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30 m and MODIS 250 m data using machine learning on the Google Earth Engine 
(GEE) cloud and spectral matching techniques (SMTs) in support of food and 
water security
Murali Krishna Gumma a, Prasad S Thenkabail b, Pranay Panjala c, Pardhasaradhi Teluguntla d, 
Takashi Yamano e and Ismail Mohammed c

aGeospatial Sciences and Big Data, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger; bS. Geological Survey, 
Western Geographic Science CenterU., Arizona, Flagstaff, USA; cGeospatial Sciences and Big Data, International Crops Research Institute for 
the Semi-Arid Tropics, Hyderabad, India; dBay Area Environmental Research Institute (BAERI), CA, USA; ePrincipal Scientist, Department of 
Economic Research and Regional Cooperation, Asian Development Bank (ADB), Manila, Philippines

ABSTRACT
Cropland products are of great importance in water and food security assessments, especially in 
South Asia, which is home to nearly 2 billion people and 230 million hectares of net cropland area. 
In South Asia, croplands account for about 90% of all human water use. Cropland extent, cropping 
intensity, crop watering methods, and crop types are important factors that have a bearing on the 
quantity, quality, and location of production. Currently, cropland products are produced using 
mainly coarse-resolution (250–1000 m) remote sensing data. As multiple cropland products are 
needed to address food and water security challenges, our study was aimed at producing three 
distinct products that would be useful overall in South Asia. The first of these, Product 1, was meant 
to assess irrigated versus rainfed croplands in South Asia using Landsat 30 m data on the Google 
Earth Engine (GEE) platform. The second, Product 2, was tailored for major crop types using 
Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m data. The third, Product 3, was 
designed for cropping intensity (single, double, and triple cropping) using MODIS 250 m data. For 
the kharif season (the main cropping season in South Asia, Jun–Oct), 10 major crops (5 irrigated 
crops: rice, soybean, maize, sugarcane, cotton; and 5 rainfed crops: pulses, rice, sorghum, millet, 
groundnut) were mapped. For the rabi season (post-rainy season, Nov–Feb), five major crops (three 
irrigated crops: rice, wheat, maize; and two rainfed crops: chickpea, pulses) were mapped. The 
irrigated versus rainfed 30 m product showed an overall accuracy of 79.8% with the irrigated 
cropland class providing a producer’s accuracy of 79% and the rainfed cropland class 74%. The 
overall accuracy demonstrated by the cropping intensity product was 85.3% with the producer’s 
accuracies of 88%, 85%, and 67% for single, double, and triple cropping, respectively. Crop types 
were mapped to accuracy levels ranging from 72% to 97%. A comparison of the crop-type area 
statistics with national statistics explained 63–98% variability. The study produced multiple- 
cropland products that are crucial for food and water security assessments, modeling, mapping, 
and monitoring using multiple-satellite sensor big-data, and Random Forest (RF) machine learning 
algorithms by coding, processing, and computing on the GEE cloud.
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1. Introduction, rationale, background, and 
importance

Agriculture is key to food security. It has the potential 
to improve the quality of life and livelihoods by increas
ing incomes and providing stable employment. 
However, according to the United Nations, global 
population is projected to reach about 10 billion 
(Lutz, Sanderson, and Scherbov 2001; Maiorano 2020; 
Mielczarek and Zabawa 2020) by 2050. That would 
demand a 50% increase in food production 
(Alexandratos and Bruinsma 2012; Movilla-Pateiro 

et al. 2021). The food and the nutritional demands of 
ballooning populations worldwide would require more 
precise and timely agricultural cropland products.

In South Asia, agriculture is the backbone of liveli
hoods for an overwhelming ratio of the population. 
Currently, the region accounts for 40% of the world’s 
harvested rice area (Usda 2010), serving 1.9 billion 
people, constituting almost 25% of the world’s popu
lation, as well as supplying large quantities of rice for 
export (Fao 2015; Somasundaram et al. 2020; Waha 
et al. 2020a). About 87% of all farmers in South Asia 
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are small-holders (Fao 2020; Gathala et al. 2020; 
Kamal, Schulthess, and Krupnik 2020; Van Loon et al. 
2020). So, there is a need to increase food production 
in small-holder farms.

Hitherto, during the Green Revolution era (1960– 
1970), the food demands of the world’s population 
were met by a combination of solutions such as 
(Sebby 2010; Shukla et al. 2019; Britannica 2020): (i) 
increasing the cropland area; (ii) increasing irrigation; 
(iii) genetic advances; (iv) improved inputs (e.g. fertili
zer, pesticides, herbicides); and (v) advances in man
agement (e.g. drainage, mechanized tillage, etc). But 
these solutions have created significant environmental, 
ecological, and health problems as well. Millions of 
hectares of croplands are being rendered unproductive 
every year due to heavy irrigation and decades of 
salinization (Rockström, Lannerstad, and Falkenmark 
2007; Rey et al. 2019). Pesticides and herbicides have 
polluted water bodies, and aquatic life has dwindled in 
them (Santana et al. 2020; Destro et al. 2021). Heavy 
application of nitrogen fertilizers has polluted ground
water systems (Adimalla 2019; Gupta 2020). Further, 
there is increasing pressure on cropland areas for alter
native uses (e.g. urban and industrial development). 
Agriculture accounts for 80–90% of all human water 
use worldwide, with the highest rates of water use 
mainly for irrigation purposes (Thenkabail et al. 2021). 
In a scenario of changing climate, this situation is not 
sustainable (O’connor et al. 2019; Bardos et al. 2020).

South Asia is the number one consumer of water for 
agriculture (Dheeravath et al. 2010; Thenkabail et al. 
2010; Teluguntla et al. 2015; Gillespie et al. 2019). 
Massive volumes of water are consumed to irrigate 
large cropland areas having high cropping intensities 
(growing more than one crop on the same field in 
a year). This water comes from rainfall, predominantly 
from the Southwest (Jun–Sep) and Northeast (Oct– 
Dec) monsoons as well as large numbers of big, med
ium, and small irrigation projects (Dheeravath et al. 
2010; Thenkabail et al. 2011, 2012; Teluguntla et al. 
2015). So understanding, characterizing, modeling, 
mapping and monitoring agricultural croplands 
would be of great importance in meeting the food as 
well as water security challenges faced in South Asia.

Numerous cropland products using multi-sensor 
remote sensing platforms have been produced for 
global (Biradar et al. 2009; Thenkabail et al. 2009, 
2010, 2011), continental or regional purposes includ
ing South Asia (Dheeravath et al. 2010; Gumma et al. 

2016, 2020a) by a number of researchers (Massey et al. 
2017; Xiong et al. 2017a, 2017b; Teluguntla et al. 2018; 
Oliphant et al. 2019; Gumma et al. 2020a; Phalke et al. 
2020). However, all these studies are limited to 
a single cropland product, or, when more than one 
product is involved, relevant only to a limited small 
area within South Asia (e.g.(Gumma et al. 2011)). The 
food and water security challenges of South Asia 
would benefit from production of multiple cropland 
products with sufficiently high spatial resolution and 
covering the entire region. Accordingly, we identified 
three critical products that would be of great impor
tance in addressing the food and water security 
challenges:

(1) Irrigated and rainfed cropland areas;
(2) Crop types or crop dominance; and
(3) Cropping intensities (the number of times 

a crop is grown on the same plot of land in 
a year).

1.1. Irrigated versus rainfed cropland product

To produce the irrigated versus rainfed cropland pro
duct, we defined irrigated areas as croplands that are 
artificially watered for crop water requirements more 
than once during the growing season either from 
surface water sources (e.g. lakes, reservoirs: major, 
medium, small, river flow diversion) or groundwater 
sources (e.g. shallow or deep aquifer pumping). In 
contrast, rainfed areas were defined as lands entirely 
dependent on rainfall for crop water requirements. 
Farmlands that are equipped for planting a crop 
were treated as net cropland area irrespective of 
whether a crop was actually planted on it or the 
field was left fallow. On each plot of cropland that is 
equipped for farming or cultivation or planting, crops 
may be grown one, two or three times during a 12- 
month period, or the plot of land may have 
a permanent crop. So, annualized areas were calcu
lated by a summation of the areas of crops planted 
and harvested on the same piece of land during a 12- 
month period. As established by several studies, 
South Asia is a region with the highest annualized 
irrigated area in the world, constituting about 40– 
60% of the irrigated area of the world (Dheeravath 
et al. 2010; Thenkabail et al. 2011, 2021). This fact 
makes it important to map the irrigated area in 
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South Asia. Overall, about 40% of the world’s food is 
produced on about 20% of the cropland. However, 
irrigated areas come with great costs including the 
cost of creating infrastructure such as dams, canals, 
barrages, weirs, and aqueducts. Further, great 
volumes of water are consumed and/or lost during 
transportation to irrigate farms. In contrast, rainfed 
area production varies, depending on water availabil
ity due to rain and is vulnerable to droughts or floods. 
This results in production variability. Dryland rainfed 
cropping patterns are highly variable and are gov
erned by biophysical and socioeconomic factors 
(Parr et al. 1990; Salvati et al. 2015; Seinn et al. 2015; 
Feyisa et al. 2020). Thenkabail et al. (2011), Thenkabail 
et al. (2009)) produced the first global irrigated area 
map, and Biradar et al. (2009) produced the first glo
bal rainfed area map using nominal 1-km remote 
sensing time-series data for the year 2000. Since 
then there have been a number of global irrigated 
and rainfed products with a coarse resolution of 1 km 
or less, or those with a fusion of remote sensing 
(spatial) and non-remote sensing (non-spatial) 
approaches (Döll and Siebert 2000; Siebert et al. 
2007; Zohaib, Kim, and Choi 2019). All these products 
also include South Asia. Dheeravath et al. (2010) pro
duced the first remote sensing-based irrigated versus 
rainfed cropland product for South Asia for the year 
2010 using MODIS 250 m data. More recent irrigated 
area products of South Asia have been published by 
using MODIS data (Gumma et al. 2011; Vadrevu et al. 
2019). This study provides great advances in mapping 
irrigated and rainfed croplands of the entire South 
Asia area at Landsat 30 m resolution (1 pixel = 0.09 hec
tares) relative to the best-known earlier product at 
250 m (1 pixel = 6.25 hectares), a steep increase of 
nearly 70 times in spatial resolution.

