
DOI: 10.1002/tpg2.20178

The Plant Genome
S P E C I A L I S S U E : A DVA N C E S I N G E N O M I C S E L E C T I O N A N D A P P L I -
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The Plant Genome special issue: Advances in genomic selection
and application of machine learning in genomic prediction for
crop improvement

Since Meuwissen et al. (2001) proposed the idea of using

genome-wide marker information for prediction of the genetic

worth of untested individuals, the concept of genomic selec-

tion (GS) has spawned a series of publications over the

last two decades in animals and plants alike. Advances in

genomic profiling and phenotyping have given a strong impe-

tus to application of GS in plant breeding (Crossa et al.,

2017; Varshney et al., 2017). Empirical and simulation stud-

ies suggest that GS can improve the rate of genetic gain in

plant breeding programs via influencing the various param-

eters of the breeder’s equation (Sinha et al., 2021). Concur-

rent advances in methods of genomic prediction including

parametric and non-parametric have resulted in considerable

improvements in the prediction accuracies of different GS

models. The rising complexity of datasets emanating from

high throughput genotyping, phenotyping and omics sys-

tems calls for harnessing the enormous potential of machine

learning (ML) tools for prediction of plant performance

(Varshney et al., 2021a). This issue on “Advances in genomic

selection and application of machine learning in genomic pre-

diction” presents 14 articles from leading experts in this field.

Key highlights of these articles are summarized here in this

editorial.

In the first article, Sandhu et al. (2021) demonstrated the

utility of machine- and deep learning models for prediction of

grain yield and grain protein content in wheat based on six dif-

ferent spectral reflectance indices. Enhanced prediction accu-

racies were obtained with machine- and deep learning mod-

els viz. Random forest and multilayer perceptron as compared

with the conventional genomic prediction models including

genomic best linear unbiased predictor and Bayesian models.

The study also established the superiority of multi-trait GS

models over uni-trait GS models. Extending genomic predic-

tion approach to count data, Montesinos-López et al. (2021a)

applied Poisson deep neural network (PDNN) and obtained

better prediction performance with PDNN compared with

Bayesian regression and generalized Poisson regression meth-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2021 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America

ods. The advantage of the PDNN was evident in the case of

count data on large datasets or for datasets with fewer obser-

vations than independent variables.

Machine learning is expected to play an important role in

GS (Varshney et al., 2021a, 2021b). In this issue, Bayer et al.

(2021) presented perspectives on using ML in GS with a focus

on addressing nonadditive effects in GS models. The review

also provides researchers with potential solutions to the chal-

lenges of applying ML approaches to GS including the dif-

ficulties encountered in interpretability of ML and parameter

optimization. The authors also highlight the significance of

gene content information from pangenome data in leveraging

the training process in genomic prediction. In another article,

Montesinos-López et al. (2021b) discussed that the ability of

ML methods to capture complex patterns and large datasets

renders these highly relevant to GS. The authors underscore

key future researchable areas that will help adapt DL to GS

strategies, thus accelerating the decision making process in

plant breeding.

Genomic prediction has emerged as a promising alternative

to the conventional approach of extensive field evaluations for

the development of heterotic groups in several crop species

(Bohra et al., 2016). In pigeonpea, Saxena et al. (2021) trained

a GS model on a population of 396 lines and 435 hybrids to

predict the performance of all 78,210 possible single-cross

hybrids based on 396 lines. The genomic prediction approach

proposed in this article paves the way for establishment of

heterotic groups and identification of high-yielding heterotic

patterns in different crops, which in turn will be crucial for

ascertaining long-term gain in hybrid breeding.

Given the higher efficiency of index selection over tandem

selection or independent culling levels, Sweeney et al. (2021)

provided empirical evidence in support of GS based on selec-

tion indices targeting multiple traits in two-row spring malt-

ing barley. The superior performance of GS over phenotypic

selection was demonstrated for selection index value, height,

and pre-harvest sprouting resistance. Furthermore, the study
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reinforced the significance of phenotyping since phenotyping

errors contributed to low realized gain for spot blotch. This

study suggested that GS might be particularly useful in case of

incomplete phenotyping scenarios. GS causes an increase in

inbreeding but controlled mating strategy and optimum con-

tribution selection (OCS) may help reduce inbreeding levels

in GS schemes (Varshney et al., 2021c). Genomic selection

with OCS improved grain yield, Fe and Zn besides reducing

time to cooking in African common bean (Saradadevi et al.,

2021). The five cycles of the GS strategy proposed in this arti-

cle could potentially lead to the development of the bioforti-

fied beans with enhanced Fe content (22 mg kg−1 more than

the local check). In fact, GS with OCS with crop wild relatives

has also been suggested an effective pre-breeding approach for

crop improvement (Bohra et al. 2021).

