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Abstract—Water hyacinth, an invasive species originating from
South America, has become a significant concern since its
introduction in Lake Victoria (Kenya), particularly in the Winam
Gulf, where large annual blooms are observed. Monitoring the
occurrence and location using in situ methods is expensive and
challenging due to the lake’s vastness. Remote sensing monitoring
methods offer an alternate option due to the ability to cover vast
areas. This study explores the potential of polarimetric Synthetic
Aperture Radar (PolSAR), specifically utilising Sentinel-1 VV-
VH data to map and monitor water hyacinth cover. The change
detection method based on Optimisation of Power Difference
(OPDiff) and minimum eigenvalue selection achieves a remark-
able accuracy of 98.89% in separating clear and water hyacinth-
infested water. Using polarimetric data offered better separa-
bility, enabling spatial and temporal monitoring. The analysis
reveals that in 2018 water hyacinth cover peaked, spanning over
200 km?. Temporal variability showcases a seasonal rise and
peak from September to December. This research demonstrates
the capability of using PolSAR data to accurately map and
monitor water hyacinth’s spatial and temporal dynamics, offering
valuable insights for effective management strategies.

Index Terms—SAR polarimetry, optimisation of power differ-
ence, water hyacinth monitoring, and change detection.

I. INTRODUCTION

His article presents a methodology for the detection

and monitoring of an invasive aquatic plant, water hy-
acinth (WH), using polarimetric SAR (PolSAR) data from
the ESA Sentinel-1 satellites. Water hyacinth is the common
name given to plants from the genus Pontederia (formerly
Eichhornia), especially the species Pontederia crassipes[1].
WH originates from tropical South America and has a high
potential to become invasive. A single WH plant is capable of
producing up to 14 x 107 ‘daughter’ plants in a year [2], which
will occupy an area of approximately 1.4 Km2. WH has been
identified among the most dangerous invasive species by the
International Union for Conservation of Nature (IUCN) due
to its adverse socio-economic impacts and difficulty in elim-
ination from water bodies [3]. WH can cause severe effects
on the environment where it blooms, such as increasing the
incidence of malaria & filariasis, decreasing fish populations,
hampering recreation and navigation, and sometimes clogging
dams [2], [4]. The decay of WH can deposit approximately
1000 metric tons in wet weight per hectare per year [5].

Isundwa K. F. is a student at the University of Stirling, Stirling, FK9 4LA,
Scotland, UK. (e-mail: f.k.isundwa@stir.ac.uk).

Manuscript received March 20, 2024; revised April 28, 2024 and September
9, 2024.

WH was introduced to Lake Victoria in 1889 and estab-
lished itself by spreading along the shores of the lake. It
is still spreading one hundred years after its introduction,
where it has been seen to form mats that cover more than
70 square miles [6]. WH has been traditionally monitored in
Lake Victoria through anecdotal accounts, rough estimates,
and local field observation in the 1990s and early 2000s[7].
These measurements are limited in coverage, labour intensive,
time-consuming, and expensive [8]. Field surveys are also
hampered by the amount of data collected, leading to a limited
understanding of the factors that influence the dynamics of
WH [9].

Remote sensing offers a less expensive alternative for
monitoring WH [10]. It has been shown that remote sens-
ing provides the capability to distinguish and quantify WH
infestation from a colour infrared imagery from multiple sites
[11], and mapping of WH at a large scale has been demon-
strated using optical data from Landsat-8 [12]. The map-
ping of aquatic plants using Landsat, ENVISAT/MERIS[13],
TERRA/ASTER and field measurements have also been
demonstrated before[14]. Normalised difference vegetation
index (NDVI) from Sentinel-2 was used to monitor WH and
Chl-a in Lake Tana in Ethiopia [15]. However, cloud coverage
remains a potential challenge to continuous and all-weather
monitoring when using optical data, especially in regions with
long rainy seasons or high cloud cover.