1.2. Cropping intensity

Information on cropping intensity (the number of 
times a crop is grown on the same plot of land during 
a 12-month period) can help researchers and policy
makers in assessing the food and water security of 
a study area and relating it to a broader global con
text. Frequently in much of South Asia, more than one 
crop is grown on a plot of land in a year depending on 
the water availability for irrigation as well as climate 
suitability. Cropping intensity can be single, double or 
triple cropping with the crop duration varying from 

3 months (e.g. rice, wheat, vegetables) to 6 months 
(e.g. cotton) or 1 year (e.g. sugarcane); or it may be 
continuous cropping on plantations of coffee, tea, 
fruit trees, rubber or cocoa, which are grown through 
the year (Dheeravath et al. 2010; Gumma et al. 2014). 
Mapping cropping intensity is of abundant impor
tance in assessing the quantum of food produced, 
the volume of water consumed, and the economic 
value of the produce to farmers and the government. 
It also helps policymakers in assessing the sustainabil
ity of the crops grown (Gumma et al. 2016, 2022). 
Therefore, mapping of cropping intensity across the 
growing seasons in South Asia (i.e. the kharif season 
during the Jun-Oct Southwest monsoon, the rabi sea
son during the Oct–Feb Northeast monsoon, and 
summer crop season during Feb–Apr) provides very 
important information to decision-makers. For exam
ple, it helps in finding ways to improve cropping 
intensity in areas where it is currently low. Remote 
sensing-derived spatial products can contribute 
important inputs to food security studies by establish
ing seasonal cropping patterns such as cereal crops 
like rice and wheat followed by short-duration 
legumes as second crops, thus maximizing the quan
tum of food produced by optimizing land and water 
resources (Thenkabail et al. 2010; Gumma et al. 2016). 
Such measures can significantly increase farmers’ 
income. Currently, during the winter season, fields 
across South Asia are kept fallow because of low 
water availability. Cropping intensification can be 
achieved in dry areas by introducing crops that 
demand less water such as chickpea and grain 
legumes with shorter growing seasons (Gumma 
et al. 2016). Additionally, chickpea has a high market 
demand, which helps farmers economically apart 
from enhancing food and nutritional security. 
Gumma et al. (2014) have demonstrated the potential 
of using MODIS 250 m time-series remote-sensing 
data in mapping cropping intensity in 
BangladeshMapping cropping intensity also helps in 
identifying areas where intensification is feasible (Liu 
et al. 2020; Waha et al. 2020a), which in turn will help 
decision-makers in identifying areas for cropland 
expansion and introducing appropriate seasonal 
crops with an optimum growing period that can con
serve water (Gumma et al. 2016). This study maps 
cropping intensity (single, double, triple cropping) 
using time-series MODIS 250 m data over entire 
South Asia using phenological algorithms.
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1.3. Crop type

A wide array of crops are grown in South Asia. Whilst 
farmers tend to grow the same crop year after year, 
they do sometimes change the crop depending on the 
need for crop rotation, food demand, and market value. 
Each crop consumes a certain amount of water to 
produce one unit of food. Major crops are cultivated 
across diverse climatic conditions under different crop 
management techniques. Knowing what crops are 
grown, in which area, how frequently, the quantum of 
water consumed and the amount of food and fodder 
produced is important in food and water security 
assessments. Some degree of prior knowledge of the 
variation in these factors is essential to produce an 
accurate map of crop-growing areas. Although several 
studies have been conducted on crop-type mapping 
using remote sensing, data have been limited to a small 
area such as one district; or there have been pilot 
studies (Wang et al. 2019; Mao et al. 2020; Xu et al. 
2020) on large-scale mono-cropping such as rice and 
wheat (Xiao et al. 2005; Sun et al. 2012; Dong and Xiao 
2016; Zhang et al. 2017). Mao et al. 2020 mapped maize 
and soybean using vegetation indices. Wang et al. 
(2019) mapped sugarcane areas using Sentinel 2 data. 
Available regional and subnational statistical data on 
cropped area and coarse-scale land use/land cover 
(LULC) classes and rice maps from the 1980s (Huke 
1982; Aselman and Crutzen 1989; Huke and Huke 
1997) were followed in the 2000s by automated map
ping of paddy areas using medium spatial resolution 
remote sensing (Xiao et al. 2005, 2006; Sun et al. 2009; 
Takeuchi and Yasuoka 2009) as well as more sophisti
cated combinations of various data sources (Frolking 
et al. 2002; Frolking, Yeluripati, and Douglas 2006). Crop 
type information at the district or sub-district level helps 
in assessment of the food and water security challenges 
encountered at those scales (Boryan et al. 2011; Khan 
et al. 2016; Skakun et al. 2017).

These above products contribute to national, 
regional, and local agricultural statistics, which are 
invaluable for understanding historical trends in agri
culture, irrigation, crop types, crop intensity, produc
tivity, and water use. Comprehensive statistical data 
from all levels are important for all aspects of food 
and water security planning.

In this study, we will develop crop-type products for 
five irrigated and five rainfed crops during the main 
cropping season (Kharif) and three irrigated and two 

rainfed crops during the second main cropping season 
(Rabi) using MODIS 250 m data. These crops constitute 
overwhelming proportion of the cropland areas 
throughout South Asia and are important world crops.

1.4. Goal and objectives

In light of the context presented above, the overarching 
goal of our study was to develop – using Landsat 30 m 
and MODIS 250 m time-series remotely sensed data, 
machine learning and cloud computing – three key 
cropland products for South Asia (for the crop year 
2014–2015) that would be useful in food and water 
security assessment and management. Our specific 
objectives were to Develop three cropland products 
for South Asia using machine learning methods such 
as RF on the Google Earth Engine (GEE) as well as other 
methods such as spectral matching techniques (SMTs). 
The products were aimed developing three cropland 
products:

1. Irrigated versus rainfed cropland mapping at 
30 m resolution;

2. Crop type mapping using 250 m resolution; and
3. Cropping intensity (single, double, triple, and con

tinuous cropping) mapping at 250 m resolution; 
Establish accuracies, errors, and uncertainties for 
products.

These products were prepared for the crop year 
2014–2015 as a rich set of reference data was available 
to train the machine learning algorithms and validate 
the products. Landsat data were used to define the 
irrigated areas from rainfed areas. Once that goal was 
achieved, MODIS 250 m data were used to derive 
cropping intensities and crop types within the irri
gated and rainfed mask created using Landsat data.

2. Study area and agroecological zones (AEZs)

The South Asian landmass is located between latitudes 
5°38′N and 36°54′N, and longitudes 61°05′E and 97°14′ 
E. Its area of 477 million ha includes six countries: 
Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri 
Lanka. The region is divided into five agroecological 
zones (AEZs): humid tropics (Zone 5), sub-humid tro
pics (Zone 4), semi-arid tropics (Zone 3), semi-arid sub
tropics (Zone 2), and arid tropics (Zone 1) (Choice 
2009). Agriculture in South Asia is strongly governed 
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by the monsoons and seasonal winds. About 80% of 
the poor live in rural areas, dependent on agriculture 
sector for their livelihood (Rasul 2014; Worldbank 2015; 
Warchold, Pradhan, and Kropp 2021), and 70% of the 
rural population depends on natural resources like 
land, freshwater, and coastal fishing. Nine major river 
basins are included in our study area, namely, 
Brahmaputra, Ganges, Godavari, Indus, Cauvery, 
Krishna, Mahanadi, Narmada and Tapti. Major and 
minor irrigation projects in South Asia cover a total 
area of 133 million ha (Thenkabail et al. 2008). Rice as 
well as wheat are the staple foods. Rice is the major 
crop with single or double cropping mainly, but a third 
crop is grown in some areas.

