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ABSTRACT 

 

MANDAPATI ROJA Registration No - 190506192004 

 

Year of Admission - 2019 
Degree - Doctor of Philosophy 

(Agriculture) Agronomy 

Crop yield estimation has gained prominent importance due to its vital significance for 

policymakers and decision-makers in enacting schemes, ensuring food security, and 

assessing crop insurance losses due to biotic and abiotic stress. Precise and timely crop 

yield estimates at regional, national and international levels is essential for making policy 

to overcome food security worldwide and helping farmers for crop insurance through 

insurance premium pricing by the companies. Rice is considered the major staple food 

which is having highest area and production in India. Telangana contributes to 4.49 % of 

rice area (1.9 million ha) and 5.54 % of production (6.25 million tons) with a productivity 

of 3176 kg ha-1. 

Several studies revealed that remote sensing technology had resulted in higher accuracy 

in crop growth monitoring with added advantage of high revisit frequency and precision. 

On the other hand, crop simulation models were also been recognized to assess the effects 

of different scenarios like climate change, drought, stress etc., on crop yield under varied 

climatic conditions. LAI is main criterion for evaluating the grain yield as it shows good 

correlation with the grain yield. There are lack of studies on comparing the ceptometer 

LAI to any crop model simulated LAI and also yields estimation at local level though 

they were done at a broad level like state or district. Hence this research was focused on 

rice yield estimation at the field level in the Karimnagar district of Telangana during 2021 

and 2022 by employing the leaf area index (LAI) as the primary criterion for integrating 

remote sensing technology and crop simulation models. 

Optimization of crop cutting experiments were performed based on the criterion 

encompassing a wide range of potential combinations, further four villages each in Kharif 

and Rabi were selected for study and 15 fields were selected in each village for study. 

Ground data visits were planned according to the satellite passing dates and during the 

visits LAI readings in each field were collected using the LP-80 ceptometer. Supervised 

classification was performed using the ERDAS imagine. It has been noted that most of 

the area in the district was occupied by rice in both the seasons. Accuracy showed that 
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overall accuracy of 94.23% and 88.5% was recorded, while kappa coefficient of 0.89 and 

0.85 was resulted in kharif and rabi season respectively. 

 

On an average, kharif and rabi rice grain yields were 5324 kg ha-1 and 6436 kg ha-1 

respectively in selected villages. The average simulated rice grain yield in kharif and rabi 

were 5339 kg ha-1 and 6858 kg ha-1 respectively with DSSAT model which considered 

sentinel-2 satellite for estimation of LAI. The R2 values of above 0.72 in kharif and above 

0.85 in rabi, D index of 0.70 in both the seasons in all the villages showed the model is 

accurate for predicting yields. 

In both the seasons, correlation of above 0.8 was observed between observed rice grain 

yield with the quantity of nitrogen applied, whereas above 0.77 was noted between 

ceptometer measured and model simulated LAI. However LAI showed a good R2 of 

above 0.75 with the grain yield. Due to its strong correlation with LAI of above 0.80, the 

Normalized Difference Vegetation Index (NDVI) was selected as the critical element for 

integration with the model. Hence, it can be noted that NDVI is one among the important 

parameter which can be used to integrate with LAI for grain yield estimation. By utilizing 

the linear equation generated between the NDVI and model LAI a spatial LAI map was 

generated for the Karimnagar district. Further the linear equation developed between the 

model LAI and model grain yield, spatial yield map was generated. From the spatial yield 

map, it can be concluded that most of the areas fall under the rice grain yield range of 

5700 to 6000 kg ha-1 in kharif, while in rabi in the range of 6500 to 7000 kg ha-1. These 

spatial mean yields for kharif and rabi were 5300 kg ha-1 and 6458 kg ha-1 which were 

then compared with the Telanagana government statistics and it has been noted that a 

deviation of less than 10 %. Therefore, this study’s findings show that assimilating remote 

sensing data with crop models enhances the precision of rice yield prediction for 

insurance companies and policy- and decision-makers. 
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Chapter I 

INTRODUCTION 

In India, of the 328.73 million ha of land area, 197.05 million ha is the gross cropped 

area. Cereals occupy 51.33 % of the gross cropped area and out of which 22.30 % comes 

under rice (ICAR agricultural research data book 2020). Rice is considered the major 

staple food which is having highest area and production in India. In India, during 2020- 

21, the cultivated area, production, and productivity under rice is around 44 million ha, 

121 million tons, and 4.1 metric tons per hectare respectively (USDA 2021- Department 

of agriculture and cooperation). 

Telangana comes under the southern plateau and hills agro-climatic zone. Rice is one of 

the major crops grown in this state. Telangana contributes to 4.49 % of rice area (1.9 

million ha) and 5.54 % of production (6.25 million tons) with a productivity of 3176 kg 

ha-1. With the development of irrigation resources, there has been a remarkable increase 

in rice-cultivable areas in the state during the last few years. 

Prediction of crop area and yield before harvest will be useful in estimating loss 

determination for crop insurance schemes. This is required more for countries like India 

as the economy depends on agriculture and its allied sectors. Crop yields depend on 

multiple factors like genotype, environment, and their interactions hence, understanding 

these relations is of top priority for yield predictions. For effective agricultural land 

management, policymaking, and long-term agricultural food production, precise and 

timely crop yield estimation is vital (Masson-Delmotte et al. 2018). Traditional methods 

like crop cutting can be used for yield estimation as they are more effective for 

agricultural management policies (Dwivedi et al. 2019), but they are expensive, time- 

consuming, and error-prone and the availability of information from these is not up-to- 

date. Monitoring and estimating yields promptly plays a crucial role in decision-making 

and pricing insurance premiums, as it protects farmers with small holdings from risk 

and influences markets, export-import decisions, and farm income planning (Choudhury 

& Jones, 2014 Zhao et al. 2020). Many methods, such as empirical formulae, remote 

sensing, and modeling have been used to estimate yield. Remote sensing has shown to 

be quite useful in monitoring agricultural crop growth and scheduling irrigation. All of 

these methods have pros and cons, such as the lack of accurate data from the beginning 
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to the end of the crop season for running models and the availability of satellite data 

during cloud periods. 

During recent years, crop yield predictions have used empirical formulae, remote 

sensing, and simulation models. Although studies have been conducted to validate the 

use of remote sensing data in calculating crop yields, the majority of them have used 

empirical methodologies for specific locations, crops, cultivars, and crop growth phases. 

Similarly, researchers used crop models to simulate crop development and production 

on a regional scale. Using accurate, cost-effective, and easy methods for crop yield 

estimation at local scales is the main objective of remote sensing agricultural 

applications (Ahmed et al. 2014; Dong et al. 2016; Mosleh, 2015; Noureldin et al. 

2013). Integration of these two technologies results in an increase in output efficiency 

(Fang et al. 2011; Pitman, 2000; Muslim et al. 2015; Schut et al. 2009). 

Remote sensing (RS) technologies offer a diagnostic tool that can serve as an early 

warning system, enabling the agricultural community to respond early to manage 

possible problems before they spread widely and severely affect crop yield. By 

employing space-borne sensors, remote sensing acquires synoptic (local to regional 

coverage) and repetitive (minutes to days) data regarding the spectral performance of 

crops in dynamic environments (soil and atmosphere). Timely monitoring is dependent 

on remote sensing methods, which furnish a precise image of the crops with a high 

frequency of revisits and precision (Shanmugapriya et al. 2019).Remote sensing has a 

wide range of applications which can be used to estimate yield (Doraiswamy et al. 2004; 

Bernerdes et al. 2012), crop phenological information (Sakamoto et al. 2005), identify 

stress circumstances (Gu et al. 2007), and detect disruptions (Bellam et al., 2023). 

Crop models are a set of empirical equations that examine crop growth and development 

by incorporating crop, weather, soil, and management strategies that have been 

introduced since the 1960s. They have a wide range of applications since they will 

replace the time required to conduct expensive and time-consuming field experiments 

with a greater number of iterations that can be pre-evaluated within minutes (Steduto et 

al. 2009). Crop models are essential for analyzing how climate variability and 

management practices affect crop yield and environmental performance to encourage 

better and more sustainable agriculture (Xiong et al. 2014). Among the wide range of 

crop simulation models DSSAT (Ray et al. 2018; Alejo et al. 2020), APSIM 
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(Amarasingha et al. 2015 and Yang et al. 2021), Infocrop (Kaur and Kaur 2022), 

Aquacrop (Kumar et al. 2014 and Gebreselassie et al. 2015) and Oryza (Yuan et al. 2017 

and Lu et al. 2020) were used for predicting yield. 

The Cropping System Model (CSM)-Crop Environment Resource Synthesis (CERES) 

model, which can be used for 42 crops, is part of the Decision Support System for Agro- 

technology Transfer (DSSAT), a computer program that forecasts crop growth, 

development, and yield based on interactions between soil, water, weather, atmosphere, 

plants, and crop management (Jones et al. 2003). CERES modules included in DSSAT 

which replicate key crop growth and development processes such as phenological 

development, canopy leaf area increase, dry matter accumulation, and grain production. 

Past findings at various locations evaluated the CERES-Rice and Maize models, 

showing high agreement between predicted and observed findings (Gumma et al. 2022, 

Mirakhori et al. 2017, Kadiyala et al., 2015; Alejo et al. 2020; Timsina and Humphreys, 

2006; Behera and Panda, 2009; Liu et al. 2017; He et al. 2012; Ngwira et al. 2014). 

DSSAT is one of the crop models that has been widely used for yield gap analysis 

(Singh et al. 2008 ; Balderama et al. 2016). Even though there are often some 

uncertainties in the simulation findings due to inputs and model parameters, simulation 

models can still be successfully used as a scientific tool to improve cropping system 

resource use efficiency (Timsina et al. 2008). In comparison to various other crop 

models, DSSAT can operate effectively with few input parameters. Scanty research has 

been conducted in a selected area using the DSSAT model for yield estimation in rice. 

Remote sensing and crop growth models are two distinct technologies that can solve 

many field and regional agronomic issues (Batchelor et al. 2002). Leaf area is defined 

as leaf area per unit ground area which is considered as the chief parameter for plant 

growth and productivity that is directly related to the yield of the crop and used for 

biophysical modeling (Parker 2020, stark et al. 2012 and Yan et al. 2019). The leaf area 

index can be calculated by direct and indirect methods. To overcome the limitations, 

indirect methods of leaf area measurement can be done by use of an LP-80 ceptometer 

which measures photosynthetically active radiation by non-destructive sampling. 

Several investigations have derived biophysical variables from satellite images and 

included them in simulation models (Hui & Yao, 2018; Yu et al. 2019). 
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The augmented data collection frequency of satellites, coupled with their capability to 

acquire data over a broad area, has contributed to the growing utilization of integrative 

approaches that combine remotely sensed data with crop simulation models for the 

estimation of crop yields. To accomplish this goal, the LAI that is derived from satellite 

data is subjected to daily interpolation to supply daily observations that are compatible 

with the interactive time-step of crop models. For modeling crop growth and yield, there 

is a need to take into account the various elements that can affect the outcome of the 

projection. In order to estimate crop yields through modeling, meteorological and 

climate data (including rainfall, sunshine hours and surface temperature), soil properties, 

and management strategies are integrated with spatially explicit remote sensing-derived 

data, including vegetation and slope indices (NDVI). This information is used to create 

a crop growth model (Dorigo et al. 2007). 

By taking the above-targeted research areas on yield estimation, the study on “Remote 

sensing leaf area index (LAI) data assimilation with crop model for yield 

predictions in rice” was designed with the following objectives. 

1. Optimization of crop cutting experiments (CCE) locations for the respective 

study area. 

2. Crop yield estimation based on the DSSAT model. 

3. Comparison of simulated LAI from remote sensing satellite data and DSSAT 

model. 
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Chapter II 

REVIEW OF LITERATURE 

An effort has been made to collect and present the available literature related either 

directly or indirectly to the present research on assimilation of remote sensing data into 

crop simulation models for rice yield estimation under the following subheadings. 

2.1 Optimizing the CCE locations 

2.2 Methods of Leaf Area Index Estimation 

2.3 Crop type mapping using algorithms 

2.4 Yield estimation 

2.4.1 Yield estimation using crop simulation models 

2.4.2 DSSAT crop simulation model and calibration 

2.5 Relation between grain yield and nitrogen levels 

2.6 Derivation and integration of crop simulation model with remote sensing products 

2.7 Validation of the estimated yield with statistics 

 

2.1 Optimizing the CCE locations 

Subjective crop yield estimation methods include farmers' judgments and expert views 

which are not so accurate. Objective yield measurement approaches like whole-plot 

harvesting are costly and time-consuming. This led to the development of the Crop 

Cutting Experiment (CCE) in India as a method for estimating crop yield based on 

sampling small subplots within cultivated fields by pioneers in sampling and survey 

design. 

Ahmad et al. (2021) designed a sample approach for estimating harvest and post-harvest 

losses of crops/commodities using CCE methodologies for actual measurement-based 

primary data collection, which was approved by FAO in Rome. The established 

methodology was field tested in two FAO-identified countries, one in Africa and one in 

the Latin America/Caribbean region, namely Zambia and Mexico. Enumerators, 

Supervisors/Master trainers, and nominated authorities in both countries received 
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classroom and field instruction for filling up schedules and different techniques for 

performing Crop Cutting Experiments from ICAR-IASRI personnel. 

Kabir et al. (2016) formulated a protocol for conducting CCEs under different crop cut 

methods in Bangladesh and suggested performing at least two cuts per plot to minimize 

error regarding over and under estimation with a circle radius of 178.5 cm covering 10m2 

for easy conversion. 

The remote sensing products like NDVI, NDWI, were combined with CCEs conducted 

through crop-cutting experiments under Pradhan Mantri Fasal Bima Yojana in Orissa to 

inspect whether CCE points contributing to high yields fall under the good NDVI zone 

or not (Dubey et al. 2019). NDVI data and CCEs data have been sub-grouped into 4 

classes with a certain range and it has been noticed that there was a 75 % similarity 

between the CCE and vegetation index strata. 

Aditya et al. (2020) showed reduced number of crop-cutting experiments and estimation 

of crop yield at the district level using Aggregate level Small Area Estimation (SAE). 

Results from SAE were compared with the GCEs and found that similar yields were seen 

with SAE with the added advantage of reduced sample size. 

Gumma et al. (2022) validated crop yields with crop-cutting experiments based on the 

optimization techniques. Crop-type map data, availability of rain gauges, soil types, and 

area statistics of each crop in each specified location were considered as the prime criteria 

for optimization of CCE’s. 

2.2 Methods of Leaf Area Index Estimation 

LAI is the ratio between leaf area and ground surface area (Watson, 1947). LAI is the key 

input bio-physical parameter for assessing yield as it is directly related to the growth of 

the plant. It has been extensively used in agriculture and remote sensing studies including 

smart agriculture and crop models. LAI can be estimated by two methods either directly 

or indirectly. Direct method like the gravimetric method and planimetric method involves 

the destruction of leaves which is laborious, time-consuming and costly compared to other 

methods. Based on the correlation between leaf dry weight and leaf area (wet leaf to dry 

leaf ratio) gravimetric method is used (Jonckheere et al. 2004). The planimetric method 

of LAI estimation is the correlation between individual leaf area measured by the device 

and this method is considered as the most accurate method which is used to validate other 
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methods but the only constraint with this is its implementation over large scale which is 

not feasible. Indirect methods involve a sequence of readings with specific instruments 

based on light transmittance. 

Aschonitis et al. (2014) using the gravimetric leaf and foliage (GLF) method estimated 

the LAI of rice in an evapotranspiration experiment using lysimeter and concluded that 

LAI estimations were significantly correlated (R2= 0.86) with grain yields and other crop 

factors. It has been reported that this method can be used for crop modelling studies as 

frequent destruction of samples is not possible in the fields and the variability between 

replications in experimental plots is not accepted. 

Campose Taberner et al. (2015) compared indirect LAI estimates collected from three 

pieces of equipment such as LAI-2000, Pocket LAI, and digital cameras. Pocket LAI is a 

smartphone application used for measuring LAI based on the segmentation of images 

taken at 57.50 below the canopy. In digital photography, computation of LAI is done by 

gauging gap fraction. Photographs were taken downward looking and a minimum of 1m 

distance was set between the camera and the top canopy and the photographs were 

processed using CAN-EYE3 software to estimate LAI from gap fraction measured at an 

angle of 57.50 because at this angle the information acquired is independent of leaf angle 

distribution and clumping effect will be minimized. LAI-2000 and DHP outcomes were 

then compared with pocket LAI during the growing period. LAI values from all three 

were well correlated. Pocket LAI was correlated with LAI 2000 and DHP. It has been 

concluded that pocket LAI is an alternative to classical instruments. 

Fang et al. (2018) evaluated the performance of automatic instrument (PASTIS-57) and 

smart phone applications (LAI smart and Pocket LAI) to estimate LAI in maize, soybean, 

and sorghum throughout the growing season. These results were validated against LAI- 

2000, DHP, and destructive sampling methods. A relative error of <5%, < 20%, -20 to - 

30 % were observed with PASTIS -57, LAI smart and pocket LAI over LAI 2200 and 

DHP. It has been concluded that PASTIS-57 can be used for continuous LAI estimation 

in agricultural crops over the other methods. 

Casa et al. (2019) estimated LAI in maize, wheat, alfa alfa and broad beans using a sun- 

scan ceptometer, LAI 2000, DHP and pocket LAI. R2 of 0.54, 0.62, 0.82 and 0.62 were 

observed under sun-scan ceptometer, LAI 2000, DHP and pocket LAI. In terms of 
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accuracy, the hemispherical photography-based method, which was subsequently 

followed by LAI-2000, exhibited the highest performance among the employed methods. 

Wilhelm et al. (2000) used three different LAI meters (AccuPAR, LAI-2000, and 

SunScan) to estimate the LAI in maize at Shelton and this was compared with the 

destructive sampling. A correlation was observed with individual meter with the field 

LAI (Destructive LAI). R2 value of 0.94, 0.93, 0.79 was observed under LAI 2000, 

Accupar and sun-scan meter respectively. It has been concluded that a proper selection 

of instruments is to be done before estimating the LAI. 

Sone et al. (2009) used destructive and non-destructive sampling (LAI 2000 meter and 

sun scan meter) for estimating LAI in upland rice for different cultivars. Sampling was 

done between 21 to 56 days after sowing. LAI recorded with these meters were compared 

with the non-destructive sampling and a correlation of 0.96 was observed with the sun 

scan meter while, a correlation of 0.95 was observed under LAI -2000. The results 

indicate that both instruments were effectively indicated the LAI during the crop growth 

stages. 

Stroppiana et al. (2006) used LAI -2000 meter to estimate the accuracy of the instrument 

in calculating the LAI as compared to destructive sampling. The findings of the 

comparison indicate a strong positive correlation (R2 > 0.8) between destructive LAI 

measurements and LAI-2000 estimates; however, this correlation weakens as LAI values 

approach zero (R2 < 0.6). Hence, when the range of practicality is limited to LAI values 

exceeding one, the LAI-2000 proves to be a suitable tool for the in situ estimation of LAI 

in rice fields. 

2.3 Crop type mapping using algorithms 

Crop classification is an utmost measure to quantify the amount of agriculture production 

season-wise and helps to assess food security. There are a variety of ways used to update 

crop classifications by government agencies, but they are labour-intensive, expensive and 

difficult to compare between nations and continents because different systems have been 

used around the globe. Food scarcity in low-income nations can only be alleviated if 

accurate and timely crop production information is available. In order to provide this 

timely update, remote sensing must be used, which provides timely and extensive data. 
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Land cover mapping and characterization are essential for resource planning and 

management (e.g., development and conservation), environmental modelling, and habitat 

distribution (Gumma et al., 2024). Remote sensing and digital image processing can map, 

appraise, and monitor land cover at multiple spatial, temporal, and thematic scales 

(Rogan and Chen, 2004). Land cover categories are used to construct thematic maps and 

establish a monitoring baseline. 

In addition, it is difficult to generate consistent and inter-comparable data between 

countries or even continents in consideration of the different ground field survey methods 

adopted (Ozdogan and Woodcock, 2006). 

In their study, Gumma et al. (2020a) assessed the strengths and limitations of mapping 

cultivated areas during the rabi season and to compare the cropping patterns by utilizing 

sentinel 2 data. It was revealed that an accuracy level of 84% has been observed for 

wheat, mustard and chickpea by using spectral Matching Technique approach. 

Panjala et al. (2022) classified the crop types in Rajasthan with sentinel -2 data by using 

supervised machine learning (ML) and Spectral Matching Technique (SMT), Supervised 

classifiers including Random Forest (RF), Support Vector Machine (SVM), and 

Classification and Regression Trees (CART) achieved the following accuracies: RF - 

81.8%, SVM - 68.8%, CART - 64.9%, and SMT - 88%. The results of the RF classifier 

and the SMT classification map showed a high level of consistency. It was revealed that 

the RF classification outperforms the rest of the classifiers. 

Raman et al. (2019) utilized sentinel- 1 A SAR data with VV and VH polarization to 

measure rice crop area in Tamil Nadu. Results reveal 79.5% accuracy and 0.59 kappa 

index under VV polarization, while 82.1% accuracy and and 0.64 kappa coefficient under 

VH polarization. The reduced precision observed in VV and VH polarisation can be 

attributed to an underestimate of the area sown with direct seeds and transplanted 

conditions. 

Kenduiywo et al. (2018) showcased the functionality of Sentinel-1 multi-temporal data 

in the mapping of various crops. The framework applied was dynamic conditional random 

fields (DCRFs), a cost-effective, dependable, and adaptable method of categorizing 

entities. An ensemble classifier was employed to determine the optimal map by 

considering the historical probability of each class as represented by a series of images. 
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The accuracy of the results was greater when high-dimensional images were utilized in 

conjunction with reduced training data compared to the MLC stack. 

Li et al. (2020) utilized L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic 

Aperture Radar (UAVSAR) data to classify eleven crop groups using the Random Forest 

(RF) technique. It was discovered that polarimetric parameters gave significantly greater 

classification accuracy than linear polarisation and the combination of all variables, i.e., 

linear and polarimetric parameters, yielded an accuracy of 90.50 % in 2011 and 84.96 % 

in 2014. 

