TRv2Chr.11_3476885 4.38E-10 5.58E-06 0.338 BLINK Across Uganda and Malawi

TRv2Chr.11_3476885 2.48E-07 0.006 0.338 MLMM Across Uganda and Malawi

TRv2Chr.11_18318654 6.66E-08 0.001 0.380 BLINK Chitedze

TRv2Chr.13_6535112 1.20E-07 0.003 0.289 BLINK Chitala

TRv2Chr.13_6535112 6.19E-08 0.001 0.289 BLINK Across Malawi

TRv2Chr.15_90096196 6.66E-10 8.49E-06 0.390 BLINK Chitedze

TRv2Chr.18_16912352 6.66E-10 8.49E-06 0.091 BLINK Chitedze

PY TRv2Chr.03_139043669 4.13E-08 0.001 0.286 BLINK Across Uganda

TRv2Chr.03_139043669 9.63E-07 0.024 0.286 MLMM Across Uganda

TRv2Chr.15_19961316 6.79E-08 0.001 0.367 BLINK Across Uganda

TRv2Chr.10_115356321 9.99E-08 0.002 0.135 BLINK Chitala

TRv2Chr.10_115356321 5.58E-07 0.014 0.135 BLINK Across Malawi

Abbreviations: BLINK, Bayesian-information and linkage-disequilibrium iteratively nested keyway; DTF, days to 50% flowering; FDR, false discovery rate; MAF, minor
allele frequency; MLMM, multi-locus mixed model; PY, pod yield; SNP, single nucleotide polymorphism.

five top-performing genotypes with good yield stability that
will be of interest to breeders across the region. Although
we identified significant MTAs for DTF and PY and the cor-
responding candidate genes, there will be need for further
validation in future experiments. Our findings highlight the
importance of cross-country screening and how such datasets

can be used to share breeding resources for groundnut and trait
characterization.

The significant differences and wide range of pheno-
types detected among the test genotypes for yield-related
traits indicate the great potential of breeding lines coming
from the ICRISAT-Malawi breeding program for use in the
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OKARON ET AL. 11 of 18The Plant Genome

F I G U R E 6 Quantitative variation for DTF and pod yield (PY) across Uganda and Malawi sites.

development of high-yielding varieties in the ESA region.
Despite the narrow genetic diversity in groundnut, previous
studies on yield-related traits have reported good variation in
both cultivated (J. Zhao et al., 2017; H. Zhao et al., 2022) and
wild relatives (Essandoh et al., 2022; Tossim et al., 2010).
Genomic regions associated with such traits have also been
identified (J. Wang et al., 2019; H. Zhao et al., 2022; Zhou
et al., 2021). Breeders will now need to validate and use the
markers associated with yield in their breeding programs and
use them routinely for marker-assisted selection. In our case,
this is the first study using cross-country datasets, and there-
fore a repeat study will be necessary to validate the markers

before they can be used in crop improvement programs in
ESA.

Despite using cross-country datasets, the moderate (30%)
to high (80%) heritability estimates reported for earliness and
yield components are comparable to those reported earlier for
the same traits (J. Zhao et al., 2017) and imply that genetic
factors played a predominant role in determining variation.
We observed good positive correlation between yield-related
traits, providing further confidence that higher groundnut
yields could be achieved by indirect selection of genotypes
with high seed weight per plant. Similar results were reported
by other researchers (Badigannavar et al., 2002; Mekontchou
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12 of 18 OKARON ET AL.The Plant Genome

F I G U R E 7 Consistency of marker TRv2Chr.11_3476885 detected when datasets across all locations were analyzed using both multi-locus
mixed model (MLMM) and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) model.

et al., 2006; Meta & Monpara, 2010). The high genotype-by-
environment interaction effect on the studied traits was not
surprising given their quantitative nature (Okori et al., 2019).
Environmental differences can be attributed to variations in
temperature, rainfall, soil type, and diseases (Casanoves et al.,
2005; Shahriari et al., 2018) as reported by previous studies
(Makinde & Ariyo, 2011; Negash et al., 2013; Okori et al.,
2019; Sewagegne et al., 2013). The initial soil analysis done
across all the sites provided a baseline for comparison of the
agronomic performance of the genotypes in each location.

