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Abstract

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits be-
cause when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article,
we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets.
The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge re-
gression and GBLUP multitrait models. The results show that, in general, the Gaussian kernel method outperformed conventional Bayesian
Ridge and GBLUP multitrait linear models by 2.2–17.45% (datasets 1–3) in terms of prediction performance based on the mean square
error of prediction. This improvement in terms of prediction performance of the Bayesian multitrait kernel method can be attributed to
the fact that the proposed model is able to capture nonlinear patterns more efficiently than linear multitrait models. However, not all
kernels perform well in the datasets used for evaluation, which is why more than one kernel should be evaluated to be able to choose the
best kernel.

Keywords: multitrait; kernel methods; plant breeding; genomic-enabled prediction; genomic prediction; GenPred; shared data
resources

Introduction
Genomic selection (GS) has been widely adopted because its
predictive methodology enables the selection of candidates before
phenotypes are available on all individuals (Meuwissen et al. 2001).
Current research in GS includes the use of prediction models in GS
that were successful in other fields, or the adaptation or develop-
ment of specific models for GS (Montesinos-López et al. 2019b,
2019c), and models that couple mechanistic and statistical
approaches (Tong et al. 2020). At the same time, breeders usually se-
lect multiple traits that are often genetically correlated, with corre-
lations ranging from weak to strong. Often analyses of multitrait
data are performed with uni-trait (UT) models, which assume zero
genetic and residual covariances among these traits so that infor-
mation from other traits is not used (Montesinos-López et al. 2019b)

when obtaining expected breeding values of the evaluated individu-

als for the traits under study (Okeke et al. 2017). However, the opti-

mal estimation process is composed of the combination of
information from multiple traits and estimated breeding values us-

ing the multitrait (MT) models (van der Werf 1992; Ducrocq 1994;

Okeke et al. 2017).
The use of UT models is very common, partly due to the lower

number of existing MT models. However, the attraction of MT

models continues growing, as pointed out by Mbebi et al. (2021).

UT models are trained using only one dependent variable.

However, these models are unable to capture the correlation be-

tween traits when only one dependent variable is used, that is,

when the training process is done separately for each trait
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(Montesinos-López et al. 2019b), whereas MT models are trained
using all the available traits simultaneously, which is why they
are able to capture the correlation between traits. When this cor-
relation between traits is moderate or large, most of the time the
prediction performance of MT models is better than that of UT
models (Montesinos-López et al. 2016, 2019b, 2019c, 2020).

In MT models, even when the traits are unfavorably correlated
(opposite signs), improvement of the prediction performance is
expected as compared to UT models because the borrowing of in-
formation is possible (Neyhart et al. 2019). However, from a prac-
tical perspective, unfavorable correlations are common and
complicate breeders’ decisions (Neyhart et al. 2019). Opposite
directions of such correlations imply an unfavorable response in
one trait when selecting on another (Falconer and Mackay 1996);
thus the underlying cause will impact the prospects of long-term
improvement (Neyhart et al. 2019).

There is empirical evidence that MT models (frequentist and
Bayesian) outperform UT when the traits are correlated, as
reported by some authors such as Calus and Veerkamp (2011), Jia
and Jannink (2012), Jiang et al. (2015), Montesinos-López et al.
(2016), He et al. (2016), and Schulthess et al. (2018), who reported
that, at least for some traits, MT models outperform UT models
in terms of prediction accuracy. Schulthess et al. (2018) also
reported that, compared to UT models, MT models improve
parameter estimates. Small differences are observed between
frequentist and Bayesian methods in terms of prediction
performance.

However, it has also been reported that when the correlation
between traits is low, MT models are not really advantageous
(Montesinos-López et al. 2016, 2018, 2019), since MT models pro-
vide less benefits when the degree of relatedness between traits
is low (Montesinos-López et al. 2016, 2018, 2019). An early study of
multivariate genomic prediction (Jia and Jannink 2012) showed
the usefulness of multivariate models, but large differences were
only observed when variable selection methods (BayesA and
BayesC) were applied to nonpolygenic traits (20 QTLs), and little
difference was observed in polygenic traits.

The following seven advantages of MT models with regard to
UT models have been pointed out by Montesinos-López et al.
(2019b): (1) MT models represent complex relationships between
traits more efficiently; (2) they exploit not only the correlation be-
tween lines, but also the correlation between traits; (3) they are
much more interpretable than a series of UT models; (4) they are
more computationally efficient (less time for training) than mul-
tiple UT models individually; (5) they improve the selection index
because they allow more precise estimates of random effects of
lines and genetic correlation between traits; (6) they can improve
indirect selection because they increase the precision of genetic
correlation parameter estimates between traits; and (7) they im-
prove the power of hypothesis testing better than UT models.

Although MT models have many advantages over UT models,
they require the estimation of more parameters (i.e., genetic and
error covariances), which affects the prediction performance of
the MT models as well as the accuracy of breeding value esti-
mates. The larger the number of traits, the larger the required
number of parameters that need to be estimated (Runcie et al.
2021). Also, the more complex the model is and the larger the
number of traits included, the greater chances there are of facing
convergence problems in the analysis (Runcie et al. 2021). This
means that MT models require more data to be able to accurately
estimate the additional parameters (Okeke et al. 2017). The opti-
mum training size depends upon the effective population size
and the available genetic diversity within the population (Arojju

et al. 2020). In general, results have shown that Bayesian MT
methods have less issues related to convergence problems than
frequentist MT methods (Montesinos-López et al. 2019b).

However, despite these seven advantages of MT models, most
of them are unable to capture complex nonlinear patterns of the
inputs. For example, MT models with a linear predictor are un-
able to capture these complex nonlinear patterns (Cuevas et al.
2016, 2017); however, it is quite straightforward to use the ma-
chinery of linear models for nonlinear tasks using Reproducing
Kernel Hilbert Spaces (RKHS) methods (Gianola and van Kaam
2008). The use of RKHS methods for UT analysis is very common
in GS (Cuevas et al. 2016, 2017; Crawford et al. 2018). For example,
Long et al. (2010) reported that RKHS methods outperformed lin-
ear models in body weight of broiler chickens. Crossa et al. (2010)
reported better prediction performance of RKHS methods with re-
gard to linear Bayesian Lasso regression in wheat. In maize and
wheat data, Cuevas et al. (2016, 2017, 2018, 2020) reported a
greater performance of RKHS with Gaussian kernels over linear
GBLUP for several UT genomic predictions incorporating genomic
� environment interaction. Cuevas et al. (2019) also reported that
nonlinear kernel methods (Gaussian kernel and arc-cosine ker-
nel) outperformed linear kernel methods in terms of prediction
performance using markers and near infrared spectroscopy data
in the predictor pedigree.

The basic idea of RKHS methods is to project the original inde-
pendent variables given in a finite dimensional vector space into
an infinite-dimensional Hilbert space (Gianola and van Kaam
2008). Kernel methods transform the independent variables
(inputs) using a kernel function, and then the transformed inputs
can be used in conventional machine learning techniques at a
low computational cost and repeatedly, with better results in
terms of prediction performance (Shawe-Taylor and Cristianini
2004). RKHS methods based on implicit transformations have be-
come very popular in analyses of nonlinear patterns in datasets
from various fields of study. Kernel methods obtain measures of
similarity between objects that do not have natural vector repre-
sentation (Montesinos-López et al. 2021).

Due to its many attractive characteristics, the mixed-model
framework under a frequentist approach is still very popular in
GS for the implementation of MT models. However, the adoption
of the Bayesian paradigm in plant breeding continues to grow
due to the great computational advancements and new method-
ological applications and elucidations. Bayesian MT models offer
some of the following advantages mentioned by Montesinos-
López et al. (2019b): (1) they allow prior information to be incorpo-
rated; (2) they do not need good starting values to estimate
parameters of interest such as the restricted maximum likeli-
hood; (3) they increase the precision of parameter estimates
(smaller standard errors); (4) conclusions can be drawn about the
correlations between the dependent variables, notably, the ex-
tent to which the correlations depend on the individual and on
the group level; (5) testing whether the effect of an explanatory
variable on dependent variable Y1 is larger than its effect on Y2,
when Y1 and Y2 data were observed (totally or partially) in the
same individuals, is possible only by means of a multivariate
analysis; (6) when attempting to carry out a single test of the joint
effect of an explanatory variable on several dependent variables,
a multivariate analysis is also required; such a single test can be
useful, e.g., to avoid the danger of chance capitalization, which is
inherent to carry out a separate test for each dependent variable;
and (7) it does not have strong identifiability problems. In general,
the MT Bayesian approach has the advantage of being more par-
simonious and providing a more informative and powerful
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analysis. However, Bayesian MT analysis is computationally
more demanding than univariate analysis, and its implementa-
tion is therefore many times impractical.