Gumma et al. (2011a) utilized MODIS time series data from 2000 and 2001 to 

cartographically represent the extent of rice cultivation in six South Asian nations. Data 

was collected between 2000 and 2001 utilizing spectrum matching algorithms, decision 

trees, and ideal temporal profile data banks to identify and categorize rice areas across 

vast regions. In addition, they have utilized MODIS sensor composite pictures to generate 

rice maps and assess rice attributes, such as cropping intensity and the crop calendar. An 

accuracy of 67% to 100% was attained for rice, with a total precision of 80% for all 

classes. 

Gumma et al. (2014) employed hyper-temporal MODIS data to map the increase and 

coverage of rice crops during different seasons in Bangladesh. Throughout all three 

seasons, a 90% accuracy rate was observed when comparing rice and non-rice maps in 

matched field plots. The rice area estimates produced from MODIS were 6% more than 

the sub-national figures during the boro season, 7% higher during the aus season, and 3% 

more during the aman season. The sub-national areas calculated from MODIS data 

accounted for 9%, 9%, and 96% of the variability at the district level during the boro, aus, 

and aman seasons, respectively. 

Gumma et al. (2020b) utilized Landsat satellite time-series big data and machine learning 

algorithms (MLAs) on Google Earth Engine (GEE) to develop a detailed agricultural 

extent product for South Asia. The product had a high resolution of 30 meters or greater. 

The agricultural product from South Asia achieved a producer accuracy of 89.9%, a user 

accuracy of 95.3%, and a total accuracy of 88.7%. The agricultural extent product 

provided a comprehensive representation of both national and sub-national (districts) 

areas. It accounted for 80-96% of the variability in South Asian national data. 
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Gumma et al. (2016) mapped rainfed and irrigated rice-fallow fields in South Asia using 

MODIS 250 m time-series data to identify areas where a short-duration crop might 

enhance agriculture. The maps were assessed using independent ground survey data and 

sub-national statistics. Agricultural fallow groups are 75–82% accurate for producers and 

users. Rice classes had approximately 82% accuracy and 0.79 kappa coefficient. South 

Asia had 22.3 million hectares of optimum rice-fallow land, including 88.3% in India, 

8.7% in Bangladesh, 1.4% in Nepal, 1.1% in Sri Lanka, 0.5% in Pakistan, and 0.2% in 

Bhutan. 

Gumma et al. (2011b) used Landsat Enhanced Thematic Mapper (ETM+) and time-series 

Moderate Resolution Imaging Spectroradiometer (MODIS) data to map irrigated 

agricultural areas and other land use/land cover (LULC) classifications in Ghana. The 

accuracy of the classification for irrigated classes ranged from 67% to 93%. The remote 

sensing-derived irrigated areas were found to be 20% to 57% larger (32421 ha) than the 

statistics disclosed by Ghana's Irrigation Development Authority (GIDA). 

Sonobe et al. (2018) used vegetation indices from the Sentinel 2 multispectral sensor 

(MSI) to classify crops in Japan. The accuracy and suitability of vegetation indices based 

on reflectance data from the Sentinel 2 MSI were evaluated. For cropland classification 

from MSI data, random forests (RF) and support vector machines (SVM) were used. 

Overall, SVM was more accurate, with an accuracy of between 89.3% and 92%. 

Saini and Ghosh (2018) used single-date Sentinel-2 images and algorithms called random 

forests (RF) and support vector machines to classify crops in the Indian state of 

Uttarakhand. It has been found that random forest is more accurate than SVM by 84.22 

%, and that sentinel 2 is very good at crop mapping in remote sensing. 

 

Zheng et al. (2015) used time-series Landsat NDVI data and a stratified random and 

intelligent selection method to classify the types of irrigated crops in central Arizona. 

With an overall accuracy of >86% for both, nine major crops have been found. It has been 

decided that the intelligent selection approach is better than the stratified random 

approach because it reduces the amount of training data and improves the accuracy of 

classification as a whole. 

Kobyashi et al. (2020), evaluated 91 spectral indices in a single image from the Sentinel 

2 MSI to classify crops in Hokkaido, Japan. When spectral indices and reflectance are 
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used together, the accuracy drops from 93.1 to 92.4 percent. This is based on the 

reflectance at 4 bands and 8 spectral indices. 

Wang et al. (2019) used a composite enhanced feature image and the feature filtering and 

enhancement (FFE) method to find soybean and maize in Northeast China. The results of 

the FEE method were compared with the results of the support vector machine, the 

maximum likelihood classification, and the random forest. It was found that the FEE 

method had an overall accuracy of 90.2 and a kappa coefficient of 0.846, which shows 

that the FEE method is a good way to classify crops and identify crops with similar 

phenology. 

The sentinel 2 random forest algorithm was used to classify crops by Yi et al. (2020). 

Four different experiments (single band, multispectral, selection of optimal temporal 

window, and early identification of crop) were used to find the most accurate one. For 

crop identification, combining RE1 and SWR-1 with images taken in the middle of the 

crop is useful. An accuracy of 90% has been found with the assimilation of sentinel 2 data 

with Random forest algorithm crop identification. 

Inglada et al. (2015) conducted a study to evaluate the effectiveness of an Operational 

System for Crop Type Map Production using high spatial and temporal resolution satellite 

imagery. They utilized data from SPOT-4 and Landsat 8 satellites and applied the Multi- 

Sensor Atmospheric Correction and Cloud Screening (MACCS) processor. The study 

involved multiple sites worldwide and aimed to classify different types of crops based on 

various factors such as climate, crop type, and agricultural practices. Random forest 

classifier has been reported to achieve an accuracy of 80 %. Two of the locations 

performed poorly due to a smaller land area and a mixture of crops and trees in the field. 

In their study, Teluguntla et al. (2017) employed automated cropland classification 

algorithms (ACCAs) and spectral matching techniques (SMTs) to map the agricultural 

land of Australia using MODIS 250-m time-series data spanning the years 2000 to 2015. 

The overall accuracy of 89.4% with a kappa coefficient of 0.81, producer’s accuracy of 

72 and 90%, and user’s accuracy of 79 and 90%. The ACCA algorithm effectively 

represented the magnitude and vitality of Australian croplands in comparison to cropland 

fallows during the period from 2000 to 2015. This underscores the significance of the 

research in the advancement of food security analysis. 
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Cai et al. (2018) identified corn and soybean crops based on Landsat image and used 

common land units to separate spectral information of each field in central Illinois based 

on the Landsat image to prevent cloud contamination during use of a machine learning 

model based on deep neural network. Short-wave infrared bands showed superior 

performance over visible and near-infrared bands in classifying corn and soybean. The 

overall accuracy of 96 % has been found compared to the USDA crop data layer and 

concluded that this methodology is accurate, cost-effective and can be used for larger 

extent area. 

Arias et al. (2020) classified crops in Spain based on temporal signature extracted from 

sentinel 1. In this study, 14 crops were taken for classification and concluded that overall 

accuracy of 70% was obtained with combined use of VV, VH and VH/VV. Rice, wheat, 

barley, and corn have been identified easily with F1 scores > 75% due to crops exhibiting 

singularities in temporal signatures. 14% higher classification was obtained in larger 

fields (>1ha) compared to smaller fields (< 0.5 ha). From this study, it has been observed 

that areas with high diversity in crops, management techniques and fallow lands showed 

lower accuracy. 

Son et al. (2018) used a random forest algorithm (RF) and support vector machines 

(SVM) for rice crop classification in South Vietnam using multi-temporal sentinel 1A. 

Results indicate that VH backscatter profiles reflected the temporal characteristics of rice 

cropping patterns in study. It has been concluded that overall accuracy and kappa 

coefficient resulted from random forest was more accurate (86.1 % and 0.72), compared 

to SVM (83.4 % and 0.67) and the results were also on par with the government statistics 

with an error of 0.2 % (RF) and 2.2 % (SVM), respectively. 

Enderle et al. (2005) used Landsat 7 enhanced thematic mapper plus satellite imagery 

(ETM) images to integrate supervised and unsupervised classification to increase LULC 

accuracy in Arkansas. Maximum likelihood was used for supervised classification, while 

unsupervised classification employed an Iterative Self-Organizing Data Analysis 

Techniques (ISODATA) algorithm. The overall accuracy of the supervised classification 

was 74.85%, compared to 40.94% for the unsupervised classification. The dense canopy 

pine plantation was better identified under the unsupervised (64.29%) than the supervised 

(43.86%) classification. Unsupervised classification of dense canopy pine plantation was 

then combined with supervised classification to boost overall accuracy to 76.61%. 
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Hasmadi et al. (2009) assessed supervised and unsupervised algorithms for land cover 

mapping in Ayer Hitam Forest Reserve using remote sensing data and spot 5 data satellite 

image. The land cover classes for the research area were categorized to vegetation, urban 

area, water body, grassland, and desert. Maximum likelihood was used for supervised 

classification, while an Iterative Self-Organizing Data Analysis Techniques (ISODATA) 

algorithm was implemented in ERDAS for unsupervised classification. The results 

indicated that the overall accuracy of the supervised classification was 90.28 % with a 

Kappa statistic of 0.86, whereas the accuracy of the unsupervised classification was 80.56 

% with a Kappa statistic of 0.73. The outcome of this study is that supervised 

classification appears to be more precise than unsupervised classification. 

2.4 Yield Estimations 

2.4.1 Rice yield estimation using crop simulation models 

Amarasingha et al. (2015) utilized the APSIM model to simulate crop and water 

productivity in Sri Lanka under a variety of agro-climatic conditions and water 

management techniques (rainfed with supplemental irrigation). According to the findings, 

the model predicted grain yield with R2 value of 0.97 and RMSE of 484 kg ha-1. When 

the commencement of rainfall is prolonged, crop modelling simulations using the 

validated APSIM model revealed that rice production is more dependent on supplemental 

irrigation. In contrast, in years with an early onset, late planting in the season reduced the 

consumption of rainwater by 95% while increasing the irrigation water demand by 11% 

compared to planting at the onset of rainfall. 

Yuan et al. (2017) evaluated the ORYZA rice model to estimate the grain yield of rice 

under different management practices (varied nitrogen levels and planting densities) in 

central China. The model is being calibrated using the weather data from 1986-2015. The 

calibrated values model has been validated. Results from the study reveal that the 

statistical results for grain yield and biomass were reliably simulated by the model. 

Correlation of 0.79, 0.99, 0.98 was observed for LAI, total biomass and grain yield 

respectively. 

Kaur and Kaur (2022) used info crop to estimate the rice yield under varied agronomic 

management practices (different varieties and dates of sowing) in Punjab. Results from 

the model reveal that there was a good correlation between the observed and simulated 

results. A correlation 0.94, 0.82 and 0.84 was observed for days to anthesis, days to 
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maturity and grain yield respectively . This study has proven that info crop can be used 

for rice yield estimation under different cultivable conditions. 

2.4.2 DSSAT crop simulation model and calibration 

Liu et al. (2017) used the DSSAT model to simulate wheat yield and soil organic carbon 

under different fertilizer conditions in wheat- maize cropping system and this model has 

shown the effect of nitrogen on crop growth, yield and grain N concentration. R2 values 

for grain yield (0.72 and 0.45) and grain N concentration (0.62 and 0.24) were noticed. It 

ha been suggested that model can be used effectively after proper calibration for better 

results. 

Ray et al. (2018) estimated rice yield (Swarna) in Orissa under changing climatic 

conditions by use of the DSSAT model. There was decrease in Model simulated yields 

with an increase in maximum and minimum temperature. There is much effect of 

minimum temperature on the yield compared to maximum temperature. Simulated yield 

for rise in maximum temperature for +1o C (5712 kg ha-1) to +5o C (3711 kg ha-1). It has 

been concluded that the model can be used for projections in climate change. 

Akinbile et al. (2013) simulated rice yield under different irrigation regimes with the use 

of the CERES-Rice model. The irrigation treatments were 100% ET, 75% ET, 50% ET 

and 25% ET. The measured yield (2.41 t ha-1) and LAI were compared with the model- 

simulated yield (2.63 t ha-1) and LAI. Findings reveal that model-simulated yields were 

on par with the observed yields with R2 of 0.99, and RMSE of 0.16 for grain yield. Though 

the model has simulated slightly higher values for LAI and yield, there is no significant 

difference between them. It has been found that this model can be used to estimate rice 

yield with differences in irrigation levels, but recalibration and validation under different 

fertilizer levels and soil situations will lead to better usage of the model. 

Mirakhori et al. (2017) conducted an experiment to assess the CERES rice model under 

different fertilizers (nitrogen) and irrigation levels on crop growth. Three levels of 

irrigation and four levels of fertilizer have been considered. Measured yields were 

compared with the model-simulated yield with no significant difference. The coefficient 

of determination for LAI, grain yield, and biomass yield from the model was 0.76-87 %, 

0.82-0.95 %, and 0.85-87 % respectively and it was concluded that CERES rice can be 

used under different management strategies. 
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Kadiyala et al. (2015) used the CERES rice and maize model to identify best management 

practices in rice - maize cropping system in Hyderabad and observed that 180 kg N ha−1 

in rice followed by 120 kg N ha−1 in maize resulted in stable yield under aerobic and 

flooded rice conditions. It has been concluded that DSSAT can be used as a tool for 

recognizing the best alternative management practices for saving water and maintaining 

optimum yields. 

Alejo et al. (2020) conducted an experiment in Isabela, the Philippines with different 

fertilizer rates in dry and wet seasons. Projected climate change data of RCP 4.5 and 8.5 

were collected. It has been concluded that Ceres rice has been used to assess the effects 

of climate change on aerobic rice production with R2 value ranging from 0.87 -0.96, 

nRMSE of 17-29, and NSE of 0.77 - 0.92 under wet, dry and different fertilizers 

conditions of 0%, 50%, and 100% RDF respectively. 

Nyangau et al. (2014) opted for four different irrigation schemes in Kenya with two rice 

varieties basmati 370 and IR 2793-80-1 as an experimental treatment. Sensitivity analysis 

was performed using the CERES rice model where calibration and validation were 

performed. The observed grain yield was compared with the model simulated yields 

where R2 value of 0.786 have been observed during 2011. An increase in temperature and 

CO2 concentration affected grain yield for both varieties. Thus, the study's findings 

indicate that it is important to take into account Kenya's climatic conditions while 

determining rice yields in order to increase food security and also dependency on the 

model for estimating rice yields. 

Deka et al. (2016) conducted a seven-year field experiment from 1998-2005 in the upper 

Brahmaputra valley of Assam, India and the same package of practices for the Ranjit 

cultivar was fed into the DSSAT model. Calibration was performed with 3 years of data 

followed by validation, where the variation in yields was ± 16%, with an RMSE value of 

401 kg/ha, nRMSE <10%. The model's predictions ranged from 85% to 107% of the 

reported grain output. The enhanced capability of the model to accurately replicate the 

total grain production of the crop will enable policy makers and planners to make smart 

agricultural based economic decisions in the upper Brahmaputra valley. 

Ahmad et al. (2012) assessed the performance of the model in estimating rice yield under 

irrigated conditions in a semi-arid environment in Pakistan using DSSAT Ceres Rice. The 

researchers also investigated the influence of plant density and irrigation regime on 
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grain yield and economic returns. The findings demonstrate that the model effectively 

predicted the development and productivity of rice under irrigated semiarid conditions, 

with an average discrepancy of 11% between the cereal yields simulated and observed. It 

can be inferred that the CERES-Rice model has the potential to serve as a decision aid 

tool for resource-constrained farmers cultivating irrigated rice in semiarid regions, 

offering them alternative and integrated management strategies. 

In their study, Sudarshan et al. (2013) conducted a comparison between two distinct rice 

simulation models—the Simulation Model for RIce-Weather Relations [SIMRIW] and 

the Decision Support System for Agro-technology Transfer [DSSAT]—in order to 

estimate rice crop production in the southern semi-arid tropics of India using 

agrometeorological data and agronomic parameters. The application of linear regression 

models revealed a strong correlation between predicted DSSAT and observed yield. NSE 

of 0.73 was observed in DSSAT, while 0.62 in SIMRIW. It is concluded that DSSAT is 

mor accurate than SIMRIW as it will consider more input parameters for simulation. 

Vilayvong et al. (2015) used the DSSAT ceres rice model to determine the management 

practices like different cultivars and planting dates for low-land rice production in 

Thailand. The model achieved satisfactory accuracy for grain yields, as indicated by 

normalized root mean square error values ranging from 1% to 16%. The recommended 

management approach for enhancing lowland rice production in Laos involves 

transplanting irrigated rice on January 15th with 5 seedlings per hill and using 120 kg of 

N-fertilizer per hectare. The CSM-CERES-Rice model is a useful tool for predicting rice 

crop management techniques. 

2.5 Relation between Fertilizer and Yield 

Chamely et al. (2015) revealed that applying 200 kg ha-1 recorded highest grain yield 

(5580 kg ha-1) compared to the rest of the varied nitrogen level treatments during boro 

season at Bangaldesh. This was due to the contribution of higher straw yield, harvest 

index and yield attributing characters. 

Rajesh et al. (2017) conducted experiment to know the effect of varied nitrogen levels 

(120 kg N ha-1 and 60 kg N ha-1) and genotypes (26) on morpho-physiological and yield 

of rice in college farm of PJTSAU, Hyderabad. Applying nitrogen at the rate of 120 kg N 
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ha-1 recorded highest yields and MTU1010 genotype recorded higher yields ( 5338 kg 

ha-1) compared to the rest of treatments and cultivars. 

Pooja et al. (2018) noticed that increase in nitrogen levels from 0 to 150 kg ha-1 there was 

an increase in the grain yield. The grain yields under different nitrogen application rates 

were1676.76, 3395.28, 3870.70 and 4001.34 kg ha-1 respectively at 0, 90, 120 and 150 

kg N ha-1. All the treatments showed a comparable result in respect of grain yield except 

with the 0 kg N ha-1 at Varanasi, Uttar Pradesh. 

Ramulu et al. (2020) studied on the effect of different establishing methods and nitrogen 

levels on grain yield of rice at Regional Agricultural Research Station, Warangal. It was 

found that with raise in nitrogen levels, the grain yield and yield attributes increased up 

to application of 200 kg N ha-1 but the yield under 200kg N ha-1 was on par with the 

application of 160 kg N ha-1. Hence, it can be concluded that applying 160 kg N ha-1 

produces reliable yield. 

Mrudhula and Suneetha (2020) applied seven levels of nitrogen (80, 120, 160, 200, 240, 

280 and 320 kg N ha-1) to know the effect on grain yield in Bapatla. It was observed that 

among all the levels of nitrogen, 320 kg N ha-1 recorded highest grain yield (5288 and 

5325 kg ha-1) in both the seasons which might be due to the greater number of filled grain 

per panicle and test weight. It was concluded that application of 200 kg N ha-1 is more 

feasible in terms of economical grain yield. 

2.6 Derivation and Integration of Remote sensing products 

Using Sentinel 2 data, Ali et al. (2021) identified rice regions and predicted rice yield in 

the Nile region. The multi-temporal NDVI produced from Sentinel-2 satellite data was 

found to be crucial for crop classification. The LAI was computed utilizing the Surface 

Energy Balance Algorithm for Land (SEBAL) model was used to assess the LAI and 

further it was compared with the measure LAI to know the accuracy level. Using NDVI 

and LAI calculated from Sentinel 2 to predict yield resulted in an average inaccuracy of 

0.66 t/ha. MPAE was determined to be 6.76%, and 6.53 % with a high correlation 0.94 

and 0.95 in the case of LAI and Yield. It was revealed that the followed procedure can be 

employed for estimating rice are and yield. 
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Remote sensing products such as VV, VH, and VV/VH were generated by Bhargav 

(2021) using Sentinel-1, while NDVI was derived using Sentinel-2, for the purpose of 

distinguishing amongst rice ecosystems in the Jogulamba Gadwal district of Telangana. 

Among the leaf area index (LAI) and NDVI maximum a linear regression analysis has 

been performed and results reveal that a correlation of 0.79 and 0.86 was found for 

transplanted and direct sown rice scenarios. 

Fan et al. (2009) conducted research in semi-arid grassland China, using in-situ 

measurements to know the relationship between NDVI and LAI. It was concluded that 

there has been linear relationship between LAI and NDVI. A correlation of 0.79 was 

observed with the measured NDVI and LAI values. 

An investigation that was conducted by Goswami et al. (2015) studied to find out the 

relationship between NDVI, LAI and biomass near Barrow, Alaska. It was found that 

NDVI shows a good correlation with the LAI for all the selected crops. A correlation of 

0.70 was observed between NDVI and LAI. 

 

In their study, Clevers et al. (2017) employed Sentinel-2 satellite imagery to examine 

whether vegetation indices could be utilized to calculate LAI, leaf chlorophyll content 

(LCC), and canopy chlorophyll content (CCC) of a potato crop. In order to achieve this, 

a LAI prediction was generated utilizing Sentinel-2 TOC spectral observations in 

conjunction with WDVI calculations. The findings from the Sentinel-2 mission indicate 

that the leaf area index (LAI) can be estimated using the weighted difference vegetation 

index (WDVI), which comprises bands with a spatial resolution of 10 meters (R2 value 

of 0.809; RMSEP of 0.36). 

Xavier and Vettorazzi (2004) conducted a study to find out the link between LAI and 

Spectral Vegetation Indices under different land covers in a subtropical rural watershed 

of Brazil. NDVI, Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR) were 

calculated utilizing Landsat-7 ETMz data. A correlation of 0.72 was found under LAI- 

NDVI, while 0.70 was observed under LAI-SR and 0.56 was noticed under LAI-SAVI. 

In their study, Ines et al. (2013) devised a framework for data assimilation-crop modeling 

that integrates remotely sensed soil moisture and leaf area index (LAI) via MODIS leaf 

area. LAI was processed between 2003 and 2009 for the purpose of verifying and 

evaluating crop assimilation and modeling. The integration of MODIS-LAI resulted in 
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enhanced simulated yields (R2 = 0.51) in comparison to open-loop simulation (R2 = 0.47), 

with a minor decrease in systematic error. Absorption of LAI solely may be desirable in 

excessively damp conditions, whereas under nominal conditions, integration of soil 

moisture along LAI may be more effective. 

Aboelghar et al. (2011) assessed rice yield in the Egyptian Nile Delta based on the LAI 

computed from SPOT data obtained during two crop seasons. In the present study, red 

and near-infrared bands alone or in the form of vegetation indices and LAI are treated as 

spectral variables. LAI and Infrared models showed a considerably greater advantage 

over the other models, with 0.061 and 0.090 standard errors of estimate and 0.945 and 

0.883 coefficients of determination between predicted and observed yield, respectively. 

It is concluded that a month before harvest, the models are suitable for similar regions 

and conditions. 