4.2 Genotype performance and stability
within and across environments

Our results revealed that the two locations in Uganda were
more similar than the locations used in Malawi. First, two
of the top four performing genotypes in each of the Ugan-
dan locations were common, whereas in Malawi, none of the
top four performing genotypes were common across loca-
tions. Second, the AMMI biplot grouped the three sites,
Nakabango, Serere, and Chitedze, as one mega-environment,
leaving out Chitala. Clustering test environments into homo-
geneous groups could serve as a foundation for testing of
genotypes in fewer locations, thus lowering experimental
costs (Kebede & Getahun, 2017). The clustering of Chit-
edze with Ugandan locations will allow for more coordinated
trials across the two countries to enhance varietal releases.
The two common top performing genotypes across Ugandan

locations, ICGV-SM15611 and ICGV-SM15621, are obvious
candidates for further stability tests and national performance
trials in preparation for potential release.

The use of GGE biplots in this study enabled the identi-
fication of genotypes that combined high mean performance
with high stability, as well as highlighting preferences
and adaptation to environments. Similar results have been
achieved in soybean where GGE biplot depicted the overall
effect of specific genotypes, as well as G × E interaction
(Dhilon et al., 2009). The “which-won-where pattern” of the
GGE biplot’s polygon view-based interaction was effective
for identifying elite genotypes in single or multiple settings
(Yan & Tinker, 2006). G × E datasets can be used to evaluate
the ability of test environments to discriminate genotypes
(Yan, 2001). A conclusive evaluation of a test environment
would, however, require datasets across several seasons (Yan
& Holland, 2010). Our study provides a baseline for future
testing of the ability of the four environments to discriminate
genotypes of interest.

The use of GGE biplots has been reported as a powerful
solution for determining stability of both cereals (Moham-
madi et al., 2023; Shojaei et al., 2022; Vaezi et al., 2019)
and legumes (Dalló et al., 2019; Lal et al., 2019), including
groundnut (Greveniotis et al., 2023; Pobkhunthod et al., 2022)
across environments. Similar studies in Africa for groundnut
have been done in Mali (Sanogo et al., 2019) and across east
and southern African countries (Okori et al., 2019). However,
these past studies included just a few varieties lined up for
potential release. The advantage of our study is the inclusion
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OKARON ET AL. 13 of 18The Plant Genome

of several breeding lines across different countries, making it
possible for early selection while at the same time exploiting
genetic variation for different traits across stable genotypes.
Our study, therefore, forms a basis for future genomic
selection (GS) trials in groundnut across Uganda and Malawi.

4.3 Genetic diversity, population structure,
and linkage disequilibrium

We used SNP markers that had been called from skim-
sequencing datasets mapped to the A. hypogaea reference
genome using the KHUFU pipeline (Korani et al., 2021). The
markers were very informative and clustered the genotypes
into three major groups based on market classes: Virginia,
Valencia, and Spanish. This result was consistent with other
PCA reports for breeding lines from the continent (Achola
et al., 2023; Conde et al., 2023). The Spanish market class,
which belongs to the subspecies fastigiata, is the most popular
in Africa followed by the Virginia (hypogaea subspecies) mar-
ket class (Conde et al., 2023). Our results suggest that there are
several genotypes that have not been classified correctly. For
example, in the distinct clusters generated by the DAPC and
PCA plots, the blue-shaded clusters that were predominantly
Virginia, also contained Spanish- and Valencia-coded market
classes. The same case applied to clusters 2 and 3. Although
the misclassification of market classes among African geno-
types has been recently partially addressed by Conde et al.
(2023), cross-hybridization between different market classes
calls for a different way of classifying genotypes.

The marker set used in the current study was very infor-
mative and led to the identification of three distinct clusters,
well separated from each other. In addition, the first three PCs
of the PCA plot explained more than 70% genetic variation
among the genotypes. The high level of informativeness of
the markers could be due to the use of the KHUFU pipeline,
which is accurate in calling SNPs at even low coverage in
complex genomes (Korani et al., 2021). Very few studies
in groundnut have reported such highly informative markers
used for diversity analysis, especially among studies done for
African genotypes. The closest in comparison was a recent
study that reported 67.5% genetic variation from the first three
PCs after studying 200 genotypes from the African core set
(Achola et al., 2023) using 7523 SNP markers called from
the Thermo Fisher SNP array Axiom Arachis2 with 48,000
SNPs (Clevenger et al., 2018; Korani et al., 2019). Informative
markers are not only important in determining diversity and
population structure; they are also important for QC, accurate
association, and linkage mapping. The marker set will, there-
fore, be ideal for future development of QC and mid-density
panel (MDP) markers for African breeding programs. The dis-
tinct clusters generated in our study will be useful in reclassi-
fying the different breeding lines to the correct market classes.