Synthetic aperture radar (SAR) imagery can be collected
at any time of day and almost independently of weather
conditions, thus offering varied applications [16]. A SAR-
based remote sensing approach was utilised to classify aquatic
plants along the Amazon floodplain, mapping their cover and
estimating net primary productivity [17]. Previous classifica-
tion of vegetation in wetland areas, including aquatic plants,
has achieved producers’ accuracy of over 85% using SAR
data [18], [19], and the use of SAR L-band data in estimating
above-ground biomass resulted in promising spatial and quan-
titative outputs for the Amazon floodplains [20], [21]. The
accuracy of above-ground biomass estimation is dependent on
vegetation morphology, the type and size of vegetation, and
different phenological stages, which will interact with the radar
frequency used and with surface conditions to determine the
contribution of varying scattering mechanisms [22], [23]. Zhou
[24] found that the combination of backscattering coefficients
and polarimetric decomposition components from Sentinel-1
SAR data significantly improved wetland classification accu-
racy. Similarly, RADARSAT?2 polarimetric data was used to
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map surface water and flooded vegetation areas ([25]. The
potential of ALOS PALSAR dual-polarimetric (dual-pol) in
detecting water level changes and flow patterns in wetland en-
vironments was further demonstrated [26]. These studies have
demonstrated the effectiveness of dual-pol SAR in detecting
and classifying features in water bodies and wetlands.
Full-polarimetric (quad-pol) PolSAR data is needed to fully
characterise surface scattering mechanisms. However, access
to this data type is minimal due to availability, cost and
low-frequency repeat cycles, preventing time series analysis.
Conversely, dual-polarimetric data is accessible and freely
available, and, in the case of Sentinel-1, it offers a 6 to 12-
day repeat cycle within the existing historical record (2015 to
present). Our research thus explores the polarimetric capabil-
ities of dual-pol imagery. Due to this, our research explores
the polarimetric capabilities of dual-pol and its application to
water body monitoring by trying to answer the question, “Can
the Optimisation of the Power Difference method successfully
quantify WH cover in Lake Victoria?”. To answer this ques-
tion, we sought the following specific objectives:
1) To separate WH-infested waters from clear waters using
dual-pol SAR polarimetry.
2) To quantify the spatial and temporal trends of WH in
Lake Victoria.
3) To identify the areas with high incidence of WH cover-
age between 2017 and 2022.

II. MATERIALS AND METHODS
A. Study Area

Our study area is Winam Gulf, a section of Lake Victoria
which covers most of the shoreline of the Republic of Kenya
(Africa, Fig. 1). Kisumu City, Kenya’s third largest city, is
within the shores of Winam Gulf, and other major urban
centres in the region include Kendu Bay and Homa Bay.
Rivers Nyando, Awach Kano, Sondu-Miriu, Awach Seme,
Nyamasaria, Awach Kibwon and several other seasonal rivers
drain into Winam Gulf. These rivers drain watersheds with
mixed land use activities ranging from highly agricultural to
urban to forested areas [27].

B. Data

In this work, we used dual-polarimetric (dual-pol) data
acquired by the Sentinel-1 constellation of the EU Copernicus
programme, provided by the European Space Agency (ESA)
[29]. To maximise the polarimetric information, we used
Interferometric Wide Single Look Complex (IW SLC) data
with a 5Sm by 20m spatial resolution [29]. The SLC image is
a level-1 product containing focused SAR data that has been
geo-referenced using orbit and altitude information from the
satellite and is provided in slant-range geometry. Corrections
have been made to the elevation antenna pattern, range spread-
ing loss, and azimuth bi-static delay. SLC images contain
VV and VH channels, where V stands for vertical linear
polarisation, and H stands for horizontal linear polarisation.
The temporal resolution of the data is 12 days for a single
satellite and six days between the two satellites, Sentinel-
1 A (S1A) and Sentinel-1 B (S1B). In total, 438 individual
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Fig. 1. Map of the Winam Gulf area of Lake Victoria, Kenya. The map
shows the outline of the Winam Gulf section of the lake about the larger
section shared between Kenya, Uganda and Tanzania. Shoreline data from
Hamilton, Stuart, 2016 [28]

images were analysed for the period between January 2017 to
November 2022. The satellite passes over the Winam Gulf
differed in coverage Fig. 2, with no pass fully covering
the Gulf. For this reason, each satellite pass was analysed
separately and herein referred to as a frame. Frame 1 (track-
130), frame 2 (track-50) and frame 3 (track-28) were all
acquired at different periods, spatial coverage, and in both
ascending and descending orbits (Table I). Although frames
partially overlap, the high variability in WH cover due to
wind required us to analyse each frame separately instead of
mosaicking.