Kross et al. (2015) utilized fast eye vegetation indices to estimate the leaf area index and 

biomass in corn and soybean crops. Between 2011 and 2013, seven vegetation indices 

were calculated using combinations of reflectance in green, red, red-edge, and near 

infrared bands using Rapid Eye data. The NDVI, edge NDVI, and green NDVI exhibited 

low sensitivity to crop type. The coefficients of variation (CV) for these indices ranged 

from 19% to 27%, whereas the coefficients of determination ranged from 86% to 88%. 

Continuous monitoring of agricultural Leaf Area Index (LAI) at the field level can be 

accomplished by combining data from Rapid Eye, Landsat, and SPOT satellites, together 

with sensor-specific best-fit functions. 

2.7 Integration of remote sensing products with crop simulation model 

The combination of remote sensing and crop growth models has become an effective tool 

for yield estimation and a potential method for grain quality estimation. 

For monitoring crop growth and LAI estimation in sugar beet crops Clevers et al. (1994) 

applied optical and microwave remote sensing data using an optical reflectance model 

and a radar backscattering model. To calibrate the crop growth model to actual growing 

conditions, remote sensing models were inverted to estimate LAI during the growing 

season. LAI estimates were not improved by concurrent radar and optical observations in 

comparison to optical data alone. 
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Hong et al. (2004) used image-derived vegetation indices to estimate leaf area index 

(LAI) in corn and soybean in two central Missouri experimental fields. Comparison of 

crop model results with measured and the simulated LAI has been performed. Measured 

and estimated LAI have been compared with crop model simulation results. The CERES- 

Maize and CROPGRO-Soybean models accurately reproduced Leaf Area Index (LAI) 

during the whole crop growth period using data on soil moisture and crop production. 

CERES-Maize over predicted LAI at all corn sites (R2 = 0.59-0.61) while CROPGRO- 

Soybean (R2= 0.66-0.68) had predicted similar results to that of observed LAI. It can be 

concluded that image-estimated LAI may improve crop growth model forecasts. 

Fang et al. (2011) conducted a study where they used MODIS LAI and vegetation index 

products with the CERES-Maize model to estimate maize production in Indiana, United 

States. The CSM-CERES Maize model's parameters have been generated using data 

obtained from remote sensing. According to this study, the model predicted maize yield 

was consistent with the United States Department of Agriculture (USDA). The MODIS 

vegetation index and the LAI products yielded the most accurate outcomes, exhibiting 

discrepancies of less than 3.5% compared to the USDA data. The EVI was deemed 

unacceptable due to a variance of 21%. 

Milesi et al. (2022) conducted research in Uttar Pradesh and Odisha to evaluate crop 

yields at village level by assimilating weather and satellite data with crop simulation 

models. Using cloud-screened MODIS 250-m data from Terra and Aqua satellites and a 

modified MOD15 LAI/FPAR backup method, crop biophysical estimates of LAI and 

FPAR were obtained. Results reveal that there was similarity between the crop simulation 

yields and CCE yields. Correlation of 0.80 and 0.84, RMSE of 411 and 309 kgha-1 and 

MAE of 359 and 262 kgha-1 respectively was observed under rice and bajra. 

GIS-based Environment Policy Integrated Climate (GEPIC) model has been used by 

Muslim et al. (2015) to predict paddy yield at regional level. The predicted yield is 

4305.55 kg ha-1. A mean yield of 4783.3 kg ha-1 was observed under plain areas with 

cultivars like China-107, Jhelum, K-39, China 1039, and Chenab and Shalimar rice-1, 

while cultivars like K-78 and K -332 grown under high altitude resulted a yield of 4102.2 

kg ha-1. Predicted results were compared with the measureed yields where correlation of 

0.95 and yield variation of 132.24 kg ha-1 was noticed which shows that crop models can 

be integrated with remote sensing. 
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Dryland wheat yields of North-eastern Australia at field scale has been estimated by Zhao 

et al. (2020) using sentinel -2 data and incorporating model crop water stress index (SI) 

with the data from 2016-17 crop seasons. The integration of the model with the optimal 

soil-adjusted vegetation index (OSAVI), chlorophyll (CI), and stress index (SI) resulted 

in a good correlation of 0.91 and a root mean square error (RMSE) of 0.54 t ha-1. The 

study has determined that sentinel-2 vegetation indicators effectively forecasted crop 

yield. 

Tripathy et al. (2013) estimated wheat yield in Punjab by integrating remote sensing data 

into the World Food Studies (WOFOST) mechanistic crop simulation model. NDVI data 

using SPOT satellite (SPOT-VGT). LAI derived from remote sensing was fed into the 

model. Comparison between simulated and government statistics has been made for three 

crop seasons and the findings reveal that this methodology resulted a RMSE of < 0.4 t 

ha-1 which can be implemented for spatial yield estimation at regional level. 

Doraiswamy et al. (2004) utilized LANDSAT and MODIS to observe variations in 

vegetation, enabling the indirect estimation of crop growth and yields at the individual 

field level. The spatial distribution of Leaf Area Index (LAI) was mapped for the Walnut 

Creek watershed in Ames, Iowa, with the purpose of estimating agricultural yields. The 

results showed that the average simulated yields for soybeans was approximately 6.6% 

higher than the NASS stated yields, while the average simulated yields for corn were 

about 3% lower than the reported stats. 

Priya and Shibasak (2001) estimated the spatial crop yield for rice, maize and wheat. 

using spatial EPIC which was generated from an EPIC (Erosion productivity Impact 

Calculator) model. An R2 value of 0.74, 0.68 and 0.59 was observed respectively for 

maize, wheat and rice under varied locations across India. Validation results in case of 

wheat and maize yield estimation found to be effective under coarse resolution. It has 

been concluded that model can be used in predicting yields in any area as India is one 

among the country showing wide diversity in-terms of climate. This will help in taking 

national policy decisions. 

Ali et al. (2021) assimilated NDVI multi-temporal data derived from sentinel -2 satellite 

with LAI to estimate grain yield of rice. LAI is evaluated by use of the Surface Energy 

Balance Algorithm for Land (SEBAL) model followed by validating with measured LAI 

values. Yield is being calculated by use of NDVI and LAI. A good correlation has been 
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observed in LAI and grain yield with 0.94 and 0.95 as the coefficient of determination 

among measured and simulated values respectively. 

Son et al. (2016) conducted a trial to estimate rice yield considering principle objective 

as to build up a technique by assimilating satellite data into DSSAT model. Particle swarm 

optimization (PSO) algorithm was used for yield estimation. The variation among the 

MODIS LAI and simulated LAI was used to develop cost function. It has been found that 

estimation of yield for large areas can be obtained accurately with less error by integration 

of DSSAT with satellite data. 

Fang et al. (2011) assimilated satellite data (MODIS LAI and vegetation indices) with 

the CSM–CERES–Maize model for estimating maize yield by taking principle aim as to 

predict the yield by the mid of the crop growth period. Integration of MCRM model and 

CSM-CERES maize was done during the process. Solitary use of LAI, NDVI and EVI 

and combinations of these were tested. Among all these models, best was seen under 

combination of MODIS with LAI products with a deviation of <3.5%. Independent usage 

of each vegetation indices has not resulted in to good yield as the error was >13%. It has 

been concluded that combination of remote sensing derived vegetation indices and LAI 

when assimilated in crop models resulted in better prediction of yields. 

Aboelghar et al. (2011) conducted an experiment to estimate the rice yield using SPOT 

and LAI. By using regression equations, measured yield is being related to satellite- 

derived LAI. Remote sensing generated LAI have been assessed against the field LAI to 

produce yield models. Relating LAI as a biophysical parameter to the yield, red and near- 

infra-red bands are the spectral variables used in this study either alone or in the form of 

vegetation indices. Among all the other models higher dominance has been observed in 

LAI and infrared models with 0.94 and 0.88 as the coefficient of determinants. From this, 

it has been concluded the integration of crop models with satellite imagery results in yield 

generation before harvest. 

Gumma et al. (2022) stated that the use of advanced tools like remote sensing and crop 

models for rice yield estimation will result in to better outcomes when both these are 

integrated. By use of Sentinel -2 data, spectral matching techniques (SMTs) and crop 

information collected during surveys crop classification was done. Remotely sensed LAI 

was produced by use of Landsat 8 data based on SAVI equation. The model simulated 
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LAI values were compared with the sentinel -2 LAI values and it has been observed that 

there is good correlation exists between them with a coefficient of determination 0.7. 

Pazhanivelan et al. (2022) selected Thanjavur, Tamilnadu as the study area where three 

rice cultivars (BPT 5204, CR 1009, and ADT 45) have been cultivated for research 

purposes. DSSAT has been used for spatial rice yield estimation where calibration and 

validation have been performed. Model-simulated LAI values have been compared with 

the RS LAI. Results show that the integration of remote sensing with the models and 

spectral indices-based regression analysis resulted in R2 value of > 0.80, NRMSE of 

<10%, and results in agreement of >90%. Remote sensing data integration with the 

DSSAT model and spectral indices-based regression analysis are potential methodologies 

for spatially predicting rice crop yields. 

Filippi et al. (2019) devised a method to forecast grain yield by employing machine 

learning using random forest models and intricate, multi-farm information. This study 

employed multiple large-scale agricultural operations in Western Australia as the subjects 

of investigation.The farms covered an area ranging from 11,000 to 17,000 hectares every 

year. The results indicate that the concordance correlation coefficient of Lin's model 

ranged from 0.89 to 0.92 when compared to the model yield predictions. 

2.8 Validation of the estimated yield with statistics 

Son et al. (2016) developed a method for assimilating remotely sensed data into a crop 

simulation model (DSSAT) to predict rice production in Taiwan. The data assimilation 

was processed using the particle swarm optimization (PSO) approach to include 

biophysical variables in the DSSAT model for estimating rice production. Estimated yield 

results were then compared with the government's statistics, the RMSE was 11.7% and 

the mean absolute error was 9.7%. 

Setiyono et al. (2019) integrated SAR data into crop yield simulation and full validation 

of yield forecast and estimations in Tamil Nadu, India. Remote sensing data integration 

into a crop model captures rice crop responses to environmental variables across vast 

geographical coverage, which is otherwise unattainable. The system captures climatic 

information using a process-based crop simulation model and gives a mid-season yield 

projection for rice policy and planning. SAR-based yield estimations for the 2014 -15 
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season were compared with the government yield statistics varied from 3.12 to 3.87 t 

ha–1, with 15% NRMSE and 552 kg ha-1 RMSE. 

Gumma et al. (2022) assimilated remote sensing data into the DSSAT crop simulation 

model for yield estimation of different crops. CCE yields were validated with the 

government statistics from the Department of Agriculture and then the simulated yields 

were then compared with the CCE yields. A correlation of more than 0.70, Model 

Efficiency of 0.75, MAE of 307 and RMSE of 386 kg ha-1 was observed. 

A brief review has been collected from the previous study and research. An overall 

summary for the above was mentioned reveals that higher accuracy and precision 

regarding crop growth monitoring can be obtained with the use of renote sensing 

technology. With the development of different crop simulation models effect of climate 

change, abiotic and biotic stress on crop yield can be assessed in very less stipulated time 

period and also these can be used to evaluate over long run. In mant stuies LAI has been 

considered as the key criterion for the crop yield estimation as it is directly corealted with 

the yield. LAI has been measured with the different portable instruments but there was 

limited research on comparing the ceptometer LAI with crop model generated LAI. From 

the above literature it can be clearly seen that there was scanty research on the yield 

estimatiin at the field level. Hence indepth study was considered for the above review and 

this study has been taken forward by employing the leaf area index (LAI) as the primary 

criterion for integrating remote sensing technology and crop simulation models. 
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Chapter III 

 

MATERIAL AND METHODS 

 
This chapter describes the paramters for selecting study area, DSSAT- Crop Simulation 

Model, remote sensing technologies and its application for grain yield estimation in rice. 

Details of materials and methods used in this study for the assimilation of crop models 

into remote sensing for rice yield estimation and the workflow for this study purpose have 

been mentioned below. 

3.1 Overview of the study area 

 

3.2 Criteria for Village Selection 

 

3.2.1 Soil map 

 

3.2.2 Rainfall map 

 

3.2.3 Elevation map 

 

3.2.4 Crop type map 

 

3.3 Ground Data Collection 

 

3.4. Mapping rice areas 

 

3.5 Yield Estimation 

 

3.6 Integration of remote sensing data with crop models 

 

3.7 Integration of remote sensing data with crop model data to estimate optimized rice 

yields. 

3.8 Validation of the estimated yield 

 

3.1 Overview of the study area 

Telangana is under the southern plateau agro-climatic zone, which is characterized by a 

hot and dry environment. The state shares its northern and eastern borders with 

Maharashtra and Chhattisgarh, and its southern and southeastern borders with Andhra 

Pradesh, its western border with Karnataka, and its northern border with Rayalaseema. 

Srisailam and Nagarjuna Sagar projects are the two major hydroelectric projects 
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constructed on River Krishna and the Sriram Sagar project on river Godavari. The 

prominent perennial rivers in Telangana state are the Godavari in the north and the 

Krishna in the south, in addition to 16 other minor rivers. The Kaleshwaram Lift Irrigation 

Project (KLIP) is one of the world's largest multi-stage lift irrigation systems, developed 

in the Godavari river basin, transforming rainfed land into irrigated farmland. 

Rice is the predominant crop in Telangana state, and agriculture is the state's primary 

economic driver. Rice, maize, cotton, sorghum, castor, peanuts, soybeans, and red gram 

are among the important crops. The development of dams and lift irrigation projects 

increased the availability of water, allowing farmers to opt for double cropping. Most of 

the land is now irrigated, as compared to previous years when agriculture relied on 

rainfall, resulting in crop failures. 

Karimnagar district, which is in the northeastern part of the state has 16 mandals and has 

an area of 2128 km2, a latitude of 18026'13" N, a longitude of 79007'27" E, and an 

elevation of 300m above mean sea level, has been chosen as a study area (Fig. 3.1). The 

climate of this area is dry, with hot summers and cold winters and the area receives most 

of the precipitation from southwest monsoons. The minimum temperature in kharif was 

from 20°C to 28°C, while in Rabi it was 18°C to 26°C and maximum temperatures of the 

area in kharif ranged from 31°C to 40°C, 28°C to 40°C during Rabi. The Dominant soils 

in the district are black and red sandy loam soils. The average annual rainfall of the district 

is 898.3 mm while the actual rainfall received during the crop-growing seasons June 2021 

to March 2022 was 1360 mm (Fig. 3.2). Detailed weather data village wise has been 

mentioned under Appendix-I. 



28 
 

 

 

Fig. 3.1. Study area map with selected mandals and villages in Karimnagar district 

 

 

 

Fig. 3.2. Average monthly maximum, minimum temperatures, and precipitation 

during growing seasons 
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3.2 Optimization of CCE Locations 

3.2.1 Selection of study area 

 

The selection of the study area was done by taking into consideration of soil, rainfall, 

digital elevation points, crop type, irrigated or rainfed, and road connectivity which have 

importance for the effective in conduct of research. 

3.2.1.1 Soil map: 

 

Based on the data from the NBSSLUP soil map for the Karimnagar district was prepared 

from the state soil map. There were four different types of soil (clay, clay skeletal, loamy, 

and loamy skeletal) were found in the study area (Fig. 3.3). The clay and clay skeletal are 

major soils that have occupied < 80 %, whereas loamy and loam skeletal are minor soils 

occupying <20 % area. Soil nutrient status details have been collected from the soil health 

card which is available on the Department of Agriculture and Farmers of low, medium 

and high. 

 

 

Fig. 3.3. Soil map for Karimnagar district 



30 
 

3.2.1.2 Rainfall map: 

 

Rainfall is considered as one of the prime inputs for the agriculture sector. Rainfall details 

for the last 20 years have been collected from CHIRPS (Climate Hazards Group Infrared 

Precipitation with Station data). The average rainfall in this area was 890 mm which 

comes under the semi-arid condition where it receives most of the rainfall during the 

southwest monsoon period (Fig. 3.4). Based on rainfall received, the entire district was 

classified into four groups i.e., < 1003 mm, 1003-1028 mm, 1028-1061 and > 1061 mm. 

A major part of the district area is under 1003-1028 mm and a minor part of the area is 

under >1061 mm. 

 

 

 

Fig. 3.4. Rainfall map for Karimnagar district 

 

3.2.1.3 Digital Elevation Map: 

 

Digital Elevation Model (DEM) is a digital representation of the elevation of the ground 

surface concerning any reference datum. Based on the DEM elevation suitable crops can 

be selected and cultivated. Based on the Digital Elevation Model study area has been 

classified into 3 classes i.e., < 252 m, 252-298 m and > 292 m (Fig. 3.5). The Major part 

of the study area falls under the elevation of > 292 m. 
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Fig. 3.5. Digital Elevation Map for Karimnagar district 

 

3.2.1.4 Crop Type Map: 

 

Crop classification and crop type maps plays a vital role in selecting the study area by 

forecasting crop yield, collection crop production statistics, facilitating crop rotation 

records, mapping soil productivity, identifying crop stress factors, and monitoring storm 

and drought damage. Crop classification and crop type map of the previous year (2020- 

21) were developed using sentinel 2 (10 m resolution) on the basis of NDVI values. Major 

crops identified were rice, maize, cotton and pulses (Fig. 3.6). The area under each class 

were mentioned below. Area of rice -rice was around 36 thousand ha, while rice -pulses 

occupy an area of 83 thousand ha, pulses/ maize-maize covers an area of 7 thousand ha. 

Rice fallow occupies and rea of 3 thousand ha and cotton fallow occupies and area of 23 

thousand ha and pulses occupy an area of 2 thousan ha. Mixed crops covers an area of23 

thousand ha and other LULC occupies an area of 36 thousand ha. There was a clear 

distinction observed between irrigated and rainfed land. For the study purpose, areas 

under single and double crop rice fields were selected irrespective of the irrigation. A 

major part of the rice grown area is under irrigated conditions due to the availability of 

canal water for irrigation. 
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Fig. 3.6. Crop type map of Karimnagar district 

 

3.2.2 Selection of villages 

 

The villages having good road connectivity and nearness to Karimnagar city were 

considered in the selection of the villages. The selected villages had variations in rainfall, 

soil and elevation. A combination of the rainfall, soil and elevation has been assessed to 

identify the homogeneity in the sites of study. During kharif, four villages (Rukmapur, 

Vedurugattu, Elbaka and Gangipalle) and in rabi four villages (Renikunta, Malkapur, 

Durshed, and Nagnur) falling in different mandals having a large area under rice were 

selected (Fig. 3.7). 
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Fig. 3.7. Selected Villages for Kharif and Rabi 

 

3.3 Ground Data Collection 

 
Ground truth data refers to information acquired on-site and it facilitates the correlation 

of visual data with real objects and materials on the ground. The acquisition of ground 

truth data allows remote sensing data to be calibrated and aids in the interpretation and 

analysis of what is being sensed. 

3.3.1 Field Visits 

Field visits have been scheduled for every 15 days according to the satellite passing time 

and prevailing weather conditions in the district. With the help of the village agriculture 

extension officers’ the fields in the villages were selected. A total of 220 ground truth 

points were collected during kharif and rabi which were used to perform supervised 

classification and for validation (Plate 1 and 2). In each field latitude and longitude points 

were acquired using GPS and LAI at different growth stages using LAI- Ceptometer. The 

major crops grown in this district in kharif were rice, whereas in rabi rice, maize and 

cotton in kharif extended to rabi season. 
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Plate 1. Ground data sample points collected during the visits 

 

 

 

Plate 2. Ground truth data points collected in selected village 



35 
 

3.3.2. Farmers Interaction 

 

During visits, the interaction with farmers was done (Plate 3) in all the selected villages. 

Fifteen fields were chosen and monitored regularly in each village at a distance of 200m 

from each field to avoid overlapping into a single pixel in the satellite image. A 

questionnaire was prepared and the data was acquired on detailed management practices 

like cultivar used, nursery sowing, transplanting, irrigation, and fertilizer application 

adopted by the farmers. A detailed questionnaire is given under Appendix II. Field ID’s 

were given according to the village name for easy identification. 

 

 

 

 

Plate 3. Interaction with farmers during field visits 

 

Kharif: 

 

In Kharif season Elbaka, Gangipalle, Rukmapur and Vedurugattu villages were selected 

for the study. Normal sowing time in Kharif for the selected villages was in July except 

in the case of Elbaka village, where early sowings were done in June. Fields having 

MTU1010 and BPT 5204 were selected as they represent medium and long duration 

varieties. Most of the farmers followed nitrogenous fertilizer recommendations ranging 

from 135 kg ha-1 to 225 kg ha-1. Phosphorous application ranged from 60 kg ha-1 to 90 kg 
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ha-1 and potassium application was from 40 kg ha-1 to 60 kg ha-1, which was more than 

the recommended dosage. A major source of irrigation is through canal and bore wells. 

Yields vary in different villages and the yields ranged from 3500-5800 kg ha-1 (Elbaka), 

3500-5800 kg ha-1 (Gangipalle), 3500-5800 kg ha-1 (Rukmapur) and 3500-5800 kg ha-1 

(Vedurugattu). 

Rabi: 

 

Durshed, Nagnur, Malkapur and Renikunta villages were selected for study as they were 

identified as the major rice growing areas in the rabi season. Nursery sowing time in these 

villages is from December 2nd fortnight to January end and transplanting is done with four 

to five-week-old seedlings in all the villages. The majority of the rice growing areas are 

under the MTU1010 variety. The source of irrigation is through canals and borewells. 

The farmers applied nitrogen fertilizer level of 135 kg ha-1 to 200 kg ha-1. The paddy 

yields varied in different villages and ranged from 4800-7000 kg ha-1 in Durshed, 4500- 

7500 kg ha-1 in Nagnur, 5500-6800 kg ha-1 in Malkapur and 4500-6500 kg ha-1 in 

Renikunta. 

3.3.3 Nitrogen Fertilizer Application 

 

During the ground data visits while interacting with the farmers the amount of nitrogen 

fertilizer applied has been collected from individual farmers. The source of nitrogen 

fertilizer for the crop is urea. The range of nitrogen fertilizer in Elbaka village was 100 

kg ha-1 to 180 kg ha-1, in Rukmapur it was 140 kg ha-1 to 180 kg ha-1, while in Vedurugattu 

it was 100 kg ha-1 to 180 kg ha-1 and in gangipalli it was 120 kg ha-1 to 180 kg ha-1. An 

average in all villages was 145 kg ha-1 except in Rukmapur it was 160 kg ha-1. 