Furthermore, the implementation of conventional MT
(frequentist and Bayesian) models is, in general, computation-
ally demanding (Runcie et al. 2021). The fragility of these meth-
ods is due to the number of variance–covariance parameters
that must be estimated, which increases quadratically with the
number of traits (Runcie et al. 2021). The computational
demands increase even more dramatically, from cubically to
quantically, with the number of traits (Zhou and Stephens
2014) because most algorithms require repeated inversion of
large covariance matrices. These matrix operations dominate
the time required to fit conventional MT models, leading to
models that take days, weeks, or even years to converge
(Runcie et al. 2021).

In this study, we propose Bayesian kernel methods for the mul-
titrait genome-enabled prediction of multienvironment trials. We
applied the proposed methods to three extensive wheat multitrait
multienvironment trial datasets and compared the prediction per-
formance using four kernels—linear (GBLUP), Gaussian kernel
(GK), polynomial kernel (PK) and sigmoid kernel (SK)—and conven-
tional Bayesian multitrait Ridge Regression (BRR) under two sce-
narios: Scenario 1, in which all traits are missing in the testing set
(MT), and Scenario 2, in which only a fraction of the traits are
missing in the testing set (MT_P). We also evaluated the prediction
performance with and without including genotype� environment
interaction (G�E) under a multitrait framework. Finally, we also
provide the R code to implement these methods in conventional
Bayesian multitrait software.

Materials and methods
Bayesian multitrait kernel model
This model is given in (1) as:

Y ¼ 1nl
T þ XEbE þ ZLgþ ZELgEþ � (1)

where Y is the matrix of phenotypic response variables of order
n� nT; with n ¼ JI and J and I denotes the number of lines and envi-
ronments respectively. Y is ordered first by environments and then
by lines, nT denotes the number of traits, 1n is a vector of ones of
length n, lT is a vector of intercepts for each trait of length nT, T
denotes the transpose of a vector or matrix, that is,
l ¼ l1; . . . ; lnT½ �T; XE is the design matrix of environments of
order n� I, bE is the matrix of beta coefficients for environments
with a dimension of I� nT, ZL is the design matrix of lines of order
n� J, g is the matrix of random effects of lines of order J� nT distrib-
uted as g � MNJ�nT 0;Kl;RTÞ

�
, that is, with a matrix-variate normal

distribution with parameters M ¼ 0, U ¼ Kl, and V ¼ RT , Kl is the
lth type of kernel matrix built with marker data (equivalent to a ge-
nomic relationship matrix) of order J� J that captures linear or non-
linear relationships (l ¼ linear; Gaussian; polynomial and sigmoidÞ
and RT is the variance–covariance matrix of traits of order nT � nT.

Note that ZLg are the BLUPs of lines of the nT traits, but repeated
in the I environments. ZEL is the design matrix of the genotype �
environment interaction of order n� JI, gE is the matrix of
genotype � environment interaction random effects distributed as
gE � MNJI�nT 0;Kl � RE;RTÞ

�
, where RE is a diagonal variance–co-

variance matrix of environments of order I� I, and Kl � RE is the
Kronecker product of the lth type of kernel matrix of lines and the
environmental relationship matrix. Furthermore, the term ZELgE

contains the BLUPs corresponding to the genotype � environment
interaction terms of the nT traits. � is the residual matrix of
dimension n� nT distributed as � � MNn�nT 0; IIJ;Rð Þ, where R is the
residual variance–covariance matrix of order nT � nT. The criteria
for using these four kernels (linear; Gaussian; polynomial
and sigmoidÞ were that these are very popular kernels used in
statistical science and two of them in genomic prediction (linear
and Gaussian).

The kernel methods
The linear kernel (LK) was computed as K xi; xjð Þ ¼ xT

i xj (Shawe-
Taylor and Cristianini 2004), since xT

i and xT
j are any two rows of

the scaled matrix of markers (X of order J� p) divided by the
square root of the total number of markers (p) then this is indeed
the linear kernel relationship matrix proposed by Van Raden
(2008) and called Genomic Best Linear Unbiased Predictor
(GBLUP). The polynomial kernel (PK) was computed as
K xi; xjð Þ ¼ cxT

i xj þ a
� �d

, where a ¼ 0 is a real scalar, c ¼1 and d ¼ 3
is a positive integer (Shawe-Taylor and Cristianini 2004). The sig-
moidal kernel (SK) was computed as K xi; xjð Þ ¼ tanh xT

i xj þ a
� �

,
where tanh is the hyperbolic tangent defined as tanh zð Þ ¼
sinh zð Þ=cosh zð Þ ¼ exp zð Þ�expð�zÞ

exp zð Þþexpð�zÞ (Shawe-Taylor and Cristianini
2004). The Gaussian kernel (GK), also known as the radial basis
function kernel, was computed as K xi; xjð Þ ¼ e�c xi�xjj jj j2

¼ e�c½xT
i xi�2xT

i xiþxT
j xj � , where c is a positive real scalar (Shawe-Taylor

and Cristianini 2004) and in this application, the parameter c

used was c ¼ 1, assuming that the markers were scaled.

Computational implementation of the Bayesian
multitrait kernel model
Note that when RT , RE, and R are diagonal matrices, model (1) is
equivalent to separately fitting a univariate linear model to each
trait. Also, when a linear kernel for Kl is used in model (1), the
model is equivalent to a conventional multitrait GBLUP model. The
Bayesian multitrait kernel model (1) can be implemented in the
BGLR package of de los Campos and Pérez-Rodrı́guez (2014). The
github version of the BGLR R library can be accessed at https://
github.com/gdlc/BGLR-R and can be installed directly in the R con-
sole by running the following commands: install.packages(‘devtools’);
library(devtools); install_github (https://github.com/gdlc/BGLR-R). First
we need to have computed: XE denotes the design matrix of envi-
ronments, ZL denotes the design matrix of lines, Kl any of the 4 ker-
nels described above (l ¼ linear; Gaussian; polynomial and
sigmoidÞ, KL ¼ ZLKlZT

L , KE ¼ XEXT
E , and KLE ¼ KL8KE (see Appendix

B).
This implementation of model (1) can be carried out with this

version of the BGLR package as follows:

ETA ¼ listðEnv ¼ list ðX ¼ XE; model ¼ 0FIXED0Þ; Line
¼ list ðK ¼ KL; model ¼ ’ RKHS’Þ; LinexEnv
¼ list ðK ¼ KLE; model ¼ ’ RKHS’ÞÞ

A ¼ Multitraitðy ¼ Y; ETA ¼ ETA; resCov
¼ list ðtype ¼ 0UN0; S0 ¼ SR; df0 ¼ vRÞ; nIter
¼ nI; burnIn ¼ nbÞ

The first argument in the multitrait function is the response
variable that is a phenotype matrix, in which each row corre-
sponds to the measurements of nT traits in each individual. The
second argument is a list predictor in which the first sub-list
specifies the design matrix and prior model to the fixed effects
part of the predictor in model (1), while the second sub-list speci-
fies the parameters of the distribution of random genetic effects
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(g), where the KL is the expanded genomic relationship matrix
specified, and which accounts for the similarity between individ-
uals based on marker information. The third sub-list specifies the
parameters of the distribution of random genotype by environ-
ment effects of gE, where the KLE is the genomic relationship ma-
trix specified, and which accounts for the similarity between
individuals. df0 ¼ vT and S0 ¼ ST are the degrees of freedom pa-
rameter (vT) and the scale matrix parameter (ST) of the inverse
Wishart prior distribution for RT, respectively. In the third argu-
ment (resCOV), S0 and df0 are the Scale matrix parameter (SR)
and the degree of freedom parameter (vR) of the inverse Wishart
prior distribution for R. The last two arguments are the required
number of iterations (nI) and the burn-in period (nb) to run the
Gibbs sampler.

