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Raffinose family oligosaccharides (RFOs) are widespread across the plant kingdom, and
their concentrations are related to the environment, genotype, and harvest time. RFOs
are known to carry out many functions in plants and humans. In this paper, we provide a
comprehensive review of RFOs, including their beneficial and anti-nutritional properties.
RFOs are considered anti-nutritional factors since they cause flatulence in humans and
animals. Flatulence is the single most important factor that deters consumption and
utilization of legumes in human and animal diets. In plants, RFOs have been reported
to impart tolerance to heat, drought, cold, salinity, and disease resistance besides
regulating seed germination, vigor, and longevity. In humans, RFOs have beneficial
effects in the large intestine and have shown prebiotic potential by promoting the growth
of beneficial bacteria reducing pathogens and putrefactive bacteria present in the colon.
In addition to their prebiotic potential, RFOs have many other biological functions in
humans and animals, such as anti-allergic, anti-obesity, anti-diabetic, prevention of non-
alcoholic fatty liver disease, and cryoprotection. The wide-ranging applications of RFOs
make them useful in food, feed, cosmetics, health, pharmaceuticals, and plant stress
tolerance; therefore, we review the composition and diversity of RFOs, describe the
metabolism and genetics of RFOs, evaluate their role in plant and human health, with a
primary focus in grain legumes.

Keywords: α-galactosides, flatulence, galactinol synthase, prebiotic carbohydrates, grain legume crops

WHAT ARE RAFFINOSE FAMILY OLIGOSACCHARIDES?

Raffinose family oligosaccharides (RFOs) are soluble carbohydrates ranked next to sucrose in their
distribution in higher plants (French, 1954; Keller and Pharr, 1996). They are abundant in the seed
of many crops, particularly in the legume family, e.g., soybean (Glycine max), lentil (Lens culinaris),
and chickpea (Cicer arietinum). They are also present in roots and specialized storage organs such
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as tubers and leaves. For example, the RFOs concentration is up
to 25–80% of their dry weight in tubers of Chinese artichoke
(Stachys sieboldii) and photosynthesizing leaves of a common
bugle (Ajuga reptans) (Bachmann and Keller, 1995; Tahir et al.,
2011). However, due to the lack of α-galactosidase to degrade
RFOs (Calloway and Murphy, 1968; Han and Baik, 2006), they
are neither absorbed nor hydrolyzed in the upper gastrointestinal
tract of humans and get accumulated in the large intestine of the
human digestive system. Eventually, the α-galactosides undergo
microbial fermentation by colonic bacteria resulting in hydrogen,
methane, and CO2 production – major components of flatulent
gases (Singh, 1985). RFOs are indigestible and cause flatulence
in humans (Gupta, 1987; Van den Ende, 2013; Sengupta et al.,
2015; Gangl and Tenhaken, 2016). Expulsion of these gases causes
severe abdominal discomfort such as abdominal rumblings,
cramps, diarrhea, and nausea (Sosulski et al., 1982; Kennedy et al.,
1985; Lee et al., 2007).

The production of galactinol initiates the biosynthesis of RFOs
by galactinol synthase, which catalyzes the galactosyl residue from
UDP-D-galactose to myoinositol (Peterbauer and Richter, 2001;
Panikulangara et al., 2004). Two pathways have been identified
as RFO biosynthetic pathways (Figure 1). The first pathway,
and the more common of the two, is galactinol dependent.
This pathway starts with UDP-galactose and myoinositol as
precursors. Galactinol synthase catalyzes the transfer of a
galactosyl moiety from UDP-galactose to myoinositol, forming
galactinol (Peterbauer and Richter, 2001). The next step in the
pathway is catalyzed by the raffinose synthase, which transfers
a galactosyl moiety from the previously formed galactinol to
sucrose, forming raffinose, the first RFO in the biosynthetic
pathway (Peterbauer et al., 2002a). Following the formation
of raffinose, the larger RFOs stachyose and verbascose can be
formed. The formation of stachyose is catalyzed by stachyose
synthase, similar to the formation of raffinose; a galactosyl
moiety is transferred from galactinol. During this reaction,
raffinose is the acceptor instead of sucrose. The verbascose
formation is also similar, except stachyose is now the galactosyl
acceptor. The enzyme responsible for catalyzing this reaction
has yet to be recognized (Lahuta et al., 2010); however, in
peas (Pisum sativum), stachyose synthase is used as a multi-
functional enzyme in synthesizing both stachyose and verbascose
(Peterbauer et al., 2003).

The second RFO biosynthetic pathway is galactinol
independent (Figure 1). This pathway is less common than
the first and has only been reported in two species of the
Lamiaceae family: Ajuga reptans and Coleus blumei (Bachmann
and Keller, 1995; Gilbert et al., 1997). This pathway can only
produce the larger RFOs of stachyose and verbascose. To
form these RFOs, the enzyme galactan-galactan galactosyl
transferase (GGT) catalyzes the transfer of a galactosyl moiety
from one RFO, such as raffinose, to another RFO. In the
formation of stachyose, two raffinose molecules act as donors
and acceptors to form a single stachyose. Verbascose is
formed by GGT catalyzing the transfer of galactosyl from
raffinose to stachyose. The GGT enzyme has only been
found in the vacuoles of leaves (Bachmann and Keller, 1995;
Peterbauer et al., 2002b).