To make the classification process smoother, the 
entire South Asian region was stratified into five AEZs 
on the basis of specific agricultural practices and climatic 
conditions (Figure 1), taking the Food and Agriculture 
Organization’s (FAO’s) definition of global AEZs (GAEZs) 
(IIASA/Fao 2012), and modifying them (mostly merging) 
along administrative boundaries, so as to allow us to 
arrive at national crop area estimates (Figure 1).

The original GAEZs were defined on the basis of 
a combination of soil properties and climatic charac
teristics. The specific parameters used in our defini
tion were related to the climatic requirements for the 
crops and the management systems under which 
they are grown. Each AEZ thus delineated in this 
study had a similar combination of constraints and 

potentials for land use, and thus served to focus 
recommendations on improving the existing land- 
use situation, either through increasing production 
or by limiting land degradation.

2.1. Definitions

Definitions are key to mapping. In this study, we 
defined irrigated areas as all the cropland areas 
which get one or more water application during the 
growing/vegetative season from artificial sources 
other than precipitation. These irrigated areas include 
water from reservoirs by building dams of rivers, river 
water diversions through a barrage, pumping along 
the riverbanks, pumping from deep acquirers or shal
low acquirers by digging tube wells or open wells, 
and irrigation tanks along the small order streams. 
The rainfed croplands are croplands that grow crops 
purely dependent on rainfall without any need for 
artificial water diversions.

3. Data

3.1. Remote sensing analysis-ready data (ARD) 
cube

We have two separate ARDs (Figure 2). The top 
Figure 2 illustrates ARD for Landsat 30 m data, avail
able as surface reflectance product on the GEE, used 

Figure 1. Map of South Asia showing five agro-ecological zones.
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for the product: irrigated versus rainfed croplands. The 
bottom Figure 2 illustrates ARD for MODIS 250 m 
data, also available as surface reflectance product on 
the GEE, used for the products: cropping intensity and 
crop types.

3.1.1. Landsat data for irrigated and rainfed 
croplands
For irrigated versus rainfed croplands, our study drew 
upon multiple bands (Blue, Green, Red, Near Infrared 
(NIR), Short wave Infrared (SWIR1 & 2, Thermal 
Infrared (TIR)) as well as indices (Equation 1, 3 and 4) 
of Landsat-8 30 m data acquired every 16 days from 
2013 to 2015. This resulted in 10 band composites for 
each of the 12 months composited over 3 years 
(2013–2015). This resulted in a total of 120 bands. 
Then, season-wise median values for each band (i.e. 
first season – Day 151 to 300 (rainy), second season – 
Day 301 to 365, 1 to 90 (winter), Third season – Day 
91–150 (summer), which contains 10 bands for every 
season (30 bands for three seasons). In addition, 

a slope band (which helps in distinguishing cropland 
from other LULC) was added, for a total of 31 bands 
(top portion of Figure 2).

3.1.2. MODIS data for cropping intensity and crop 
type
For mapping of the cropping intensity and crop type, 
we used MOD13Q1.6 derived 250 m normalized dif
ference vegetation indices (NDVI) data (Lpdaac 
2016), which were time-composited for every 16- 
day interval (bottom image in Figure 2). The 16-day 
MODIS tiles covering the whole South Asian region 
for the duration of June 2014 to May 2015 were 
extracted from the Land Processes Distributed 
Active Archive Center (LP DAAC) (https://lpdaac. 
usgs.gov) (Lpdaac 2016). The MODIS re-projection 
tool i.e. MRT was used to re-project and mosaic all 
tiles and then stacking them as a single composite 
(Thenkabail et al. 2009; Gumma et al. 2011) (bottom 
image in Figure 2). The Normalized Difference 
Vegetation Index (NDVI) (Rouse et al. 1974) was 

Figure 2. Top row: For each of the five agro-ecological zones in South Asia, 16-day bands of Landsat-8 operational land imager (OLI) 
data (Miller 2016)were used to make multi-year composites of three cropping seasons (2013–2015). Overall, 10 bands including 
indices (blue, green, red, NIR, SWIR1, SWIR2, TIR, EVI, NDVI, NDWI) were time composited over every season to arrive at data cubes for 
each zone. Stacked 30 bands (3 seasons x 10 bands)) and one slope band, making it a total of 31 bands. Bottom row: To define 
cropping intensities and crop types, MODIS 250 m NDVI daily data (Modis 2022) were time composited into 23 bands with MOD13Q1.6 
products. These were further composited into 12 bands of maximum-value composites (MVCs) to constitute analysis-ready data (ARD) 
and also stacked one slope band for this research.
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derived from the near infrared and red band for 16- 
day composite in the 2014–2015 time series of 
images using equation 1: 

NDVI ¼
NIR � Redð Þ

NIRþ Redð Þ
(1) 

NDVIMVCi ¼ Max NDVIi1;NDVIi2ð Þ (2) 

EVI ¼
2:5 � ð NIR � Redð Þ

NIRþ 6 � Red � 7:5 � Blueþ 1ð Þ
(3) 

NDWI ¼
Green � NIRð Þ

Greenþ NIRð Þ
(4) 

where the MVCi is the monthly maximum-value com
posite (MVC) of ith month (e.g. “i” is June–May). i1, i2 
are every 16-day composite image in a month (equa
tion 2). Altogether 23 images, each covering the 
entire study area of South Asia, were stacked. From 
the 16-day, monthly MVCs (i.e. maximum NDVI values 
for each month as per equation (1) were established 
and stacked for the crop year 2014–15 (June 2014 to 
May 2015). This gave us an analysis-ready data (ARD) 
cube (bottom image in Figure 2) of 12 MODIS NDVI 
MVCs (one for each month), thus providing wall-to- 
wall coverage of the whole of South Asia. A single- 
band of slope data was also stacked. Thus, the ARD 
data cube forms 13 bands for further processing 
(Figure 2, bottom row).

3.2. Reference (training and validation) data hub

Ground-level reference survey information was col
lected extensively by a very experienced survey 
team across South Asia for the crop year 2014–15 
(June 2014 to May 2015) for the purposes of land 
class identification, labeling and accuracy assessment. 
Overall, there were 2,734 ground reference data sam
ples of which 1,947 points were used for training 
reference data and 787 for validation (Table 1), for 
which the data repository is ICRISAT (ICRISAT 2022). 
The ground-level training data were used to create 
a knowledge base for training the machine learning 
algorithms like RF and for generating ideal spectral 
signatures for the SMTs. For each ground sample 
(which were at least 250 m x 250 m) LULC information 
was collected along with crop type, soil type, and 
irrigation type. At each data collection point, the 
area around was classified into one of three classes: 

small (≤10 ha of irrigated area present around the 
survey location), medium (10–15 ha), or large 
(≥15 ha). Whenever possible, farmers were inter
viewed for information on planting dates, irrigation 
type and cropping pattern. Other information was 
obtained from other sources too such as local agricul
ture experts and secondary sources such as reliable 
maps, where available, of local areas. The LULC names 
and class labels were assigned in the field using 
a labeling protocol (Thenkabail et al. 2009). 
Locations were measured by Global Positioning 
System (GPS) (3 m accuracy) and photographs were 
taken of crops grown. The ground data thus collected 
were further divided and refined as per the purposes 
of the study: delineation of irrigated vs. rainfed crop
land (Figure 3), crop intensity pattern (Figure 4) and 
crop type\dominance (Figure 5). For crop intensity 
mapping, the ground data were categorized as per 
single, double, and triple cropping samples, which 
gave us 1098 training samples and 629 validation 
samples (Figure 4). As regards, the crop-type map
ping, the ground data were categorized by major 
crop types and also season-wise, which yielded 851 
samples for training and 858 samples for validation 
(Figure 5; Figure 6). The GPS location is a precise one 
(+ or – 3 m). These locations are carefully selected 
during field visits for each crop in large homogeneous 
fields. For example, a maize field GPS location is cen
tered at the field surrounded by the same crop in all 

Table 1. Product-wise ground reference training and validation 
data samples collected for the whole of South Asia (ICRISAT 
2022).

Cropland

Ground data

Training samples Validation samples

Irrigated vs. rainfed
Irrigated 573 437
Rainfed 525 235
Non-crop /other LULC 849 115
Crop intensity
Single crop 458 201
Double crop 586 372
Triple crop 54 56
Major crop type
Rice 201 230
Soybean 66 62
Maize 74 65
Groundnut 122 73
Pulses 147 89
Sugarcane 18 12
Potato 8 18
Millets 74 48
Chickpea 89 78
Cotton 90 68
Sorghum 39 23
Other crops 38 62
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directions. Therefore, the ideal spectra generated for 
the center location is very much representative for the 
field irrespective of whether it is 250 m or 30 m.

3.3. Statistical data

Statistical data are significant to compare cropland 
areas calculated within an administrative unit with 
those reported by national and local statistical agencies. 