Empirical evidence in support of the supremacy of ML

methods for genomic prediction over simple linear methods

is currently limited. By obscuring the access of network to

marker data, Ubbens et al. (2021) showed that the ML meth-

ods consider genetic relatedness instead of the marker effects,

possibly explaining the gap in expected and realized potential

of ML in genomic prediction. The study proposed to avoid

shortcut learning in genomic data for enhancing the perfor-

mance of ML methods for genomic prediction.

In another study, Islam et al. (2021) applied parametric and

non-parametric models in sugarcane for predicting resistance

against rust disease. The higher prediction ability of non-

parametric GS models could be ascribed to the prevalence of

non-additive effects in disease resistance. Notably, inclusion

of known rust resistance gene Bru1 gene as a fixed effect sub-

stantially enhanced the performance of the parametric model,

particularly in the case of fewer number of DNA markers and

small training population size.

Strong interaction with environment complicates the selec-

tion for quantitative traits in plant breeding programs. Incor-

poration of genotype × environment interaction (GE) in

GS models has considerably improved prediction abilities.

Crespo-Herrera et al. (2021) compared the performance of

different models in the case of sparse testing in wheat and

found that the GS model with GE incorporated had bet-

ter accuracies than other models that did not account for

this interaction. Inclusion of GE in GS models could prove

immensely useful for optimum allocation of resources in plant

breeding programs, such as the number of overlapping lines

for multi-environment field testing. Lell et al. (2021) applied

a resampling approach on the large-scale published genotyp-

ing and phenotyping data of 1,604 winter wheat hybrids for

testing various biometric models to optimize the design of

multi-environment yield trials. Balanced environmental sam-

pling caused an increase in prediction accuracy.

Merrick and Carter (2021) showed the utility of the GS

approach for selecting plant traits with unknown complex

genetic architecture that are substantially influenced by the

environment. By comparing different GS models for deep-

sown seedling emergence in wheat, the authors recorded

slightly higher performance of non-parametric models in the

case of phenotyping data combined over the years. No signifi-

cant difference between parametric and non-parametric mod-

els within individual years suggested little need to account for

non-additive effects in such scenarios. The choice of models

relied heavily on the structure of the training population.

Genomic selection eases selection of plant traits such

as end-use quality, which are evaluated at the final stage,

and their evaluation demands considerable investments in

terms of time and cost. For end-use quality traits in wheat,

Zhang-Biehn et al. (2021) showed that the inclusion of indi-

rect selection in GS models improved prediction accuracies.

Importantly, GS approaches harnessing secondary traits as

covariates or correlated response variables create novel pos-

sibilities for selecting breeding lines with high levels of both

quality and yield traits, which are generally known to show

negative correlations. The authors also performed GWAS to

analyze mixograph mixing time and bake mixing time, two

end-use quality traits in winter wheat; and reported SNP mark-

ers for future marker-assisted selection.

A remarkable decline in the cost of genotyping has fueled

genomic characterization of large collection of germplasms

archived in genebanks. The use of genotyping and phenotyp-

ing data on germplasm collections to predict the genetic worth

of the untested germplasm has been referred to as turbocharg-

ing genebanks. Dzievit et al. (2021) trained models from

the Maize Association Population (MAP) to obtain genomic-

estimated breeding values (GEBVs) for individuals from the

Ames Diversity Panel. Combining GEBVs and an upper

bound for reliability (U-value) for selecting germplasms from

genebanks will accelerate trait improvement while retaining

the genetic diversity in the breeding program.

In recent years, selection of lines is shifting from a few loci

to whole-genome sequencing and/or genome-wide profiling

data in crop breeding programs. Such efforts are not only in

industrial and major crops like maize, soybean, wheat and

rice but also in minor or so-called orphan crops like chick-

pea and cassava. Going forward, GS and ML application in

genomic prediction are going to be routine in plant breed-

ing in the future. ML and artificial intelligence approaches

are expected for making the best use of the massive amount

of high-density sequencing/genomics and phenotyping data.

This will allow for better prediction of lines and their crosses

and enhance the precision and efficiency of plant breeding in

coming years. The GS along with other fast-forward breeding

approaches are expected to develop climate resilient and better

nutrition varieties in a faster manner (Varshney et al., 2021a).

Furthermore, it is also essential to establish and deploy rapid

delivery systems to harness the full potential of genetics and

plant breeding to contribute to feeding 10 billion people by

2050 (Varshney et al., 2021b).
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