Raffinose family oligosaccharides can be reduced at varying
degrees based on the food preparation involved. Food processing
techniques including soaking, germination, decortications,
fermentation, cooking, and use of enzymes such as α-
galactosidase (which can catalyze the hydrolysis of RFO)
can significantly increase the level of soluble dietary fiber
fraction, reduce the levels of α-galactosides and hence enhance
the digestibility of the food (Jood et al., 1985; Egbe and Akinyele,
1990; Aguilera et al., 2009). However, these food processing
methods are time-consuming and lead to loss of nutrients
and sometimes have consumer acceptability issues. Therefore,
alternative approaches from a breeding perspective have been
used to select cultivars with a low level of raffinose and stachyose
(Obendorf and Górecki, 2012; Redekar et al., 2020) or inhibiting
galactinol synthase activity (Bock et al., 2009) and over-expression
of α-galactosidase in seeds by genetic manipulation (Polowick
et al., 2009). Screening legumes for low RFOs contents has
been carried out in many species such as chickpea (Raja et al.,
2015; Gangola et al., 2016), lentil (Tahir et al., 2011, 2012), pea
(Peterbauer et al., 2003), and soybean (Blackman et al., 1992;
Dierking and Bilyeu, 2008; Obendorf and Górecki, 2012). Many
breeding programs of grain legumes aim to decrease the content
of antinutritional factors via genetic means to a safe extent to
increase the level of grain legumes in human and animal diets.

Moreover, RFOs have recently been reported to have a
beneficial effect on the gut microflora. Therefore, they are
recommended in human diets to prevent cancer in the digestive
tract (Van den Ende, 2013). The oligosaccharide family of
raffinose has a wide range of predicted functions. In addition,
being a form of carbohydrate storage and transport, the raffinose
members play an important role in abiotic stresses, such as
high salinity and drought (Taji et al., 2002; Nishizawa-Yokoi
et al., 2008; Dobrenel et al., 2013; Van den Ende, 2013). Due to
their membrane-stabilizing, antioxidant properties, and perhaps
expected signaling roles, RFOs are emerging as crucial molecules
during stress responses in plants (Van den Ende, 2013). We aim
to comprehensively review the literature about RFOs and their
role in human and plant health with this background.

RAFFINOSE FAMILY
OLIGOSACCHARIDES DIVERSITY IN
CROPS

Raffinose family oligosaccharides are well documented in many
cereals, pulses, fruits, and vegetables (Vidal-Valverde et al., 1993;
Frias et al., 1994; Andersen et al., 2005; Wang and Daun, 2006;
Huynh et al., 2008). The below table summarizes the genetic
variability of different oligosaccharide components present in the
grain legumes (Table 1). Range and mean values of each RFO
component were presented, wherein some authors reported as
range and others reported as mean.

Peas
Considerable variation in the total α-galactoside concentration
and composition exists in pea cultivars (Sosulski et al., 1982; Jones
et al., 1999; Vidal-Valverde et al., 2003; Asif et al., 2013). In a study
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FIGURE 1 | Galactinol dependent and independent biosynthetic pathways for RFO biosynthesis in crop plants.

of 18 pea cultivars, total α-galactosides concentration ranged from
22.6 to 63.4 g kg−1 of dry matter (Vidal-Valverde et al., 2003).
Stachyose and verbascose contents were higher compared to
raffinose content (Jones et al., 1999; Vidal-Valverde et al., 2003;
Asif et al., 2013).

Soybean
Sucrose was the major sugar found in the 241 soybean plant
introductions (PIs), ranging from 1.6 to 95.4 mg g−1, with most
of the germplasm containing 30 to 70 mg g−1 sucrose (Hou
et al., 2009a). The raffinose content in 241 PIs ranged from 0.1
to 19.9 mg g−1 with a mean of 8.3 mg g−1, with most of the
germplasm containing 5 to 10 mg g−1. The total sugar content
in 241 PIs followed a normal distribution ranging from 16.4 to
190.1 mg g−1, with a mean of 96.4 mg g−1. In another study,
Hymowitz and Collins (1974) and Hartwig et al. (1997) found
that raffinose was a minor sugar, whereas stachyose was the
second major sugar after sucrose. The stachyose content ranged
from 0.2 to 69.6 mg−1 with a mean of 31.7 mg−1 and the majority
having 30 to 40 mg−1 (Hymowitz and Collins, 1974; Hartwig
et al., 1997). The total sugar concentration is in the range of 70 to
120 mg g−1 (Hymowitz and Collins, 1974; Hartwig et al., 1997).

The RFOs found in most soybean cultivars were stachyose and
raffinose. They made up to approximately 4–6% of soybean flour
on a dry weight basis (Grieshop et al., 2003). Kennedy et al. (1985)
reported that the coefficient of variation for the soybean samples
were 3.5%, 5.3%, and 10.5%, respectively, for sucrose, stachyose,
and raffinose. The average raffinose and stachyose content in

the defatted soy flour was 1.15% and 3.23%, respectively. In
soybean, the reduction in raffinose synthase enzyme activity was
reported in the developing seeds, which means the developing
seeds accumulate more sucrose than RFOs (Hitz et al., 2002).

The total α-galactosides concentration in soybean was 6.0 to
8.0 g 100 g−1 with stachyose as the major RFO (Sosulski et al.,
1982). RFO accounted for more than 50% of total soluble sugars
in cowpea and soybean. Giannoccaro et al. (2008) quantified
the major sugars, including glucose, fructose, sucrose, raffinose,
and stachyose in five soybean lines. The amount of each sugar
five soybean lines ranged 0.07–0.15% for glucose, 0.08–0.19% for
fructose, 5.64–9.39% for sucrose, 0.25–1.35% for raffinose, and
0.29–6.33% for stachyose.

Kumar et al. (2010) examined the ranges of sucrose and total
RFO content in 48 soybean genotypes using the enzymatic rapid
assay method. Sucrose content ranged from 3.45 to 16.55 mmol
100 g−1 with a mean value of 8.90 mmol 100 g−1. Total RFO
content varied from 3.5 to 9.22 mmol 100 g−1 with a mean
value of 6.64 mmol 100 g−1. Skoneczka et al. (2009) reported the
stachyose content in wild-type and mutant types. The stachyose
content for the wild type and mutant line ranged from 0.56 to
0.89% and 0.69 to 1.47%, respectively. Trugo et al. (1995) reported
a range of 0.4 to 1.4 and 4.8 to 6.9 mmol 100 g−1 for raffinose and
stachyose, respectively, in the 20 Brazilian soybean genotypes.