Datasets 1–3: elite wheat yield trial years
2013–2014, 2014–2015, and 2015–2016
These three datasets were collected by the Global Wheat
Program (GWP) of the International Maize and Wheat
Improvement Center (CIMMYT) and belong to elite yield trials
(EYT) established in four different cropping seasons with four or
five environments each. The lines involved in each of the envi-
ronments of the same year are the same, but those in different
years are different lines. EYT dataset 1 was sown in 2013–2014
and contains 767 lines, EYT dataset 2 was established in 2014–
2015 and contains 775 lines and EYT dataset 3 was cultivated in
2015–2016 and contains 964 lines. The experimental design used
was an alpha-lattice design and the lines were sown in 39 trials,
each covering 28 lines and two checks in six blocks with three
replications. In each dataset, several traits were available for
some environments and lines. In this study we included four
traits that were measured for each line in each environment:
days to heading (DTHD, number of days from germination to 50%
spike emergence), days to maturity (DTMT, number of days from
germination to 50% physiological maturity or the loss of the
green color in 50% of the spikes), plant height, and grain yield
(GY). Full details of the experimental design and how the BLUEs
were computed are given in Juliana et al. (2018).

In EYT 2013–2014 dataset 1, the lines under study were evalu-
ated in 4 environments, while in EYT 2014–2015 dataset 2 and
EYT 2015–2016 dataset 3, the lines were evaluated in five envi-
ronments. For EYT dataset 1, the environments were bed plant-
ing with five irrigations (Bed5IR), flat planting and five irrigations
(Flat5IR), early heat (EHT), and late heat (LHT). For EYT dataset 2,
the environments were bed planting with two irrigation levels
(Bed2IR), bed planting with five irrigations levels (Bed5IR), flat
planting with five irrigation levels (Flat5IR), early heat (EHT) and
late heat (LHT). Finally, for EYT dataset 3, the environments were
bed planting with two irrigation levels (Bed2IR), bed planting with
five irrigations levels (Bed5IR), flat planting with five irrigation
levels (Flat5IR), flat planting with drip irrigation (FlatDrip), and
late heat (LHT).

Genome-wide markers for the 2506 (667þ 775þ 964) lines in
the three datasets were obtained using genotyping-by-
sequencing (GBS; Elshire et al. 2011; Poland et al. 2012) at Kansas
State University using an Illumina HiSeq2500. After filtering,
2038 markers were obtained from an initial set of 34,900 markers.
The imputation of missing markers data was carried out using
LinkImpute (Money et al. 2015) and implemented in TASSEL
(Bradbury et al. 2007), version 5. Lines that had over 50% of miss-
ing data were removed and 2506 lines were used in this study
(767 lines in the first dataset, 775 lines in the second dataset, and
964 lines in the third dataset). Also expected is a high level of

relatedness given by pedigree or kinship between lines within a
year of testing and also across years of testing due to the nature
of the lines under study.

Evaluation of prediction accuracy with random
cross-validation
The prediction accuracy of the Bayesian multitrait kernel model
was evaluated with cross-validation (CV). A fivefold CV was
implemented and the original dataset was partitioned into five
subsamples of equal size, and each time, four of them were used
for training and the remaining one for testing. In fivefold CV, one
observation cannot appear in more than onefold. In the design,
some lines can be evaluated in some, but not all, target environ-
ments, which mimics a prediction problem faced by breeders in
incomplete field trials. Our validation strategy is exactly the
same as the strategy denoted as CV2 that was proposed and
implemented by Jarquı́n et al. (2014), in which a certain portion of
test lines (genotypes) in a certain portion of test environments is
predicted, since some test lines that were evaluated in some test
environments are assumed to be missing in others.

We used the mean square error of prediction
[MSE ¼ 1

T ð
PT

i¼1 ðyi � f̂ ðxiÞÞ2, where yi is the observed value of the
ith observation, f̂ ðxiÞ is the prediction that f̂ gives to the ith obser-
vation and T is the number of observations in the testing set] to
evaluate the prediction performance, since we are working with
continuous variables and MSE was calculated from each environ-
ment in each trait for each of the testing sets. The formula given
above was used to compute the MSE error in each fold, but the
average of all folds was reported as a measure of genome-based
prediction performance. The lower the average of MSE, the better
the prediction performance. All the analyses were carried out
using the R statistical software (R Core Team 2020).

Results
The results are given in two sections that correspond to datasets
1 and 2. In each dataset, the genome-based prediction perfor-
mance was assessed without including G�E interactions and in-
cluding G�E interactions. Both cases are provided under the
following scenarios: (1) when all the traits in the testing set are
predicted (standard MT method) and (2) when only a fraction of
the traits in the testing sets are predicted (MT_P). Two traits were
considered: DTHD and DTMT. For simplicity and clarity, results
from dataset 3 are provided in Appendix A, where genome-based
predictions measured under the MSE of prediction without G�E
interaction and with G� E interactions are described under the
two scenarios, MT and MT_P.

Results are presented for each trait including (I) and ignoring
(WI) G�E interaction for each of the scenarios, MT and MT_P in
the form of tables and figures for each environment (of each of
the datasets) and across environments.

Dataset 1 (EYT 2013–2014)
DTHD (without G 3 E interaction, WI)
We first compared the prediction performance for trait DTHD in
terms of MSE for the methods (Figure 1A, WI, and Table 1) with-
out G�E interaction under conventional multitrait Bayesian
Ridge Regression (BRR) and four types of kernels [linear GBLUP,
Gaussian (GK), polynomial (PK), and sigmoid (SK)] when all traits
in the testing set are predicted (MT) and when only a fraction of
the traits is predicted (MT_P). In Figure 1A, WI, and Table 1 un-
der both scenarios (MT and MT_P), the best performance for most
of the four environments was observed under the multitrait GK
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and the worst was found under the multitrait SK for both MT and
MT_P scenarios. In environment EHT under scenario MT_P, the
predictions were considerably better than under scenario MT,

while in environment LHT, scenario MT was slightly better than
scenario MT_P (Table 1 and Figure 1A, WI).

Figure 1 Dataset 1—DTHD. Prediction performance in terms of mean square error of prediction (MSE) for five methods (BRR, GBLUP, GK, PK, and SK) (A)
without G�E interaction (WI) and (B) including G�E interaction (I) for four environments (Bed5IR, EHT, Flat5IR and LHT) and two scenarios (MT and
MT_P).

Table 1 Dataset 1 EYT 2013–2014

Models and methods Models and methods

BRR GBLUP GK PK SK BRR GBLUP GK PK SK

Env. Scenario Without G�E (WI) With G�E (I)

DTHD
Bed5IR MT 14.95 14.94 12.96 13.08 25.12 12.77 12.52 11.36 12.17 25.07
EHT MT 31.32 31.30 29.51 29.86 42.57 27.77 27.19 23.17 24.43 42.62
Flat5IR MT 8.68 8.59 8.61 8.62 9.36 5.97 5.92 6.49 7.26 7.85
LHT MT 6.00 5.99 5.87 5.94 7.71 4.56 4.68 5.36 5.84 7.12
Bed5IR MT_P 14.57 14.56 13.07 13.26 23.68 12.46 12.21 10.97 11.86 23.58
EHT MT_P 26.06 26.09 24.63 24.98 34.09 24.50 23.75 20.45 20.89 34.58
Flat5IR MT_P 9.12 9.09 9.09 9.18 9.96 6.25 6.29 6.75 7.62 8.45
LHT MT_P 6.97 6.99 6.63 6.71 9.54 5.52 5.63 6.06 6.56 9.23

DTMT
Bed5IR MT 11.62 11.58 10.17 10.18 18.88 10.25 9.94 9.07 9.37 18.93
EHT MT 26.21 26.22 24.72 24.89 35.73 23.81 23.55 19.81 20.35 37.19
Flat5IR MT 8.92 8.88 9.37 9.45 8.35 6.58 6.58 7.58 8.30 6.64
LHT MT 7.80 7.77 7.58 7.62 10.83 6.52 6.45 6.44 6.93 10.77
Bed5IR MT_P 11.47 11.49 10.34 10.43 17.96 10.21 9.91 8.99 9.40 18.05
EHT MT_P 19.56 19.61 18.38 18.58 26.16 18.94 18.69 15.41 15.38 27.49
Flat5IR MT_P 9.68 9.66 10.02 10.10 9.55 7.19 7.16 7.96 8.78 7.89
LHT MT_P 8.42 8.42 8.00 8.11 11.83 7.24 7.20 7.30 7.69 12.13

Average mean squared error (MSE) of prediction for five multitrait multienvironment model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear
unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G� E (WI) and with G�E (I) for two scenarios (MT and MT_P) for four
environments (Bed5IR, EHT, Flat5IR, LHT) and two traits (DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest
MSE for the environment.
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Across environments, multitrait GK was always better than

the other kernels for MT and MT_P (Figure 2A, WI, and Table 2).