C. Scattering Model

Open surface waters will be seen as ‘solid’ when con-
sidering scattering mechanisms, as the radar signal does not
penetrate liquid water and is scattered away from the antenna.
Depending on wind conditions, two backscattering scenarios
are possible. If surface waters are calm, and have minimal
roughness, we expect specular scattering (mirror-like). This
type of scattering often occurs in lakes during low wind
conditions. In this situation, most signals are scattered away
from the sensor, leading to very dark image tones that enable
easy classification of open waters. As moderate to strong winds
develop, capillary waves will be formed on the water surface,
increasing the amount of backscattering (a Bragg Surface,
[30]). The polarimetric behaviour of this surface scattering
scenario results in co-polarised (VV) backscattering being
much higher than cross-polarised (VH) backscattering.

When considering eigenvalue decomposition, a ‘pure’ target
can be described by a single scattering matrix when only
one eigenvalue is nonzero. In such a case, the covariance
or coherence matrix will have a rank equal to 1. This rank
also applies to a spatially extended scatterer with one single
scattering mechanism. On the other hand, if all the eigen-
values are nonzero and approximately equal, the covariance
or coherence matrix has orthogonal scattering mechanisms
from non-polarised random scattering structures. As vegetation
causes random volume scattering, it will result in a rank

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Frame 1

Frame 2

Frame 3
C22 04-09-2018

C22 28-12-2018

2 P

0.1 &%
0.2

—-0.3 1

Fig. 2. Plot of the 3 Sentinel-1 frames covering Winam Gulf, Lake Victoria, Kenya. Frame 1 adequately covers the eastern section of the lake while missing
the western side. Frame 2 covers most of the gulf except a section in the east. Frame 3 covers the western and central sections but misses the eastern sections.
The plots represent the C22 elements of the covariance matrix with contrast-enhanced by a factor of 2.
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Fig. 3. The figure of scattering occurring on the lake’s surface. Surface scat-
tering from calm waters (left), Bragg scattering from capillary waves(centre)
and depolarisation from the volume of WH on the surface of the lake (right).

higher than rank 1 [31]. A model can be used to separate
the different scattering mechanisms in fully polarimetric data.
Still, a specific model can not be used in this study because of
the data available. Therefore, in this study, volume scattering is
referred to as the depolarisation effect from the volume of WH,
which can grow and reach up to Im on the surface of the water
[32]. It is clear, therefore, how PolSAR can help discriminate
between increased surface scattering (produced by waves)
and depolarisation by volume of WH (made by vegetation),
as shown in Fig. 3. Research established that in wetlands,
where water is beneath the vegetation surface, double-bounce
scattering occurs in instances where the vegetation is sparsely
spaced, and the signal penetrates past the vegetation canopy.
This is mainly due to slanting vegetation, modelled as oriented
targets (including dihedrals) [33]. A similar scattering mecha-
nism may occur with WH. The double-bounce scattering has
been established to be spread in cross-pol channels in SAR
data. Therefore, WH’s double-bounce and volume scattering
contribution will be spread in the co- and cross-pol channels.
This is consistent with other findings that double-bounce
scattering dominates scattering from wetlands [34].

It is important to note that emergent floating vegetation on
top of the water would trigger volume scattering. Therefore,
it is impossible to discriminate WH from other aquatic plants
without using additional ancillary information. However, for
the case of Lake Victoria, WH has been previously observed
during field measurements as the only floating vegetation that
colonises open waters, with only minimal and opportunistic
occurrence of hippo-grass and papyrus plants[7].

D. PolSAR Processing

Our methodology has four main processing steps: pre-
processing, co-registration, change detection, and thresholding.
The ESA SNAP Graph Processing Tool (GPT) was used to
execute the first two steps using batch processing. The change
detection and thresholding steps are performed afterwards.