Chickpea
Raffinose family oligosaccharides and sucrose are the major
soluble carbohydrates found in chickpeas. The RFOs includes
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raffinose, stachyose, verbascose, and ciceritol. It was found
that stachyose and raffinose accounted for 27.3% and 7.7%
of total soluble sugars in chickpea (Lineback and Ke, 1975).
Singh et al. (1982) recorded the concentrations of total soluble
sugars and oligosaccharides in eight Desi and seven Kabuli
type chickpea cultivars grown in Hissar, India. They found
stachyose and raffinose accounted for 26.7% and 10.2% of
the total soluble sugars in those varieties. Similarly, Saini and
Knights (1984) studied the variation for total oligosaccharides
in seven desi and Kabuli chickpea varieties. They revealed that
Kabuli chickpeas had 3.2% higher total oligosaccharide levels
than desi varieties. Kabuli chickpeas had 1.47, 5.30, and 0.12 g
100 g−1 of raffinose, stachyose, and verbascose, respectively:
desi chickpeas had 1.48, 5.06, and 0.15 g 100 g−1 of raffinose,
stachyose, and verbascose, respectively (not presented in the
table). A study by Mulimani and Ramalingam (1997) reported
a higher raffinose concentration (1.9 to 2.8 g 100 g−1 dry
matter) than the total amount of stachyose and verbascose
concentration (0.9 to 1.7 g 100 g−1 dry matter) (not presented in
the table).

The chromatographic profile of three raw Spanish chickpea
cultivars was observed and the soluble sugar content was
quantified by Sánchez-Mata et al. (1998). Among disaccharides,
sucrose was the leading one, accounting for 28% of the total
sugar content. The α-galactoside group was around 60% of the
total sugar content in raw samples. Ciceritol comprised about
40% of total sugars in chickpea samples analyzed. Other α-
galactosides in total, when analyzed in raw chickpea, ranged
from 1.31 mg 100 g−1 to 1.95 mg 100 g−1 and represented
19.4% to 22.3% of the total amount of sugars. Figure 2 captures
the oligosaccharide variation present in the International Crops
Research Institute for the Semi-Arid Tropics (ICRISAT) mini-
core collection of chickpeas (Ramadoss et al., 2015). Kabuli
chickpeas had higher total sugars and sucrose levels, whereas
desi had higher levels of RFOs, including raffinose, stachyose,
and ciceritol (Figure 2). Germination considerably reduced the
accumulation of RFOs in chickpea seeds (Åman, 1979), and
according to Xiaoli et al. (2008), chickpea sample 171 has the
desirable sugar profile and could be used in breeding programs
to develop ideal sugar types.

Lentil
Significant variations were observed for α-galactosides in lentil
seeds ranging from 1.8 to 7.5% (Wang and Daun, 2006;
Martínez-Villaluenga et al., 2008). Sucrose concentration of
lentil cultivars ranged from 1.2 to 1.7 g 100 g−1 flour
with a mean concentration of 1.4 100 g−1 flour. Total RFO
concentration of lentil cultivars varied from 4.5 to 5.5 moles
100 g−1 flour. Johnson et al. (2021) found 7 to 31% variation
for RFOs in lentil seeds from 143 accessions. Significant
differences were observed between different years of lentil
harvest. The year 1995 harvest exhibited higher total α-
galactosides compared to the year 1994 harvest (Sánchez-Mata
et al., 1998), which explains the accumulation of soluble sugars
is highly dependent on the environment and tissue and is
genotype-specific (Sánchez-Mata et al., 1998; Han and Baik, 2006;
Martínez-Villaluenga et al., 2008).

Faba Bean
Sosulski et al. (1982) studied variation in the concentration
of α-galactoside in 11 legumes and reported verbascose is the
predominant α-galactoside in faba bean. Vidal-Valverde et al.
(1998) observed high levels of verbascose (2.29% of dry weight),
followed by stachyose (1.10% of dry weight) and raffinose (0.28%
of dry weight) in faba bean. Lattanzio et al. (1986) reported the
oligosaccharides content in fresh and dry mature seeds of fifteen
cultivars of faba bean lines. The raffinose content of the whole dry
seeds ranged from 0.12 to 0.29%; stachyose content between 0.46
and 1.02%; and verbascose content between 0.82 and 1.61% on a
dry matter basis.

Lupins
A wide variation for RFO concentration and its composition was
reported among the lupin species: it had 0.30–1.90, 2.30–8.60,
and ND (non-detectable)–3.50 percent of raffinose, stachyose,
and verbascose, respectively (Martínez-Villaluenga et al., 2008).
Ajugose had an exclusive presence in lupin seeds: L. albus,
L. mutabilis had the lowest level of ajugose (0.2–0.5% and 0.2%,
respectively), followed by L. angustifolius (1.7–2.6%) and L. luteus
(0.6–4.6%) (Trugo et al., 1988). Trugo et al. (1988) studied the
RFO content and sucrose in various lupin species. They found
significant variations in the levels of individual RFO among
lupin species. L. albus seeds had the verbascose (0.4%); L. luteus
had stachyose (7.4%), verbascose (3.1%), sucrose (1.2%), and
L. angustifolius had sucrose (3.4%) and stachyose (4.6%). There
was a wide variation in total α-galactosides between species, with
a remarkably high content found in L. luteus (9.5–12.3%).