For the MT predictions, the GK outperformed the BRR, GBLUP, PK

and SK by 7.012%, 6.76%, 0.928%, and 48.8%, respectively, while

across environments for the MT_P predictions, the GK outper-

formed the BRR, GBLUP, PK, and SK by 6.17%, 6.19%, 1.32%, and

44.64%, respectively. Under scenario 2, MT_P gave a slightly bet-

ter genome-based prediction than under scenario MT.

DTHD (G 3 E interaction, I)
Taking into account the G�E interaction term, we also see that

the worst performance was observed under the SK under both

scenarios (MT and MT_P; Figure 1B, I, and Table 1). The best per-

formance was observed under the GK under MT_P in environ-

ments Bed5IR and EHT, and BRR and GBLUP in environments

Flat5IR and LHT. Large differences were not observed between

the predictions without G�E interaction (Figure 1A, WI) and

with G�E interaction (Figure 1B, I).

Across environments (Figure 2A, I, and Table 2) for MT pre-

dictions, the GK outperformed the BRR, GBLUP, PK, and SK by

10.35%, 8.47%, 7.15%, and 78.23%, respectively, while for scenario

MT_P, the GK outperformed the BRR, GBLUP, PK, and SK by

10.18%, 8.25%, 6.08%, and 71.43%, respectively. There were

increases in genome-based prediction when (1) including G�E

(Figure 2A, I) compared to when ignoring G�E (Figure 2A, WI;

Table 2) and (2) employing the MT_P scenario.

DTMT (without G 3 E, WI)
The prediction performance for trait DTMT is provided in terms

of MSE for the five kernel methods (Figure 3A, WI, and Table 1)

under conventional multitrait Ridge regression (BRR) and four

types of kernels (GBLUP, GK, PK, and SK) under the same two sce-

narios (MT and MT_P). In Figure 3A, WI, and Table 1, it is ob-

served that ignoring the G�E interaction term, under both

scenarios (MT and MT_P), that the worst performance was for SK,

while the best performance was the GK method for all environ-

ments except MT_P in Flat5IR (MSE¼ 9.66). The SK was

Figure 2 Dataset 1—DTHD and DTMT. Prediction performance across environments in terms of mean square error of prediction (MSE) for traits (A)
DTHD with (I) and without (WI) including G�E interaction term for two scenarios (MP and MT_P) and (B) DTMT with (I) and without (WI) including G�E
interaction term for two scenarios (MP and MT_P).

Table 2 Dataset 1 EYT 2013–2014

Models and methods Models and methods

BRR GBLUP GK PK SK BRR GBLUP GK PK SK

Scenario Without G�E (WI) With G�E (I)

DTHD
MT 15.24 15.20 14.24 14.37 21.19 12.77 12.58 11.60 12.43 20.67
MT_P 14.18 14.18 13.36 13.53 19.32 12.18 11.97 11.06 11.73 18.96

DTMT
MT 13.64 13.61 12.96 13.03 18.44 11.79 11.63 10.73 11.24 18.38
MT_P 12.28 12.30 11.68 11.80 16.37 10.90 10.74 9.92 10.31 16.39

Average mean squared error (MSE) prediction across environments for five model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased
predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G� E (WI) and with G� E (I) for two scenarios (MT and MT_P), four
environments (Bed5IR, EHT, Flat5IR, LHT), and two traits (DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest
MSE for each scenario.
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considerably worse than the other methods under both scenarios
(Figure 3A, WI). In environment LHT, scenario MT was slightly
better than MT_P (Figure 3A, WI, and Table 1).

Across environments, under scenario MT predictions, the GK
was better than BRR, GBLUP, PK, and SK by 5.23, 5.06, 0.57 and
42.34%, respectively, while under MT_P predictions, the GK out-
performed the BRR, GBLUP, PK, and SK by 5.10, 5.23, 1.02 and
40.14%, respectively (Figure 2B, WI, and Table 2). The genome-
based predictions under MT_P were better than under MT
(Figure 2B, WI, and Table 2).

DTMT (G 3 E, I)
Considering the G�E interaction term, we also see that the worst
performance was observed under the SK under both scenarios
(MT and MT_P; Figure 3B, I, and Table 1). The best performance
was observed under the GK in environments Bed5IR and EHT,
and under BRR and GBLUP in environments Flat5IR and LHT.
Large differences were not observed between the predictions
without G�E interaction (Figure 3A, WI) and with G�E interac-
tion (Figure 3B, I).

For trait DTMT across environment analyses, taking the G�E
interaction into account, under MT and MT_P, the worst perfor-
mance was observed under the SK, and in general, scenario MT_P
was better than MT (Figure 2B, I, and Table 2). Under MT predic-
tions across environments, the GK was superior in genomic-
enabled prediction accuracy than BRR, GBLUP, PK, and SK by
9.90%, 8.43%, 4.76%, and 71.37%, respectively, whereas for MT_P,
the GK was better than BRR, GBLUP, PK and SK by 9.98%, 8.31%,
3.97%, and 65.25%, respectively (Figure 2B, I, and Table 2). As for
trait DHTD, there was a slight consistent increase in genome-
based prediction accuracy when including G�E (Figure 2B, I)

compared to when ignoring G�E (Figure 2B, WI) and for scenario

2 MT_P over scenario MT (Table 2).

Summary of results for dataset 1
The nonlinear multitrait Gaussian kernel showed the best

genome-based prediction accuracies in most of the environments
for both traits, DTHD and DTMT, whereas the sigmoidal kernel
(SK) gave the worst prediction. Consistently for the 4 kernel
methods linear GBLUP, GK, PK, and SK, the model including G�E

gave lower MSE than models ignoring G�E, whereas the scenario
that included all the traits (MT) gave a slightly worse prediction
accuracy than the scenario including only a fraction of the traits

in the testing sets to be predicted (MT_P). Although these patterns
are expressed in most (but not all) of the environments, the
across environments analyses of Table 2 and Figure 2 clearly

displayed these conclusions.

Dataset 2 (EYT 2014–2015)
DTHD (without G 3 E, WI)
We first compared the prediction performance of the five meth-

ods (Figure 4A, WI, and Table 3) under MT and MT_P scenarios
when ignoring G�E (WI). The best performance was observed
under the GK, and the worst, under the SK. The SK was also con-

siderably worse than the other methods under both MT and
MT_P (Figure 4A, WI). Figure 4A, WI, and Table 3 also show that
the worst prediction under both MT and MT_P scenarios was in

environment EHT, whereas the best prediction was in environ-
ment Bed2IR. In all environments, MT_P slightly outperformed
MT (Figure 4A, WI).

Across environments, scenario MT_P slightly outperformed

MT (Figure 5A, WI; Table 4). Under MT across environments, the

Figure 3 Dataset 1—DTMT. Prediction performance in terms of mean square error of prediction (MSE) for five methods BRR, GBLUP, GK, PK, and SK
when (A) without G�E interaction (WI) and (B) including G�E interaction (I) for four environments (Bed5IR, EHT, Flat5IR, and LHT).
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GK kernel performed better than BRR, GBLUP, PK, and SK by
4.96%, 4.86%, 0.258%, and 59.97%, respectively, while for scenario
MT_P, the GK outperformed the BRR, GBLUP, PK, and SK by
4.88%, 4.82%, 0.704%, and 57.92%, respectively.

DTHD (G 3 E, I)
When the G�E interaction (Figure 4B, I, and Table 3) term was
taken into account for trait DTHD, the best prediction perfor-
mance under MT occurred under the GK, PK, and GBLUP kernels,

Figure 4 Dataset 2—DTHD. Prediction performance in terms of mean square error of prediction (MSE) for five methods (BRR, GBLUP, GK, PK, and SK) (A)
without G�E interaction (WI) and (B) including G�E interaction (I) for five environments (Bed2IR, Bed5IR, EHT, Flat5IR, and LHT) and two scenarios (MT
and MT_P).