In rabi selected villages application of 120 kg ha-1 to 200 kg ha-1 in Durshed, 140 kg ha-1 

to 180 kg ha-1 in Nagnur, 120 kg ha-1 to 180 kg ha-1 in Malkapur and 140 kg ha-1 to 200 

kg ha-1 in renikunta. The average was around 160 kg ha-1 in all the villages except 

Renikunta it was around 170 kg ha-1. 

3.3.4 Collection of Leaf Area Index (LAI) 

 

The leaf area index is defined as the leaf area of photosynthetic tissue per unit of ground 

area which is a dimensionless variable. Leaves exchange energy, carbon, and water with 
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the atmosphere thus acting as an active interface (Cutini et al. 1998). LAI is a bio-physical 

parameter that is directly related to the yield and it was considered a vital input parameter 

in many models for diagnosing the crop, grain, and biomass yield estimation. 

LAI was collected at different crop stages - transplanting, tillering, grain filling, and 

maturity stages during the kharif and rabi seasons. Accupar LP 80 ceptometer was used 

for this study as it can measure above and below-canopy. In each field, LAI was acquired 

at three different points to reduce the bias. At each point, four readings were taken to 

minimize the effects of inadvertent leaf movement. Among these, mean data was 

considered as the input. The readings were collected when the level of Photosynthetically 

Active Radiation was > 400, as the instruments cannot respond to <400 nm. Before 

obtaining readings during each visit, the devices are calibrated precisely and the LP-80 

contains a calibrated external PAR sensor, which measures PAR simultaneously above 

and below the canopy. For calibration purposes this sensor is used by the LP-80 to 

calibrate the AccuPAR probe, ensuring that the PAR response of the external sensor and 

the probe are identical. At the time of taking the readings, precautions were taken so that 

the row direction would not overlay with the sun direction by keeping the LAI Probe 

perpendicular to the row directions. Images during the LAI collection with the ceptometer 

has been mentioned below (Plate 4). 

 

 

 

Plate 4. Collection of LAI in the field using LAI Ceptometer 
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3.3.5 AccuPAR LP- 80 Ceptometer 

 

The AccuPAR model LP-80 designed by Decagon devices which is a menu-driven, 

battery-operated linear PAR ceptometer was used to measure light interception in plant 

canopies and to calculate Leaf Area Index (LAI) by non-destructive sampling (Plate 5). 

It consists of an integrated microprocessor-driven data logger and probe and the probe 

contains 80 independent sensors spaced one cm apart. The photosensors measure PAR 

(Photosynthetically Active Radiation) in the range of 400 to 700 nm waveband. The 

AccuPAR displays PAR in µmol m−2s−1. The AccuPAR can be operated in environments 

with temperatures from 0 to 50◦ C and in relative humidities of up to 100%. An added 

advantage of this instrument is that it saves time and labour, log data unattended for short 

periods, can record data up to 2000 samples which can be downloaded later with the help 

of the software LP-80. 

The LP-80 uses the following equation to calculate LAI: 
 

 

 

 

 

Where, K = extinction coefficient 

 

ƒb = beam fraction (ratio between diffuse and beam radiation) 
 

A = leaf absorptivity 

 

τ = ratio of transmitted and incident PAR 

Eq. (3.1) 
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Plate 5. Accupar Lp-80/LAI Ceptometer 

 

 

 

3.3.6 Global Positioning System (GPS) tracker 

 

Global Positioning System tracker was used during field visits for navigating and tracking 

the path (Plate 6). It also determines the exact location with latitude and longitude values 

of the location at time of the data collection. This helps in the precise collection of data. 

With this waterbody, built-up, plantations, rice crops and other crops have been pointed 

which are used during supervised classification. Using this tracker in each field three 

points are pointed for future use. 

 

 

Plate 6. GPS Tracker 
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3.4. Mapping rice areas 

3.4.1 Supervised Classification 

 

Classifying the study area districts in both Kharif and rabi seasons was done by supervised 

classification with the use of ERDAS software. Supervised classification is most 

frequently employed for quantitative analysis of remote sensing image data (Richards, 

2022). A set of training data sets that were collected during ground data collection was 

used. In supervised classification, the analyst selects and digitizes polygons (training 

areas) and places these polygons in an AOI (Area of Interest) layer from which to create 

the signature files, rather than using an automated routine to define the most separable 

classes. Knowledge of the data, and of the classes desired is required before 

classification. While doing the classification rice, other crops, built-up, waterbody, 

orchards and other LULC were identified. Maximum likelihood classification was opted 

where pixels are classified based on the probability-based rule. This equation calculates 

the statistical probability of a pixel belonging to a specific signature. 

3.4.2 Accuracy Assessment 

 

LULC mapping requires accuracy assessment which is a crucial step in the processing of 

remote sensing data because classification complexity enhances error probability 

(Congalton, 1991). It compares the classified image to ground truth data or some other 

data source deemed to be accurate. User’s accuracy, producer’s accuracy, kappa’s 

coefficient and error matrix have to be computed for determining the relevancy of the 

resultant data. Users’ accuracy refers to the likelihood that a pixel classified as belonging 

to a specific category corresponds to that category on the ground. Therefore, it measures 

the reliability of the map (Banko 1998). The producer's accuracy is determined by the 

classification accuracy of the reference pixels. It contains the error of omission, which 

refers to the portion of observed ground features that are not classified on the map. The 

Kappa Coefficient is obtained from a statistical method that evaluates the classification's 

accuracy. The formulas for user and producer accuracy were given below under eq. 3.2 

and 3.3. 

Producer’s Accuracy = 
Number of correctly classified pixels of a particular class 

𝑋 100
 

Number of reference pixels of the same class 

 
(Eq. 3.2) 
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User’s Accuracy = 
Number of correctly classified pixels of a particular class 

𝑋 100 (Eq. 3.3)
 

Number of classified pixels in the class 

 
3.4.3 ERDAS Software 

 

ERDAS Imagine is a simple raster-based software package designed specifically to 

extract information from imagery. This was created for beginners but is also capable of 

performing a wide range of activities, from fundamental classification to advanced 

customization. ERDAS IMAGINE is an all-inclusive geospatial-imaging tool for GIS 

experts that offers remote sensing, photogrammetry, LiDAR analysis, basic vector 

analysis, and satellite image processing. In addition, it provides advanced features 

including graphical data modelling, advanced image classification, point cloud 

classification, and enhanced hyperspectral capabilities. In this research, ERDAS was used 

to perform the supervised classification for both seasons and to calculate the accuracy 

assessment of the classified map. 

3.5 Yield Estimation 

 
3.5.1 DSSAT 

 

The University of Florida's developed Decision Support System for Agro-technology 

Transfer (DSSAT), which is a software application program, simulates 42 crops, 

including CERES-Barley, CERES-Maize, CERES-Rice, CERES-Sorghum, CERES- 

Sunflower, and CERES-Wheat etc., This software comprises databank management 

programs for soil, weather, crop management, experimental data, utilities, and application 

programs mentioned in plate 7. (Hoogenboom et al. 2013 and Jones et al. 2003). 

3.5.2 DSSAT – Data sets 

 

DSSAT crop models require weather, soil and crop management practices. DSSAT 

interface has been shown under Plate 7. 
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Plate 7. DSSAT User Interface 

 

a. Site data 

 

Latitude, longitude and altitude of the selected points are required for creating crop 

management file. 

b. Weather data 

 

Weather inputs such as daily maximum and minimum temperatures, rainfall, and solar 

radiation were considered as the minimum data set for the DSSAT model to simulate 

(Plate 8). Dew point temperature, wind speed, photosynthetically active radiation, 

minimum relative humidity, and vapor pressure are all optional daily inputs. For this 

study, maximum and minimum temperatures and rainfall were collected separately over 

the course of two seasons i.e., from May 2021 to May 2022 from automated weather 

stations located near the selected villages in the Karimnagar district. Solar radiation was 

computed through the Hargreaves equation using maximum and minimum temperatures. 

After the data was obtained, the weather file was prepared with the help of the 

weatherman tool present in the DSSAT. After entering the data file, it was saved with 

WTH extension with formatted text (space delimited) i.e., CSV. 
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Plate 8. Weather file creation in DSSAT 

 

c. Soil data 

 

DSSAT requires certain soil parameters for its simulation. Measured soil properties like 

soil texture (sand, silt, and clay percent), pH, EC, cation exchange capacity, nitrogen 

content, organic carbon percent, and bulk density were used as inputs, collected from 

ISRIC 2.0, which has a spatial resolution of 250 m (Plate 9). The soil component window 

is presented in Plate 8. Runoff curve number (RCN) and drainage coefficient (SWCON) 

were adjusted as per default values to simulate negligible runoff considering the study 

area has flat topography, good soil structure and moderately drained soils. With the use 

of Google Earth points field-wise data were collected for each field in depth wise i.e., 0- 

200 cm. Soil files were saved with SOL extension. Using the general soil database, 

additional characteristics such as drained upper limit, lower limit, and saturation limits 

were determined based on the soil texture pedo-transfer characteristics which are 

provided in the DSSAT models. 
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Plate 9. Soil profile data creation in DSSAT 

 

d. Crop data 

 

Crop data like the crop variety and phenological and genotypic coefficients required for 

running and calibrating the model are mentioned below. 

P1 - Time period (expressed as growing degree-days [GDD] in oC above a base 

temperature of 9oC) from seedling emergence during which the rice plant is not 

responsive to changes in photoperiod. 

P2O - Longest day length (in hours) at which the development occurs at a maximum rate. 

 

P2R - Extent to which phasic development leading to panicle initiation is delayed for each 

hour increase in photoperiod above P2O. 

P5- Time period in GDD oC-d) from the beginning of grain filling (3 to 4 days after 

flowering) to physiological maturity with a base temperature of 9oC. 

G1 - Potential spikelet number coefficient as estimated from the number of spikelets per 

g of main culm dry weight (less leaf blades and sheaths plus spikes) at anthesis. 

G2 - Single grain weight (g) under ideal growing conditions, i.e. non-limiting light, water, 

nutrients, and absence of pests and diseases. 

G3 - Tillering coefficient relative to IR64 cultivar under ideal conditions 
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e. Crop management 

 

A questionnaire was developed to collect crop management practices like cultivar, date 

of transplanting, no of hills/plant, depth of sowing, fertilizer dosage, quantity and duration 

of irrigation from the farmers (Annexure --). Most popular cultivars like MTU1010 (120 

days), BPT5204 (150 days) were selected. The package of practices followed by the 

farmers was incorporated to the model. 

3.5.3 Calibration of the model 

In the DSSAT model, cultivar-specific genetic coefficients have been calibrated the using 

GLUE (Generalized Likelihood Uncertainty Estimation) coefficient estimator, which is 

available from the latest version of DSSAT 4.5 (Plate 10). GLUE uses Monte Carlo 

sampling from prior distributions of the coefficients and a Gaussian likelihood function 

to determine the best coefficients based on the data that are used in the estimation process. 

Here parameters (Phenological and growth parameters) option was selected and 10000 

runs were chosen. After completion of selected runs program randomly generates 

parameters that are being estimated (either phenology or growth) from the prior 

distribution of parameter values and runs the model for each. Anthesis day after planting, 

physiological maturity day after planting, and yield were the three parameters fed to the 

model for creating A-file. Calibrated values that were generated were used for validation 

in the rabi season. If the statistical analysis falls under an acceptable range then the 

calibrated genotypic coefficients are accepted. 

 

 

Plate 10. Calibration of the model using GLUE 
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̅ 

3.5.4 Evaluating model using statistical measures 

The model's performance was assessed using the coefficient of determination (R2), 

absolute and normalized root mean square error (RMSE), and the Wilmot d index 

(Willmott et al. 1985), as well as modeling efficiency (ME). The RMSE and d-index 

values determine the model's ability to predict experimental data. A low RMSE and a d- 

value near one imply that the experimental data and model output are in good agreement. 

The normalized RMSE (%) represents the difference between the simulated and observed 

values. Based on the corresponding normalized RMSE (NRMSE) values of 10%, 10 - 

20%, 20 -30%, and >30%, the model simulations in this research were classified as 

excellent, decent, fair, and poor (Loague and Green, 1991). Modelling efficiency ranges 

from minus infinity to 1.0. A negative ME indicates that the mean value of the 

experimental data is a better predictor than the model, whereas a positive ME indicates 

that the model and observations match perfectly. The model performance measurements 

equations are as follows 

 

𝑛 
𝑅𝑀𝑆𝐸 = [𝑛 − 1 ∑ (Pi − Oi) 

𝑖=1 

2]
0.5 

Eq. (3.4) 

 

where Pi and Oi are the predicted and observed values, n is the number of observations 
 

∑
𝑛 (P − )² 

D Index = 1 − [ 𝑖=1 𝑖 𝑖 ] Eq. (3.5) 
∑
𝑛 [|𝑃 ′|+|𝑂 ′|]² 
𝑖=1 𝑖 𝑖 

 
Where n is the number of observations, Pi is the predicted observation, Oi is the measured 

observation, Pi = Pi− M, and Oi = Oi− M (M is the mean of the observed variable) (Garnier 

et al. 2001). 

 

[∑𝑛
 𝑛 (O −𝑂)− ∑ (P − )²] 

ME = [  =1  
𝑖 𝑖=1  𝑖 𝑖 

] Eq. (3.6) 
𝑛 

𝑖=1 
[O𝑖−𝑂]̅² 

 
Where Pi, Oi are the predicted and observed values, n is the number of observations, and 

𝑂̅ is the mean of the observed variable. 

 

3.6 Derivation of Remote sensing products 

 
With the use of the Google Earth Engine code editor filter date was applied by the ground 

visit dates which were scheduled as per the satellite passing dates. An interval of 15 days 

∑ 
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was taken for collecting satellite images for generating the satellite images i.e., kharif 

season June 1st fortnight to November 2nd fortnight and during rabi December 1st fortnight 

to April 1st fortnight. The dates were used to collect the satellite images for LULC 

generation during Kharif season were Remote sensing products like VV, VH, and 

VH/VV were derived from sentinel 1 and whereas from sentinel 2 Red (Band 4), NIR 

(Band 8), and NDVI were derived. These derived products were then compared with the 

field LAI to identify the correlation. Among these products, based on their correlation to 

the field LAI, NDVI was used for deriving the spatial LAI map by integrating with the 

DSSAT output. 

3.6.1 Satellites used 

 

Using (Google Earth Engine) GEE as a platform, satellite images were used for the study 

purpose. 

Sentinel-1 

 

Sentinel-1 is a Synthetic Aperture Radar (SAR) mission that provides continuous all- 

weather, day-and-night images in C-band (center frequency: 5.405 GHz) in four imaging 

modes with different spatial resolutions and coverages. Sentinel-1A was launched by the 

European Copernicus program on 3rd April 2014 and sentinel B on 25th April 2015. The 

eventual two satellite constellations can deliver a six-day repeat cycle at the equator. This 

is the first of the five missions that the ESA is developing for the Copernicus initiative. 

Sentinel-1 data are useful for mapping non-rice crops in the absence of optical data 

identification since they are all-weather capability, have a high spatial resolution (up to 

10 m), and are publicly accessible (Jain et al. 2019; Milesi and Kukunuri, 2022 and 

Gumma et al., 2024). Sentinel- 1(SAR) data can be acquired by default in 

Interferometric Wide swath (IW) mode with dual-polarization. 

Sentinel-2 

 

Sentinel-2 is a Copernicus Program Earth observation mission that captures optical 

images at high spatial resolution (10 m to 60 m) over land and coastal areas, which ensures 

capture with a high revisit frequency of 5 days. Currently, the mission consists of two 

satellites, Sentinel-2A and Sentinel-2B; a third satellite, Sentinel-2C, is undergoing 

testing in preparation for its launch in 2024. Monthly maximum NDVI with cloud 
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screening for the months of June to November 2021 and December 2021 to April 2022 

were collected using data from sentinel-2 bands 4 (red wavelength) and 8 (NIR 

wavelength), both at a spatial resolution of 10m. Using the monthly Sentinel-2 NDVI 

data, the cropland mask generated from the additional data was refined in the study 

district. 

Table 3.1: Details of sentinel 1 and sentinel 2 

 

 
Sentinel 1 Sentinel-2 

Spectral range 3.75-7.5cm 0.47-0.6 μm 

Resolution 5 m X 20 m 10, 20, 60 m 

Orbital altitude 693 km 786 km 

Sensor complement C-SAR MSI 

wavelength 1cm to 1mm 1 micron 

Bands VV, VH Red (Band 4) and NIR (Band 8) 

 

 

 

3.6.2 NDVI: 

NDVI measures the difference between red (which vegetation absorbs) and near-infrared 

light (which vegetation significantly reflects). NDVI reflects the greenness of a pixel, 

which plays a significant role in the distinction of cropland from others. NDVI values 

between 0.2 and 0.4 signify the area with sparse vegetation, 0.4 to 0.6 indicates moderate 

vegetation, and above 0.6 indicates a high density of greenness. The range of NDVI 

ranges from -1 to +1, and values closer to +1 indicate high greenness. NDVI can be 

computed by Eq 3.7 

NDVI= (NIR - Red) / (NIR + Red) Eq. (3.7) 
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3.6.3 Arc Map 10.7.1 

 

In addition to mapmaking and map-based analysis, ESRI®ArcMap is the program for 

creating and modifying geographic and tabular data, as well as mapmaking. ArcMap's 

single-user interface permits the editing of shapefiles, coverages, and geodatabases. 

ArcMap has sophisticated CAD-based editing capabilities that enable the rapid and 

efficient creation of features while maintaining the spatial integrity of GIS data. Common 

map elements comprise the data frame comprising map layers for a defined extent in 

addition to a scale bar, north arrow, title, descriptive text, a symbol legend, etc. 

In this research, the integration of remote sensing data with the DSSAT crop model which 

was used for the spatial distribution of yield and LAI was carried out using Arc Map. 

3.6.4 Google Earth Engine 

 

Google Earth Engine (GEE) is a robust web platform for large-scale cloud-based remote 

sensing data processing. It compiles the world's satellite imagery, trillions of scientific 

measurements dating back nearly four decades and makes it accessible online with 

techniques for scientists, research groups, and nations to mine this massive repository of 

data to detect changes, map trends, and quantify differences on the Earth's surface. 

Applications include identifying deforestation, identifying land cover, measuring forest 

biomass and carbon, and mapping roadless regions of the planet. The GEE computing 

engine offers JavaScript and Python APIs, allowing developers to design parallel 

algorithms easily. GEE contains USGS-processed Landsat 4, 5, 7, and 8 data, several 

MODIS products, including global composites, and Sentinel-1, 2, and 3-satellite imagery. 

The Code Editor (code.earthengine.google.com) is a web-based IDE for writing and 

implementing scripts. Components of GEE were depicted in Plate 11. 

In this study, the Google Earth engine was used to download the satellite images during 

the respective period for performing supervised classification for both the kharif and rabi 

seasons. GEE was also used in deriving remote sensing products like NDVI which has 

been mentioned in detail under Appendix –III and Appendix- IV to integrate with the 

crop model. 
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Plate 11. Components of Google Earth Engine 
 

 

 

 

 

 

 

Fig.3.8 Schematic diagram for calculating the spatial rice yield estimation using RS 

data integrating with the simulation model 



51 
 

3.7 Integration of remote sensing data with crop model data to 

estimate optimized rice yields 

The other vegetation and ambiguous areas were hidden by applying the rice mask from 

the crop map created using the supervised classification. By setting the NDVI threshold 

above 0.4, the noise in the identified rice mask was minimized and utilized in the 

subsequent step of determining the geographical distribution of yield. Figure 3.8 

illustrates the methods employed to incorporate Remote Sensing products into the model 

for spatial yield distribution over the entire district. 

3.7.1 Comparison of field LAI to model LAI: 

 

To evaluate the model efficiency in estimating LAI, model LAI has been compared with 

the field LAI. Once a good relation and linear relation have been obtained integrating 

model LAI with NDVI derived from remote sensing has been done. 

3.7.2 Comparison of NDVI to model simulated LAI: 

 

LAI from the DSSAT model has been compared with the NDVI derived from remote 

sensing on the basis of corelation between them. 

3.7.3 Generation of spatial rice LAI map: 

 

On the basis of the linear regression generated among the model LAI and NDVI , a spatial 

LAI map was generated for the Karimnagar district . 

3.7.4 Generation of spatial rice Yield map: 

 

Spatial rice yield map was generated on the basis of the relation between the model 

simulated LAI and yield. The linear equation generated from the correlation was applied 

to the spatial LAI map to generate a spatial rice yield map. 

3.8 Validation of the estimated yield 

 
The estimated yield obtained from running the DSSAT model was compared with the 

district-level government yield statistics for the respective seasons to know the accuracy 

of the model. 
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Chapter IV 

 

RESULTS 

This chapter describes the experimental findings of the research conducted on 

"Assimilation of Remote Sensing Data into Crop Simulation Models for Rice Yield 

Estimation in Karimnagar District," during Kharif 2021 and rabi seasons of 2021-22. The 

outcomes of this research were presented in the form of tables, graphs, and photographs. 

This chapter seeks to examine and explain the main observations and conclusions of the 

current study. 

4.1 Optimization of CCE Locations 

 
4.1.1 Selection of Study Area 

 

As mentioned earlier (chapter 3) crop-cutting experiment locations were optimized in the 

Karimnagar district based on the factors like soil maps, rainfall maps, crop type map and 

elevation points. Taking these factors in to consideration villages were selected which 

were Elbaka, Gangipalli, Vedurugattu and Rukmapur in kharif season and Durshed, 

Nagnur, Renikunta and Malkapur in rabi season. In all the selected villages soil types, 

rainfall were different. 

4.1.2 Crop Cutting Experiments 

 

In the selected villages during both season’s crop-cutting experiments were conducted in 

the selected farmers’ fields in an area of 5m*5m area which was plotted in the selected 

fields where the plants were cut and the grain was separated from the panicles (Fig. 4.3). 

The grain weight was taken and its moisture content was measured and the grain weight 

was adjusted to 14%. This weight was considered as the observed grain yield. 
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Plate 12: Crop cutting experiments performed in the selected villages 

 

 4.1.2.1 Kharif season 

 

The data of the crop-cutting experiments showed a depicts grain yield variations. During 

the kharif season the grain yield ranged from 4000 to 5900 kg ha-1. And the average kharif 

yield among all the villages studied was 5321 kg ha-1. 