For the purposes of this study, statistical data for India 
were acquired from the Directorate of Rice 
Development (http://dacnet.nic.in/rice/) (Ray, Singh, 
and Choudhary 2021) of the Ministry of Agriculture. 
Statistics for Bangladesh, Nepal, Pakistan, Nepal, and 
Bhutan were obtained from the respective national 
statistical departments (Aid 2021; Bbs 2021; Nsb 2021).

4. Methods

Our study was aimed at three remote-sensing pro
ducts that capture important cropland characteristics 
across South Asia:

Product 1: Irrigated croplands versus rainfed 
croplands

Product 2: Crop types
Product 3: Cropping intensity

The methodology we followed is represented in 
Figure 7 and described below in subsections.

4.1. Methods for product 1: mapping irrigated and 
rainfed cropland using RF machine learning 
algorithm

In making Product 1 to delineate irrigated croplands 
from rainfed croplands, we adopted the RF machine 
learning algorithm and computing was performed on 
the GEE cloud platform, which is equipped with 
hitherto unheard-of petabyte-scale big data analytics 
(Dubey et al. 2020). The RF machine learning algo
rithm is a pixel-based supervised classifier. The 
method involves the following steps:

4.1.1. Reference training data collection
The first step is to gather well-distributed reference 
training data. Figure 3 shows the training data used in 
developing irrigated versus rainfed cropland RF 
machine learning algorithm.

4.1.2. Knowledge base creation
Knowledge base creation for training of the RF 
machine learning algorithms involved obtaining 
Landsat 8 time-series signatures from the ARD 
(Figure 2, top half) utilizing the irrigated and rainfed 
cropland training datasets (Figure 3). The knowledge 
base is made robust to ensure that there is maximum 
separability of irrigated and rainfed cropland classes 
as shown in Figure 7A for AEZ 2 (Figure 1). Similar 

Figure 3. The spatial extent of ground data (training and valida
tion) data (ICRISAT 2022; Gumma et al. 2017) collected for 
mapping of irrigated and rainfed croplands (product 1) in 
South Asia.

Figure 4. Spatial distribution of ground sample (training and 
validation) data ((ICRISAT 2022; Gumma et al. 2017) collected for 
mapping crop intensity (product 2) in South Asia using MODIS 
data Miller 2016)).
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knowledgebases were created for other AEZs shown 
in Figure 1. There were instances where clear varia
bility/separability was infeasible in some AEZ when 
the entire AEZ was taken into consideration. In such 
cases, we further divided AEZs into sub AEZs and 
created knowledgebase for clear and distinct 

separability between irrigated and rainfed crops in 
sub AEZs and then the product is put together over 
entire AEZ and finally over entire South Asia. Sub- 
AEZs were derived from AEZs (Figure 1) by using 
layers such as elevation, slope, climate (precipitation, 
temperature), and soils.

Figure 5. Spatial distribution of the ground reference (training and validation; ICRISAT 2022; Gumma et al. 2017) collected for mapping 
of major kharif crops (product 3) using MODIS 250 m data (Miller 2016).

Figure 6. Spatial distribution of ground data (training and validation) data (ICRISAT 2022; Gumma et al. 2017) for mapping of major 
rabi crops (product 3) in South Asia using MODIS 250 m data (Miller 2016).
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4.1.3. Running machine learning algorithms
The knowledge base created was used to run the RF 
machine learning algorithms (Rodriguez-Galiano et al. 
2012; Xiong et al. 2017a) on the GEE cloud with multi
year seasonal data from Landsat-8 30 m ARD (e.g. top 
half of Figure 2) data cube to best separate irrigated 
areas from rainfed areas. The performance of the RF 
machine learning algorithms depends on the robust
ness of the reference training data as well as number of 
decision trees. A random forest (RF) is an ensemble 
classifier that generates a set of multiple decision 
trees and then votes for the most popular class, using 
a randomly selected subset of training samples and 
variables (Thenkabail et al. 2021). The RF uses hundreds 
of classifiers that are built into RF classification, and 
their decisions are combined, usually by plurality vote, 
using the premise that accuracy is greater from com
bining ensemble classifiers than it is from any single 
ensemble classifier, thereby avoiding conflicts among 
the feature subsets (Tian et al. 2016). The RF classifier 
uses bootstrap aggregating (bagging) to form an 
ensemble of decision trees by searching random sub
spaces from the given features and the best splitting of 
the nodes by minimizing the correlation between the 
decision trees (Xiong et al. 2017a). It provides a means 

of averaging predictions of multiple decision trees, 
trained on different subsets of the same data, in order 
to overcome the problem of overfitting by individual 
decision trees (Kranjčić et al. 2019; Shah et al. 2019). At 
the same time, the quality of samples and well- 
distributed samples are very important. The process is 
iterative, meaning that after each run the classification 
accuracies are assessed. The process is repeated by 
refining the training data and improving the knowl
edge base till a highly accurate irrigated versus rainfed 
cropland product is obtained. Refinement of the 
knowledge base involves dropping and adding refer
ence training data that have high degree of uncertainty 
until it ultimately leads to an optimal solution that has 
optimal producer’s and user’s accuracies.

The process involved generating Landsat 8, 30 m 
analysis-ready data (ARD) cubes (Figure 2) for five AEZs 
in South Asia (Figure 1), generating a knowledge base 
for them, and running RF machine learning algorithms 
for each AEZ separately.

One of the best ways to separate irrigated croplands 
from rainfed croplands is through phenology. A large 
proportion of irrigated areas in South Asia have second 
and/or third crops over a 12-month period whereas 
rainfed areas almost always have only one crop 

Figure 7. Methodology used for mapping three cropland products for the whole of South Asia. Product 1: Irrigated croplands versus 
rainfed croplands using landsat 8 data at 30 meters resolution in the google earth engine (GEE) interface. Products 2 and 3: Cropping 
intensity and crop type using MODIS 250 meters data on earth resources data analysis system (ERDAS) imagine.
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coinciding with the rainy season. When, in spite of the 
above measure, significant issues of separability arise, 
other data are introduced in the data cube such as 
indices, slope, and thermal data (Dheeravath et al. 
2010) to achieve optimum separation.

4.2. Method for product 2: crop type mapping 
using quantitative spectral matching technique

MODIS 250 m data were used to classify and identify 
crop types using quantitative spectral matching tech
niques (SMTs). The SMTs involved developing ideal 
spectral signatures (ISSs), classifying images and 
obtaining class spectral signatures (CSSs), and match
ing class spectra with ideal spectra to identify and 
label crop-type classes (Thenkabail et al. 2007). 
Methodological steps involve the following steps:

4.2.1. A. Ideal spectral signatures

Ideal spectral signatures were produced using MODIS 
NDVI time-series data with precise knowledge of crop
lands based on the unique reference samples obtained 
from the ground survey. The reference samples were 
classified according to their unique categories and 
grouped into homogeneous classes considering crop
ping intensity, crop types, and cropping system. Figure 8 
shows the ideal spectral signatures of various crops, 

both irrigated and rainfed. The spectral signature curve 
explains crop behavior over time (Thenkabail et al. 2007; 
Gumma et al. 2016). During the initial stage of crop 
growth, it has a smaller NDVI value; during peak growth, 
the NDVI value is high; and at harvest stage, the NDVI 
value is again smaller (Figures 8 and 9). Given the precise 
knowledge of the crop type based on ground data, we 
have clear understanding of how each crop behaves in 
terms of NDVI over time (Figure 8). These ideal spectral 
signatures (ISSs) are derived for various crops in different 
AEZs or, if need be in sub AEZs.

In order to generate ideal spectra across resolu
tions using the same samples, we selected crop-type 
samples in the middle of the field. These are repre
sentative homogeneous fields. So, the GPS location at 
the center of the field has the same crop in all 4 
directions (at least 125 m in each direction), which 
makes the sample grid resolution at least 250 m 
x 250 m. That way, the samples can easily be used 
to develop ideal spectra for 30 m x 30 m Landsat or 
250 m x250m MODIS or for other resolutions within 
250 m x 250 m. Thereby, there is clear relationship 
between the MODIS and Landsat spectral reflectivity 
and NDVI (as shown in the Appendix 1). Indeed, 
MODIS NDVI were highly correlated with Landsat 
NDVI for crops with an R-square value of 0.74. The 
relationship equation was: 

MODIS NDVI ¼ 1:0471 � Landsatþ 0:0877 (5) 

Figure 8. Spectral signatures of major crops obtained using MODIS NDVI time-series data (sample size = 10) (Gumma et al. 2017; 
ICRISAT 2022).
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This strong relationship shows that same samples 
can be used for both sensors (or any other sensors 
as long as they are within 250 m x 250 m). Given 
the differences in sensor characteristics (e.g. spatial 
resolution, spectral bandwidth, radiometry) it is 
expected that they have a relationship with certain 
slope and intercept. When using multi-sensor data, 
this is a common approach to develop inter-sensor 
relationships and develop an understanding on 
how the spectral reflectivity and\or NDVI are 
related to one another

4.2.2. B. Class spectra generation

Class spectra were generated based on unsuper
vised classification of MODIS 250 m, 16-day NDVI 
time-series data for the year 2014–2015 using the 
ISOCLASS cluster algorithm (ISODATA in ERDAS 
Imagine 2021TM, ERDAS Imagine, 2021 followed 
by progressive generalization (Cihlar et al. 1998). 
The initial classification was set at a maximum of 
160 iterations and a convergence threshold of 0.99, 
which resulted in 160 classes for the whole of 
South Asia. Spectral signatures were generated 
for every individual class.