Lima Beans
The effect of oligosaccharides on germination was investigated in
lima beans (Dibofori et al., 1994). The sucrose content increased
from 190 mg 100 g−1 and 790 mg 100 g−1 by the fifth day of
germination. On the other hand, raffinose decreased from 620 mg
100 g−1 to 131 mg 100 g−1 on the fifth day of germination. Oboh
et al. (2000) reported the total α-galactoside contents of the seeds
in the mature seeds in white lima beans (3.62 mg 100 mg−1) and
red lima beans (3.37 mg 100 mg−1). They found stachyose was
the predominant sugar in lima beans.

Black Gram (Urd Bean)
Reddy and Salunkhe (1980) reported RFO concentration in
long-grain polished rice and black gram. They did not find
RFO in rice but higher verbascose concentration (3.44%),
followed by stachyose (0.89%) and raffinose (trace) in black
gram. Souframanien et al. (2014) also reported higher verbascose
concentration (14 to 31 mg g−1), followed by stachyose (8.9 to
37.3 mg g−1) and raffinose (0.2 to 8.1 mg g−1) in black gram.

Green Gram (Mung Bean)
Verbascose was the prominent RFO sugar in green gram (Åman,
1979; Sosulski et al., 1982; Asif et al., 2013). Germination
completed nullified the presence of RFOs in green gram
compared to the raw seeds (Åman, 1979; Mubarak, 2005). Hence,
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TABLE 1 | Variability of oligosaccharides present in the various grain legumes.

Crop No of
genotypes

Unit (dry
matter)

Sucrose Raffinose Stachyose Verbascose Ciceritol Total α-
galactosides

References

Peas 18 g kg−1 11.6–25.4 4.1–10.3 10.7–26.7 0.0–26.7 – 22.6–63.4 Vidal-Valverde
et al., 2003

– % 2.3–2.4 0.3–0.9 2.2–2.9 1.7–3.2 – 5.3–8.7 Asif et al., 2013

1 (wild type) g 100 g−1 1.8 0.6 1.5 2.2 – 4.3 Jones et al., 1999

1 % 2.8 1.2 3.8 4.6 – 9.6 Sosulski et al.,
1982

Soybean 241 mg g−1 46.8 8.3 31.7 – – 40.0 Hou et al., 2009a

195 g 100 g−1 6.1 1.0 2.3 – – 3.3 Hymowitz and
Collins, 1974

20 (high
protein-1991)

g kg−1 36.0 9.3 43.6 – – 52.9 Hartwig et al.,
1997

20 (high
oil-1991)

46.2 10.7 39.9 – – 50.5

Soybean mg g−1 48.1 6.2 38.4 1.6 – 46.2 Grieshop et al.,
2003 (Processing

plant #1)

Soybean meal 69.4 13.3 57.2 2.3 – 72.8

Williams % 5.6 0.9 4.1 – – 10.6 Kennedy et al.,
1985

Forrest 6.0 0.9 3.9 – – 10.8

Big Jule 7.7 0.9 3.9 – – 12.5

4 µmol g−1 165.2 24.2 70.5 – – 94.7 Hitz et al., 2002

20 mg g−1 4.5 0.9 3.4 – – 4.3 Hou et al., 2009b

5 % 7.2 3.6 4.6 – – 8.2 Giannoccaro
et al., 2008

148 mmol
100 g−1

– 0.6–2.5 2.1–7.1 – – 2.7–9.6 Kumar et al.,
2010

20 % 6 0.7 4.1 – – 3.9–5.3 Trugo et al., 1995

1 (local market) mg g−1 - 60.1 35.0 Not
detectable

Not
detectable

95.1 Han and Baik,
2006

1 % 6.4 1.2 2.9 – – 4.6 Sosulski et al.,
1982

Chickpea – % 33.7 7.7 27.3 – – 35.0 Lineback and Ke,
1975

Desi-8
Kabuli-7

g 100 g−1 – 0.4–0.7
0.4–0.6

1.1–1.9
0.8–1.4

– – 1.5–2.6
1.2–2.0

Singh et al., 1982

1 (cv.
Castellano)

g 100 g−1

(Wet basis)
2.3 0.6 1.2 – 2.8 6.9 Sánchez-Mata

et al., 1998

1 (cv.
Pedrosillano)

1.1 0.6 0.7 – 2.5 4.9

A batch of
10 kg from the

market

g 100 g−1 1.9 1.5 2.6 0.2 – 6.1 Alajaji and
El-Adawy, 2006

Raw % 4.3 1.0 2.8 Traces – 3.8 Åman, 1979

Germinated
(72 h)

4.9 0.3 0.7 – – 1.0

1 (cv. Dwelly) mg g−1 – 50.2 27 Not
detectable

67.7 144.9 Han and Baik,
2006

1 g kg−1 15.2 3.2 17.7 – 27.6 48.5 Aguilera et al.,
2009

213 mg g−1 3.6–54.1 0.2–15.1 2.8–59.4 – 4.4–90.1 7.4–164.6 Ramadoss et al.,
2015

1 (sample 171) % 2.4 0.8 3.1 – 4.8 8.7 Xiaoli et al., 2008

1 % 2.7 0.5 1.7 0.1 – 5.5 Sosulski et al.,
1982

(Continued)
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TABLE 1 | (Continued)

Crop No of
genotypes

Unit (dry
matter)