In Elbaka village, the lowest grain yield was observed in EL6 i.e., 4300 kg ha-1 while the 

highest was recorded in EL2 site (5800 kg ha-1). The difference between the highest and 

lowest grain yields was around 1500 kg ha-1. The average grain yield observed was 5333 

kg ha-1 (Table 4.9). In Vedurugattu village, the observed yields ranged from 5200 kg ha- 

1 to 5900 kg ha-1 with a deviation of 700 kg ha-1. The highest was observed under the VE6 

field ID while the lowest was noticed under VE2. On an average, the grain yield of this 

village was 5512 kg ha-1 (Table 4.10). 

In Rukmapur village, the highest grain yield recorded was 5750 kg ha-1 in site RU9 and 

the lowest the lowest was observed in site RU5 (4800 kg ha-1 ) with a grain yield deviation 

of 950 kg ha-1. The average grain yield of this village was 5261 kg ha-1 (Table 4.11). The 

highest grain yield of 5700 kg ha-1 in Gangipalli was recorded at the GA8 site while the 

lowest grain yield was noticed at the GA2 site (4400 kg ha-1) with a deviation in grain 

yield of 1300 kg ha-1. On average, the grain yield of Gangipalli was 5178 kg ha-1 (Table 

4.12). 
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4.1.2.2 Rabi season 

 

As like in Kharif season, in the rabi season also the crop cutting experiments were 

performed in study villages - Durshed, Nagnur, Malkapur and Renikunta. Among all the 

villages, the observed grain yields were varying from 4000 kg ha-1 to 7400 kg ha-1. On 

an average, rabi grain yield among all the villages was 6436 kg ha-1. Individual village 

wise grain yields are mentioned in Tables 4.13 to 4.16. 

In Durshed village, the highest grain yield of 7000 kg ha-1 was observed at the DU1 site, 

while the lowest was noticed at the DU6 site with a grain yield of 5600 kg ha-1. A 

deviation of 1400 kg ha-1 was observed between higher and lower grain yield. An average 

grain yield of 6160 kg ha-1 was recorded in Durshed village (Table 4.13). 

In Nagnur village, the highest grain yield was noticed at the NA9 site (7200 kg ha-1) and 

the lowest grain yield was observed at the NA7 site (4000 kg ha-1) with a deviation of 

3200 kg ha-1. The difference in grain yield between the highest and lowest was large due 

to a pest attack at the NA7 site. On average, 6327 kg ha-1 grain yield was recorded in this 

village (Table 4.14). 

The average yield of Malkapur village was 6500 kg ha-1 (Table 4.15) with the lowest 

grain yield of 5900 kg ha-1 at the MA12 site while the highest grain yield was recorded at 

the MA1 site (6900 kg ha-1). There was a deviation of 1000 kg ha-1 between the highest 

and lowest grain yield. 

In Renikunta village, the highest grain yield was noticed at the RE12 site (7100 kg ha-1) 

while the lowest grain yield was recorded at the RE3 site (6400 kg ha-1) with an average 

grain yield of 6758 kg ha-1 (Table 4.16). There was a deviation in grain yield of 700 kg 

ha-1 between higher and lower grain yield recorded in the village. 

From the above results it can be noted that yields vary in each village and village to village 

due to the adoption of different packages of practices like different times of sowing and 

transplanting time and levels of fertilizer application and irrigation. 

4.2 LAI Estimation using LAI ceptometer 

Using Accupar LP-80 ceptometer Leaf Area Index readings in the respective selected 

fields in the villages were collected during the ground data collection. Visits were planned 

so that all the growth stages were covered and a complete LAI trend could be obtained. 
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4.2.1 LAI of the rice crop during the Kharif season 

During the Kharif season, Rukmapur, Vedurugattu, Elbaka and Gangipalli villages were 

selected for the study. Medium duration cultivar MTU1010 was grown in the major area 

and BPT-5204 a long duration variety to some extent. During the visits, time (i.e., 

September 6th, September 15th, October 1st, and October 21st) crops are under tillering, 

heading, flowering and maturity stages. In medium duration cultivar, the LAI readings 

ranged between 3.2 to 5.0 during the flowering stage (60-70 Days after transplanting, 

DAT), 4.01 to 4.5 at the grain formation stage, and 2.5 to 3.3 during the maturity stage. 

In long-duration cultivar BPT -5204, the LAI ranged between 4.8 to 5.2 during the 

heading stage and 3.0 to 3.9 during the maturity stage. It has been observed that after the 

peak vegetative phase, LAI declines because of the drying of the leaves (Chandrashekar 

et al. 2001). Maximum LAI recorded through the ceptometer for individual villages were 

presented in tables 4.1 and 4.2. Maximum LAI recorded was ranging from 3.5 to 4.8 

under different villages. 

Table 4.1 Maximum LAI recorded through ceptometer and DSSAT model in Elbaka 

(EL) and Vedurugattu (VE) village 

 

Field ID 
Ceptometer 

Max LAI 

Model 

Max LAI 
Field ID 

Ceptometer 

Max LAI 

Model 

Max LAI 

EL1 4.8 4.9 VE1 4.7 4.3 

EL2 4.8 4.7 VE2 5 5.1 

EL3 4.4 4.3 VE3 4.6 4.7 

EL4 4.5 4.6 VE4 4.4 4.1 

EL5 4.5 4.6 VE5 4.6 4.3 

EL6 3.6 3.9 VE6 4.1 4.3 

EL7 4.4 4.2 VE7 4.3 4.1 

EL8 4.1 4.0 VE8 4.4 4.3 

EL9 4.5 4.3 VE9 4.7 5.0 

EL10 4.8 4.6 VE10 4.7 4.9 

EL11 4.4 4.0 VE11 4.6 4.2 

EL12 4.5 4.2 VE12 4.6 4.6 
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Table 4.2 Maximum LAI recorded through ceptometer and DSSAT model in 

Rukmapur (RU) and Gangipalli (GA) village 

 

Field ID 
Ceptometer 

Max LAI 

Model 

Max LAI 

 

Field ID 
Ceptometer 

Max LAI 

Model 

Max LAI 

RU1 4.1 3.9 GA1 4.4 4.2 

RU2 4.0 3.5 GA2 3.5 3.0 

RU3 4.1 3.8 GA3 3.8 3.8 

RU4 4.0 3.7 GA4 3.9 4.1 

RU5 4.0 4.0 GA5 3.6 3.4 

RU6 4.6 4.5 GA6 4.7 4.5 

RU7 4.1 3.8 GA7 4.0 4.0 

RU8 3.9 4.0 GA8 4.7 4.1 

RU9 4.8 4.7 GA9 4.0 4.1 

RU10 4.2 4.0 GA10 3.8 3.9 

RU11 4.2 4.4 GA11 3.7 3.8 

RU12 4.8 4.5 GA12 4.7 4.6 

RU13 4.8 5.0 GA13 3.8 3.8 

RU14 4.6 4.8 GA14 4.7 4.6 

RU15 4.5 4.7 
   

 

4.2.2 LAI of the rice crop during Rabi season 

During the Rabi season four villages - Renikunta, Malkapur, Durshed and Nagnur were 

selected for sample collections. During this season, only medium duration variety MTU 

1010 was grown popularly. Visits were made on January 27th, February 17th, March 8th, 

and April 8th which coincided with crop growth stages of transplanting, maximum 

tillering, grain filling, and maturity stages. The LAI readings during the maximum 

tillering stage ranged from 4.6 to 6.1, at the flowering stage, it ranged from 4.1 to 5.6 and 
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near to maturity stage it was 2.2 to 3.5. The maximum LAI recorded with the ceptometer 

and the LAI simulated with the model was 3.4 to 6.1 in different villages (Table 4.3 and 

4.4). 

Table 4.3 Maximum LAI recorded through ceptometer and DSSAT model in 

Durshed (DU) and Malkapur (MA) village 
 

Field ID 
Ceptometer 

Max LAI 

Model 

Max LAI 
Field ID 

Ceptometer 

Max LAI 

Model 

Max LAI 

DU1 5.8 6.4 MA1 5.9 5.9 

DU2 5.6 5.8 MA2 5.6 5.6 

DU3 5.5 5.8 MA3 5.6 5.6 

DU4 4.6 5.4 MA4 5 5 

DU5 4.7 5.5 MA5 5.6 5.6 

DU6 4.6 5 MA6 5.7 5.7 

DU7 5 5.7 MA7 5.4 5.4 

DU8 5 5.6 MA8 5.3 5.3 

DU9 5 5.5 MA9 5.5 5.5 

DU10 4.7 5.4 MA10 5.6 5.6 

DU11 5.5 5.8 MA11 5.5 5.5 

DU12 5 5.8 MA12 5 5 

DU13 5.1 5.7 MA13 5.7 5.7 

DU14 5 5.5 
   

DU15 5.1 5.8 
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Table 4.4 Maximum LAI recorded through ceptometer and DSSAT model in 

Renikunta (RE) and Nagnur (NA) village 

 

Field 

ID 

Ceptometer 

Max LAI 

Model Max 

LAI 
Field ID 

Ceptometer 

Max LAI 

Model 

Max LAI 

RE1 5.9 6.2 NA1 5.9 6.2 

RE2 6 6.2 NA 2 5.7 2.7 

RE3 6 6.2 NA 3 5.6 6.2 

RE4 5.8 6 NA 4 3.4 3.1 

RE5 5.8 6.2 NA 5 5.5 6.3 

RE6 6.1 6.4 NA 6 5.6 6.3 

RE7 5.5 6 NA 7 3.2 2.6 

RE8 5.5 6.1 NA 8 5.7 6.3 

RE9 5.9 5.9 NA 9 6.2 6.5 

RE10 5.8 6.4 NA10 5.8 6.1 

RE11 5.5 5.9 NA11 5.8 6.2 

RE12 5.5 6 
   

 

 

4.3 Mapping of Rice Growing Areas 

 
Supervised classification has been performed using ERDAS Imagine and ARC GIS for 

classifying the satellite data as used by different scientists (Patil et al. 2012, Abiy and 

Suryabhagavan 2016 and Rwanga and Ndambuki 2017). 

4.3.1 Supervised classification 

 

The supervised classified map of Karimnagar district during the kharif season was 

depicted in fig. 4.1. The area of the different class categories in both the seasons obtained 

from supervised classification were given in table 4.5. From the classified map in the 

kharif season, the largest area was occupied by rice with 143 thousand ha and other LULC 

occupied 43 thousand ha. Water bodies and built-up occupy an area of 1 thousand ha 
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each, while other crops and orchards occupy an area of 5588 ha and 2154 ha respectively. 

An overall accuracy of 93.04 % was observed with a kappa coefficient of 0.89. During 

the rabi season, rice occupied an area of 114166 ha, while other 

covers an area of 54047 ha. Other crops in the rabi season include maize and pulses 

which are grown in an area of 28418 ha. Waterbody and built-up areas each occupy 95 

thousand and 86 thousand ha respectively. 

 

 

Fig. 4.1 Mapping of rice area in Karimnagar District during Kharif 2021 

 

The total rice area in Karimnagar district during kharif in the classified map was 143 

thousand ha which was compared with the area given by government statistics of 

Telangana was 147 thousand ha (https://agri.telangana.gov.in/). In the rabi season the 

cultivated rice area resulted from the classified map was 114 thousand ha while the rice 

area given by Telangana government statistics was 130 thousand ha. 

https://agri.telangana.gov.in/
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Table 4.5 Area of the respected classes from the classified map during Kharif 

season 
 

Class Name Kharif Area (ha) Rabi Area (ha) 

Rice 146602 114166 

Other Crop 5588 28418 

Orchards 2154 3049 

Waterbody 10566 9582 

Builtup 10041 8689 

Other LULC 43000 54047 

 

 

Supervised classification for rabi is mentioned below under Fig.4.2. The supervised 

classification map shows that the light green color denotes rice-growing areas, whereas 

the dark green color indicates other crops such as cotton and maize. 

 

 

 

Fig. 4.2 Mapping of the rice area in Karimnagar District during Rabi 2021 
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The dark blue color represents the body of water, while the red color represents the built- 

up. Pink color represents orchards. The grey color in the categorized map depicts places 

having various LULC classes such as forest area wasteland, and scrubland, among others. 

4.3.2 Accuracy assessment 

 

Accuracy assessment was performed for both the season’s supervised classification 

images to know the level of accuracy and identify the errors. It involves the comparison 

of a place on the classified map against the Google Earth map or reference data for the 

same site. Agreement of classification with the ground data was measured by means of 

overall accuracy and kappa statistics. A total of 220 ground data points were collected 

during kharif season and in that 156 points were used for training and 64 points were used 

for validation during kharif season, while in rabi season a total of 200 ground data points 

were collected and out of that 131 samples were used for training and 69 were used for 

validation durng rabi season. From the classified map, during Kharif season it can be seen 

that good accuracy has been obtained in terms of users and producers with a kappa 

coefficient of 0.89. An overall accuracy of 94.23% (Table 4.6) has been obtained. 

Table 4.6 Confusion Matrix showing classification accuracy of Karimnagar district 

during Kharif 2021 

 

Classified Rice Other 

crops 

Orch 

ards 

Water 

body 

Built 

up 

Other 

LULC 

Total 

s 

Users 

accura 

cy (%) 

Rice 95 0 0 0 1 2 98 96.94 

Other 

crops 
0 6 1 0 0 0 7 85.71 

Orchards 0 1 7 0 0 0 8 87.5 

Waterbody 0 0 0 11 0 0 11 100 

Built up 0 0 0 0 18 0 18 100 

Other 

LULC 
3 0 0 0 1 10 14 71.43 

Totals 98 7 8 11 20 12 156  

Producers 

accuracy 

(%) 

96.9 

4 

 

85.71 

 

87.5 

 

100 

 

90 

 

83.33 

  

Overall accuracy (OA) 94.23% 

Kappa coefficient 0.899 
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For the rabi season, classified map accuracy assessment was performed using the same 

methodology as that of Kharif and it was observed that overall accuracy of 88.5% and a 

kappa coefficient of 0.85 has been obtained for the supervised classification map using 

the ERDAS imagine (Table 4.7). 

Table 4.7. Confusion Matrix showing classification accuracy of Karimnagar district 

during Rabi 2021-22 

 

 

Classified 

 

Rice 

 

Other 

crops 

 

Orchar 

ds 

 

Water 

body 

 

Built 

up 

 

Other 

LULC 

 

Tota 

ls 

Users 

accuracy 

(%) 

Rice 49 2 0 0 0 0 51 96.08 

Other 

crops 
1 16 0 0 0 0 17 94.12 

Orchards 1 4 15 0 0 0 20 75 

Waterbody 0 0 0 14 0 1 15 93.33 

Built up 1 0 0 0 12 2 15 80 

Other 

LULC 
2 0 0 0 1 10 13 76.92 

Totals 54 22 15 14 13 13 131  

Producer’s 

accuracy 

(%) 

90.7 

4 

 

72.73 
 

100 
 

100 
 

92.31 
 

76.92 

  

Overall accuracy (OA) 88.5% 

Kappa coefficient 0.85 

 

 

4.4 Yield Estimation 

 

4.4.1 Calibration of the model 

 

Model calibration or parameterization is the adjustment of parameters to the local 

conditions so that simulated values compare well with the observed ones (Timsina and 

Humphreys, 2006). Calculating the genetic coefficient of cultivars is the first step in the 

conventional use of the CERES models. The DSSAT model has been calibrated with 

GLUE (Generalized Likelihood Uncertainty Estimation). Model calibration has been 

done using the kharif season data which was collected during the ground data. Data used 
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for calibration includes the sowing date, anthesis day, grain yield, straw yield and 

maximum LAI. After running the model with the specific number of runs (i.e., 10000) 

for the selected cultivar i.e., MTU1010 model generated cultivar coefficients. As they are 

in the acceptable range of statistical analysis the calibrated coefficients were considered 

for further usage. In this research the model generated calibrated values for the MTU 

1010 cultivar were used (Table 4.8). 

Table 4.8 Calibrated values for the MTU1010 cultivar 

 

Genetic 

Parameters 

 

Description 

Coefficients 

for MTU 

1010 

 

 

 

G1 

Time period (expressed as growing degree days [GDD] 

in ◦C above a base temperature of 9 ◦C) from seedling 

emergence during which the rice plant is not responsive 

to changes in photoperiod. This period is also referred 

to as the basic vegetative phase of the plant 

 

 

 

440 

 

 

P2O 

 

Critical photoperiod or the longest day length (in hours) 

at which the development occurs at a maximum rate. At 

values higher than P20 developmental rate is slowed, 

hence there is a delay due to longer day lengths 

 

 

165 

 

P2R 

The extent to which phasic development leading to 

panicle initiation is delayed (expressed as GDD in ◦C) 

for each hour increase in photoperiod above P20 

 

350 

 

P5 
The time period in GDD (◦C) from the beginning of 

grain filling (3–4 days after flowering) to physiological 

maturity with a base temperature of 9 ◦C 

 

12 

 

G1 

Potential spikelet number coefficient as estimated from 

the number of spikelets per g of main culm dry weight 

(less lead blades and sheaths plus spikes) at anthesis. A 

typical value is 55 

 

60 

 

G2 
Single grain weight (g) under ideal growing conditions, 

i.e. non-limiting light, water, nutrients, and absence of 

pests and diseases 

 

.0240 
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G3 
Tillering coefficient (scalar value) relative to IR64 

cultivar under ideal conditions. A higher tillering 

cultivar would have a coefficient greater than 1.0 

 

1.0 

 

 

 

G4 

Temperature tolerance coefficient. Usually 1.0 for 

varieties grown in normal environments. G4 for 

japonica type rice growing in a warmer environment 

would be 1.0 or greater. Likewise, the G4 value for 

indica type rice in very cool environments or seasons 

would be less than 1.0 

 

 

 

1.0 

 

 

4.4.2 Simulation of rice grain yield and comparison with the observed yields 

 

DSSAT crop simulation model was used for rice yield estimation in both kharif and rabi 

seasons. Different weather files, soil files and X-build files were created for the chosen 

villages as the selected farmers followed varied packages of practices like sowing and 

transplanting date and quantity of fertilizers applied. After running the model, the 

deviation between simulated and observed grain yields was worked out by comparing it 

with the observed yields that were recorded from the crop-cutting experiments. 

 4.4.2.1 Kharif rice grain yields 

 

In Kharif season, the simulated yields with the deviation from observed rice grain yields 

of the selected villages - Elbaka, Gangipalli, Vedurugattu and Rukmapur are given in 

Tables 4.9, 4.10, 4.11 and 4.12. On an average the simulated grain yield in kharif was 

5339 kg ha-1. 

In Elbaka village, highest grain yield (5982 kg ha-1) was noticed at the EL1 site, while the 

lowest grain yield was observed at EL6 site (4218 kg ha-1) with a deviation in grain yield 

of 1764 kg ha-1 (Table 4.9.) On comparison of observed and simulated grain yields, there 

was deviation of 8.5 kg ha-1 to 434 kg ha-1 with an average of observed grain yield of 

5348 kg ha-1 and simulated grain yield of 5397 kg ha-1. 
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Table 4.9 Observed and simulated rice grain yields in Elbaka village 

 

Field 

ID 

Observed Yields, 

kg ha-1
 

Simulated Yields, 

  kg ha-1
 

Deviation in yield, 

kg ha-1
 

 EL1  5700 5982 282 

EL2  5800   5804  4 

 EL3  5400 5325 -75 

EL4  5600   5492  -108 

 EL5   5600   5500  -100 

EL6  4300   4218  -82 

 EL7   5100   5339  239 

EL8  4700   5000  300 

 EL9   5400   5459  59 

EL10  5400   5866  466 

EL11  5400   5307  -93 

EL12  5600   5483  -117 

 

Highest grain yield (6018 kg ha-1) was observed at VE9 site inVedurugattu village, while 

the lowest was noticed at VE7 site with yield of 5046 kg ha-1 (Table 4.10). Among all the 

fields, a deviation in grain yield ranged between 35 kg ha-1 to 268 kg ha-1 with a mean of 

observed and simulated grain yield of 5525 kg ha-1 and 5512 kg ha-1. 

Table 4.10 Observed and simulated rice grain yields of Vedurugattu village 

 

Field ID 
Observed Yields, 

kg ha-1
 

Simulated Yields, 

kg ha-1
 

Deviation in grain yield, 

kg ha-1
 

VE1  5600   5436  164 

VE2 5950 6001 -51 

VE3  5500   5763  -263 

VE4  5300   5160  140 

VE5  5500   5426  74 

VE6  5250   5427  -177 

VE7  5300   5046  254 

VE8  5400   5365  35 

VE9  5750   6018  -268 

VE10  5700   5813  -113 

VE11  5400   5204  196 

VE12  5500   5644  -144 

 

A deviation between the observed and simulated grain yield ranged between 54 kg ha-1 

and 286 kg ha-1. It can be observed from the results that in Rukmapur village highest grain 
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yield of 6221 kg ha-1 was noticed at RU13 site, while the lowest was recorded at RU7 site 

with a grain yield of 4784 kg ha-1. On an average, the observed and simulated grain yield 

in Rukmapur village was 5261 kg ha-1 and 5264 kg ha-1 respectively (Table 4.11). 

Table 4.11 Observed and simulated rice grain yields of Rukmapur village 

 

Field ID 
Observed Yields, 

kg ha-1
 

Simulated Yields, 

kg ha-1
 

Deviation in grain yield, 

kg ha-1
 

RU1  5100   4993  107 

RU2 4900 4580 320 

RU3  5100   4814  286 

RU4  4900   4616  284 

RU5  4800   5000  -200 

RU6  5500   5537  -37 

RU7  5000   4784  216 

RU8  5000   5187  -187 

RU9  5750   5674  76 

RU10  5125   5179  -54 

RU11  5250   5495  -245 

RU12  5750   5524  226 

RU13  5750   6221  -471 

RU14  5500   5737  -237 

RU15  5500   5631  -131 

 

In Gangipalli village, the highest grain yield was noticed at GA14 site with a grain yield 

of 5668 kg ha-1, while the lowest was observed at GA2 site with a grain yield of 4141 kg 

ha-1 (Table 4.12). In this village, a deviation in observed and estimated grain yield ranged 

between 18 kg ha-1 and 266 kg ha-1. On an average, the simulated grain yield was 5174 

kg ha-1, while the observed grain yield was 5168 kg ha-1. 