4.2.3. C. Matching of class spectra on the basis 
of ideal spectra to group classes using SMTs

The process of SMT mainly involves two steps:
(i) Grouping similar class spectra: The initial 160 

classes obtained from unsupervised classification 
(called class spectra) were grouped into a subgroup 
based on quantitative spectral matching techniques 
(QSMTs), i.e. classes nearly similar spectral profiles 
(Homayouni and Roux 2003; Thenkabail et al. 2007) 
(see Figure 9, middle column). For example, a group 
of 10 classes having similar MODIS NDVI time-series 
temporal spectral signatures are nearly matched with 
ideal spectra (Figure 9, middle column (ICRISAT 2022).

(ii) Matching group of similar classes with ideal 
spectra. Spectral matching involves, finding an ideal 
spectra that matches with group of class spectra 
(Figure 9). This is achieved by group of quantitative 
spectral matching techniques (QSMTs) methods such 
as spectral correlation similarity (SCS) R-square values 
between the ideal spectra and class spectra. When an 
R-square value of 0.80 or higher is achieved in correla
tion between ideal spectra and class spectra then it is 
considered as a match. In Figure 9 we see visual 
matches both in terms of their shape and magnitude 
in the time-series NDVI spectra of ideal spectra and 

Figure 9. Spectral matching techniques (SMTs) to match class spectra with ideal spectra extracted from MODIS 250 m time series data 
(Gumma et al. 2017; ICRISAT 2022).
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class spectra for three cases. Once such strong rela
tionships are identified between a group of class 
spectra with an ideal spectrum, then a preliminary 
class name is assigned taking the name of ideal spec
tra. This preliminary labeling of classes is further vali
dated mainly by using ground data for all the classes 
in the group, use of very high-resolution imagery, and 
data from ancillary sources such as available maps. 
The same process is repeated in identifying and label
ing all 160 classes, leading to final classes. Some 
classes may not match with the spectral signatures. 
These classes were masked out and re-classified using 
the above protocols (Thenkabail et al. 2007; Gumma 
et al. 2011, 2014). By combining all similar classes, 
a crop type and\or crop dominance map was 
produced.

Classifications for categorizing crop types were 
conducted separately using irrigated and rainfed 
masks (section 4.1) and then the classes identified 

using the separate knowledgebase for irrigated 
areas (Figure 8) and rainfed areas (Figure 9) using 
the QSMTs described in this section.

4.3. Method for Product 3: Cropping intensity map

Cropping intensity was mapped with the help of 
spectral signatures that involved time-series NDVI 
profiles (Figure 10).

Cropping intensity was identified by analyzing the 
peaks of the temporal NDVI profiles of the classes 
obtained during the unsupervised classification. In 
Figure 10, the curve with three peaks indicates triple 
cropping (e.g. Irrigated-TC-pulses/rice-rice) in a 
crop year. The double crop (DC) (e.g. irrigated-DC- 
rice-wheat, irrigated-DC-rice-rice) classes contain two 
peaks in a single curve, with the first peak indicating 
a crop in the first season and the second peak repre
senting a second crop in the later season. In the third 

Figure 10. Spectral signatures obtained using MODIS derived NDVI time series data showing crop intensity in South Asia. Temporal 
NDVI profile and transition dates for three crop seasons are shown. Each peak indicates a crop season (Note: sample size = 10) 
(Gumma et al. 2017; ICRISAT 2022).
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graph, there is only a single peak, which means there 
was only a single crop (SC) (e.g. rainfed-SC- rice- 
fallow, rainfed-SC-sorghum etc.) in that crop year. 
The crop intensity algorithm was thus applied to 
each of the five AEZs studied for identification of 
single, double and triple cropping. Arid regions have 
mainly single cropping whereas semi-arid and humid 
regions contain double or tiple cropping depending 
on irrigation facility.

Figure 11 shows the vegetation phenology and 
transition dates for various irrigated crops, mainly 
rice-wheat (i.e. rice during kharif followed by wheat 
during Rabi), soybean-wheat, maize-wheat, sugar
cane, rice-rice, and cotton. Note that sugarcane and 
cotton cut across seasons. Figure 12 shows rainfed 
crops, mainly pulses, millet, rice, sorghum, groundnut 
and chickpea. Rainfed crops illustrated in Figure 12 
have only one crop annually (which is the case over
whelmingly). In both figures, Tmin denotes the begin
ning of the time series, Ton is onset of greenness, Tdev 

is the beginning of the development stage, Tsen the 
onset of senescence, and Thar harvesting time. p and 
q are the inflection points. There are several distinc
tive features that distinguish irrigated crops 
(Figure 11) from rainfed crops (Figure 9). First, irri
gated crops are often double crops (two crops 
annually). Rainfed crops are overwhelmingly single 

crops (one crop annually). Second, irrigated crops 
and rainfed crops follow their own phenological 
cycles. Irrigated crops have more clear firm cropping 
calendars whereas rainfed crops depend on rainfall 
events. The magnitude of NDVI for most irrigated 
crops are higher. All this knowledge is used in the 
knowledge base created for training of the RF 
machine learning algorithm and to classify Landsat 
image data cubes (e.g. top half of Figure 2).

4.4. Accuracy assessment

Accuracy assessment was based on a total of 786 
independent ground survey sample points that were 
not used in the class identification and labeling pro
cess. Accuracies were obtained using error matrices 
(Congalton 1991) and established for all the three 
crop products included in this study. The overall 
accuracies, producer’s accuracies (or errors of omis
sion) and user’s accuracies (or errors of commission) 
were obtained for all classes in the respective crop
land products.

5. Results

The results are documented and discussed for each of 
the three cropland products.

Figure 11. Spectral signatures obtained using MODIS derived NDVI data showing vegetation phenology and transition dates for 
irrigated crops during the kharif season. Map also shows the ground samples and ideal signatures of various crops (Note: sample 
size = 10) (ICRISAT 2022; Gumma et al. 2017).
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5.1. Product 1: irrigated versus rainfed croplands

The spatial distribution map of irrigated and rainfed 
croplands of South Asia derived using Landsat 30 m 
data is shown in Figure 13. There is a total of 
228.6 million hectares of croplands in South Asia of 
which 55% is irrigated (126.4 Mha) and 45% is rainfed 
(102.2 Mha) (Table 2, Figure 13). Most of the irrigated 
croplands are located below the Himalayan Mountain 

ranges dominated by the Ganges and the Indus river 
basins as well as by the major river basins throughout 
South Asia (see Figure 1 for locations). These river 
basins provide irrigated water through reservoirs cre
ated by dams, run of the river diversions through bar
rages, and riverine water through flows throughout the 
years either due to runoff from rainfall or from snow
melt from Himalayan rivers. Major sources of water for 
irrigation also come from ground water (wells on deep 
acquirers and shallow acquirers), and tanks or small 
reservoirs along the low-order streams. Rainfed crops 
are found in some concentration in Rajasthan and 
Odisha states of India and in parts of southern and 
northeastern India.

Figure 13. The Landsat derived irrigated versus rainfed cropland 
map of South Asia (2014–15). The map was made using 30 m 
time-series data from Landsat 8 on the Google Earth Engine 
(GEE) platform.

Figure 12. Spectral signatures obtained using MODIS derived NDVI data showing vegetation phenology and transition dates for 
rainfed crops during the kharif/rabi season. Map also shows the ground samples and ideal signatures of various crops (Note: sample 
size = 10) (ICRISAT 2022; Gumma et al. 2017).

Table 2. Irrigated and rainfed cropland (Product 1) cropping 
intensity (Product 3) in South Asia in 2014–15.