Sucrose Raffinose Stachyose Verbascose Ciceritol Total α-
galactosides

References

Lentil 4 % 1.7–2.5 0.3–0.5 1.7–2.2 0.4–0.7 – 2.4–3.4 Wang and
Daun, 2006

– % 1.8–2.5 0.4–1.0 1.9–2.7 1.0–3.1 – 3.3–6.8 Asif et al., 2013

143 mg g−1 208–1010 – – – – 508–2167 Johnson et al.,
2021

1 (1994 harvest) g 100 g−1 1.0 0.8 1.6 – 1.4 3.8 Sánchez-Mata
et al., 1998

1 (1995 harvest) 1.4 0.7 1.7 – 1.8 4.2

1 (cv. Pardina) mg g−1 – 28.6 24.6 3.9 38.6 95.5 Han and Baik,
2006

1 (cv. Crimson) – 37.0 28.8 7.2 50.0 122.9

1 % 3.4 0.3 1.5 0.5 – 4.1 Sosulski et al.,
1982

Faba bean 1 % 2 0.2 0.7 1.5 – 2.7 Sosulski et al.,
1982

1 g 100 g−1 - 0.3 1.1 2.3 – 3.7 Vidal-Valverde
et al., 1998

15 % 1.4 0.2 0.8 1.2 – 2.2 Lattanzio et al.,
1986

Lupins 1 % 2.6 0.8 4.1 0.5 – 5.9 Sosulski et al.,
1982

51 (L. albus) g kg−1 29.2 9.5 65.7 11.3 – 86.5 Trugo et al.,
1988

12 (L. mutabilis) 23.7 24.7 84.9 10.5 – 120.1

12 (L. luteus) 17.1 12.2 48.5 40.8 – 101.5

1
(L. angustifolius)

34.3 14.5 52.1 19.8 – 86.4

1 (L. hispanicus) 7.4 9.2 65.8 17.6 – 92.6

1 (L. conseninii) 26 9.3 48.9 8.8 – 67.0

Lima bean 1 (red) mg
100 mg−1

0.8 0.3 2.8 0.2 – 3.4 Oboh et al.,
2000

1 (white) 0.8 0.3 3.2 0.2 – 3.6

1 % 18.5 0.5 2.8 0.3 – 3.8 Sosulski et al.,
1982

Black gram
(Urd bean)

1 mg g−1 14.6 Traces 8.9 34.4 – 43.3 Reddy and
Salunkhe, 1980

24 mg g−1 – 0.2–8.1 8.9–37.3 14.0–31.0 – 26.6–61.6 Souframanien
et al., 2014

– % 0.7–1.5 0.0–1.3 0.9–3.0 3.4–3.5 – 4.3–7.8 Asif et al., 2013

Mung bean – % 0.2–0.3 0.3–2.6 1.2–2.8 1.7–2.8 – 3.2–8.2 Asif et al., 2013

Raw % 1.8 0.3 1.5 2.7 – 4.5 Åman, 1979

Germinated
(72 h)

3.8 Traces Traces Traces – Traces

1 % 1.0 0.2 1.0 1.8 – 3.3 Sosulski et al.,
1982

Raw (cv. Giza-1) g 100 g−1 – 0.4 1.5 – – 1.9 Mubarak, 2005

Germinated (cv.
Giza-1)

– 0.0 0.0 – – 0.0

Pigeonpea – % 2.7 1.0–1.1 2.7–3.0 4.0–4.1 – 7.7–8.2 Asif et al., 2013

Brown mg
100 mg−1

1.2 0.4 0.9 1.1 – 2.3 Oboh et al.,
2000

Cream 1.7 0.6 – 1.6 – 3.5

Cowpea – % 1.8–3.1 0.4–1.2 2.0–3.6 0.6–3.1 – 3.0–7.9 Asif et al., 2013

1 % 2.6 0.4 4.4 0.5 – 5.5 Sosulski et al.,
1982
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FIGURE 2 | Oligosaccharide variations in the ICRISAT chickpea mini-core collection.

FIGURE 3 | Multi-functional role of RFOs in plant health.

consuming sprouted seeds of mung bean is the effective alternate
strategy to avoid flatulence problems in human beings.

Other Grain Legumes
The raffinose (3.7 mg g−1) and stachyose (23.6 mg g−1) contents
were reported in dry bean varieties (Sosulski et al., 1982).
Dry bean varieties grown in the United States have about 2–
10 mg g−1 of raffinose and 2–56.2 mg g−1 of stachyose (Salunkhe
and Kadam, 1989). Oboh et al. (2000) quantified the total α-
galactoside contents in the mature seeds of pigeon peas, African
yam beans, and jack beans. The total α-galactoside contents of
the seeds in decreasing order were African yam beans (3.84 mg
100 mg−1); cream pigeon peas (3.52 mg 100 mg−1); jack

beans (2.83 mg 100 mg−1), and brown pigeon peas (2.34 mg
100 mg−1). Stachyose was the predominant sugar in jack beans
and African yam beans, while verbascose was the predominant
oligosaccharides in pigeon pea. Stachyose was the prominent
sugar in cowpea (Sosulski et al., 1982; Asif et al., 2013).

METABOLISM AND GENETICS OF
RAFFINOSE FAMILY
OLIGOSACCHARIDES

Raffinose family oligosaccharides are α-D-galactosides of sucrose,
a di-saccharide. They also occur in forms such as raffinose,
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stachyose, verbascose, and ajugose, belonging to trisaccharide,
tetrasaccharide, pentasaccharide, and hexasaccharide groups,
respectively (Bachmann and Keller, 1995; Vanhaecke et al.,
2006, 2008, 2010). From the structural perspective, they are
considered α-galactosyl derivatives of sucrose. Raffinose contains
galactose, glucose, and fructose. Stachyose holds two α-D-
galactose units, one α-D-glucose unit, and one β-D-fructose
unit. Besides galactinol synthase, raffinose synthase and stachyose
synthase are the other two major enzymes involved in the RFO
biosynthesis pathway. Raffinose synthase transfers a galactinol
moiety from galactinol to sucrose and produces raffinose,
while the stachyose synthase utilizes galactinol to synthesize
tetrasaccharide stachyose. Both reactions are reversible (Sengupta
et al., 2015). However, the enzyme responsible for the
biosynthesis of verbascose has not been recognized yet (Lahuta
et al., 2010). Peterbauer et al. (2003) reported that stachyose
synthase is the most probably responsible enzyme due to its
multifunctional character. Recently, Kannan et al. (2018) have
noted that the verbascose synthase is the chief enzyme that
catalyzes the synthesis of verbascose by adding a galactosyl
residue from galactinol to stachyose. Nevertheless, the synthesis
of the pentasaccharide verbascose and higher homologs is
galactinol-dependent. They may include α-galactosyl derivatives
of the cyclitols myo-inositol, D-pinitol, D-chiro-inositol, and D-
ononitol but with small amounts (Obendorf and Górecki, 2012).