Table 4.12 Observed and simulated rice grain yields of Gangipalli village 

 

Field ID Observed Yields, 

kg ha-1
 

Simulated Yields, 

kg ha-1
 

Deviation in grain 

yield, 

kg ha-1
 

GA1  5400   5330  -70 

GA2 4400 4141 -259 

GA3  4900   4986  86 

GA4  5100   5284  184 

GA5  4800   4597  -203 

GA6  5600   5549  -51 

GA7  5200   5184  -16 
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GA8 5700 5359 -341 

GA9 5200 5361 161 

GA10 5100 5190 90 

GA11 4700 4964 264 

GA12 5700 5668 -32 

GA13 5100 5081 -19 

GA14 5600 5668 68 

 

4.4.2.2 Rabi Rice Grain Yields 

In rabi season, four villages - Durshed, Nagnur, Renikunta and Malkapur were selected 

for the study and the yields were simulated by using the model. The observed grain yields 

obtained from the crop cutting experiments were compared with the model simulated 

grain yields to find the deviation between them and to know the model accuracy in 

estimating the grain yield under varying management conditions. On an average the 

simulated grain yields in rabi was 6858 kg ha-1. 

In Durshed village, the highest grain yield of 7479 kg ha-1 was noticed at DU1 site, while 

the lowest of 6000 kg ha-1 was obtained at DU6 site with a deviation in grain yield of 

1479 kg ha-1 (Table 4.13). The deviation between observed and simulated yields ranged 

between 300 kg ha-1and 600 kg ha-1 with an average observed yield of 6160 kg ha-1 and 

simulated grain yield of 6630 kg ha-1. 

Table 4.13 Observed and simulated rice grain yields of Durshed village 
 

Field ID 
Observed Yields, 

kg ha-1
 

Simulated Yields, 

kg ha-1
 

Deviation in grain 

yield, kg ha-1
 

DU1  7000   7479   479  

DU2 6500 6863 363 

DU3  6400   6800   400  

DU4  5700   6200   500  

DU5  5800   6400   600  

DU6  5600   6000   400  

DU7  6000   6600   600  

DU8  6000   6600   600  

DU9  6100   6500   400  

DU10  5800   6300   500  

DU11  6500   6800   300  

DU12  6300   6833   533  

DU13  6300   6680   380  

DU14  6100   6500   400  
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DU15 6300 6900 600 

In Nagnur village, the highest grain yield was noticed at NA9 site with grain yield of 8177 

kg ha-1, while the lowest was observed at NA7 site with grain yield of 3271 kg ha-1 (Table 

4.14). Deviation in observed grain yield ranged from 459 kg ha-1 to 977 kg ha-1 among 

the fields. The average simulated grain yield was 6740 kg ha-1, while the average observed 

grain yield was 6327 kg ha-1. 

Table 4.14 Observed and simulated rice grain yields of Nagnur village 

 

Field ID 
Observed Yields, 

kg ha-1
 

Simulated Yields, 

kg ha-1
 

Deviation in grain 

yield, kg ha-1
 

NA1  6900   7437  537 

NA 2 6700 7281 581 

NA 3  6600   7307  707 

NA 4  4500   4041  -459 

NA 5  6600   7388  788 

NA 6  6700   7319  619 

NA 7  4000   3271  -729 

NA 8  6800   7319  519 

NA 9  7200   8177  977 

NA10  6800   7281  481 

NA11  6800   7319  519 

 

In Malkapur village, the highest grain yield observed was 7100 kg ha-1 at MA13 site, 

while the lowest grain yield was noticed at MA12 site (6100 kg ha-1). Among all the 

fields, a deviation of 183 kg ha-1 to 418 kg ha-1 was recorded among the observed grain 

yields with a mean of observed and simulated grain yield of 6500 kg ha-1 and 6717 kg ha- 

1 respectively (Table 4.15). 

Table. 4.15 Observed and simulated rice grain yields in Malkapur 

 

Field ID 
Observed Yields, 

kg ha-1
 

Simulated Yields, 

kg ha-1
 

Deviation in grain 

yield, kg ha-1
 

MA1 6900 6500 -400 

MA2 6500 6317 -183 

MA3 6500 6831 331 

MA4 6500 6800 300 

MA5 6700 7081 381 

MA6 6700 6932 232 
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MA7 6300 6600 300 

MA8 6200 6544 344 

MA9 6500 6918 418 

MA10 6500 6800 300 

MA11 6500 6800 300 

MA12 5900 6100 200 

MA13 6800 7100 300 

 

In Renikunta village, the highest grain yield of 7438 kg ha-1 was noticed at RE2 site, while 

the lowest was recorded at RE12 site (7107 kg ha-1). Deviation between the observed and 

simulated grain yield ranged between 334 kg ha-1 to 781 kg ha-1. The average observed 

and simulated grain yields in the village were 6758 kg ha-1 and 7345 kg ha-1 respectively 

(Table 4.16). 

Table 4.16 Observed and simulated rice grain yields in Renikunta 

 

Field ID 
Observed Yields, 

kg ha-1
 

Simulated Yields, 

kg ha-1
 

Deviation in grain yield, 

kg ha-1
 

RE1  6900   7316   416  

RE2 7000 7438 438 

RE3  7100   7434   334  
  

RE4  6800   7294   494  

RE5  6800   7395   595  

RE6  7000   7617   617  
  

RE7  6500   7281   781  

RE8  6500   7269   769  

RE9  6800   7294   494  

RE10  6800   7516   716  
  

RE11  6500   7182   682  

RE12  6400   7107   707  

 

 

4.4.3 Evaluation of the DSSAT model 

 

4.4.3.1 Kharif 

 

Observed yields across the selected villages in Karimnagar ranged from 4100 kg ha-1 to 

5800 kg ha-1, whereas the simulated yields ranged from 4300 kg ha-1 to 6000 kg ha-1 in 

the four villages studied. 
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A comparison of observed yields with model simulated yields showed a linear 

relationship. The regression's coefficient of determination R2 of 0.80 has been resulted 

between observed and simulated yields which reveals that there is a minor deviation 

between the observed and simulated yields (Fig 4.6). Result shows that the model has 

accurately estimated rice grain yields under varying management conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.3 Correlation between the observed versus simulated grain yield (kg ha-1) in 

Kharif season 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Comparison of observed versus simulated grain yield (kg ha-1) in Kharif 

season 
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The comparison made between observed and simulated grain yields showed that there is 

a minor deviation in the grain yields in few fields (Fig 4.7). The reduction in yields in 

some fields is be due to effect of pests and diseases and delay in nursery sowing period 

leading to the variation in temperature during the peak development stage that could affect 

the grain yield of rice crop. 

The statistical analysis performed with the simulated results to find out whether the model 

has predicted yields under acceptable range showed that the correlation obtained was 

greater than 0.70, root mean square error (RMSE) was within the range 238 to 400 and 

D- Index of more than 0.70 (Table 4.17). An overall status of the statistical analysis 

reveals that model has simulated rice grain yields under the acceptable range hence, it is 

proven that the model can be used for grain yield estimation under varying package of 

practices. 

 Table 4.17 Statistical analysis of the grain yield for selected Kharif villages 

 

Village Name R2 RMSE D-Index 

Elbaka 0.80 374 0.86 

Gangipalle 0.87 238 0.93 

Rukmapur 0.76 400 0.73 

Vedurugattu 0.72 270 0.88 

 

 

4.4.3.2 Rabi 

 

The observed grain yields among the four selected villages of Karimnagar district during 

Rabi ranged from 4500 kg ha-1 to 7400 kg ha-1 while, the simulated grain yields ranged 

between 4000 kg ha-1 to 8100 kg ha-1 (Table 4.13 to 4.16). 

It can be seen that a R2 value of 0.89 was found with very few outliers. With the same 

data, a line graph has also been constructed (Fig.4.9) which indicates more or less 

observed and simulated grain yields follows the same trend. 
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Fig 4.5 Correlation between the observed versus simulated grain yield (kg ha-1) in 

Rabi season 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.6 Comparison of observed versus simulated grain yield (kg ha-1) in Rabi season 

 

The statistical analysis of the grain yield of rabi season correlation (R2) was above 0.85 

among different sites of four villages, while the RMSE was in the range of 241 to 880 

and D- Index was above 0.70 that indicates that model has predicted grain yields under 

acceptable range. From this it can be concluded that the model can be used further for 

yield estimation under varying package of practices and different climatic conditions. 
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Table 4.18 Statistical analysis of the grain yield for selected Rabi villages 

 

Village Name R2 RMSE D-Index 

Durshed 0.85 241 0.77 

Nagnur 0.88 519 0.73 

Malkapur 0.88 544 0.76 

Renikunta 0.88 880 0.83 

 

4.4.4 Comparison of measured LAI and model simulated LAI 

The LAI recorded with the ceptometer during different growth stages was used to 

compare with the DSSAT model simulated LAI to know the similarity between them. 

The maximum LAI noted among different stages of crop growth and the maximum LAI 

simulated by the model were selected and were compared between them (Fig 4.10). The 

LAI values ranged between 3.5 and 5.0. It was observed that a correlation of 0.77 was 

achieved in case of kharif (Fig. 4.10). Few outliers were removed which were due to 

some constraints noticed with the model and ceptometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Comparison of Observed maximum LAI and model simulated maximum 

LAI in Kharif season 

Similar to kharif season, during rabi season also a R2 value of 0.80 was noticed with LAI 

values ranging from 5.0 to 6.2 (Fig. 4.11). A linear correlation was observed which 

implies that good similarity between ceptometer and model simulated LAI. 
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Fig. 4.8 Comparison of Observed maximum LAI and model simulated maximum 

LAI in Rabi season 

4.4.5 Relation of yield and LAI 

 

Yield attributes like number of panicles per m2, number of grains per panicle and seed 

weight contributes to the yield of the plant. Among all the above-mentioned yield 

attributes, grain yield shows a good correlation with the LAI. This has been supported by 

many researchers that LAI has a good positive correlation with the yield. In both the 

seasons, relation between grain yield and maximum LAI has been established. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9 Relation between observed grain yield and LAI in Kharif season 
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In rabi season, a relation between observed yield and LAI has been noted with a R2 

value of 0.78 (Fig. 4.13). This reveals that with increase in LAI, yield increases up to a 

certain extent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 Relation between observed yield and LAI in Rabi season 

 

4.4.6 Correlation between Model yield and LAI 

 

It has been observed that the LAI has a positive correlation with the yield. Once the spatial 

LAI map has been generated, relation between the model simulated yield and the 

simulated LAI has been worked out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.11 Comparison of simulated grain yield and LAI in Kharif season 
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An R2 value of 0.84 was observed between the model yield and LAI in Kharif season 

(Fig. 4.14). 

Similar to the Kharif season, the relationship between simulated LAI and simulated grain 

yield was performed for the Rabi season and it has been observed that a R2 value of 0.85 

was noticed between model simulated yield and LAI (Fig.4.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.12 Comparison of simulated yield and LAI in Rabi 

 

The relation between model yield and model LAI obtained during both the seasons shows 

a good relation between them, where yield can be used as a main criterion for generating 

grain yield through the LAI as a key element. 

4.5 Relation between yield and quantity of fertilizer applied 

 
Supply of nutrients is the prime factor which determines the crop growth. The production 

of photosynthates and their translocation to sink depends upon mineral nutrition. Nitrogen 

is an integral part of chlorophyll and precursor for many enzymes and amino acids and 

plays vital role in plant metabolism. During the ground truth data collection, the quantity 

of fertilizer applied by the farmers of each site was recorded. The correlation studies were 

made between observed grain yield with that of amount of nitrogen applied at each site 

was done to know the relation between them. It can be seen that a linear correlation was 

observed between grain yield and nitrogen applied (Fig. 4.4 and 4.5) with R2 value of 

0.82 and 0.83 during kharif and rabi seasons respectively. 
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Fig. 4.13 Relation between grain yield and quantity of nitrogen applied in Kharif 

season 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14 Relation between grain yield and quantity of nitrogen applied in Rabi 

season 
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4.6 Derivation and Integration of crop simulation model with Remote 

sensing products 

4.6.1 Integration of model LAI with the remote sensing product- NDVI 

 

Various remote sensing products from sentinel 1 & 2 like NDVI, VV, VH, band 4 and 

band 8 can be used to relate with leaf area Index to develop a correlation. Many studies 

have proven that NDVI is one among the various parameters which has shown a good 

correlation with the Leaf Area Index. A correlation of 0.82 in kharif was observed 

between NDVI and LAI (Fig. 4.16). NDVI defines the difference between the visible and 

near infra-red reflectance of plant cover. NDVI values varies from -1 to 1. The results 

obtained from present study between NDVI and LAI shows a good agreement among 

them. 

 

 

Fig. 4.15 Correlation between the NDVI and model LAI in Kharif season 

 

For the rabi season also, among all the products NDVI showed a correlation of 0.81 with 

LAI (Fig.4.17). From the results of both kharif and rabi season, it can be clearly noted 

that NDVI is one among the important parameter which can be used to integrate with LAI 

for further yield estimation. 
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Fig.4.16 Correlation between the NDVI and model LAI during Rabi season 

 

4.6.2 Generation of spatial LAI map 

 

As NDVI showed a good correlation with the LAI, this has been used as a parameter to 

generate spatial LAI map for the Karimnagar district for both kharif and rabi season (Fig. 

4.18 and Fig. 4.19). For this, the NDVI image was masked with the rice mask that was 

obtained while performing supervised classification. NDVI threshold of more than 0.4 

was noticed which implies that the rice cultivated area was used to eliminate the noise in 

the masked image. Using the linear equation (Eq.4.1) generated from the correlation 

between the NDVI and model LAI, remote sensing LAI was generated. 

The equation used for generating spatial LAI of kharif season is as follows. 
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LAI = 0.0858 × NDVI + 0.2715 Eq. (4.1) 
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Fig.4.17 Spatial LAI map of Karimnagar in Kharif season 

 

The equation used for generating spatial LAI of rabi season is as follows. 

 

 

 

Fig.4.18 Spatial LAI map of Karimnagar in Rabi season 

LAI = 0.0468 × NDVI + 0.295 Eq. (4.2) 
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4.6.3 Generation of spatial yield map 

 

To generate the spatial yield map for both kharif and rabi seasons, the linear equation 

obtained between the model LAI and model yield and spatial LAI map was used. As 

discussed earlier a R2value of 0.84 (Fig.4.14) and 0.85 (Fig.4.15) for kharif and rabi 

seasons respectively was observed between model LAI and yield hence the equation 

obtained through this relation was used to generate spatial yield map. 

The equation (4.3) used to generate the spatial yield map of Karimnagar in kharif is as 

follows 

 

 

 

Fig. 4.19 Spatial yield map of Karimnagar in Kharif season 

 

From the spatial yield map (Fig. 4.20), it can be seen that most of the areas falls under the 

yield range of 5700 to 6000 kg ha-1. Lowest of less than 5000 kg ha-1 was observed under 

the lower Maneru dam area where construction was there. 

Yield = 801 × LAI – 1971 Eq. (4.3) 
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The equation (4.4) used to generate spatial yield map of Karimnagar district in rabi season 

is mentioned below 

 

 

 

Fig. 4.20 Spatial yield map of Karimnagar in Rabi season 

 

From the yield maps of rabi (Fig. 4.21), it can be noticed that rabi yields are higher than 

the kharif yields. In rabi, most of the district is under the yield range of 6500 to 7000 kg 

ha-1 which implies a good quantity of grain yield in the district. Lower grain yields were 

observed in the Lower Maneru Dam area. 

4.7 Validation of spatial generated yield 

 

The spatially distributed model yield was used to validate with the government statistics 

to know the efficiency of the remote sensing in estimating the rice yields through the 

above-mentioned procedure. The model mean yield in kharif season for the Karimnagar 

district was 5300 kg ha-1. The same was seen in rabi season, where the model mean yield 

in rabi season was 6459 kg ha-1. 

From the above mentioned detailed results, it can be noted that LP- 80 accupar ceptometer 

can be effectively used to measure the LAI, while the DSSAT model can be used for 

Yield = 1373× LAI – 1138.2 Eq. (4.4) 
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assessing rice yields and LAI under varied management conditions. NDVI shows a good 

correlation with the LAI thus keeping it as a prime component from remote sensing for 

spatial yield estimation. It can be concluded that integrating the remote sensing satellite 

data with crop models by considering LAI as the principal component can effectively 

predict crop yields, which can benefit policy- and decision-makers in implementing 

insurance schemes. 
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Chapter V 

 

DISCUSSION 

In this chapter, the reasons for the findings mentioned in the results chapter are discussed. 

Outcomes of the current research and the major causes for such results were briefly 

mentioned along with the similar studies performed by other researchers which supports 

the outcomes of the present study. 

5.1 Optimization of CCE Locations 

 
5.1.1 Selection of Study Area 

 

As mentioned earlier in results chapter 4.1 section villages were sopted for the further 

study purpose based on soil, rainfall, elevation and crop type map. It can be seen from the 

fig. 3.3 that most of the district falls under clay soil and loamy soil. Most of the selected 

villages in both seasons falls under clay soils except Elbaka, Gangipalli and Renikunta. 

While with respect to rainfall there was no much deviation in the rainfall on the whole 

district as seen under Fig.3.4. In case of elevation all the opted villages in both seasons 

falls under an elevation range of 252-298m, while Elbaka and Gangipalli were under less 

than 252 m elevation level. In case of crop type map most part of the selected villages 

are under rice crop with irrigated conditions. 

By taking into consideration all the above points four villages in each season i.e., kharif 

and rabi were selected for further collecting the readings for LAI and CCE’s. 

5.1.2 Crop Cutting Experiments 

 

Crop cutting experiments were performed in the selected fields in both the seasons. Grain 

yields were collected, recorded and expressed as t ha-1 at 14% moisture. 

5.1.2.1 Kharif Season 

 

In kharif season on an average the observed grain yield was 5324 kg ha-1, the lowest grain 

yield was 4000 kg ha-1 and highest grain yield was 5900 kg ha-1. From the outcomes 

mentioned in results chapter it can be observed that among all the selected villages, the 

higher grain yield of 5900 kg ha-1 was recorded in Vedurugattu village and also the range 
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of grain yields were higher in the same village followed by Rukmapur village and other 

vilages. 

The reason for achieving higher yields in Vedurugattu village might be due to sowing of 

nursery in July first fortnight and timely transplanting. All the rice fields in the village 

followed the same sowing time and transplanting in time leading to coincidence of 

sufficient amount of rainfall during the tillering stage and required sunshine hours at 

reproductive stage leading to higher grain yield. 

The grain yield data presented in Table 4.9 to 4.12 shows that in some of the fields in all 

the villages the grain yields were low (less than 4500 kg ha-1) against an average grain 

yield of 5324 kg ha-1 with a deviation of 824 kg ha-1. One of the main reasons for lower 

grain yield is delay in sowing beyond august leading to exposure of crop to low 

temperatures during the reproductive stage which result in high sterility and reduction in 

grain yield (Naik et al. 2015). 

On comparing the deviation between the highest and lowest yields, the deviation less (700 

kg ha-1) in Vedurugattu village due to following of proper sowing time, while the higher 

deviation 1500 kg ha-1 was noticed in Elbaka village which might be due to attack of pests 

and delay inn sowing time. From the results, it can be noted that in Elbaka village at EL6 

site recorded the lowest grain yield (4313 kg ha-1). The lower yield at this site was due to 

delay in nursery sowing and transplanting and water logging at booting stage 

(reproductive stage). For getting higher yields, an optimum time of sowing (before July 

first fortnight) has to be maintained. Sowing beyond this date at every 15 days interval 

up to 18th august results gradual decrease in grain yield (Naik et al. 2015, Sindhu et al. 

2022). Sowing date also has a direct impact on the rate of establishment of rice seedling 

(Tashiro et al. 1991). Further, different rice varieties respond in different way to varied 

sowing dates (Akhter et al. 2016 and Rai and Kushwaha, 2008). Hence, the lower yields 

in few fields in all the villages might be due to the delay in sowing, attack of pests and 

diseases, and water logging at reproductive stage. 

5.1.2.2 Rabi season 

 

At many sites the grain yields were higher in the four villages (6200 kg ha-1). However, 

due to lower yields at few sites the average yield of rabi season came down to 5279 kg 

ha-1. It might be due to pest attack and differential crop management practices including 
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nursery sowing and transplanting. During rabi, the highest grain yield (7400 kg ha-1) was 

observed in Durshed village, while the lowest of 4000 kg ha-1 was noticed in Nagnur 

village (Table 4.13 to 4.16). 

The highest average grain yield was recorded in Renikunta and Malkapur villages 

followed by the rest selected villages. There was a deviation of 300 kg ha-1 between the 

highest and lowest average grain yields. These higher yields are due to the following of 

optimum sowing time, which plays a major role in ensuring proper growth and yield. In 

most of the villages, rabi season crop was sown during December second fortnight which 

resulted in an increase in grain yield. Sowing during the optimum time ensures proper 

sunshine hours and temperatures throughout the growth period. 

Among all the villages, the lowest grain yield was recorded at NA4 and NA7 sites in 

Nagnur village due to the late sowing (January first fortnight) leading to delay in late 

transplanting and coinciding high temperatures during grain filling stage thus resulting in 

lower grain yields. 

The comparison of rabi and kharif grain yields of Karimnagar district shows that the rabi 

grain yields were higher than kharif grain yields which might be due to the crop receiving 

of adequate sunshine hours and low pest incidence. Several studies show that in rabi 

season pest and disease incidence is low as compared to kharif season (Jena et al. 2018) 

due to prolonged rainfall and high humid conditions in kharif season compared to rabi 

season. 

5.2 LAI Estimation using LAI ceptometer 

5.2.1 Ceptometer readings during Kharif season 

In Elbaka village, the maximum LAI readings with Accupar LP-80 ceptometer were 

ranged between 3.6 and 4.8. The lowest of LAI 3.6 was due to the effect of late sowing 

rice nursery in July second fortnight. Maximum LAI value of 4.1 to 5 was recorded in 

Vedurugattu village, which is a good LAI value and this might be due to the proper growth 

of the crop which happened because of nursery sowing in July first fortnight and adoption 

of proper management practices. In Rukmapur village, the maximum LAI ranged 

between 3.9 and 4.8, while in Gangipalli, it was 3.5 to 4.7. Sowing time plays a major 

role in plant growth and development and it ensures vegetative growth takes place when 

there is an optimum temperatures and sunshine hours (Patel et al. 2019). The optimum 
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sowing time make certain that when the minimum night temperatures are warmest and 

the grain filling occurs when milder autumn temperatures are more likely. Further, there 

are reports that delay in planting during kharif from15 June to 15 July decreased leaf area 

index values by 10% (Rai and Kushwaha, 2008). 