Table 3 Dataset 2 EYT 2014–2015

Models and methods Models and methods

BRR GBLUP GK PK SK BRR GBLUP GK PK SK

Env. Scenario Without G�E (WI) With G�E (I)

DTHD
Bed2IR MT 2.66 2.65 2.40 2.43 5.90 2.27 2.26 2.05 2.04 5.98
Bed5IR MT 7.68 7.67 7.21 7.28 13.23 6.58 6.48 5.66 5.54 13.75
EHT MT 16.13 16.17 15.55 15.54 22.87 14.34 14.44 11.59 11.76 23.58
Flat5IR MT 4.34 4.32 4.03 4.05 6.34 3.67 3.62 3.84 3.79 6.39
LHT MT 4.34 4.30 4.30 4.27 5.25 3.29 3.14 2.67 2.87 4.76
Bed2IR MT_P 2.58 2.61 2.38 2.41 5.86 2.22 2.22 2.01 2.06 5.92
Bed5IR MT_P 7.55 7.55 7.04 7.15 12.57 6.42 6.37 5.48 5.46 12.97
EHT MT_P 16.19 16.16 15.50 15.55 22.72 14.17 14.31 11.43 11.74 23.18
Flat5IR MT_P 4.34 4.33 4.12 4.14 6.21 3.69 3.64 3.70 3.90 6.23
LHT MT_P 4.30 4.30 4.29 4.32 5.28 3.32 3.15 2.75 2.94 4.80

DTMT
Bed2IR MT 4.80 4.79 4.63 4.70 6.56 4.26 4.20 3.90 4.03 6.27
Bed5IR MT 6.29 6.30 5.98 6.05 9.82 5.33 5.36 4.72 4.77 10.18
EHT MT 12.87 12.89 12.69 12.75 16.77 11.34 11.44 9.81 10.30 17.12
Flat5IR MT 5.02 4.98 4.82 4.87 7.24 4.53 4.52 4.65 4.84 7.61
LHT MT 3.92 3.87 3.90 3.86 4.77 3.13 3.05 2.66 2.79 4.42
Bed2IR MT_P 4.68 4.70 4.52 4.60 6.54 4.16 4.20 3.90 4.07 6.29
Bed5IR MT_P 5.93 5.95 5.66 5.75 8.93 5.07 5.10 4.51 4.53 9.19
EHT MT_P 12.70 12.71 12.45 12.55 16.44 11.08 11.22 9.68 10.20 16.54
Flat5IR MT_P 5.05 5.05 4.90 4.97 7.06 4.56 4.57 4.65 4.95 7.46
LHT MT_P 3.74 3.71 3.70 3.72 4.53 3.01 2.88 2.59 2.67 4.26

Average mean squared error (MSE) of prediction for five multitrait multienvironment model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear
unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G� E (WI) and with G�E (I) for two scenarios (MT and MT_P), four
environments (Bed2IR, Bed5IR, EHT, Flat5IR, LHT), and two traits (DTHD, days to heading and DTMT, and days to maturity). Boldface indicates model-method with
the lowest MSE for the environment.
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but we found differences in the prediction performance of the
five methods between environments, since the worst predictions
were observed in environment EHT and the best in environment
LHT. For this trait, the worst predictions were observed for SK.
Under MT_P, the best model was GK (with GBLUP being the best
only for Flat5IR).

Sigmoid kernel SK considering the G� E interaction term was
also the worst under both scenarios. However, the best perfor-
mance was observed in environments LHT and EHT under the GK,
in environments Bed5IR and Bed2IR with PK and in Flat5IR under
GBLUP. No large differences were found in predictions without
(Figure 4A) and with (Figure 4B) the G�E interaction term.

Across environments, MT_P was slightly better than the MT
scenario (Figure 5A, I, and Table 4). For MT across environments,
the GK method had better prediction accuracy than BRR, GBLUP,
PK, and SK by 16.67%, 15.95%, 0.716%, and 110.91%, respectively,
while for MT_P predictions, the GK method outperformed the
BRR, GBLUP, PK and SK by 17.45%, 16.97%, 2.87%, and 109.22%,
respectively. As previously found, results including G� E im-
proved the genome-based prediction accuracy as compared to ig-
noring the interaction term, and MT_P had better prediction
accuracy than MT.

DTMT (without G 3 E, WI)
Figure 6A, WI, and Table 3 show the results of the five methods
under both scenarios in terms of MSE without the G�E interac-
tion term for trait DTMT. Results show that the worst perfor-
mance under both scenarios was observed using the sigmoid
kernel (Figure 6A, WI). In general, under MT and MT_P, GK was
slightly better than the other four methods. In this trait we found
no differences between MT and MT_P (Figure 6A, WI, and
Table 3).

Under MT across environments, the GK method outperformed
the BRR, GBLUP, PK and SK by 2.72%, 2.53%, 0.69%, and 41.00%,
respectively, while under MT_P, the GK method was better than
the BRR, GBLUP, PK, and SK by 2.72, 2.82, 1.10 and 39.24%, respec-
tively. In general, the predictions under MT_P were slightly better
than those observed under MT (Figure 5B, WI, and Table 4).

DTMT (G 3 E, I)
For trait DTMT, when the G�E interaction (Figure 6B, I, and
Table 3) term was taken into account, the best prediction perfor-
mance under both MT and MT_P was carried out under the GK,
but we found differences in the prediction performance of the
five methods between environments, since the worst predictions

Figure 5 Dataset 2—DTHD and DTMT. Prediction performance across environments in terms of mean square error of prediction (MSE) for traits (A)
DTHD with (I) and without (WI) including G�E interaction term for two scenarios (MP and MT_P) and (B) DTMT with (I) and without (WI) including G�E
interaction term for two scenarios (MP and MT_P).

Table 4 Dataset 2 EYT 2014–2015.

Models and methods Models and methods

BRR GBLUP GK PK SK BRR GBLUP GK PK SK

Scenario Without G�E (WI) With G�E (I)

DTHD
MT 7.03 7.02 6.70 6.72 10.72 6.03 5.99 5.16 5.20 10.89
MT_P 6.99 6.99 6.67 6.71 10.53 5.96 5.94 5.08 5.22 10.62

DTMT
MT 6.58 6.57 6.40 6.45 9.03 5.72 5.71 5.15 5.35 9.12
MT_P 6.42 6.43 6.25 6.32 8.70 5.58 5.59 5.07 5.29 8.75

Average mean squared error (MSE) prediction, across environments for five model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased
predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G� E (WI) and with G� E (I) for two scenarios (MT and MT_P) and two traits
(DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest MSE for the scenario.
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were observed in environment EHT and the best, in environment

LHT. For this trait, the worst predictions observed were for SK.
Across environments, scenario MT_P slightly outperformed

MT (Figure 5B, I, and Table 4). In all environments, MT_P slightly

outperformed MT (Figure 5B, I, and Table 4). Sigmoid kernel SK,

taking into account the G�E interaction term, was also the worst

under both scenarios. Under scenario MT predictions across envi-

ronments, the GK was better than BRR, GBLUP, PK, and SK by

11.05%, 10.94%, 3.87%, and 77.14%, respectively, while under

MT_P predictions, the GK method overcame the BRR, GBLUP, PK,

and SK by 10.07%, 10.44%, 4.35% and 72.65%, respectively

(Figure 5B, I, and Table 4).

Summary of results for dataset 2
Results for dataset 2 were similar to those obtained for dataset 1.

The nonlinear multitrait Gaussian kernel had the best genome-

based prediction accuracies for most of the environments for

both traits (DTHD and DTMT), while the sigmoidal kernel (SK)

produced the worse prediction. For the four kernels, the model in-

cluding G�E and the method (scenario) including MT_P gave bet-

ter predictions than the model ignoring G�E and/or including all

the traits (MT). These patterns are shown in Table 4 and

Figure 5.

Dataset 3 (EYT 2014–2015)
Details of the results are given in Figures A1A and B, A2A and B,

A3A and B and Tables A1 and A2. In dataset 3 under the MT sce-

nario, the models with the G�E interaction outperformed the

models that did not include the G�E interaction by 20.30%(BRR),

20.42% (GBLUP), 32.77% (GK), 29.8% (PK), and �0.1% (SK), while

under the MT_P, the outperformance was 18.82 (BRR), 19.40

(GBLUP), 31.82 (GK), 29.27 (PK) and �0.6% (SK). In general, the GK

was the best genome-based prediction method, together with the

model that included the G�E interaction. Further details of the

results are given in Appendix A.