Raffinose family oligosaccharides are ubiquitous and can be
directly extracted from the plant materials using water or aqueous
ethanol, or methanol solutions. Raffinose is mainly extracted
from sugar beets during sugar processing in Japan (Dinoto
et al., 2006). But traditional methods of extraction processes
often yield low and fetch high production costs (Han et al.,
2019). Therefore, high throughput, a cost-effective, environment-
friendly method is imperative. Several researchers have focused
on the production of α-galactosidase using microorganisms,
which offer great potential for enzyme production due to high
expression levels and extracellular secretion into the medium,
promoting easier downstream processing. Filamentous fungi
were the most sought microbial source exploited extensively for
the synthesis of α-galactosidase and have been used in multiple
biotechnological and medical applications (Katrolia et al., 2014).
Numerous investigations have been reported the production of
α-galactosidase originated from several fungi such as Aspergillus
niger, Aspergillus parasiticus, Cladosporium cladosporides, and
Aspergillus niger (Mansour and Khalil, 1998), and Pestalotiopsis
microspora (Yang et al., 2015). Likewise, the α-galactosidase
gene has been characterized from many bacterial sources such
as Bacillus stearothermophilus (Gote et al., 2004, 2006) and
Thermotoga maritima (Comfort et al., 2007). Fridjonsson et al.
(1999) isolated the enzyme designated AgaN, a similar gene to
α-galactosidase from Bacillus stearothermophilus. The enzyme
showed high thermostability and displays a high affinity for
oligomeric substrates, including the raffinose, and can hydrolyze
raffinose in the presence of 60% sucrose with high efficiency.

Recently, Huang et al. (2018) characterized a novel α-
galactosidase (AgaB) from Bacillus megaterium and exhibited
high activity in the intestine. The AgaB gene completely
hydrolyzed raffinose and stachyose and rapid hydrolysis of RFO

in soybean milk at 37◦C within 4 h when combined with trypsin.
Likewise, Aga-BC7050 is a novel α-galactosidase of glycoside
hydrolase family cloned from Bacillus coagulans and was highly
active toward raffinose and stachyose (Zhao et al., 2018). Aga-
BC7050 showed great resistance to proteinase and trypsin,
not inhibited by monosaccharides, and completely hydrolyzed
raffinose and stachyose in less than 30 min. Furthermore,
two genes (agal1 and agal2) encoding α-galactosidase were
identified by sequence-based screening approaches from two
thermophilic bacteria (Schröder et al., 2017). Qiu et al. (2015)
identified and characterized a mutant gene of soybean stachyose
(STS) gene controlling the reduction of stachyose and raffinose
content up 90% in soybean seeds also confirmed the function
of STS gene in converting raffinose into stachyose as part of
raffinose metabolism.

Utilization of altered raffinose synthase 2 (RS2) alleles is the
straightforward genetic approach to high sucrose and low RFOs
trait. The enzyme RS2 is galactinol-sucrose galactosyltransferase
and is considered the committed step in the biosynthesis of
raffinose and the free cyclitol myo-inositol. In soybean, variant
alleles of the RS2 gene have been identified and showed a high
capacity in decreasing RFOs and increasing sucrose content,
which may improve metabolizable energy in soybean meal
(Dierking and Bilyeu, 2008, 2009; Skoneczka et al., 2009). Bilyeu
and Wiebold (2016) demonstrated that altered carbohydrate
soybeans produce high sucrose (>8% dry) and low RFOs
(1% total raffinose and stachyose) phenotype across different
environments with contrasting alleles of the RS2 gene. Similarly,
Valentine et al. (2017) used RNA-mediated gene silencing to
down-regulate the soybean gene RS2. They identified increased
true metabolizable energy (from 2.41 to 2.70 kcal kg−1) in poultry
feed using transgenic soybean lines, which exhibited intensely
reduced raffinose levels in mature seed. RS3 and RS4 genes
with polymorphisms that contributed to the ultra-low raffinose
and stachyose content and identified a novel mutant allele
designated SG-ULRFO derived from soybean, which resulted in
an ultra-low raffinose and stachyose phenotype (Schillinger et al.,
2013). Hagely et al. (2020) suggested that the combination of
RS2 and RS3 alleles produce ultra-low phenotypes in soybean.
On the other hand, a strong relationship between RFOs and
abscisic acid (ABA) in mature seeds of alfalfa, where the
amount of galactinol, raffinose, and stachyose accumulated was
much higher (> threefold) at the highest ABA concentration
(Blöchl et al., 2005). This accumulation was attended by a
threefold increase in galactinol synthase activity, while the levels
of raffinose synthase and stachyose synthase activities persisted
almost constant. In addition, high ABA applications declined the
content of monosaccharides (glucose and fructose).