The SLC files contain amplitude and phase information
of the electromagnetic wave [35]. During the pre-processing
steps, the scattering vector in the data is used to calculate the
polarimetric covariance matrix, which is used in further pro-
cessing [36]. While the polarisation state of single scatterers
can be deterministically described using a scattering matrix,
distributed partial targets require a stochastic description of
the scattering mechanism using a coherency or covariance
matrix. The dual-pol covariance matrix includes the multi-look
intensities of co-polarisation VYV, cross-polarisation VH, and
their cross-correlation VV*VH.

The covariance matrix extracted for each pixel then enables
the use of eigen-decomposition to obtain eigenvalues and
eigenvectors that describe scattering characteristics [37] and
allow separation of the contribution of scattering mecha-
nisms (eigenvalues) and the type of scattering mechanisms
(eigenvectors) [31]. To separate clear and WH-infested waters,
optimal descriptors of land cover must be determined. To
understand the separability between clear and WH-infested
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waters, backscatter intensities and polarimetric descriptors of
pixels were analysed for sample ROIs using scatter plots.
Backscattering coefficient values in VV and VH on the dB
scale were examined. At the same time, for polarimetric
data, eigenvalues from the eigenvalue decomposition of the
polarimetric covariance matrix (Cloude-Potier decomposition)
and the change matrix (OpDiff) were conducted.

E. Water Hyacinth Detection Algorithm

The change detection method of Optimisation of Power Dif-
ference (OPDiff) was applied in this study [38]. This method is
preferred due to its capability to quantify both the magnitude
and the direction of change. For that, the covariance matrices
from datel and date2 are subtracted to produce the Change
Matrix. The optimisation of this matrix then allows us to
extract the scattering mechanisms that suffered the maximum
or minimum change, where an additive model (OPDiff) of
change is exploited. Therefore, after the optimisation, the
largest eigenvalue (if the value is positive) represents the
power of the largest scattering mechanism added to a scene.
The minimum eigenvalue (if negative) is the power of the
scattering mechanism that was maximally removed from the
scene. Conversely, minimum vectors will represent scattering
mechanisms which have been removed while the maximum
eigenvectors will represent the scattering mechanisms added
[38], [39]. The advantage of optimisation is that the SM
constantly changes, and this technique aligns with the one that
changes the most. This is more robust than fixing the SM since,
as in the case of WH, the resulting SM from WH’s volume is
unknown due to its randomness. As proposed by Marino [38],
the change matrix can be found as shown in equation (1).

[Ce] = [Car] = [Cao] ey

where [C,.] is defined as change matrix a difference between
two normal matrices, [Cy;] is the covariance matrix from date
of interest and [Cy2] is the covariance matrix of the reference
image. A step-by-step derivation of the formula is detailed in
[38]. After obtaining the change matrix, the maximum and
minimum eigenvectors and corresponding eigenvalues of this
matrix are found by applying the Lagrangian optimisation,
differentiation and diagonalisation (2) to obtain Lagrangian
multipliers of [C.].

Cew = Mw 2

[C.] is Hermitian, but it is not positive semi-definite. There-
fore, it will have eigenvalues that are real but not necessarily
positive. Since [C.] is normal, the set of eigenvectors are
orthogonal and represent minimal change that can be applied
additively to transform the first partial target into the second
partial target. The scattering mechanisms are the same vector
that forms the covariance matrix, and this is because the
change matrix is a difference of two normal matrices, but
they lose the property of semi-positive definiteness. The loss
of definitiveness is because the intensity for a scattering
mechanism can either increase or decrease in power [38]. If the
absolute phase of the scattering mechanism changes, PoISAR
will not be able to detect it, and you will need polarimetric
interferometric SAR (PolInSAR). A change in the channels’

phase will produce a change in the scattering mechanism,
which PolSAR will detect.