LD decayed at a distance of ∼2.8 Mb, which is compara-
ble to a recent study in groundnut that involved a MAGIC
population (Wankhade et al., 2023) but much slower in com-
parison to other studies that used comparable datasets (Achola
et al., 2023; Oteng-Frimpong et al., 2023). LD is the nonran-
dom association between alleles at different loci. A decline
in LD is expected with increase in genetic distance between
loci, subsequently leading to LD decay. Several factors have
been reported to affect LD decay including mutation, popu-
lation, selection, mating patterns, genetic drift, and migration
(Flint-Garcia et al., 2003). Slow LD decay is typical in a self-
pollinating crop such as groundnut due to severe reduction
in effective recombination with increased generations of self-
ing. In addition, the molecular marker set used to calculate
LD decay point is critical, with recommendations for marker
minor allele frequency of >0.05 in groundnut (Otyama et al.,
2019). For better association mapping resolution, the aver-
age distance between markers should be smaller than the LD
decay distance (Breseghello & Sorrells, 2006). Indeed, the
density of markers in our study was 9.26 SNPs/Mb, making
the average distance between markers much less than the LD
decay distance of 2.8 Mb. Future studies will need to compre-
hensively determine the factors affecting LD decay distance
across the genome for different datasets used for association
mapping in groundnut.

4.4 Marker-trait associations and
candidate gene identification

Association mapping is considered an efficient method for
genetic analysis of complex traits (Fahrenkrog et al., 2017;
Han et al., 2016) such as earliness and yield. We identi-
fied SNP markers associated with both traits using breeding
lines from Africa. Some of the quantitative trait loci (QTLs)
reported here were consistent with previous studies. Liang
et al. (2020) reported a QTL on chromosome 18 (earlier des-
ignated as B08) for initial flowering date after characterizing a
recombinant inbred line mapping population. While studying
maturity index, which is a trait related to flowering time, Hake
et al. (2018) also reported QTLs on chromosomes 8 (A08),
11 (B01), 13 (B03), and 18 (B08), among others, which are
consistent with the results reported in the current study.

We have identified PY QTLs on chromosomes 3, 10, and
15 which were country-specific. QTLs on chromosomes 3 and
15 were detected across Ugandan locations, while the QTL
on chromosome 10 was only detected across Malawi loca-
tions. Country-specific QTL differences reported for PY in
comparison to flowering time suggest that PY is more sensi-
tive to environmental differences than flowering time. Yield
traits are complex and controlled by many genes in compar-
ison to flowering time. This difference was also reported in
the heritability, where DTF reported heritability of 70% across
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14 of 18 OKARON ET AL.The Plant Genome

locations, while that of the PY-related traits were 40%. Similar
results were reported in rice after studying yield-related traits
across nine locations in Asia, in which heading date reported
maximum common QTLs across locations (Hittalmani et al.,
2003).

Despite not identifying common QTLs across the two
countries for yield, some of the QTLs detected for PY are con-
sistent with previous studies. Gangurde et al. (2020) reported
a major QTL for pod weight on chromosome 15 (B05). Both
Chavarro et al. (2020) and Chen et al. (2016) reported a pod
width QTL on chromosome 10, while Chavarro et al. (2020)
and Z. Wang et al. (2018) reported a HSW QTL on chromo-
some 3. Identification of stable yielding genotypes across the
four locations provides an opportunity for developing map-
ping populations that can be used in the future to detect stable
yield QTLs across the region. Biparental populations devel-
oped using a stable donor promise to facilitate detection of
more stable QTLs, as has been reported for chromosomes 5
and 7 (Luo et al., 2018).

Both earliness and yield are very important traits in
Africa given the predominantly rain-fed nature of small-
holder groundnut farming and the increasing effects of climate
change. Identification of markers associated with important
agronomic traits would enhance breeding efficiency and lead
to faster release of varieties in the future. The quantitative
nature of these traits, however, calls for thorough validation of
markers detected through repeat trials across several seasons
as well as development of biparental mapping populations.
The markers detected here can be incorporated into the MDP
for potential use in future GS.

5 CONCLUSION

This study demonstrated the power of testing breeding lines
across different countries and exploited the application of
association mapping for the same dataset. Our findings form
an important baseline and are a proof of concept for sim-
ilar studies in groundnut in Africa. Better characterization
of target testing environments across Africa will be neces-
sary to define representative environments for traits of interest
across regions. The recent creation of the Groundnut Improve-
ment Network for Africa (Conde et al., 2023) will provide
a great platform for selecting representative environments
and fundraising for joint research across the continent. Our
findings on marker trait association will pave the way for
marker-assisted breeding and GS for earliness and yield once
appropriate validations are done.
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