On the other hand, α-galactosidases are classified into several
glycoside hydrolases (GH) families, such as GH4, GH27, GH36,
and GH57. However, most characterized α-galactosidases are
assigned into the evolutionary related GH27 and GH36, which
together with GH31 represent clan GH-D comprising a common
fold and handling double displacement mechanism (Comfort
et al., 2007). Most GH36 α-galactosidases were characterized
as tetramers, often larger enzymes of about 85 kDa (Garro
et al., 1993; Nakai et al., 2010). A new gene encoding a
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putative α-galactosidase (CbAga36) from C. bescii was cloned and
sequenced (Lee et al., 2017). The size exclusion chromatography
indicated that its native form was a tetramer. CbAga36 was
grouped as members of the clan GH-D, exhibiting high similarity
to the family of glycoside 36. Besides, the purified recombinant
of CbAga36 demonstrated preferential activity toward the
hydrolysis of RFO, and the enzyme activities were stable at high-
temperature levels ranging from 60 to 75◦C. The inheritance
pattern of total α-galactoside and individual RFO compounds
and ciceritol were determined using embryos and the seed coat
from single seeds of the reciprocal crosses (Frias et al., 1999).
Within α-galactosides, raffinose was usually present in embryos
in the lowest amount, not varying between the parental, F1, and
F2 generations. However, a wider variation was found between
the ten F3 families, ranging from 0.3 to 0.6%. Stachyose formed
a significant proportion of the total α-galactosides found in all
embryos. The mean values for the parental lines were similar to
each other (2.3% and 2.5%, respectively) and the level found in
reciprocal. The widest variation between the parental lines was
found for verbascose content, ranging from 0.6 to 1.0%.

ROLE OF RAFFINOSE FAMILY
OLIGOSACCHARIDES IN PLANT HEALTH

The importance of RFOs in plant health is still an area of interest
for researchers; and has many gaps to fill even after years of
study. Till now, it is known that they have a crucial role in
plant physiology and cellular functions as signal transduction
(Stevenson et al., 2000; Xue et al., 2007), membrane trafficking,
mRNA export and transport, carbon storage (Thole and Nielsen,
2008; Okada and Ye, 2009), desiccation tolerance (Martínez-
Villaluenga et al., 2008), seed storability (Horbowicz and
Obendorf, 1994), biotic and abiotic stress tolerance (Nishizawa
et al., 2008; Nishizawa-Yokoi et al., 2008), photoassimilate
translocation (Dinant and Lemoine, 2010), and seed germination
(Blöchl et al., 2007). The role of RFOs in plant health is further
discussed below.

Carbon Storage and Translocation
Plants store and translocate fixed carbon anticipating the
worst fluctuation in the environmental conditions, which may
eventually reduce carbon supply. Most of the time, they store
carbon in the form of starch while translocating them in
sucrose. However, certain plant species can store and translocate
alternate carbohydrates like RFOs (Kandler and Hopf, 1982). For
example, the plant family members; Cucurbitaceae, Lamiaceae,
Oleaceae, and Scrophulariaceae transports RFOs through phloem
by forming a symplasm with mesophyll and sieve elements
(Beebe and Turgeon, 1992; van Bel, 1993; Turgeon, 1996).

Abiotic and Biotic Stress Tolerance
Even though RFOs are derived from an extended metabolic
pathway of inositol, they don’t directly involve in plants’
stress amelioration under natural conditions, unlike other
products derived from the same pathway (Loewus and Murthy,
2000; Sengupta et al., 2012). A subsequent increase of RFOs

(especially raffinose) has been observed in several cases of
abiotic stresses such as heat, cold, salinity, or drought (Santarius
and Milde, 1977; Bachmann et al., 1994; Taji et al., 2002;
Pennycooke et al., 2003; Panikulangara et al., 2004; Nishizawa-
Yokoi et al., 2008; Peters and Keller, 2009; Peters et al., 2010).
However, there is not much information explaining the specific
functional roles of RFOs in abiotic stress tolerance. Several other
molecules (e.g., sucrose and proline) with characterized roles in
abiotic stress amelioration also tend to accumulate under such
conditions. Reports have also suggested that genetic elimination
of biosynthetic enzymes associated with RFOs does not affect
plants drastically (Panikulangara et al., 2004), adding further
evidence to the above fact. On the contrary, certain studies claim
that RFOs do have beneficial properties of a compatible solute.
For example, research by Hincha et al. (2003) suggests that RFOs
stabilize the cell membrane during dehydration stress by inserting
themselves within the lipid head groups of the membrane bilayer.
Farrant (2007) added further proof to this fact by correlating
the phenomenon of increase in RFOs during desiccation and
stabilization of membrane phospholipids. Moreover, their high
oligomeric length may positively impact protecting liposomes
(Cacela and Hincha, 2006) and possibly act as a free radical
scavenger (Nishizawa-Yokoi et al., 2008). Furthermore, several
reports suggest that the accumulated RFOs under abiotic stress
conditions function as osmolytes to maintain cell turgor and act
as an antioxidant against reactive oxygen species (Nishizawa-
Yokoi et al., 2008; van den Ende and Valluru, 2008; Bolouri-
Moghaddam et al., 2010; Stoyanova et al., 2011; van den Ende
et al., 2011; Peshev et al., 2013).