In simpler terms, the OPDiff method finds a linear com-
bination of polarimetric channels that provide the smallest or
highest difference. The outputs of this are two eigenvalues
A; and two eigenvectors u; which represent the magnitude
of change and the scattering mechanism that has changed,
respectively. To detect WH, [Cy2] (reference scene/image)
is selected from a date when there was no WH. Note: The
reference image/scene is fixed and is subtracted from all
other images. In this context, the reference scene [Cy2] will
have only scattering from the lake surface and without WH,
while the second scene [Cy;] if WH is present will have
scattering from the volume of WH. Thus, the change matrix
[C.] will encapsulate scattering from the volume of WH added
(surface scattering removed). The interest is thus a positive
value from increased eigenvalues (SM added to the scene).
Thresholding is applied to select positive values (scattering
due to the volume of WH) while rejecting any removal of
scattering power. This algorithm was previously tested and
found to be the best performing by Simpson et al. [40], in
Vembanad Lake in India. A fundamental difference is that
unlike [40], where the maximum eigenvalues were considered,
the minimum eigenvalue of the change matrices is used here.
The difference is that Lake Victoria is a large lake, and winds
can be high, creating a higher likelihood of strong surface
scattering. Fortunately, as mentioned before, surface scattering
is polarised (it is a single scattering mechanism) and will
impact only the first eigenvalue. In contrast, the depolarised
scattering from a volume of WH will spread over both
eigenvalues. The change detector is, therefore, filtering out
the increase in polarised scattering and detects only increases
in unpolarised scattering or targets with a large entropy. For
this reason, wind information is not considered part of the
equation. Still, its impact is accounted for by considering un-
polarised scattering and neglecting the increase in backscatter
intensity due to wind (increase in polarised scattering). By not
having quad-pol information available, there could be some
ambiguity in defining the type of volume scattering. However,
a random volume scattering in dual-pol will be visible as the
second eigenvalue increases. In a practical sense, the minimum
eigenvalue can reject false WH detection from Bragg/wave
surface scattering, which is secluded to the first eigenvector.

Before applying the OPDiff detection methodology to ex-
tract WH, polarimetric filtering was applied using the Boxcar
filter [41] with a 7 by 7 window. This window was revealed
to be the best in our application. After change detection, a
histogram plot was used to select an eigenvalue threshold
separating clear and WH-infested water.

Each frame’s images were used to create data cubes(here
referred to as stacks) containing several images. A stack is a
3-dimensional array of pixels in range and azimuth direction,
with the third dimension being when the individual image
was acquired. Three different stacks were generated for the
three frames. After change detection, a threshold was applied
to individual images within each stack, resulting in binary
images with O for clear water and 1 for WH. Each cube
generated a separate frequency of occurrence map of WH for
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TABLE I
SATELLITE IMAGERY FRAMES, ORBITS REFERENCE IMAGES AND
PROCESSING TIME

Frame No. of | Reference Orbit Processing
images image direction time (hrs)
Frame 1 174 10/10/2017 | Ascending 23
Frame 2 114 29/09/2017 | Descending 13
Frame 3 150 03/10/2017 | Ascending 21

each of the three frames. It is important to note that the three
frames were analysed independently, producing three stacks.
That is to say, each image within a stack was compared only
to the reference extracted from the same stack. This ensures
that residual backscattering differences caused by changes in
incidence and look angles (not entirely removed by the terrain
correction) do not produce comparison artefacts. The number
of SLC acquisitions for each frame and reference images are
shown in Table 1.

F. Accuracy Assessment

Accuracy and validation of the selected threshold was done
using ROI’s generated from Planet Labs data [42]. Digitized
polygons were generated from Planet Labs optical data in
Fig. 4 and used for accuracy assessment. The optical data is
available in Blue, green, red and Near Infrared bands with a
resolution of 3 meters. A total of 1000 threshold values equally
distributed between the minimum and maximum values were
tested to optimise the classification threshold. For each thresh-
old value selected, the probability of detection (PD) (true
positive rate), probability of false alarm (PF) (false positive
rate), precision, Fl-score and accuracy were calculated as
elaborated in equations 3-6 [43] .