Product 1: Irrigated vs rainfed croplands (30 m)

LULC # Area (‘000 ha) TNCA* (%)

1. Irrigated cropland 119,235 55%
2. Rainfed cropland 98,144 45%
3. Other LULC 228,619 NA

Product 3: Crop intensity (250 m)
LULC # Area (‘000 ha) TNCA* (%)
1. Single cropping 92,365 41%
2. Double cropping 126,344 55%
3. Triple cropping 9,861 4%
4. Other LULC 217,746 NA

*TNCA = Total net cropped area. Note: Product 2 (crop type\dominance) is 
not presented here since there are many crops, but their areas presented 
in Figures 14 and 15.
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5.2. Product 2: crop type\dominance

Figure 14 shows the spatial extent of the five irrigated 
crops (rice, soybean, maize, sugarcane and cotton) and 
five rainfed crops (pulses, rice, millet, sorghum, and 
groundnut). This distribution shows crop dominance 
in various regions of South Asia. In the monsoon (rainy) 
season, most of the irrigated rice areas (Figure 14A) are 
concentrated in the northern part of South Asia and 
along the rivers, amounting to almost 16% of the total 
cropped area. Irrigated soybean (Figure 14B) is seen 
mostly in Madhya Pradesh state of India, occupying 
about 6% of the total cropped area. Irrigated maize 
(Figure 14C) is found across south Asia, accounting for 
about 8% of the total cropped area. Irrigated sugarcane 
(Figure 14D) with 2% of the cropped area is mostly 
located in north India whereas most of the irrigated 
cotton (Figure 14E), with 11% of total cropped area, is 
found in the southern part of South Asia. In the dry 
areas, most of the crops sown during the monsoon 
season are dependent on rainfall: pulses (Figure 14F) 
grown on rainfed cropland are concentrated in the 
western part of South Asia with almost 13% of the 
total cropped area; and rainfed rice (Figure 14G) is 
found in the eastern part of south Asia with almost 
11% of the total cropped area. Sorghum (Figure 14H) 
and Millet (Figure 14I) take a significant share (about 
11%) of the rainfed area in South Asia whereas rainfed 

groundnut area (Figure 14J) is located in the southern 
part of South Asia with almost 3% of the total cropped 
area.

As most of the cropland in south Asia has double 
intensity, crops are grown in winter and summer sea
sons (Figure 15), with crops like rice (Figure 15A), wheat 
(Figure 15B), and maize (Figure 15C) being cultivated 
with the help of irrigation facilities. The share of irri
gated rice is about 7% of the total cropped area while 
irrigated maize takes almost 3%. The largest share of 
the total cropland area is taken by wheat, nearly 19%, 
mostly in north India. There are a few rainfed crops like 
chickpea (Figure 15D) and pulses (Figure 15E) that are 
sown in the winter and summer seasons, relying on the 
residual moisture in the field as well as atmospheric 
moisture, with almost 6% of the total cropped area.

5.3. Product 3: cropping intensity

Crop intensity in South Asia mainly depends upon water 
availability, either from rainfall or from irrigation, during 
the cropping seasons. Irrigated croplands allow double 
or triple cropping annually (in a 12-month period) 
whereas rainfed croplands are almost always limited to 
single crops due to rainfall events such as the South- 
West Monsoon (June–September) or Northeast 
Monsoon (October–December). The map in Figure 16 

Figure 14. Spatial distribution of crop extent on irrigated and rainfed croplands in South Asia during the kharif (monsoon) season of 
2014–15. The mapping was done using MODIS time-series data (Modis 2022). The 8 crops named above occupy 184 Mha (80.4% of the 
net cropped area) during the kharif season.
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Figure 15. Season-wise crop type map, made by using MODIS time-series data (Modis 2022), showing cropped area and percentage of 
total cropped area for South Asia for the rabi season, 2014–15. The five crops shown above occupy 78.63 Mha or 34.4% of the total net 
cropped area.

Figure 16. Cropping intensity map of South Asia (2014–15) produced by using MODIS 250 m NDVI time-series data.
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shows that of the 228.6 Mha of croplands in South Asia, 
40.4% is in single crop, 55.3% double crop, and 4.3% 
triple crop. Single crop is mainly rainfed, double and 
triple crop is overwhelmingly irrigated. There are also 
significant irrigated areas in single crop. Triple crop is 
almost all is Bangladesh or NE India. Double crop is in 
Indus and Ganges River basins and along other major 
rivers such as Mahanadhi and Krishna and Godavari. 
Rainfed areas are dominant in the Deccan Plateau and 
in the Rajasthan desert fringes.

5.4. Accuracy assessment

Accuracy assessment was mainly carried out for crop
land classification, cropland intensity and crop water 
methods and for cropland versus non-cropland com
parison. The irrigated and rainfed croplands of South 
Asia were mapped with an overall accuracy of 79.8% 
(Table 3). The producer’s accuracies of the irrigated 
crops (Figure 13) were 79% (errors of omissions 21%) 
(Table 3) and that of rainfed crops was 74% (errors of 
omissions 26%) (Table 3). The user’s accuracies of the 
irrigated crops (Figure 13) were 87% (errors of commis
sions 23%) (Table 3) and that of rainfed crops was 63% 
(errors of commissions 37%) (Table 3). A producer’s 
accuracy of 79% for irrigated crops means that 79% 
of the irrigated areas are actually mapped as irrigated 
areas. By corollary 21% of irrigated areas were not 
mapped as irrigated areas (errors of omissions). 
A user’s accuracy of 74% for irrigated crops indicates 
that there in 26% non-irrigated areas captured as irri
gated (errors of commissions). The similar interpreta
tions for rainfed croplands (Table 3). These are very 
good results comparable to several other studies in 
mapping irrigated and rainfed croplands using remote 
sensing (Siebert et al. 2007; Dheeravath et al. 2010; 
Sarmah et al. 2021). Dheeravath et al. (2010) identified 
irrigated croplands and achieved 83% accuracy 
whereas our study achieved 87% accuracy of irrigated 
area and other studies Siebert et al. (2007) mapped 
irrigated at very low resolution (10 km and 1 km).

The overall accuracies of mapping cropping inten
sity (single, double, and triple cropping; Figure 16) 
was 85.3% (Table 4). The producer’s accuracies were 
88% for the single crops, 85% for the double crop, and 
67% for the triple crop (Table 4). The user’s accuracies 
were 86% for the single crops, 92% for the double 
crop, and 72% for the triple crop (Table 4). Overall, the 
cropping intensity was mapped with excellent results. 

The triple cropping is slightly difficult with often the 
class mixing with the double crop. Since the triple 
crop has much less area (Figure 16) relative to the 
other two crops the impact on the uncertainties in 
accuracies is mostly reflected for this class.

Crop types (Figures 14 and 15) were mapped with 
high degree of confidence during the monsoon (main) 
cropping season, as well as during the rabi\winter 
season (Table 5). For the irrigated crops (rice, soybeans, 
maize, sugarcane, and cotton) the accuracies varied 
between 83% and 94%. During the Monsoon season, 
the rainfed crops (Pulses, rice, sorghum, millets, and 
groundnut) were mapped with accuracies varying 
between 70% and 81%. During the second crop of 
Rabi\winter, the three irrigated crops (rice, wheat, 
maize) were mapped with an accuracy of 82–97%. In 
the same season, the two rainfed crops (Chickpea and 
pulses) were mapped with an accuracy of 78–87%. 
Crop types were, generally, mapped with high degree 
of confidence given the focus was on major crops and 
in clearly dominant crop growing regions in given 
seasons. With good set of reference data applied on 
multi-date remote-sensing crop types were captured 
with very good accuracies.

Nevertheless, the causes for errors of omissions 
and commissions in mapping various cropland pro
ducts include limitations of the remote sensing data 
resulting in mixing of signatures across classes, failure 
to obtain reference data from certain types of irriga
tion or rainfed croplands leading to uncertainties in 
machine learning algorithms, and the host of other 
factors involved in complex mapping over very large 
areas (Thenkabail et al. 2021).

5.5. Comparison of remote sensing-derived crop 
area statistics with national statistics

The crop-type statistics derived from this study were 
compared with the crop-type statistics obtained from 
traditional National statistics (obtained by personal 
communication with the first author) as shown in 
Figure 17. For major crops like rice, wheat, soybeans, 
cotton, sugarcane, and chickpea the areas derived in 
this study explained 82–98% variability relative to the 
National statistics and the root mean square error 
(RMSE) varied from 0.2 Mha to 1.15 Mha (Figure 17). 
This clearly emphasizes the ability of MODIS 250 m 
time-series remote sensing data to accurately derive 
crop-type areas. However, maize, groundnut and 
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sorghum areas derived from remote sensing 
explained only 60–65% variability in National statistics 
and the root mean square error (RMSE) varied from 
0.29 Mha to 0.66 Mha. In the case of groundnut and 
sorghum, there is wide range of variability in crop 
growth characteristics of these two rainfed crop 
depending on the rainfall variability. All irrigated 
crops, except maize explained over 80% variability. 
Irrigated maize, however, explained only 60% varia
bility. This is mainly due to large areal extent of maize 
crop which is spread across South Asia (Figure 14C). 
All other crops have dominance in certain regions of 
South Asia (Figure 14 A-B, 14-D-J), making them more 
stable in classification results. This implied that corn 
crop is better classified using more regional focus 
than performed in this study. Overall, it can be stated 

that irrigated crops are mapped with significantly 
higher accuracies than rainfed crops (Table 5), result
ing in significantly better correlation of irrigated areas 
derived from remote sensing with the National statis
tics than with rainfed areas derived from remote sen
sing with National statistics (Figure 17). What is 
important to note here is that the slopes of the equa
tions of areas of irrigated crops were close to 1 indi
cated excellent match with irrigated areas reported in 
the National statistics. However, for the rainfed crops 
the slopes differed significantly between the areas 
calculated by us when compared with areas calcu
lated by the National statistics. This is to be expected 
given the wide variability in rainfed cropland systems 
across South Asia. Some rainfed crops are in high 
rainfed areas and other in driest areas.