Discussion
With and without G 3 E interaction
In general terms, we observed that the best predictions were ob-
served when the G�E interaction term was taken into account,
although the superiority with regard to ignoring the G�E interac-
tion went from slight to large. Dataset 1 across environments and
traits under the MT scenario with G�E interaction outperformed
the models without G�E interaction by 17.51% (BRR), 18.95%
(GBLUP), 21.80% (GK), 15.81% (PK), and 1.4% (SK), while under the
MT_P scenario, the outperformance of the models with G� E in-
teraction over ignoring the G�E interaction was 14.54% (BRR),
16.47% (GBLUP), 19.30% (GK), 14.91% (PK), and 0.9% (SK). In data-
set 2 across environments and traits, the outperformance of the
models with the G�E interaction with regard to those that ig-
nored the G�E interaction was 15.83% (BRR), 16.14% (GBLUP),
27.05% (GK), 24.86% (PK), and �1.2% (SK) under scenario MT,
while under scenario MT_P, the superiority was 16.20% (BRR),
16.27% (GBLUP), 27.35% (GK), 24.06% (PK), and �0.6% (SK).
Finally, in dataset 3 under the MT scenario, the models with the
G�E interaction outperformed the models without the G�E in-
teraction by 20.30% (BRR), 20.42% (GBLUP), 32.77% (GK), 29.8%
(PK), and �0.1% (SK), while under the MT_P, the outperformance
was by 18.82% (BRR), 19.40% (GBLUP), 31.82% (GK), 29.27% (PK),
and �0.6% (SK). Note that we only report the results of traits
DTHD and DTMT since we did not observe an improvement of
the MT model with regard to the UT model for predicting the
other two traits (plant height and GY). This could be due to the
fact that these two maturity traits (DTHD and DTMT) are highly
genetically correlated (with genetic correlations of 0.985, 0.974,
and 0.983 in datasets 1, 2, and 3, respectively) and also demon-
strate relatively little genotype � environment interaction. Due
to the high genetic correlation between these traits, the relative
advantage of multivariate approaches will be greater than if
traits with lower genetic correlations were used (e.g., plant height
and GY). The fact that we did not observe an increase in

Figure 6 Dataset 2—DTMT. Prediction performance in terms of mean square error of prediction (MSE) for five methods (BRR, GBLUP, GK, PK, and SK) (A)
without G�E interaction (WI) and (B) including G�E interaction (I) for five environments (Bed2IR, Bed5IR, EHT, Flat5IR, and LHT) and two scenarios (MT
and MT_P).
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prediction performance in traits plant height and GY is not rare
since this model, as pointed out by one reviewer, should work
only for some traits because each trait has a different structure.
It is important to point out that our results are in agreement (in
terms of the outperformance with regard to no kernel methods)
with those obtained in the context of univariate kernel methods
(Cuevas et al. 2016, 2017, 2018, 2019).

Under scenarios MT and MT_P
In general terms, we found that the best prediction performance
was observed under the MT_P scenario, which was expected,
since under this scenario some traits are known and were not
predicted. In dataset 1 across environments, traits and type of in-
teraction, the MT_P outperformed the models under the MT sce-
nario by 7.85% (BRR), 7.79% (GBLUP), 7.61% (GK), 7.78% (PK), and
10.76% (SK), while in dataset 2, also across environments, traits
and type of interaction, the MT_P scenario outperformed the MT
scenario by 1.62% (BRR), 1.37% (GBLUP), 1.54% (GK), 0.73% (PK),
and 3.0% (SK). In dataset 3, this outperformance of MT_P over the
MT scenario was by 1.74% (BRR), 1.78% (GBLUP), 1.97% (GK),
1.83% (PK), and 2.97% (SK).

Kernel differences
Under scenarios with and without G�E interaction, the kernel
that generally provided the best performance was the GK, which
outperformed the other kernels between 0.258% and 110.91%,
while the worst performance was observed under the SK kernel.
In part these results can be due to a lack of an efficient tuning
strategy for the hyperparameters of each kernel. They may also
be due to the type of nonlinear patterns of the datasets, the size
of the data, and the nature of the kernel function that imple-
ments the SK kernel. Also, in general, the GK outperformed the
popular GBLUP and BRR models between 2.22% and 17.45%. Even
though this superiority is not considerably large, it is a small fur-
ther step toward improving the GS methodology. We did not ap-
ply a significant test to prove that there are significant
differences in the performance between the GK and conventional
methods (GBLUP and BRR), but we observed the plots. However,
since there is overlap of the confidence intervals between the
conventional methods (GBLUP and BRR) and GK, we can say that
the differences observed only in some cases are significant. In the
three datasets evaluated, the GK was always the best genome-
based predicted kernel.

General issues
Kernel methods are powerful tools for the improvement of pre-
diction performance, since they help to capture complex patterns
in the data. They also offer flexibility, since they can be imple-
mented in a two-step process using conventional statistical ma-
chine learning algorithms, where in the first stage, the kernels
are computed, and in the second stage, those kernels are used in
conventional linear algorithms. However, although there is em-
pirical evidence that these methods improve the prediction per-
formance in GS under a univariate prediction framework, there
are still no generalizations and applications for the multitrait
framework. For example, the models/methods used in this study,
which when applied to multitrait multienvironment data on the
three datasets show consistent improvement in terms of predic-
tion performance mainly with the GK kernel.

Due to the above, in this research we proposed a Bayesian
multitrait kernel method to capture nonlinear patterns in the in-
put data under a multitrait framework. The method uses a con-
ventional Bayesian multitrait model that instead of using a linear

kernel, allows many types of kernels such as polynomial,
Gaussian, sigmoid, etc. Although in the present paper only four
kernels were evaluated including the linear kernel, other types of
kernels can be considered. This is possible because the imple-
mentation of the Bayesian multitrait kernel method is a two-step
process in which the kernel is computed in the first stage, and in
the second stage the computed kernel replaces the linear kernel
of the Bayesian multitrait model. Also, for this reason we do not
expect significant differences in the time of implementation be-
tween the proposed kernels and the conventional GBLUP model
since the number of parameters to estimate between the pro-
posed kernel methods and the GBLUP method are the same.

Our results show that implementing the Bayesian multitrait
kernel model improves the prediction performance with regard
to the conventional linear multitrait kernel methods, since the
Gaussian kernel outperformed conventional methods (Ridge re-
gression and GBLUP) between 5.06% and 10.35% (in dataset 1), be-
tween 2.53% and 17.45% (dataset 2) and between 2.22% and
16.39% (dataset 3), and due to the fact that in the three datasets,
the proposed method outperformed conventional methods. The
proposed method can be implemented with conventional mixed
multitrait models because a two-step process is required. It is im-
portant to point out that we do not expect the proposed method
to outperform the conventional multitrait model in all datasets,
since not all datasets are expected to have complex patterns in
their input, although in all those datasets with complex nonlin-
ear patterns in the input, the proposed method is expected to be
able to improve the prediction performance. The small superior-
ity of the MT model over the UT model could be due, in part, to
the small number of markers and not to the strong correlation of
the traits. These results, although not strong for improving GS
genome-based prediction accuracy, represent a step forward in
the right direction.

Another advantage of the Bayesian multitrait kernel methods
is that they can significantly reduce the computational resources
needed in comparison with Ridge regression multitrait models,
since instead of directly using the inputs (independent variables),
a transformed input is used that usually has less dimension than
the dimension of the number of inputs. However, as with all ker-
nel methods, due to this transformation of the input, the esti-
mates of the beta coefficients are not interpretable as in
conventional regression methods, and for this reason, these
methods do not help to further understand the complex relation-
ship between input and output, and as such, it is important to
avoid false expectations about these methods (Montesinos-López
et al. 2021) in terms of interpretability. Finally, as one reviewer
pointed out, the successful implementation of the multitrait ker-
nel method proposed here is straightforward when the dataset is
balanced in the response variable (no missing data) and in the
environments, but more complicated when the data are not bal-
anced, but still the method works by only taking care of the im-
balance situation. Also, it is important to point out that the
phenotypic correlation between environments did not negatively
impact the prediction performance of the proposed method since
all the phenotypic correlations between environments are posi-
tive (Cuevas et al. 2016) for all traits (see Appendix C).

Some limitations of the proposed Bayesian multitrait kernel
methods are: (1) it is more difficult to tune the hyperparameters
of the kernels than in UT kernel methods, (2) that negative phe-
notypic correlations between environments can negatively affect
the prediction performance, as stated by Cuevas et al. (2016), and
(3) as in UT kernel methods, the beta coefficients resulting from
multitrait kernel methods are not interpretable like in
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conventional linear regression methods, but there is ongoing re-

search to allow variable selection with kernel methods (Crawford

et al. 2018).

Conclusions
The proposed Bayesian multitrait kernel method is an attractive

and novel approach to capture complex nonlinear patterns in

multitrait data that helps take advantage of the correlation be-

tween traits. We found that the proposed MT kernel method out-

performed the prediction performance of conventional Bayesian

multitrait models. However, out of the four nonlinear kernels

evaluated, we found that the best performance was obtained us-

ing the Gaussian kernel, and the worst, using the sigmoid kernel.