5.2.2 Ceptometer readings during Rabi season 

During the rabi season, the LAI recorded with ceptometer ranged between 3.2 and 4.6 

(Table 4.3 and 4.4). In Durshed village, it ranged between 4.6 and 5.8, in Malkapur it was 

from 5 to 5.9, in Renikunta it was from 5.5 to 6.1, while in Nagnur it was 5.6 to 6.2. 

At different stages of crop growth, the maximum LAI was observed during the rabi season 

as compared to Kharif season. This might be due to the availability of more sunshine 

hours for photosynthesis and thereby increased growth and development. Yang et al. 

(2021) reported that due to high solar radiation more amount of biomass is accumulated 

leading to higher Leaf area. 

The major constraint for use of the ceptometer for LAI is that it works only under the 

photosynthetically active radiation (PAR) above 400nm units thus declining its efficiency 

of measurement during cloudy weather conditions. There are reports that with 10% shift 

in PAR leads to a 4-20-fold rise in LAI, implying that LAI readings are more sensitive to 

incident PAR (Hyer and Goetz, 2004 and Pokavai and Fodor, 2019). From the LAI 

readings using the LP-80 ceptometer, it can be noted that the instrument over and 

underestimates the LAI values sometimes but it is difficult to find out because of 

developing research on these parameters. This instrument readings are more sensitive to 

the PAR and sunshine hours. 

5.3 Mapping of Rice Growing Areas 

 
The supervised classification of Karimnagar district was performed for identification of 

different classes from the satellite data in ERDAS imagine (Abiy and Suryabhagavan, 

2016; Rwanga, S. and Ndambuki, 2017) and ARC GIS softwares. 

5.3.1 Supervised Classification 

 

From the classified map (Fig. 4.1 and 4.2), it is seen that in both the seasons rice is the 

dominating class among all the categories occupying an area of 143 thousand ha and 103 

thousand ha in kharif and rabi season respectively. As per Telangana Govt. statistics, the 
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total area under rice cultivation in Karimnagar was 147 thousand ha and 105 thousand ha 

in kharif and rabi seasons respectively during 2020-2021 (Government of Telangana, 

2021). There is a deviation of less than 3% between observed and Govt statistics of rice 

area in both the season which strongly reveals that the classified map using the ERDAS 

was quite good enough for further proceeding in the research. It can be seen that rabi rice 

growing area is low as compared to kharif rice area because of lesser water supply thereby 

few fields were occupied with other crop like cotton, maize, groundnut etc. These crops 

were grown as they require low water than rice hence, rice area decreased. On the other 

hand, in kharif due to sufficient amount of water and rainfall, rice was grown without any 

water deficit. 

Through the Supervised classified map (Fig. 4.1 and 4.2), it can be noted that rice is one 

of the important crops grown in the district, because of the development of irrigation 

water from project - Lower Manair Dam which was constructed on Manair river a 

tributary of the Godavari. The supply water for irrigation with the construction of Lower 

Maneru Dam led to increase of cultivated area under rice in Karimnagar district. 

The area of other crops in rabi was high as compared to kharif season (Table 4.5). This 

increase in area under other crops in rabi was due to growing of various crops unlike 

growing single crop rice in kharif season. There was a decline of 984 ha area of water 

body in rabi season as compared to the kharif season which might be due to low rainfall 

in rabi and increase in temperature leading to evaporation of water from water bodies 

such as ponds and rivers. 

Based on the statistical reports, it is observed that there was a deviation of 2.7% and 3.7% 

between the classified map and the area mentioned by the government of Telangana. This 

concludes that the mapping of rice areas in Karimnagar district using the ERDAS was 

accurate enough to produce reliable results for performing supervised classification. 

Hence, these results were taken in to consideration for further research process. 

5.3.2 Accuracy assessment 

 

From both accuracy assessment reports it can be noted that the use of ERDAS and Arc 

GIS for performing supervised classification achieved an acceptable range of overall 

accuracy and kappa coefficient. The users and producers’ accuracy for both the seasons 

in most of the classes were above 75%, kappa coefficients were above 0.85 indicating 
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better results (Table 4.6 and 4.7). Even though, there were lower accuracies in few classes 

which might be because of misclassifying i.e., mixing of classes mainly among the crop 

lands only. In kharif season accuracy levels might be interrupted due to unavailability of 

proper data because of cloud cover leading to lower accuracy in results. In both the 

seasons, rice has shown accuracy of more than 95% which is achieved due to its unique 

NDVI signature values. As compared to other classes, water body has contrast signatures 

so 100% accuracy has resulted in terms of user’s and producer’s levels, while built up 

area also had good acceptable range of accuracy due to its distinctive signature values. 

The lower accuracy of other LULC data might be due to almost similar signatures with 

rice, few classes of rice and other LULC which misclassified as other LULC and rice 

(Table 4.2 and 4.3). Lower accuracy resulted in few classes can be corrected by collecting 

a greater number of training samples and use of high-resolution data. However, use of 

sentinel 1 data effectively resulted in good accurate range of accuracy for generating Land 

Use Land Cover classification (Gumma et al., 2024 and Gumma et al., 2023). Similarly, 

Makande and Oyalde et al. (2020) concluded that Sentinel 1 SAR result has been 

effectively used for producing an acceptable accurate land cover map of Lagos State with 

relevant advantages for areas with cloud cover. While Sekertekin et al. (2017) used 

Landsat, sentinel data with ERDAS for classifying LULC and found a kappa coefficient 

of above 0.70 and overall accuracy of more than 70 % and therefore, they concluded that 

sentinel gives better results. Similarly, with the same methodology for detecting the 

changes in land use and land cover using the ERDAS and sentinel data kappa coefficient 

of 0.80 and overall accuracy of 85 % has been obtained and revealed that use of sentinel 

data resulted in effective outcome of classification with acceptable range of accuracy 

levels. Vikeh and Patil (2016) used EDRAS for detecting the changes in land use and 

land cover using ERDAs and obtained an accuracy of 85%. Patil et al. (2012) performed 

supervised classification with maximum likelihood estimation (MLE) and maximum 

distance (MD) and found a high overall accuracy of 91%. Hence, it can be concluded 

that classification using ERDAS achieves higher accuracy and also using of sentinel 

data gives reliable results. 

5.4 Yield estimations 

 

5.4.1 Calibration of the model 

 

As mentioned previously, DSSAT model has been calibrated using the GLUE 

(Generalized Likelihood Uncertainty Estimation). The finally obtained vegetative genetic 
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parameters like P1, P2O, P2R, P5 and reproductive cultivar G1, G2, G3 and G4 were 

mentioned under results chapter (Table 4.8). Genetic coefficients are sets of parameters 

that describe the genotype and environmental interactions. They summarize 

quantitatively how a particular cultivar responds to environmental factors. After 

performing statistical analysis, it has been observed that the model generated genetic 

parameters for MTU1010 calibrated using the GLUE were under acceptable range. This 

indicated that model has accurately calibrated the coefficients. However, the juvenile 

phase coefficient (P1), photoperiodism coefficient (P2R) and grain filling duration 

coefficient (P5) of MTU1010 were 440-, 350- and 12-degree days (°C), respectively 

which were low as compared to other varieties like BPT 5204 as because of its shorter 

duration. The obtained genetic parameters were compared with the other researchers who 

have performed calibration for the same cultivar. The results for MTU1010 cultivar were 

near to the values obtained by Kadiyala et al. (2015) who has performed calibration for 

MTU1010 cultivar using DSSAT for Hyderabad, Telangana region where the statistical 

results like R2 of 0.93, P1, P2R and P5 were 407. 367 and 11.7 respectively were observed. 

Similarly, calibration for other rice varieties (basmati 370 and IR 2793-80-1) were 

performed and an R2 of 0.78 and 0.76 has been resulted using the GLUE (Nyangau et al. 

2014). 

5.4.2 Simulation of Grain Yield and comparison with the observed yields 

 

DSSAT model has been used for estimating the rice yield under varied management 

practices in both the seasons. The deviation between observed and simulated yields were 

noted and reasons for the same were discussed below. 

The kharif average yield was 5324 kg ha-1, while the model simulated average was 5339 

kg ha-1 . The highest simulated grain yield among all the villages was 6221 kg ha-1 (RU13 

site) in Rukmapur village while the lowest was of 4141 kg ha-1 in Gangipalli village (GA2 

site). Among all the selected villages, in kharif the average simulated yield was highest 

in case of Vedurugattu village i.e., 5512 kg ha-1, while the lowest (5168 kg ha-1) was 

recorded in Gangipalli village. On comparison of observed and simulated yields in all the 

villages, there is deviation of 8.5 kg ha-1 to 471 kg ha-1 which is acceptable on basis of 

statistical analysis. Average yield from the DSSAT model in Karimnagar district during 

kharif was 5324 kg ha-1 as compared to the government statistics of 5014 kg ha-1 with a 

deviation of less than 10% (Bellamkonda et al. 2020). 
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In rabi season the observed average yield was 5279 kg ha-1 and the average model 

simulated yield was 5349 kg ha-1 . Among all the villages, the highest grain yield of 8177 

kg ha-1 was recorded in Nagnur while the lowest of 3217 kg ha-1 was noted in the same 

village. The highest average simulated yield was recorded in Renikunta village i.e., 7345 

kg ha-1 whereas, the lowest was noted in Durshed village (6125 kg ha-1) with a deviation 

of 138 kg ha-1 to 1123 kg ha-1 among all the villages. 

It has been observed that there are variations in the yields of the same village which might 

be due to adoption of different package of practices and under such situations, the CERES 

rice model can be used (Mirakhori et al. 2017). Among the management practices, the 

time of sowing nursery and transplanting and nitrogen level of application play great role. 

Delay in sowing beyond July 1st fortnight in kharif and lower level of fertilizer N 

application results in lesser grain yield. 

The DSSAT model is found to be sensitive for the sowing windows. Sowing during july 

first fortnight resulted in better grain yield with lesser reduction while sowing during July 

second fortnight resulted in lower yields due to the temperature fluctuations. Similar 

results were reported that under late sown conditions beyond July 1st week leads to drastic 

reduction (Kadiyala et al. 2007) in the yield due to exposure of plants to low 

temperatures during the reproductive stage at Jagtial in Telangana state. 

During kharif and rabi seasons in Vedurugattu and Renikunta villages, the highest grain 

yields were recorded because of sowing at optimum time. On comparing the observed 

and simulated grain yields, it was found that the simulated grain yield followed the trend 

of observed values. The DSSAT model also counts for individual day for grain 

development, hence an optimum sowing time is most important. From the results 

obtained, it can be concluded that DSSAT CERES rice model can be strongly 

recommended for using under varying package of practices as CERES rice for yield 

estimation had found good agreement with the observed values under different dates of 

sowing and fertilizer applications (Mirakhori et al. 2017 and Kaur and Kaur 2022). 

5.4.3 Evaluation of the DSSAT model 

 

The sensitivity of the model in assessing the crop yields across varied management 

practices has been evaluated and these results were then compared with the observed 

yields. It has been found that simulated yields in kharif ranged between 4300 kg ha-1 and 
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6000 kg ha-1, while in rabi it was 3217 kg ha-1 and 8177 kg ha-1. On the other hand, the 

observed yields ranged between 4000 kg ha-1 to 7000 kg ha-1 in rabi, while in kharif it 

was 4000 to 5900 kg ha-1 and the deviation among observed and simulated yields was 

minimum (Tables 4.9 to 4.12). Further, an R2 value of 0.80 was observed in both the 

seasons with observed and model simulated yield ((Figures 4.6 and 4.8), which agrees 

that Ceres rice model is very effective enough in estimating the rice yields under varying 

management conditions. 

In both the seasons, in most of the cases simulated yields were higher than the observed 

yields (Fig. 4.7 and 4.9) as the model do not consider the abiotic stress damage like that 

of water logging which was a major problem in kharif season. Other drawbacks of 

DSSAT model is that it will not consider the effect of nutrient deficiencies and application 

of minor nutrient like sulphur, iron etc., not responsive to major nutrient phosphorous 

and potassium and also the effects of pest and disease incidence (Abayechaw, 2021; Jones 

et al. 2003 and Kadiyala et al. 2015). Deka et al. (2016) reported that the model can 

be effectively used by policy and decision makers to plan agriculture based economic 

decisions at regional level. 

Correlation of the grain yield was observed to be above 0.70 and D- index of above 0.70 

in all the villages (Table 4.17 and 4.18), where above 0.6 indicates that the model and the 

field data are in good agreement. Statistical results in both the seasons reveals that values 

obtained were under acceptable range and thus the CERES- Rice model can be used 

further for predicting the rice yields. The results show the conformity with the findings 

of Sudarshan et al. 2013 (D-index 0.60, R2 0.80), Deka et al. 2016 (R2 0.85 and RMSE 

401 kg ha-1), Mirakhori et al. 2017 (R2 0.85, NSE 0.89) and Ahmad et al. 2013 (R2 

0.97) under CERES rice model. 

The findings of this study indicate that the DSSAT model has showcased high level of 

accuracy in predicting both yields and LAI across various management practices. Further, 

there is a potential in use of crop simulation models as a technology driven tool to identify 

the most effective management strategies for rice production. 

5.4.4 Comparison of measured LAI and model simulated LAI 

 

The maximum LAI recorded with the ceptometer and the DSSAT model simulated LAI 

was used to build a graph to know the similarity between them (Table 4.1 and Table 4.2). 
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There was a R2 value of 0.77 and 0.80 was observed during kharif and rabi between them. 

These results reveal that Accupar LP-80 ceptometer is quite good enough in measuring 

LAI during different growth stages of the crop. De Jesus et al. (2001) reported R2 value 

of 0.97 between the ceptometer and the conventional method. Similarly, Wilhelm et al. 

(2000) compared LAI with varied LAI meters i.e., LAI 2000, Accupar and sunscan and 

found a correlation of 0.94, 0.93, 0.79 with the field measured LAI respectively. Similar 

findings were recorded by Ali et al. (2021) which show a correlation of 0.94 between the 

estimated LAI using the SEBAl equation and measured LAI using the ceptometer. 

Mirakhori et al. 2017 used CERES rice to simulate LAI and found a correlation of 

above 0.70. Hence, from the results obtained in this study, it can be concluded that there 

was a good agreement in LAI between the ceptometer and DSSAT model (CERES rice) 

measured value. Further, these tools give reliable results of LAI for further carrying out 

research on yield estimations in rice. 

5.4.5 Relation of yield and LAI 

 

Many attributes of rice crop contribute to the grain yield of the crop. In case of rice, the 

number of tillers per m2, LAI, number of panicles, grains per panicle and 1000 grain 

weight etc., contribute to the grain yield. Increase in LAI leads to increment in the grain 

yield to some extent. In case of kharif and rabi rice, corelation of 0.77 and 0.78 

respectively (Fig. 4.12 and 4.13) was noticed between observed grain yield and LAI, 

while R2 value of 0.84 and 0.85 (Fig. 4.14 and 4.15) was observed between the simulated 

yield and LAI which implies that LAI and grain yield were in good agreement. Many 

studies have shown that LAI maintains a good relation with the grain yield. Aboelghar et 

al. (2011) showed a correlation of 0.82 between the grain yield and LAI in rice.  High 

yield scenarios exhibited highest LAI among the collected samples. An increase in LAI 

was found to be significantly associated with both the biological and grain yield, thereby 

leading to the increased yields. Results reported by Singdha et al. (2022) showed a 

correlation of 0.64 between maximum LAI simulated from the APSIM and NDVI 

generated from remote sensing. From this, it can be understood that the model has 

simulated effectively the grain yield as the grain yield and LAI values followed the same 

trend with that of observed values. Such an information leads to do further studies by 

considering LAI as the main component for rice yield estimation. Further, it was 

established that LAI at different stages of the crop affects number of grains per panicle 
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and 1000 grain weight contributing to the grain yield (Hashimoto et al.2023) and LAI can 

be used for monitoring and estimating the rice yield. 

5.5 Relation between yield and quantity of fertilizer applied 

 

One of the main prominent factors determining the crop yield was application of 

fertilizers at right quantity and optimal dose. Mineral nutrition plays a major role in 

production of photosynthates and their translocation to sink. Among all the fertilizers, 

nitrogen is of utmost mineral influencing the crop yield in rice, as it is an integral part of 

chlorophyll and precursor for many enzymes and plays a vital role in metabolism 

(Manzoor et al. 2006 and Islam et al. 2008). During both the seasons, a correlation of 

above 0.75 was observed between the amount of fertilizer applied and the grain yield 

(Table 4.5). The range of N fertilizer application in rice in selected villages was from 100 

to 200 kg ha-1 in both the seasons which was more than the recommended dose of 

nitrogen. Nitrogen contributes to carbohydrate accumulation in culms and leaf sheaths 

during the pre-heading stage and in to the grain during the ripening stage of rice 

(Bahmanyar and Ranjbar, 2007). Optimal amount of fertilizer application leads to 

increment in yield attributing characters which inturn effects on crop yield (Mrudhula and 

suneetha 2020).There was a linear correlation existed between the grain yield and 

nitrogen applied. This notifies that application of fertilizer mainly nitrogen leads to 

increase in grain yield. Most of the farmers in the selected villages were applying nitrogen 

fertilizer in the range of 140 kg ha-1 to 160 kg ha-1 and realizing highere yields (Fig. 4.4. 

and fig. 4.5). There are reports that application of 160 kg ha-1 resulted in better yield than 

120 kg ha-1 and 200 kg ha-1 (Ramulu et al.2020, Ghansham et al.2015 and Pramanik et 

al.2013). Though the recommended level of fertilizer N is 100 to 120 kg ha-1 but the rice 

crop is responding to higher levels of N application. This suggests that the 

recommendation of fertilizer for rice crop needs revision. 

5.6 Derivation and Integration of crop simulation model with Remote 

sensing products 

5.6.1 Integration of model LAI with the remote sensing products 

 

Among all the yield attributes, LAI showed a good correlation hence this is taken further 

for finding the relation with the NDVI (section 5.7). The remote sensing products from 

sentinel 1 and 2 NDVI showed a correlation with the LAI. R2 value of 0.82 and 0.81 were 
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noticed in kharif and rabi season (Fig. 4.16 and 4.17). A linear correlation implies a good 

fit between NDVI and LAI and this was supported by Ali et al. (2021) who observed R2 

value of 0.94 and 0.95 between NDVI and LAI respectively with measured and simulated 

values. Further, few studies investigated the relation among the remotely sensed factor 

(NDVI) and field measured parameters (LAI and grain yield) and found a linear 

correlation between them (Zheng et al. 2015; Goswami et al. 2015; Bhargav 2021 and 

Xiao et al. 2002). Zhou et al. (2017) estimated rice grain yield based on the LAI value 

and concluded that LAI was a reliable indicator for estimating yield. However, relying 

solely on LAI may not generate accurate estimation of yield as most notable results for 

yield estimation have been done by combining LAI with vegetation indices and thus 

integrating in to the crop models. The solitary usage of individual vegetation indices 

results in to an error of more than > 15% (Fang et al. 2011). Hence, combination of 

remote sensing derived vegetation indices i.e., NDVI and LAI when assimilated in to crop 

models result reliable prediction of yields with higher levels of accuracy. 

In the present study, there was a good correlation observed between NDVI and LAI but 

it can be improved. Collection LAI data during kharif season or cloudy period is difficult 

thus affecting the NDVI values. From the results of both kharif and rabi season, it is 

observed that NDVI is one among the important parameters which can be used to 

integrate with LAI for estimating the spatial rice yield (Gumma et al. 2022). 

5.6.2 Generation of spatial LAI map 

 

The process used for generating the spatial LAI map was using the relation between LAI 

and NDVI (Section 4.11). In Russia, Ali et al. (2021) generated spatial LIA map using 

the relation between NDVI and LAI. During kharif (Fig. 4.18) the rice is being cultivated 

in the entire district, however, in few parts of Karimnagar, Gannervaram and Thimmapur 

area the LAI was not available due to the presence of the Lower Manair Dam and urban 

area. LAI of less than 3.5 was noticed in majority area in upper part of the Manakondur 

mandal villages and to some extent Veenavanka and Jammikunta mandals. LAI above 4 

were recordedin Choppadandi, Ramadugu, Sankarapatnam and few parts of Thimmapur 

and Saidapur mandals because the rice yields under these mandals were higher as 

compared to others. The reason behind this was early sowing has been practiced in few 

villages which exposes the crop to high temperatures during the reproductive stage. 
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In rabi season, the LAI was low as compared to kharif as the rice cultivated area decreased 

to that of kharif season (rice replaced by other crops) (Fig. 4.19). From the map it can be 

seen that compared to the western part of the district (Gangadhara, Ramadugu, 

Choppadandi and Kothapally mandals), eastern parts of the district (Shankarapatnam, 

Veenavanka and Jammikunta mandals) accounts for higher rice areas in rabi season. 

5.6.3 Generation of spatial yield map 

 

The relation between the LAI and yield was used to generate the spatial yield map 

(Section 4.12). The relation between the LAI and grain yield was used by different 

researchers to generate the spatial rice yield of different parts of the Orissa, Andhra 

Pradesh and Nalgonda district of Telanagana (Gumma et al., 2022, Gumma et al., 

2024and Snigdha et al. 2022). Several studies proved that satellite-derived products 

have been utilized in crop area and spatial crop yield estimation. In kharif rice, the grain 

yields of above 5700 kg ha-1 (Fig. 4.20) were observed under eastern part of the district 

(Choppadandi, Ramadugu and Gangadhara mandals) and few parts of the south (part of 

Thimmapur and Saidapur mandals). In rabi season, the grain yield of more than 6500 kg 

ha-1 (Fig.4.21) was noticed under the eastern part of the district (Jammikunta and 

Sankarapatnam mandals). In most parts of the district, the grain yield observed between 

6000 to 6500 kg ha-1 which is a good yield. 

The major reason for cultivating rice in both the seasons and achieving good yields were 

due to the availability of water through the irrigation project Lower Maneru Dam and also 

due to the presence of bore wells in the area. 