True Positives

PD 3

 True Positives + False Negatives

PR False Positives

4)

~ False Positives + True Negatives

. True Positives
Precision = — — (®)]
True Positives + False Positives

FlScore — I.:a?lse Positives . ©)
False Positives + True Negatives

The calculated parameters were plotted and used together
with a histogram plot to select the optimal threshold for
separating WH for all frames. This was done using optical data
acquired on 24-09-2018. Optical data acquired on 28-09-2018,
22-10-2018 and 15-02-2019 was later used for validation. The
validation data from digitised ROIs had a total area of 3251.9
Ha of WH and 4722 clear water (391,081 pixels). All the
optical datasets used in validation were acquired on the same
day as Sentinel-1 data but with a few hours difference between
them. The validation results are represented in table II. It
is important to note that WH floating patches may move if
there is a time difference between optical data and Sentinel-1
acquisition; therefore, a slight underestimation of accuracy is
expected. Since all phenological stages occur throughout the

{

| 2018-12-28

Fig. 4. The Plot of three Planet Labs optical data Scenes acquired on 2018-
10-22, 2019-02-15, and 2018-12 were used to validate the change detection.
The red outline shows digitised areas with no WH, while the green polygon
shows the areas covered with WH. The blue outline is the lake shoreline.
Image © 2024 Planet Labs PBC

year and our objective was to map WH cover density rather
than phenological differences, using a single image to validate
each frame was sufficient to assess the accuracy of detectors.
The optical data used was of high resolution (3 meters) and,
therefore, sufficient to visually separate clear and WH areas
used in assessing the accuracy and validation. A negative
buffer of 50m was applied on the boundaries of Lake Victoria.
This buffer enabled the masking of land areas, the exclusion
of water level changes, and human activity on the shoreline.
All classification results were masked using this buffer.

ITI. RESULTS
A. Water Hyacinth and Clear Water Separability

The application of scatter plots in understanding the sepa-
rability of WH from clear water demonstrated the advantages
of utilising polarimetric data. Polarimetric data provides sepa-
rability regardless of the conditions on the lake’s surface. On
a calm day, the backscattering coefficient values of WH and
clear water in VV and VH polarisation in dB scales show
overlap and high spread in both polarisations. This will, in
principle, complicate the separation of WH and clear water.
On a windy day, a different characteristic is observed. There

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

02-02-2019 (Windy)

24-09-2018 (Calm)

a8 Clear Water
-10 Water Hyacinth
.
g —20
T
z O
=25
-30
-35
-20 -10 -20 -10
VV (dB) VV (dB)

Fig. 5. Scatter plot of WH-infested and clear waters backscattering coefficient
values plotted on dB scale for VH polarisation against VV polarisation. The
Plot on the left was acquired on 24-09-2018 on a calm/low wind day, while
the Plot on the right was acquired on 02-02-2019 on a windy day. The blue
dots represent values of clear water pixels, while the green dots represent
values of WH-infested waters. The number of pixels for each date used in
generating the plots are 24-09-2018 (WH -64,860 & clear water-52,962) and
02-02-2019 (WH-9,775 & clear water-18,352).

is a low spread of backscattering coefficient values on the VV
and VH dB scales and observable overlap in VV polarisation,
unlike in VH, where two distinct classes are visible. Therefore,
there is better separability when VH backscattering coefficient
data on a windy day, as shown in Fig. 5. The VV and VH
backscattering values could not provide a single threshold
separability for a calm and windy day. On a calm day,
clear waters have a very low spread before applying change
detection, while WH eigenvalues have a high spread. There
is separability between WH and clear water in maximum
and minimum eigenvalues. Similar characteristics are observed
after performing change detection. On a windy day, however,
the low spread is observed on both clear water and WH,
but unlike on a calm day, separability is only observable on
minimum eigenvalues. Maximum eigenvalues show overlap
before and after change detection, as shown in Fig. 6. For
this reason, the minimum eigenvalue was selected as the most
robust metric for mapping WH regardless of lake surface
conditions such as wind.