In addition, we pointed out that the proposed methods can be

implemented in conventional software for Bayesian multitrait

models but require a two-step process. In the first step, the ker-

nels are built, and in the second step, those kernels replace the

genomic relationship matrices in the multitrait models.

Additionally, we provided the data and the R code used in such a

way that other scientists can implement this model with their

own data.

Data availability
Phenotypic and genomic data for the three datasets are available

at the following link https://hdl.handle.net/11529/10548629.
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Appendix A: Dataset 3 (EYT 2015–2016)

DTHD (without G 3 E, WI)
Figure A1A, WI, and Table A1 show the results for the five meth-

ods for trait DTHD without including G�E for both scenarios (MT

and MT_P). Under both scenarios, we notice that in terms of MSE,

the best performance was observed with the Gaussian kernel

(GK) and the worst, with the sigmoid kernel (SK). With the excep-

tion of the sigmoid kernel (SK), the other four methods were

slightly worse than the GK under both scenarios (Figure A1A, WI).

For environments FlatDrip, MT outperformed MT_P by a sizeable

amount.
Under MT scenario predictions across environments, the GK

method outperformed the BRR, GBLUP, PK and SK by 4.95, 4.93%,

0.34%, and 72.68%, respectively, while under MT_P scenario, pre-

dictions under the GK method outperformed the BRR, GBLUP, PK

and SK by 5.13%, 5.18%, 0.46%, and 72.03%, respectively

(Figure A2A, WI, and Table A2). Scenario MT_P gave slightly and

consistent increase in prediction accuracy over the MT scenario.

DTHD (G 3 E, I)
Considering the model with the G�E interaction term, the sig-

moid kernel (SK) was the worst under both MT and MT_P scenar-

ios. The Gaussian kernel (GK) was the best under both scenarios

in all environments (Figure A1B, I, and Table A1).
Under MT predictions across environments, the GK method

outperformed the BRR, GBLUP, PK and SK by 15.58, 14.60, 3.41

and 137.54%, respectively, while under MT_P predictions, the GK

method outperformed the BRR, GBLUP, PK and SK by 16.39, 15.35,

3.25 and 135.61%, respectively (Figure A2A, I, and Table A2).

Including the term G�E, the genome-based predictions accuracy

increases as shown in Figure A2A, WI and I, and Table A2.

DTMT (without G 3 E, WI)
For trait DTMT, Figure A3A, WI, and Table A1 show the results in
terms of MSE of five methods under both scenarios. Here, also
the sigmoid kernel (SK) was the worst in terms of prediction per-
formance without the interaction term under MT and MT_P. We
observed that the GK was slightly better than the other four
methods and considerably better than the SK. Between MT and
MT_P, only small differences were observed. The worst prediction
(Figure A3A, WI) under both scenarios was observed in environ-
ment FlatDrip and Flat5IR and the best in environment Bed2IR
for M and MT_P.

For the across environment analyses, multitrait GK kernel had
the smallest MSE, followed by the PK (Table A2). Slight advantage
of the MT_P scenario over the MT was noted (Figure A2B, WI).
Under scenario MT predictions across environments, the GK
method outperformed the BRR, GBLUP, PK, and SK by 2.41%,
2.33%, 0.48% and 38.25%, respectively, while under MT_P predic-
tions, the GK method outperformed the BRR, GBLUP, PK, and SK
by 2.22%, 2.39%, 0.81% and 36.61%, respectively (Figure A2B, WI,
and Table A2).

DTMT (G 3 E, I)
With the G� E interaction (Figure A3B and Table A1), the best
prediction performances were found under the GK for trait
DTMT, but we did not find large differences in the prediction per-
formance of the other four methods. However, between environ-
ments, we found significant differences and the worst predictions
were observed in environment FlatDrip and the best in environ-
ment Bed2IR. In all methods and scenarios, the worst predictions
were observed under the SK method.

Also, the predictions under MT_P across environments were
slightly better than under MT Table A2 and clearly superior in envi-
ronment FlatDrip (Figure A3B). Under scenario MT predictions
across environments, the GK method outperformed the BRR,

Figure A1 Dataset 3—DTHD. Prediction performance in terms of mean square error of prediction (MSE) for five methods (BRR, GBLUP, GK, PK, and SK)
(A) without G�E interaction (WI) and (B) including G�E interaction (I) for five environments (Bed2IR, Bed5IR, EHT, Flat5IR, and LHT) and two scenarios
(MT and MT_P).
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GBLUP, PK, and SK by 13.27%, 13.97%, 1.85%, and 77.75%, respec-
tively, while under MT_P predictions, the GK method also outper-
formed the BRR, GBLUP, PK, and SK by 13.67%, 13.84%, 1.98%, and

75.72%, respectively (Figure A2B, I, and Table A2). Finally, differen-
ces were observed between the predictions without (Figure A3A, WI)
and with (Figure A3B, I) the G�E interaction term.

Figure A2 Dataset 3—DTHD and DTMT. Prediction performance across environments in terms of mean square error of prediction (MSE) for traits (A)
DTHD with (I) and without (WI) including G�E interaction term for two scenarios (MP and MT_P) and (B) DTMT with (I) and without (WI) including G�E
interaction term for two scenarios (MP and MT_P).

Table A1 Dataset 3 EYT 2015–2016

Models and methods Models and methods

BRR GBLUP GK PK SK BRR GBLUP GK PK SK

Env. Scenario Without G�E (WI) With G�E (I)

DTHD
Bed2IR MT 2.09 2.10 1.90 1.93 4.61 1.94 1.89 1.71 1.71 4.73
Bed5IR MT 5.39 5.40 5.12 5.15 8.69 4.35 4.38 3.77 3.98 8.86
Flat5IR MT 4.22 4.22 4.10 4.07 6.33 3.37 3.36 3.06 3.09 6.31
FlatDrip MT 7.67 7.66 7.36 7.39 12.90 6.24 6.17 5.16 5.39 13.23
LHT MT 4.16 4.15 3.94 3.96 6.21 3.12 3.08 2.77 2.85 5.99
Bed2IR MT_P 2.08 2.08 1.93 1.97 4.15 1.92 1.86 1.64 1.64 4.10
Bed5IR MT_P 5.68 5.68 5.40 5.43 9.47 4.55 4.55 3.93 4.18 9.70
Flat5IR MT_P 4.41 4.42 4.25 4.22 6.73 3.50 3.46 3.05 3.07 6.70
FlatDrip MT_P 6.58 6.57 6.28 6.33 10.64 5.61 5.59 4.67 4.85 11.11
LHT MT_P 4.04 4.04 3.82 3.83 6.31 3.12 3.08 2.79 2.87 6.28

DTMT
Bed2IR MT 2.87 2.88 2.67 2.71 4.74 2.54 2.51 2.31 2.31 4.65
Bed5IR MT 5.54 5.53 5.30 5.30 8.46 5.24 5.37 4.65 4.63 9.26
Flat5IR MT 8.15 8.13 8.07 8.14 10.44 6.72 6.83 6.11 6.32 10.19
FlatDrip MT 8.67 8.66 8.49 8.47 12.08 7.49 7.52 6.28 6.42 12.13
LHT MT 4.05 4.05 4.06 4.11 3.81 3.03 2.96 2.75 2.83 3.06
Bed2IR MT_P 2.80 2.80 2.65 2.69 4.31 2.47 2.45 2.23 2.27 4.16
Bed5IR MT_P 5.79 5.80 5.50 5.54 9.09 5.52 5.60 4.81 4.74 10.02
Flat5IR MT_P 8.37 8.39 8.27 8.37 10.77 7.00 6.99 6.18 6.38 10.60
FlatDrip MT_P 7.83 7.85 7.74 7.76 10.27 6.87 6.95 5.96 6.13 10.27
LHT MT_P 4.03 4.04 4.03 4.06 4.09 3.02 2.93 2.71 2.80 3.37

Average mean squared error (MSE) of prediction for five multitrait multi-environment model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear
unbiased predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G� E (WI) and with G�E (I) for two scenarios (MT and MT_P) for five
environments (Bed 2IR, Bed5IR, EHT, Flat5IR, and LHT) and two traits (DTHD, days to heading and DTMT, days to maturity). Boldface indicates model method with
the lowest MSE for the environment.
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Appendix B: R code