5.7 Validation of spatial generated yield 

 

Spatially generated yield has been validated against the government statistics and a 

deviation of less than 6 % was noticed in kharif and rabi seasons respectively. The average 

kharif yields of Karimnagar in 2021 was 5014 kg ha-1 reported by government statistics, 

while the model mean yield from spatial yield map was 5300 kg ha-1 . In rabi the 

predicted model mean yield was 6459 kg ha-1, while from the government statistics the 

average yield of rabi in Karimnagar district was 6300 kg ha-1. This shows that the 

integrating the remote sensing satellite data with the crop simulation models can 

effectively predict the crop yield under varying management conditions. 
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Chapter VI 

SUMMARY AND CONCLUSIONS 

A precise and timely crop yield estimates at regional, national and international levels is 

essential for making policy to overcome food security worldwide and helping farmers for 

crop insurance through insurance premium pricing by the companies. An investigation on 

“Assimilating of remote sensing Leaf Area Index into crop simulation models for rice 

yield estimation” was carried out during kharif 2020 and rabi 2021-22 to find out crop 

yield estimation based on the DSSAT model and compare the simulated LAI from remote 

sensing satellite data and DSSAT model. There are lack of studies on comparing the 

ceptometer LAI to any crop model simulated LAI and also yields estimation at local level 

though they were done at a broad level like state or district. Further, remote sensing and 

crop growth models are two discrete tools that can unravel various field and regional 

agronomic issues. In this study an assessment was made estimate rice grain yield at the 

village level, with the LAI estimated through remote sensing as its core component. 

In Karimnagar district, four villages each in kharif and rabi were selected for further study 

based on soil, rainfall, crop type, and elevation points encompassing a wide range of 

potential combinations. The LAI was collected manually by using the accupar LP-80 

ceptometer during different stages of the crop in both the seasons indicated that in 

medium duration cultivar, the LAI ranged between 4.6 to 6.1 at maximum tillering stage 

and 3.2 to 5.6 at flowering stage and 4.01 to 4.5 at grain formation stage and 2.2 to 3.5 at 

near to maturity stage in both seasons. The higher LAI values frequency was more 

during the rabi season as compared to kharif. Supervised classification performed for both 

the seasons using ERDAS and Arc GIS that rice is the major crop in the district during 

both the seasons. Accuracy showed that overall accuracy of 94.23% and 88.5% was 

recorded, while kappa coefficient of 0.89 and 0.85 was resulted in kharif and rabi season 

respectively which meant that mapping of rice areas in Karimnagar district using the 

ERDAS was accurate enough by producing reliable results. 

In selected villages, the observed grain yield of rice obtained through crop cutting 

experiments in kharif ranged between 4000 to 5900 kg ha-1 while in rabi it ranged between 

4500 kg ha-1 to 7200 kg ha-1. On an average, kharif and rabi rice grain yields were 5324 

kg ha-1 and 6436 kg ha-1respectively in selected villages. 
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The average simulated rice grain yield in kharif and rabi were 5339 kg ha-1 and 6858 kg 

ha-1 respectively with DSSAT model which considered sentinel-2 satellite for estimation 

of LAI. The R2 values of above 0.72 in kharif and above 0.85 in rabi, D index of 0.70 in 

both the seasons in all the villages showed the model is accurate for predicting yields. 

Deviation has been noted between observed and simulated values where the predicted 

values are higher than the observed values. 

The correlation between observed rice grain yield with the quantity of nitrogen applied 

showed a R2 value of 0.82 and 0.83 indicating that rice grain yield is dependent on the 

quantity of nitrogen applied. 

A linear regression coefficient was observed between measured maximum LAI with 

ceptometer and the model simulated maximum LAI with R2 value of 0.77 and 0.80. LAI 

and grain yield showed a linear correlation with R2 value of 0.77 and 0.78 in kharif and 

rabi respectively with observed data (yield and LAI), while for the simulated values it  

was 0.84 and 0.85 respectively. 

Integration of remote sensing with crop model data was based on the relation obtained 

between the NDVI and model LAI which showed a R2 value of 0.82 and 0.81 in kharif 

and rabi season respectively. As good agreement was observed between them it has been 

confirmed that NDVI is one among the important parameter which can be used to 

integrate with LAI for grain yield estimation. Using the NDVI generated from the GEE, 

spatial LAI map was generated by the linear equation generated from the correlation 

between the NDVI and model LAI. The linear equation obtained between the model LAI 

and model yield was used to generated the spatial yield map on basis of spatial LAI map. 

From the spatial yield map, it can be concluded that most of the areas fall under the rice 

grain yield range of 5700 to 6000 kg ha-1 in kharif, while in rabi in the range of 6500 to 

7000 kg ha-1. 

The spatially distributed model yield validated with the government agency grain yield 

statistics showed that the model mean yield in kharif season for the Karimnagar district 

was 5300 kg ha-1 which is near to Govt grain yield estimates (5014 kg ha-1). During rabi 

season also, the model estimated mean rice grain yield (6458 kg ha-1) was close to that of 

the average yield estimated by Govt (6600 kg ha-1 ) showing that the deviation is 

acceptable. 
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Conclusions 

 

• This study demonstrated the potential of integrating remote sensing products with 

the crop model by considering LAI as the principal component to estimate the rice 

yields at village level. 

• Mapped spatial distribution of rice growing areas showed an accuracy of above 90%, 

in both seasons comparable to the government statistics. 

• Input parameters in the DSSAT model were collected during the field visits, and R2 

value of above 0.80, was observed during kharif and rabi between observed and 

simulated yields, indicating that the model reliably produced results reflective of the 

field data. 

• Ceptometer and model simulated LAI showed R2 values of 0.77 and 0.80 in kharif 

and rabi seasons respectively indicating the model is efficient in generating the LAI. 

• Yield and LAI were in good agreement with R2 value of more than 0.75 hence the 

yield increases with an increase in LAI. 

• Remote sensing product NDVI correlated with the LAI with R2 value of more than 

0.80 indicating that NDVI is best fit with the LAI. 

• Spatial rice yield distribution in Karimnagar district was generated by assimilating 

remote sensing data into the crop simulation model which can be used in planning. 

Future Line of Work 

 

• Models should be properly calibrated to improve the accuracy and consistency of 

assimilating remote sensing data with crop models. 

• There is a limitation in capacity of DSSAT model to address the impact of biotic 

stress caused by pests, diseases, and weeds. Hence, integrating dynamic pest and 

disease model is of utmost important. 

• Along with LAI, other variables, including the fraction of absorbed 

photosynthetically active radiation and soil moisture, can be applied to increase the 

accuracy in assessing crop yields. 

• As the chosen study area is limited to the district level and includes data from two 

seasons, the associated data is insufficient to draw definitive conclusions regarding 

climate change. Hence, the assessment has to be designed to evaluate the effects of 

climate change on crop yield, which can be extended under long-term scenarios. 
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• The crop yields accuracies can be enhanced by integrating machine learning (ML) 

algorithms and deep learning (DL) techniques. 

• Fusion of SAR and Optical Imegery enhances crop identification, particularly during 

the Kharif season. 
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APPENDICES 

APPENDIX-I 

Mean weekly meteorological data during the crop growing season in Elbaka village 

 

 

SMW* 
Sunshine 

hours 

Max 

Temperature 

℃ 

Min. 

Temperature ℃ 

 

Rainfall (mm) 

22 21.6 40.1 28.4 0.3 

23 17.7 32.5 24.6 13.0 

24 19.4 33.3 23.8 8.7 

25 17.8 31.5 23.5 1.8 

26 21.6 40.1 28.4 17.7 

27 17.7 32.5 24.6 0.2 

28 19.4 33.3 23.8 16.2 

29 17.8 31.5 23.5 27.1 

30 16.3 30.3 23.6 4.4 

31 19.0 32.2 23.1 0.0 

32 13.5 29.5 24.9 0.5 

33 14.6 29.8 24.4 3.9 

34 8.1 25.7 24.0 5.9 

35 12.9 30.0 25.7 23.7 

36 16.1 31.9 25.1 15.5 

37 16.4 34.1 27.0 0.4 

38 13.9 29.8 24.6 7.5 

39 16.8 31.9 24.0 28.1 

40 17.0 32.0 24.0 0.0 

41 15.3 32.2 25.3 0.0 

42 16.4 32.6 24.3 10.5 

43 15.9 31.6 23.4 0.0 
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Mean weekly meteorological data during the crop growing season in Gangipalli 

Village 
 

 

SMW* 

 

Sunshine hours 

Max 

Temperature 

℃ 

Min. 

Temperature 

℃ 

 

Rainfall (mm) 

22 22.6 41.2 28.4 1.0 

23 17.7 32.5 24.6 4.7 

24 19.4 33.0 23.5 13.5 

25 17.8 31.2 23.2 1.0 

26 15.6 30.5 24.4 8.9 

27 19.7 32.8 23.0 8.7 

28 13.9 30.3 25.4 16.2 

29 15.9 30.9 24.5 10.9 

30 8.8 26.0 24.0 17.8 

31 12.4 29.6 25.6 0.0 

32 15.3 31.2 25.1 0.3 

33 16.6 34.2 26.9 4.4 

34 13.5 29.4 24.5 9.6 

35 16.7 31.6 23.8 18.8 

36 16.1 31.4 24.0 13.0 

37 15.2 32.0 25.2 0.6 

38 16.7 32.7 24.1 7.6 

39 15.9 31.7 23.5 15.4 

40 17.0 34.3 24.5 0.0 

41 17.7 35.7 24.4 0.0 

42 19.1 34.9 20.9 5.6 

43 18.5 33.9 20.0 0.0 

 

Mean weekly meteorological data during the crop growing season in Rukmapur 

and Vedurugattu Village 
 

SMW* 
Sunshine 

hours 

Max 

Temperature ℃ 

Min. 

Temperature ℃ 

Rainfall 

(mm) 

22 22.3 42.1 29.6 0.7 

23 17.0 33.8 26.5 5.9 

24 19.8 34.3 24.5 11.4 

25 15.3 32.7 26.8 0.5 

26 17.0 32.6 25.3 14.7 

27 20.3 34.3 23.9 6.9 

28 10.1 30.2 27.6 10.5 
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29 13.3 31.8 27.3 13.2 

30 8.8 27.4 25.4 16.3 

31 12.4 30.9 26.9 0.0 

32 16.6 34.1 26.9 2.4 

33 15.8 34.6 28.0 2.7 

34 13.3 30.6 25.8 6.5 

35 14.0 31.3 25.7 17.7 

36 12.3 30.1 25.8 23.8 

37 15.9 34.3 26.8 1.0 

38 17.0 34.4 25.5 5.9 

39 14.2 31.8 25.3 13.7 

40 15.0 34.5 26.8 1.7 

41 15.6 34.7 25.9 0.1 

42 17.6 34.7 22.8 1.6 

43 17.1 33.3 21.4 0.0 

 

Mean weekly meteorological data during the crop growing season in Durshed 

Village 
 

SMW* Sunshine hours Max Temperature 

℃ 

Min. Temperature 

℃ 

Rainfall (mm) 

40 16.41 34.26 24.84 1.29 

41 17.05 34.06 23.27 0.00 

42 15.66 32.87 23.10 3.97 

43 17.91 32.89 19.43 0.00 

44 16.22 32.16 20.34 0.19 

45 17.09 31.74 17.80 0.00 

46 13.43 32.29 23.20 0.54 

47 13.56 32.46 22.66 0.37 

48 15.37 31.21 18.08 0.00 

49 15.65 31.92 17.93 0.00 

50 15.31 30.24 16.63 0.00 

51 16.81 28.69 12.16 0.00 

52 15.23 30.43 16.93 0.00 

1 15.32 29.34 16.06 0.00 

2 12.15 27.69 19.41 4.11 

3 28.24 17.36 0.61 3.00 

4 29.27 15.66 0.00 4.00 

5 18.44 30.41 14.46 0.00 

6 30.19 16.56 0.00 6.00 

7 17.63 29.77 16.86 0.00 

8 32.71 18.39 0.00 8.00 
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9 19.45 32.62 18.83 0.00 

10 20.05 33.51 19.67 0.00 

11 22.54 36.83 20.26 0.00 

12 20.23 36.36 23.54 0.00 

13 21.22 37.56 24.13 0.00 

14 20.21 35.87 24.21 0.00 

15 20.75 36.30 24.41 0.00 

16 22.38 39.80 26.33 0.00 

17 22.48 39.90 26.50 0.21 

 

Mean weekly meteorological data during the crop growing season in Nagnur 

Village 
 

SMW* Sunshine 

hours 

Max Temperature 

℃ 

Min. 

Temperature ℃ 

Rainfall 

(mm) 

40 14.97 33.06 25.23 1.29 

41 16.07 32.94 23.33 0.00 

42 15.08 32.30 23.11 3.97 

43 17.48 31.77 18.94 0.00 

44 15.40 32.21 21.57 0.19 

45 15.83 31.64 19.69 0.00 

46 12.78 32.13 23.87 0.54 

47 12.96 32.60 23.67 0.37 

48 14.44 31.45 19.86 0.00 

49 14.77 32.08 19.62 0.00 

50 14.63 29.96 17.49 0.00 

51 16.76 27.34 10.91 0.00 

52 14.18 29.11 17.35 0.00 

1 14.60 27.83 15.74 0.00 

2 10.91 26.51 19.93 4.11 

3 27.17 16.70 0.61 28.24 

4 27.84 15.20 0.00 29.27 

5 18.13 29.14 13.66 0.00 

6 28.83 16.60 0.00 30.19 

7 17.36 28.90 16.30 0.00 

8 31.36 18.74 0.00 32.71 

9 18.51 32.23 19.72 0.00 

10 19.55 32.74 19.56 0.00 

11 21.30 34.30 19.50 0.00 

12 19.15 35.30 23.86 0.00 

13 20.03 36.40 24.40 0.00 
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14 18.79 35.30 25.23 0.00 

15 19.48 35.74 25.29 0.00 

16 20.52 38.14 26.83 0.00 

17 20.61 38.31 27.03 0.21 

 

Mean weekly meteorological data during the crop growing season in Renikunta 

Village 
 

 

SMW* 

 

Sunshine hours 

Max 

Temperature 

℃ 

Min. 

Temperature 

℃ 

 

Rainfall (mm) 

40 16.84 34.01 24.10 0.00 

41 18.31 34.40 21.91 0.19 

42 16.83 33.41 22.10 4.84 

43 18.10 33.14 19.40 0.00 

44 16.27 32.33 20.44 0.64 

45 16.80 31.50 18.00 0.00 

46 12.98 31.51 23.03 2.30 

47 13.15 31.80 22.54 0.00 

48 15.42 31.53 18.28 0.00 

49 16.09 32.17 17.40 0.00 

50 15.79 31.06 16.56 0.00 

51 17.24 29.07 11.70 0.00 

52 15.33 31.41 17.74 0.00 

1 15.48 29.86 16.27 0.00 

2 12.67 28.44 19.44 2.81 

3 3.00 28.45 14.08 27.17 

4 4.00 29.06 15.90 27.84 

5 18.36 30.21 14.39 0.00 

6 6.00 30.23 16.49 28.83 

7 18.07 30.09 16.57 0.00 

8 8.00 31.25 17.99 31.36 

9 19.60 32.55 18.58 0.00 

10 20.28 33.46 19.30 0.00 

11 21.79 35.41 19.93 0.00 

12 20.56 36.41 23.23 0.00 

13 21.18 37.00 23.63 0.00 

14 20.97 36.21 23.64 0.00 

15 21.15 36.43 24.09 0.00 

16 21.95 39.09 26.13 0.00 

17 22.24 38.93 25.83 0.00 
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Mean weekly meteorological data during the crop growing season in Malkapur 

Village 
 

 

SMW* 

 

Sunshine hours 

Max 

Temperature 

℃ 

Min. 

Temperature 

℃ 

Rainfall 

(mm) 

40 14.79 33.03 25.39 4.33 

41 16.31 33.21 23.33 0.44 

42 15.25 32.29 22.94 7.03 

43 17.41 32.34 19.63 0.00 

44 15.63 31.84 20.87 0.00 

45 16.53 31.36 18.33 0.00 

46 12.82 31.67 23.37 2.09 

47 13.15 32.26 23.04 0.00 

48 14.71 30.86 18.81 0.00 

49 15.08 31.80 18.77 0.00 

50 14.71 29.94 17.37 0.00 

51 16.29 28.40 12.90 0.00 

52 14.39 30.00 17.91 0.00 

1 14.83 29.41 16.97 0.00 

2 11.58 27.47 20.01 9.56 

3 28.24 17.36 0.61 3.00 

4 29.27 15.66 0.00 4.00 

5 18.10 30.84 15.46 0.00 

6 30.19 16.56 0.00 6.00 

7 17.08 30.37 18.29 0.00 

8 32.71 18.39 0.00 8.00 

9 19.53 33.05 19.17 0.00 

10 19.74 33.84 20.41 0.00 

11 21.81 36.21 20.66 0.00 

12 20.39 36.83 23.90 0.00 

13 21.45 38.11 24.36 0.00 

14 19.95 36.31 24.96 0.00 

15 22.16 38.39 24.83 0.00 

16 22.71 40.54 26.69 0.00 

17 21.95 39.77 26.91 0.00 
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APPENDIX-II 

Questionnaire for crop data collection 

 

Farmer details 

Name and address 

Contact no 

 

Location of Plot  

Area of land holding  

Previous crop sown  

Soil type  

Soil nutrient status  

Variety name and 

duration 

 

Date of transplanting 

/sowing 

 

Irrigation details 

No. of irrigations 

Stages of irrigation 

 

Fertilizer details 

Rate of application 

Stage of application with 

quantity 

 

Organic amendments (if 

any applied) 

 

Pest and disease attack 

(if any ) 

Name and quantity of 

insecticides/ pesticides 

used 

 

Date of harvesting  

Yield (Kg/ha)  

Soil health card Details  
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APPENDIX-III 

GEE code for downloading NDVI values of karimnagar in Kharif 

season 

function addNDVI(image) { 

var ndvi = image.normalizedDifference(['B8', 'B4']).rename('ndvi') 

return ndvi 

} 
 

 

//Sentinel2 

var aug_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-08-01','2021-08-02') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

 

 

var aug_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-08-06','2021-08-07') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

 

 

var aug_3 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-08-11','2021-08-12') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 
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var aug_4 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-08-16','2021-08-17') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

 

 

var aug_5 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-08-21','2021-08-22') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table);  

var aug_6 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-08-26','2021-08-27') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table);  

var aug_7 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-08-30','2021-08-31') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var sep_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-09-05','2021-09-06') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var sep_2 = ee.ImageCollection('COPERNICUS/S2_SR') 
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.filterDate('2021-09-10','2021-09-11') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var sep_3 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-09-15','2021-09-16') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table) 

var sep_4 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-09-20','2021-09-21') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table) 

var sep_5 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-09-25','2021-09-26') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table) 

var sep_6 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-09-30','2021-10-01') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table)  

var oct_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-10-05','2021-10-06') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 
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//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table)  

var oct_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-10-10','2021-10-11') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table)  

var oct_3 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-10-15','2021-10-16') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table)  

var oct_4 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-10-25','2021-10-26') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table)  

var oct_5 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2021-10-30','2021-10-31') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table) 

//var cropmask = ndvi_Nalgonnda.gt(0.5) 

//Map.addLayer(cropmask) 

 

 

Map.addLayer(table) 
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var stack =aug_1.addBands(aug_2).addBands(aug_3).addBands(aug_4) 

.addBands(aug_5).addBands(aug_6).addBands(aug_7).addBands(sep_1).addBands(sep 

_2) 

.addBands(sep_3).addBands(sep_4).addBands(sep_5).addBands(sep_6).addBands(oct_ 

1) 

.addBands(oct_2).addBands(oct_3).addBands(oct_4).addBands(oct_5) 

var points = stack.reduceRegions({ 

collection: table2, 

reducer: ee.Reducer.median(), 

scale: 10, // meters 

crs: 'EPSG:4326', 

}) 

 

 

Map.addLayer(points) 

print(points) 

Export.table.toDrive( 

points, 

"table2", 

"table2", 

"table2"); 



134 
 

APPENDIX-IV 

GEE code for downloading NDVI values of karimnagar in Rabi season 

var table = ee.FeatureCollection("users/Roja/karimanagar"), 

table2 = ee.FeatureCollection("users/Roja/rabi_polygons"); 

function addNDVI(image) { 

var ndvi = image.normalizedDifference(['B8', 'B4']).rename('ndvi') 

return ndvi 

} 

var Jan_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-01-01','2022-01-15') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

 

 

var Jan_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-01-16','2022-01-31') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

 

 

var Feb_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-02-01','2022-02-15') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

 

 

var Feb_2 = ee.ImageCollection('COPERNICUS/S2_SR') 
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.filterDate('2022-02-16','2022-02-28') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

 

 

var Mar_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-03-01','2022-03-15') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var Mar_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-03-16','2022-03-31') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var Apr_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-04-01','2022-04-15') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var Apr_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-04-16','2022-04-30') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var May_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-05-01','2022-05-15') 
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//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

var May_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate('2022-05-16','2022-05-31') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

.filterBounds(table).map(addNDVI).max().clip(table); 

//var sep_4 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-09-20','2021-09-21') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

//.filterBounds(table).map(addNDVI).max().clip(table) 

//var sep_5 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-09-25','2021-09-26') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

//.filterBounds(table).map(addNDVI).max().clip(table) 

//var sep_6 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-09-30','2021-10-01') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

//.filterBounds(table).map(addNDVI).max().clip(table) 

//var oct_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-10-05','2021-10-06') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 
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//.filterBounds(table).map(addNDVI).max().clip(table) 

//var oct_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-10-10','2021-10-11') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

//.filterBounds(table).map(addNDVI).max().clip(table) 

//var oct_3 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-10-15','2021-10-16') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

// .filterBounds(table).map(addNDVI).max().clip(table) 

//var oct_4 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-10-25','2021-10-26') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

//.filterBounds(table).map(addNDVI).max().clip(table) 

//var oct_5 = ee.ImageCollection('COPERNICUS/S2_SR') 

//.filterDate('2021-10-30','2021-10-31') 

//.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

//.map(maskS2clouds) 

// .filterBounds(table).map(addNDVI).max().clip(table) 

//var cropmask = ndvi_Nalgonnda.gt(0.5) 

//Map.addLayer(cropmask) 

 

 

Map.addLayer(table) 

 

 

var stack =Jan_1.addBands(Jan_2).addBands(Feb_1).addBands(Feb_2) 
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.addBands(Mar_1).addBands(Mar_2).addBands(Apr_1).addBands(Apr_2).addBands(M 

ay_1) 

.addBands(May_2) 

var points = stack.reduceRegions({ 

collection: table2, 

reducer: ee.Reducer.median(), 

scale: 10, // meters 

crs: 'EPSG:4326', 

}) 

Map.addLayer(points) 

print(points) 

Export.table.toDrive( 

points, 

"table2", 

"table2", 

"table2"); 
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