Table 3. Accuracy assessment using the error matrix method with field-plot data for irrigated croplands, rainfed cropland and other 
LULC classes.

Land use/land cover
Irrigated 
cropland

Rainfed 
cropland

Non-croplands (Other 
LULC)

Producer’s 
accuracy

User’s 
accuracy

Error of 
omission

Error of 
commission Kappa

Irrigated croplands 369 45 6 79% 87% 21% 13% 66%
Rainfed croplands 84 146 0 74% 63% 26% 37% 51%
Noncroplands (Other 

LULC)
13 5 89 94% 83% 6% 17% 81%

Total (no.) 466 196 95
Overall classification accuracy = 79.8% Overall Kappa statistics = 0.630

(Note: Field plot data are on X-axis/row and MODIS classification on Y-axis/column). Note: kappa statistic is defined in Congalton and Green, 2019).

Table 4. Accuracy assessment using the error matrix method with field-plot data for the cropping intensity product.
Land use/land 
cover

Single 
crop

Double 
crop

Triple 
crop

Other 
LULC

Producer’s 
accuracy

Users 
accuracy

Error of 
omission

Error of 
commission Kappa

Single crop 170 27 1 0 88% 86% 12% 14% 81%
Double crop 14 349 9 8 85% 92% 16% 8% 82%
Triple crop 0 13 33 0 67% 72% 33% 28% 70%
Other LULC 10 24 6 99 93% 71% 7% 29% 67%
Total (no.) 194 413 49 107
Overall classification accuracy = 85.3% Overall Kappa statistics = 0.77

(Note: Field plot data are on X-axis/row and MODIS classification on Y-axis/column). Note: kappa is defined (Congalton and Green 2019).

Table 5. Accuracy assessment using field-plot data using error matrix method (Congalton and Green 2019) for croplands product.
Season Irrigated/Rainfed Crops No. of validation samples Correctly classified pixels Percent accuracy classifies

Kharif season Irrigated crops Rice 257 241 94%
Soybean 41 38 93%
Maize 36 26 72%
Sugarcane 25 23 92%
Cotton 72 60 83%

Rainfed crops Pulses 62 49 79%
Rice 100 70 70%
Sorghum 16 13 81%
Millets 32 23 72%
Groundnut 20 16 80%

Rabi season Irrigated crops Rice 166 161 97%
Wheat 137 113 82%
Maize 16 14 88%

Rainfed crops Chickpea 37 29 78%
Pulses/pea 46 40 87%

(Note: X-axis/row is Field plot data and Y-axis/column is MODIS classification)
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The Figure 18 shows the comparison of district 
level irrigated area statistics with satellite derived 
irrigated area statistics. In India, there is an availability 
of irrigated area statistics for majority of districts, but 
there are some gaps in statistics of other countries. 
We have gathered irrigated data from various sources 
in respective countries like national agriculture web
sites and FAO. For India, about 92% was correlated 
and some districts, there is no availability of data. In 
other countries, Pakistan, Bangladesh, Nepal and Sri 
Lanka, the available district level irrigated statistics 
was significantly correlated above 90% with satellite- 
derived statistics.

There is good correlation with the statistics 
obtained, even though there are some over and 
underestimates.

5.6. Comparison with various cropland products

We have compared our work with irrigated and 
rainfed cropland products from other sources, 
mapped using remote sensing at various resolutions. 

There are many studies at command area and lower 
administrative level on irrigated area mapping, but 
not to large extent like South Asia at 30 m resolution. 
The accuracies of such studies vary from 60% to 85%. 
Dheeravath et al. (2010) mapped irrigated and 
rainfed croplands of South Asia using MODIS 500 m 
time-series data (Modis 2022) with an overall accu
racy of 83%. This product used the base map of the 
Central Board of Irrigation and Power (India) 
(Dheeravath et al. 2010) as baseline starting point. 
Thenkabail et al. (2009) and Biradar et al. (2009) 
mapped global irrigated and rainfed croplands at 
nominal 1 km using multi sensor remote sensing. 
This had an overall accuracy of 79% (Table 6). 
Siebert et al. (Siebert et al. 2007, 2015) produced 
global irrigated area map, that includes South Asia, 
using National statistics and GIS techniques at 1 
degree resolution. Since all of these products 
(Table 6) are in 250 m to 1 km nominal resolution, 
there are a number of significant differences with the 
30 m product produced here. First as a result of 
resolution differences of these products: 1 degree 

Figure17. Comparison of remote sensing-derived crop areas with national statistics (ICRISAT 2022; Gumma et al. 2017).
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(111 km x 111 km), 1 km (1 pixel = 100 hectares), 
500 m (25 hectares), and 30 m (0.09 hectares) does 
not allow direct comparison (Thenkabail et al. 2021). 
The 30 m product provides far greater details by 
capturing precise boundaries of croplands as well 
as in capturing the fragmented croplands. The coar
ser resolution products, often, provides crop domi
nance in a pixel or various percentage of croplands 
within a pixel. For example, the UN Food and 
Agricultural organization’s (UN FAO’s, Siebert et al. 
2013)provides irrigated croplands as percent within 
a pixel (e.g. a pixel maybe 10% irrigated or 100% 
irrigated; it is scaled 1–100%) whereas in a 30 m 
pixel it is binary (e.g. every pixel is irrigated or non- 
irrigated). Similarly, for rainfed pixels. Further, the 
areas calculated from the coarser resolution pro
ducts rely on sub-pixel areas (SPAs) as actual areas 
as every pixel area is multiplied by the fraction of 

irrigated or rainfed crop present within the pixel 
whereas in a 30 m pixel full pixel area (FPAs) are 
actual areas. Given these facts, obviously, the 30 m 
product represents greater precision in capturing 
irrigated and rainfed croplands.

The accuracies seem to be higher for coarser- 
resolution imagery was due to the very large size of 
the pixel in coarser-resolution satellites (Velpuri et al. 
2009).

There exist limited papers on crop intensity 
(Table 6). But at the large scale, only one paper 
mapped crop intensity at the Asia level (Gray et al. 
2014) at 500 m resolution with an accuracy of 61% 
with limited ground data (only Bangladesh). We have 
mapped crop intensity at 250 m resolution with an 
accuracy of 85% with large ground data (Figure 16).

There are many crop-type maps available for small 
areas like command area and lower administrative 
levels, but our study mapped major crop types (12 
crops) of South Asia for entire season (both kharif and 
rabi) with greater than 70% accuracy in each class, 
which is a unique product. Shukla et al. 2017 mapped 
rabi crop types (wheat, mustard, gram, masoor and 
potato) for Faizabad area and achieved an accuracy of 
89% whereas (Wang et al 2020) did crop type (rice and 
cotton) for southeast India with 75% accuracy and 
(Yan and Ryu et al 2021) mapped crop type (8 crops) 
for California and achieved around 92% accuracy. 
Gumma et al., 2020 mapped crop type during rabi 

Figure18. Comparison of remote sensing-derived irrigated areas with national statistics. District wise irrigated area statistics were 
obtained from national agriculture statistics of respective countries and food and agriculture organization (FAO) of the United Nations.

Table 6. Various cropland extent products and their specifica
tions(Biradar et al. 2009; Thenkabail et al. 2009; Velpuri et al. 
2009; Dheeravath et al. 2010).

Number Product
Spatial 

resolution Year
Satellite 

data
Accuracy 

(%)

1 Irrigated Areas of 
India derived

500 m 2001–03 MODIS 83

2 Global irrigated 
area map 
(GIAM)

10 km 1992–93 AVHRR 79

3 Mapping Asian 
Cropping 
Intensity

500 m 2009–12 MODIS ~ 61
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season for three districts (Jhansi, Chitrakoot and 
Panna) using sentinel −2 imagery and reported 84% 
of accuracy. Our results were in line with above stu
dies in terms of accuracy.

6. Discussions

There are many cropland products mapped by 
numerous researchers (Siebert et al. 2007; Biradar 
et al. 2009; Pittman et al. 2010; Thenkabail et al. 
2011; Fritz et al. 2015; Teluguntla et al. 2015; 
Eigenbrod et al. 2020; Hu et al. 2020) over the years 
using multiple-satellite sensor data and over diverse 
areas of the world. This study is unique in the sense it 
mapped three distinct cropland products: 1. Irrigated 
versus rainfed croplands using Landsat 30 m, 2. Crop 
types using MODIS 250 m data, and 3. Cropping 
intensities using MODIS 250 m data. Products were 
developed over entire South Asia, a heterogeneous 
landscape with a diversity of cropping patterns and 
several other LULC categories. Strength of the study 
was the availability of rich sets of ground data for 
training machine learning or other algorithms and 
validating the resulting cropland products. The value 
of multiple cropland products in global food and 
water security cannot be over emphasized 
(Thenkabail et al. 2021).