B. Accuracy Assessment and Validation

Inspecting of WH and clear water pixels over the lake
showed a bimodal distribution in Fig. 7. This distribution
enabled the selection of a threshold (0.005) to separate the
two classes. This threshold was then adopted for all frames.
This threshold was arrived at based on the histogram and
accuracy assessment plot where the highest PD, accuracy
and F1-score were recorded with the lowest PF as shown in
Fig. 8. The threshold values between O and 0.02 had high
detection accuracy for all frames. Threshold values below
0 had low accuracy and Fl-score, with high PD and PF
Between the intervals, there is the highest PD, accuracy and
F1 score and PF lowest. Beyond this threshold interval, the
PD, PF, Fl-score and accuracy drop to the lowest values.
Therefore, the optimum threshold applicable for selecting WH-
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Fig. 6. The figure represents plots of minimum eigenvalues against maximum
eigenvalues from the Cloude-Potier decomposition. The blue dots are values of
clear water pixels, while the green dots are values of WH-infested water. The
top-left is a plot of images acquired on 24-09-2018 (calm day) before change
detection (raw eigenvalues). The bottom left is a plot after change detection.
The image on the top-right is a plot of eigenvalues of data acquired on 02-
02-2019 (windy day) before change detection. The image on the bottom right
is a plot after change detection. The number of pixels for each date used in
generating the plots are: 24-09-2018(WH-32,928 & clear water 26,578) and
02-02-2019 (WH-8,240 & clear water-4,860)
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Fig. 7. Histogram of the minimum eigenvalue of WH and clear water on a
windy day. The red vertical line shows the value of the threshold (0.005) that
was applied to separate the two classes of WH and clear water. The left side
of the line represents the distribution of the clear water pixels, while the right
side represents the distribution of WH pixels.

infested waters is between the two threshold intervals. Thus,
the decision was made to choose 0.005 as the threshold.

C. Water Hyacinth Coverage Maps

The application of the detector in separating the floating
vegetation from the clear water demonstrates the capability
to detect floating vegetation. Visual inspection of the VV
polarisation intensity data shows brighter areas over the lake
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Fig. 8. The Plot of the probability of detection (PD), probability of false alarm (PF), accuracy, and Fl-score against the thresholds selected. The red vertical

dashed line shows the adopted threshold (0.005) for all the frames.

TABLE I

A TABLE OF VALIDATION OF CHANGE DETECTION FOR EACH FRAME. THE TABLE WHEN THE ACCURACY WAS ASSESSED USING PLANET LABS DATA

ACQUIRED ON THE SAME DAY AS SENTINEL-1 DATA ACQUISITION.

Frame Date Probability of | Probability of | Accuracy | Fl-score
detection/recall false alarm

1 2018-12-28 0.99992 0.0 0.99996 0.99996

2 2019-02-15 0.97434 0.0 0.98717 0.98700

3 2018-10-22 0.98351 0.0 0.99175 0.99168

surface when WH is present versus dark areas on days without
WH presence. After performing change detection and applying
the threshold of minimum eigenvalues, areas with no visible
floating vegetation on VV polarisation record no WH over the
lake based on eigenvalues. On dates where floating vegetation
is observable on the VV polarisation, WH is detected and
isolated from surrounding clear waters Fig. 9.

D. Spatial and Temporal Variability in Water Hyacinth cover

There is significant variability in the movement of WH
across the lake. Evidence of temporal change in WH area
coverage is observable over time with movements in both east
to west & west to east directions, mainly due to wind action
over the lake. This spatial variability is observable in the entire
Winam Gulf or when focusing on a Gulf section shown in Fig.
10 over 25 days. Since the detector was accurate in separating
clear and WH-infested waters, it also enabled the estimation of
the area covered by WH on each day of Sentinel-1 acquisition.
A time series of the area covered by WH for the different
frames was generated, showing the monthly, seasonal and
annual WH variability during the study period. 2018 recorded
the largest area extent covered by WH in the period between
2017 and 2022 with an area of over 200 km? as shown in
Fig. 11.

The generated WH coverage maps enabled quantifying how
frequently WH occurred over the gulf. The frequency of

WH Detection 22-10-2017

WH Detection 28-12-2018

Fig. 9. Plot of SAR images acquired and analysed to detect WH. The top
left shows the VV polarisation channel image acquired on 22-10-2017 with
no WH on the lake’s surface. After change detection, the top right shows no
WH on the lake’s surface. The bottom left shows the VV polarisation image
acquired when WH was present in the lake on 28-12-2018. The bottom right
tile shows the presence of WH on the lake’s surface, which is represented by
dark green features within the red outline of the lake on 28-12-2018. The red
outline represents the lake shoreline. Note: the axes units are degree decimal
for latitude and longitudes
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Fig. 10. The tile showing WH detection in the Kisumu area between 16-
12-2018 and 10-01-2019 shows spatial variability. The dark green patches
represent the detected WH in the section of the lake. The red outline represents
the lake shoreline manually snapped to cover the Kisumu area only to aid
visual interpretation. Note: the axes units are degree decimal for latitude and
longitudes
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Fig. 11. Time series plot of the monthly maximum area in square kilometres

of WH coverage for the three frames.