R code for computing the four kernels
#########Gaussian Kernel##################
l2norm¼function(x)fsqrt(sum(x ^2))g
K.radial¼function(x1, x2¼x1, gamma¼ 1)f

exp(-gamma*outer(1: nrow(x1<- as.matrix(x1)), 1: ncol(x2<- t(x2)),
Vectorize(function(i, j) l2norm(x1[i , ]-x2[, j]) ^2)))g

KK¼K.radial(x1¼X, x2¼X, gamma¼ 1) #### X is the scaled

marker matrix divided by the square ##root of the total number

of markers.
#########Polynomial Kernel##################
K.polynomial¼function(x1, x2¼x1, gamma¼ 1, b¼ 0, p¼ 3) f

(gamma*(as.matrix(x1)%*%t(x2))þb)^pg
KK¼K.polynomial(x1¼ X, x2¼ X, gamma¼ 1) #### X is the scaled

marker matrix divided by the ###square root of the total number

of markers.
#########Sigmoid Kernel##################
K.sigmoid¼function(x1, x2¼x1, gamma¼ 1, b¼ 0)

ftanh(gamma*(as.matrix(x1)%*%t(x2))þb)g
KK¼K.sigmoid(x1¼ X, x2¼ X, gamma¼ 1) #### X is the scaled

marker matrix divided by the square ##root of the total number

of markers.
#########Linear Kernel##################
K.linear¼function(x1, x2¼x1, gamma¼ 1)

fgamma*(as.matrix(x1)%*%t(as.matrix(x2)))g
KK¼K.linear(x1¼ X, x2¼ X, gamma¼ 1) #### X is the scaled

marker matrix divided by the square ##root of the total number

of markers.

Implementation of the models using BGLR
load(’Pheno.RData’,verbose¼TRUE) ### Pheno contains at least

###four columns Lines, Environment (Env) and at least ##to col-

umns of the response variables (Y).
#########Compute the design matrix of lines and environments
nt¼ ncol(Pheno)-2 ####number of traits under study
XE ¼model.matrix(�0þas.factor(Env),data¼Pheno)

Table A2 Dataset 3 EYT 2014–2015

Models and methods Models and methods

BRR GBLUP GK PK SK BRR GBLUP GK PK SK

Scenario Without G�E (WI) With G�E (I)

DTHD
MT 4.71 4.71 4.49 4.50 7.75 3.81 3.77 3.29 3.41 7.82
MT_P 4.56 4.56 4.34 4.36 7.46 3.74 3.71 3.22 3.32 7.58

DTMT
MT 5.85 5.85 5.72 5.74 7.90 5.01 5.04 4.42 4.50 7.86
MT_P 5.77 5.77 5.64 5.69 7.70 4.98 4.99 4.38 4.47 7.69

Average mean squared error (MSE) prediction, across environments for five model-methods: BRR, Bayesian ridge regression; GBLUP, genomic best linear unbiased
predictor; GK, Gaussian kernel; PK, polynomial kernel; SK, sigmoidal kernel without G� E (WI) and with G� E (I) for two scenarios (MT and MT_P) and two traits
(DTHD, days to heading and DTMT, days to maturity). Boldface indicates model-method with the lowest MSE for the scenario.

Figure A3 Dataset 3—DTMT. Prediction performance in terms of mean square error of prediction (MSE) for five methods (BRR, GBLUP, GK, PK, and SK)
(A) without G�E interaction (WI) and (B) including G�E interaction (I) for five environments (Bed2IR, Bed5IR, EHT, Flat5IR, and LHT) and two scenarios
(MT and MT_P).
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KE¼ XE%*%t(XE)
ZL ¼model.matrix(�0þas.factor(Line),data¼Pheno)
KL¼ZL%*%KK%*%t(ZL)
########Interaction GxE###########
KLE¼KE*KL
ETA ¼ list(Env¼list (X¼XE[,-1], model¼‘FIXED’), Line¼list (K¼KL,
model¼‘RKHS’), LinexEnv¼ list (K¼KLE model¼’ RKHS’))
A ¼ Multitrait(y¼Y, ETA¼ETA, resCov ¼ list (type ¼ ‘UN’,
S0¼diag(nt), df0¼ 5),

nIter ¼ 10,000, burnIn ¼ 2000)

Appendix C: Phenotypic correlations of the
three datasets

Table C1 Phenotypic correlation of dataset 1

Trait Env Bed5IR EHT Flat5IR LHT

DTHD Bed5IR 1.000 0.805 0.846 0.829
DTHD EHT 0.805 1.000 0.701 0.830
DTHD Flat5IR 0.846 0.701 1.000 0.712
DTHD LHT 0.829 0.830 0.712 1.000
DTMT Bed5IR1 1.000 0.767 0.731 0.761
DTMT EHT1 0.767 1.000 0.695 0.758
DTMT Flat5IR1 0.731 0.695 1.000 0.577
DTMT LHT1 0.761 0.758 0.577 1.000
GY Bed5IR2 1.000 0.392 0.344 0.138
GY EHT2 0.392 1.000 0.248 0.002
GY Flat5IR2 0.344 0.248 1.000 0.035
GY LHT2 0.138 0.002 0.035 1.000
Height Bed5IR3 1.000 0.516 0.518 0.323
Height EHT3 0.516 1.000 0.386 0.261
Height Flat5IR3 0.518 0.386 1.000 0.420
Height LHT3 0.323 0.261 0.420 1.000

Table C2 Phenotypic correlation of dataset 2

Trait Env Bed2IR Bed5IR EHT Flat5IR LHT

DTHD Bed2IR 1.000 0.876 0.821 0.805 0.849
DTHD Bed5IR 0.876 1.000 0.732 0.877 0.768
DTHD EHT 0.821 0.732 1.000 0.718 0.776
DTHD Flat5IR 0.805 0.877 0.718 1.000 0.699
DTHD LHT 0.849 0.768 0.776 0.699 1.000
DTMT Bed2IR1 1.000 0.760 0.649 0.650 0.724
DTMT Bed5IR1 0.760 1.000 0.675 0.842 0.742
DTMT EHT1 0.649 0.675 1.000 0.646 0.693
DTMT Flat5IR1 0.650 0.842 0.646 1.000 0.656
DTMT LHT1 0.724 0.742 0.693 0.656 1.000
GY Bed2IR2 1.000 0.425 0.313 0.347 0.193
GY Bed5IR2 0.425 1.000 0.456 0.618 0.293
GY EHT2 0.313 0.456 1.000 0.410 0.298
GY Flat5IR2 0.347 0.618 0.410 1.000 0.238
GY LHT2 0.193 0.293 0.298 0.238 1.000
Height Bed2IR3 1.000 0.381 0.406 0.450 0.328
Height Bed5IR3 0.381 1.000 0.339 0.502 0.290
Height EHT3 0.406 0.339 1.000 0.470 0.445
Height Flat5IR3 0.450 0.502 0.470 1.000 0.423
Height LHT3 0.328 0.290 0.445 0.423 1.000

Table C3 Phenotypic correlation of dataset 3

Trait Env Bed2IR Bed5IR Flat5IR FlatDrip LHT

DTHD Bed2IR 1.000 0.786 0.762 0.871 0.771
DTHD Bed5IR 0.786 1.000 0.726 0.716 0.693
DTHD Flat5IR 0.762 0.726 1.000 0.728 0.628
DTHD FlatDrip 0.871 0.716 0.728 1.000 0.754
DTHD LHT 0.771 0.693 0.628 0.754 1.000
DTMT Bed2IR1 1.000 0.717 0.560 0.725 0.642
DTMT Bed5IR1 0.717 1.000 0.635 0.642 0.563
DTMT Flat5IR1 0.560 0.635 1.000 0.498 0.437
DTMT FlatDrip1 0.725 0.642 0.498 1.000 0.541
DTMT LHT1 0.642 0.563 0.437 0.541 1.000
GY Bed2IR2 1.000 0.232 0.121 0.608 0.125
GY Bed5IR2 0.232 1.000 0.250 0.092 0.361
GY Flat5IR2 0.121 0.250 1.000 0.117 0.025
GY FlatDrip2 0.608 0.092 0.117 1.000 0.002
GY LHT2 0.125 0.361 0.025 0.002 1.000
Height Bed2IR3 1.000 0.367 0.407 0.160 0.258
Height Bed5IR3 0.367 1.000 0.381 0.054 0.360
Height Flat5IR3 0.407 0.381 1.000 0.319 0.229
Height FlatDrip3 0.160 0.054 0.319 1.000 0.118
Height LHT3 0.258 0.360 0.229 0.118 1.000
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