The cropland extent product was produced using 
Landsat 30 m data. The irrigated and rainfed areas 
within the cropland extent product were separated 
using Landsat 30 m data. Availability of irrigated and 
rainfed product helps in study of crops grown in 
these watering methods. This is of great importance 
for a number of reasons. First, crop productivity of 
irrigated areas is far more than rainfed areas. Second, 
the water uses in irrigated areas (blue water use) and 
rainfed areas (green water use) (Rost et al. 2008) 
helps accurate water accounting. Third, separating 
irrigated and rainfed croplands helps us in measures 
such as in planning sustainable food security for 
growing populations by understanding and strate
gizing productivity of lands, pinpointing areas for 
increase in productivity, and studying opportunities 
to expand irrigation to non-irrigated (rainfed) areas. 
Overall, irrigated and rainfed croplands were sepa
rated with good degree of separability. The factors 
that contribute to this separability includes: 1. Time 
composited Landsat 30 m OLI data over the years, 2. 
Rich ground data available to train machine learning 

algorithms, 3. Distinct cropping calendars of irri
gated and rainfed areas, 4. Availability of base 
maps from the National systems that provide first 
level of irrigation command areas, 5. Ability to verify 
the products by comparing with National products, 
6. Significantly greater magnitude of biomass pro
duced (reflected in greater NDVI over time-series) in 
irrigated areas as opposed to rainfed areas, 7. Several 
other factors such as rich validation data, under
standing of the regions agricultural crops and their 
dynamics by working in the field over the years, and 
8. Adopting agroecological zones (AEZs) and sub 
AEZs in classifying and mapping irrigated areas. All 
these factors help identify label classes properly into 
distinct groups.

Cropping intensities were better mapped by 
MODIS 250 m data. This is because, MODIS 250 m 
data is acquired daily and composited into 16-day 
composites to overcome cloud and haze issues. In 
contrast Landsat 30 m data is acquired 8\16 days 
and can cause significant issues in studying crop
ping intensities due to cloud and haze issues in 
parts of the image. Further, the coverage of 
Landsat over the entire world is not as consistent 
as that of MODIS. That issue is overcome for the 
irrigated and rainfed product by filling gaps from 
nearby years as irrigated and rainfed areas do not 
change over short time periods. Cropping intensity, 
in contrast, need to be mapped for the year in con
sideration and data from other years will cause con
fusion and noise. MODIS 250 m NDVI time series 
provides a clear cropping phenology within and 
across seasons. So, one can identify through time 
series NDVI profiles whether a pixel is cropped once 
(single crop), twice (double crop), thrice (triple crop) 
or continuous (plantation crops that exist all through 
the year) in a 12-month period or annually. Cropping 
intensities of single and double crops are mapped 
with great confidence. The variability in mapping 
triple crop is relatively high as significant portions 
of this gets mixed with double crops. These results 
were in line with several other studies (Gray et al. 
2014; Liu et al. 2020; Waha et al. 2020a; Li et al. 2021; 
Rufin et al. 2021).

Cropping intensity is rarely mapped over large 
areas within South Asia. Gray et al. (2014) mapped 
cropping intensity for Asia using MODIS 500 m data 
but had ground data limited to Bangladesh. Overall 
accuracy of this product was 61%. Gumma et al. 
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(2014) mapped cropping intensity for Bangladesh at 
MODIS 250 m data at overall accuracy of 83%. This 
study mapped cropping intensities with overall 
accuracies of 85%. Cropping intensity mapping is 
very crucial as further cropland expansion in the 
world to meet global food security will come not 
from cropland expansion but from increasing crop
ping intensities (Thenkabail et al. 2021). Indeed, 
Global cropland intensification exceeded cropland 
expansion, first-time history, between 2010 and 2020 
(Hu et al. 2020).

Crop types are best mapped by studying crops 
within the irrigated and rainfed areas. Crops in irri
gated areas are distinct from crops in rainfed areas 
either in terms of crop types and\or crop character
istics like their biomass and other biophysical and 
biochemical characteristics. These differences are 
reflected in the NDVI magnitude over time and 
space for every pixel. By understanding and capturing 
these characteristics in an algorithm, crop types are 
mapped quite precisely, especially in the irrigated 
areas where the crop characteristics have greater sta
bility over time and space. In rainfed areas, crop char
acteristics can show great degree of variability, 
especially when the rainfall timing and patterns vary 
over space and time. Thereby, in this study we 
showed high degree of confidence in mapping irri
gated areas whereas the rainfed crops had greater 
degree of variability. These results were in line with 
some other studies (Shukla et al. 2017; Wang et al. 
2020; Yan and Ryu 2021).

There are many crop-type maps available for small 
areas for various parts of the world including South 
Asia, but none for such large areas as South Asia; 
especially like this study that considers 12 major 
crops for rainfed and irrigated and over two main 
growing seasons (Khariff and Rabi). (Shukla et al. 
2017) mapped rabi crop types (wheat, mustard, 
gram, masoor and potato) for the Faizabad area and 
achieved an accuracy of 89% whereas (Wang et al 
2020) did crop types (rice and cotton) for southeast 
India with 75% accuracy and (Yan and Ryu et al 2021) 
mapped crop type (8 crops) for California and 
achieved around 92% accuracy. (Gumma et al., 2022) 
mapped crop type during rabi season for three dis
tricts (Jhansi, Chitrakoot and Panna) using sentinel −2 
imagery and reported 84% of accuracy (Gumma et al. 
2022). Our results were in line with the above studies 
in terms of accuracy. This study obtained crop-type 

accuracies of 70–97% for various crops (Table 5). The 
methods used in the study especially SMT can be 
transferred up to some extent, as the methodology 
depends mainly on the spectral signatures.

7. Conclusions

This study developed three distinct cropland products 
of South Asia for the year 2014–2015 in support of 
food and water security assessments and manage
ment. These three cropland products were:

1. Irrigated croplands versus rainfed croplands 
using Landsat 30 m data;

2. Crop types using MODIS 250 m data; and
3. Cropping intensity mapping using MODIS 250 m 

data.

Time-series Landsat 30 m and MODIS 250 m analy
sis-ready data (ARD) cubes were developed and ana
lyzed. The methods used employed machine-learning 
algorithms to identify irrigated and rainfed cropland 
areas, cropping intensities using phenological matrices, 
and crop types using quantitative spectral matching 
techniques (SMTs). The computations were performed 
on the GEE cloud platform for the first product and on 
the workstations for the other two products.

The study established that the irrigated area in the 
whole of South Asia was 126.4 Mha (55% of the total 
net cropland area or TNCA); rainfed areas amounted 
to 102.2 Mha (45% of TNCA). The irrigated versus 
rainfed 30 m product has an overall accuracy of 
79.8% with the irrigated class providing a producer’s 
accuracy of 79% (error of omissions of 21%) and 
rainfed cropland attaining a producer’s accuracy of 
74% (errors of omissions of 26%). Single, double, 
and triple cropping percentages were, respectively, 
40.4% (92.4 Mha), 55.3% (12.6 Mha) and 4.3% (9.9 
Mha) of TNCA. The overall accuracy of the cropping 
intensity product was found to be 85.3% with produ
cer’s accuracies of single, double, and triple crops at 
88%, 85% and 67% respectively. Single and double 
crops were mapped with 85% or higher accuracy. The 
triple crops are only 4.3% of the overall croplands and 
significantly mixes with double crop and hence there 
is greater degree of uncertainty in mapping triple 
crops. For the kharif season (Jun-Oct), the main grow
ing season, 10 major crops (5 irrigated crops: rice, 
soybean, maize, sugarcane, cotton; 5 rainfed crops: 
pulses, rice, sorghum, millet, groundnut) were 
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mapped. Together they occupied 184 Mha (80.4% of 
TNCA): 99.2 Mha (54%) for the 5 irrigated crops and 
84.8 Mha (46%) for the 5 rainfed crops. For the rabi 
season (Nov-Feb), the second season, 5 major crops 
(three irrigated crops: rice, wheat, maize; two rainfed 
crops: chickpea, pulses) were mapped. Together they 
occupied 78.6 Mha (34.4% of TNCA). Of this, 64.93 
Mha (83%) were irrigated areas and 13.67 Mha (17%) 
rainfed. Crop types were mapped with accuracies 
ranging from 72% to 97%. The remote-sensing- 
derived crop type data explained 63–98% variability 
in the national statistics. Crop types were, generally, 
mapped with high degree of confidence, especially 
for irrigated crops where 80% or higher accuracies 
were achieved. Rainfed crops have higher uncertainty 
due to rainfall variability across large areas.

Highlights

● Multiple cropland products for South Asia were produced in 
support of food and water security.

● Distinct products include: (1) Irrigated versus rainfed crop
land product at Landsat 30 m resolution; (2) cropping inten
sity at 250 m; and (3) crop type at 250 m.

● The overall accuracies of products were as follows: 79% for 
the irrigated versus rainfed cropland, 85% for the cropping 
intensity, and 72–97% for the crop type.

● Machine learning and GEE cloud computing and Spectral 
Matching Techniques (SMT’s) were used to develop the 
products.
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Appendix I

y = 1.2388x
R² = 0.9855
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Figure A1. Relationship between the 30 m and 250 m NDVI for ideal spectra for different dates as shown below.
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