occurrence map generated for each frame identified that during
the analysis period, some sections of the lake recorded WH
presence up to 30% of the time (Fig. 12), while the Kisumu
area to the Northeast recorded WH for up to 20% of the time.
The high spatial and temporal variability of WH cover was
evident from the frequency of occurrence map, where WH
cover was recorded at least once in almost all sections of the
lake.

IV. DISCUSSION

Using dual-pol data to detect and monitor WH has shown
great potential with highly accurate detection. The polarimet-
ric decomposition of SLC data into eigenvalues improved
the separability of water hyacinth and clear water, enabling

using a single threshold under different wind conditions.
This separability would otherwise be complex when using
backscattering coefficients only. The minimum eigenvalue
provided better separability of classes due to its ability to
detect unpolarised scattering while filtering out the increase
in polarised scattering. This finding is similar to previous
research [40] where the use of optimisation of additive polari-
metric changes demonstrated capabilities to separate floating
vegetation and lake wave scattering. Unlike [40], where the
maximum eigenvalues were considered, we found that using
minimum eigenvalues better captured WH changes. Besides
monitoring floating vegetation, using SAR data may thus
enable the separation of emergent floating plants such as WH
from algal blooms, which would be challenging using optical
data [44]. Dual-pol data enables the separation of different
scattering mechanisms occurring in a scene and, in this case,
allows detection of the scattering mechanism added in a scene
(depolarisation by volume of WH) when compared against
surface scattering (when there was no WH). The application of
the OPDiff methodology shows great potential in monitoring
aquatic emergent vegetation on a single image or in a time
series.

Our method allowed us to consistently quantify WH cover
area over time and demonstrate the high degree of spatial and
temporal variability of WH distribution in Lake Victoria. The
frequency of WH over the lake shows that WH was present at
some point in almost all sections of the lake, but some areas
are particularly susceptible to clogging by WH. The Kisumu
area, for example, an essential area for water transport in Lake
Victoria, has recorded clogging 20% of the time. As our goal in
this study was to optimise the WH detection method, we have
not investigated the causes of seasonal increase and decrease in
spatial coverage, and further understanding should be sought to
assess which elements influence WH cover. Still, we expect
our method to help researchers to quantify and track these
patterns over time. Considering the findings, the methodology
demonstrates the potential of applicability in different lakes
and regions. The methodology can be applied regardless of the
wind condition since minimum eigenvalue filters out polarised
scattering while detecting unpolarised scattering from WH.
However, applying the method in a different environment
should select a threshold suited for the region. Future research
will focus on automated threshold selection.

V. CONCLUSION

This article presents a methodology to map and monitor
spatial and temporal variability of Water Hyacinth (Pontederia
spp.) using dual-pol SAR data from the Sentinel-1 satellites.
The OPDiff change detection approach was applied to identify
the scattering mechanisms that suffer maximum and minimum
change between observations. Our detector accurately sepa-
rated calm and rough open water from WH-infested water,
allowing regular spatial and temporal variability monitoring.
Our method allowed us to establish which areas experience
Water Hyacinth clogging most often and the duration and
timing of these events. We also demonstrated the high mobility
of Water Hyacinth mats, as almost all areas of the lake surface
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Fig. 12. The heat maps generated for the three frames also show the coverage of the gulf. The heat map shows values ranging from 0 to 0.3, where 0
represents pixels that did not record any WH presence from the data/dates analysed, while 0.3 represents the presence of WH in 30% of the data/images
analysed per frame. Note: the axes units are degree decimal for latitude and longitudes

recorded the presence at least once. Additional research is
needed to understand how temporal variability of climate and
water quality influences Water Hyacinth distribution in Lake
Victoria.
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