Galactinol synthase (GolS) is a key enzyme that is involved
in the biosynthesis of RFOs (Saravitz et al., 1987) and is known
to be linked to abiotic stress (Sengupta et al., 2015). Therefore,
genetically modulating the expression of GolS genes can provide
much information about the involvement of RFOs in mediating
response to abiotic stresses. These studies have been carried out
mainly in Arabidopsis thaliana or tobacco (Nicotiana tabacum)
plants, as they seem to elevate galactinol and raffinose content
in response to abiotic stresses (Taji et al., 2002; Zhuo et al., 2013;
Himuro et al., 2014; Shimosaka and Ozawa, 2015; Gu et al., 2016).
Multiple isoforms of GolS have been identified from various plant
species so far; each is synthesized under various circumstances
of abiotic stresses. It has been found that out of seven identified
GolS genes from Arabidopsis thaliana, AtGolS1 and AtGolS2 were
induced by drought, salt, or heat stress. In contrast, AtGolS3 from
the same genome were induced by cold stress (Taji et al., 2002).
Over-expressing or knocking out these genes can be made use
of for the study of RFOs physiology. Studies by Taji et al. (2002)
and Panikulangara et al. (2004) showed that over-expression of
these genes induced accumulation of galactinol (Gol), raffinose
(Raf ), and stachyose (Sta) and eventually improved the plant’s
tolerance level to drought, salinity, or cold stress. Panikulangara
et al. (2004) also proved that AtGolS1 mutant plants fail to
accumulate heat stress-induced Gol and Raf, indicating that
AtGolS1 may be the crucial GolS isoform responsible for heat
stress-induced Raf or Gol accumulation. However, a study by
Peters et al. (2010) involving a double mutant; claimed that
despite the improved accumulation of GolS1 in GolS2 mutants,
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they remain hypersensitive to water stress, exhibit rapid loss
of water and lower enzymatic activity. Hence indicating they
are drought hypersensitive. Such observations concerning the
fact that Arabidopsis neither stores nor transports RFOs prove
the involvement of various biosynthetic pathways that are
supplied to by different GolS isoforms. Likewise, cold temperature
tolerance was achieved by overexpressing the Medicago falcata
Gols (MfGolS1) gene in tobacco (Zhuo et al., 2013).

Valluru and van den Ende (2011) explained the role of
galactinol in signaling RFOs to mediate stress responses,
including a signal in response to pathogen infection. Thus,
evidencing the role of RFOs in defense against biotic stress.
GolS induced the expression of defense-related genes such as
PR1a, PR1b, and NtACS1 in tobacco upon Botrytis cinerea
and Erwinia carotovora infection (Kim et al., 2008). Also, Gol
induces the salicylic acid (SA) signaling upon pathogen infection
and eventually turns on the PR1a gene expression to control
disease progression (Couée et al., 2006). RFOs (mainly GolS
and RafS) contain W-box cis-elements in their promotors,
regulated by ABA-inducible WRKY (Wang et al., 2009). This
suggests a possible role of RFOs in SA and ABA signaling
under biotic and abiotic stresses. Figure 3, depicting the role of
RFOs in plant health, including their role in seed germination,
seed development, desiccation tolerance, biotic and abiotic
stress tolerance.

Seed Germination
Raffinose family oligosaccharides accumulate over the period in
all parts of developing seeds, including endosperm, embryo, and
seed coat (Kuo et al., 1988; Horbowicz and Obendorf, 1994; Frias
et al., 1999). But the level and class of RFOs deposition may
vary between different tissues. These RFOs significantly impact
seed germination, often protect the embryos from desiccation
during seed maturation and improve the longevity of the
seeds under adverse conditions (Peterbauer et al., 2002a,b).
During the early stages of seed germination, RFOs are readily
available and provide energy and carbon to the germinating seeds
(Zhao et al., 2006).

Desiccation Tolerance
The seed germination process demands a lot of water; the
water loss during seed germination is known as “desiccation.”
This may lead to membrane damage and the death of the
embryo. Accumulation of non-reducing sugars such as sucrose
and RFOs may prevent the desiccation process in seeds (Koster
and Leopold, 1988), and many reports suggested the role of
RFOs in desiccation tolerance (Blackman et al., 1992; Corbineau
et al., 2000; Angelovici et al., 2010). There were two mechanisms
reported where RFOs act in mitigating the desiccation process
in seeds. The first mechanism is known as “water replacement,”
where the hydroxyl groups of RFOs can replace water molecules
and maintain the hydrophilic interactions within the cell that are
necessary for stabilizing native macromolecules and membrane
structure during dehydration process (Koster, 1991). The second
mechanism is called “vitrification.” This is the state of a cell
solution having very high viscosity due to loss of water. At this
state, the cell solution has the properties of a plastic solid. It is

accountable for warranting stability, preventing cellular collapse,
and maintaining hydrogen bonding within the cell (Koster and
Leopold, 1988; Koster, 1991; Martínez-Villaluenga et al., 2008;
Angelovici et al., 2010). Pukacka et al. (2009) reported that
the late embryogenesis abundant (LEA) proteins and small heat
shock proteins (sHSP) along with RFOs are responsible for the
vitrification state.

ROLE OF RAFFINOSE FAMILY
OLIGOSACCHARIDES IN HUMAN
HEALTH

Raffinose family oligosaccharides are ubiquitous in legume seeds
(Minorsky, 2003), and they are composed of α-(1,6)-galactosides
linked to a sucrose unity (Cardoso et al., 2021). Humans and
animals do not produce an α-galactosidase enzyme to synthesize
and digest the RFOs in the intestine (Minorsky, 2003; Mao
et al., 2014). Therefore, RFOs escape the digestion process and
get utilized by the gut microbes (bacteria) to synthesize by-
products like hydrogen (H2), carbon dioxide (CO2), and methane
(CH4). Thus, RFOs primarily cause flatulence in humans and
animals (Naczk et al., 1997; Minorsky, 2003). Hence, RFOs
are considered the single most deterring factor for the wide
acceptance of legumes in human and animal diets (Delumen,
1992). Therefore, only a limited quantity of soybean meals was
allowed in animal feeds to avoid flatulence and digestive problems
in dogs (Canis familiaris), baby pigs (Sus scrofa), and chickens
(Gallus domesticus) (Hartwig et al., 1997). The pharmaceutical
company GlaxoSmithKline released a commercial product1

“Beano,”1 which supplies α-galactosidase and sucrase enzymes
in the human body to hydrolyze RFOs mitigate the flatulence
problem. Recently, the α-galactosidase gene (galC) was cloned
from Aspergillus oryzae (YZ1) and expressed in Pichia pastoris
for protein production, and galC effectively degraded the RFOs
(primarily raffinose and stachyose) in soymilk (Wang et al.,
2020). But recent studies have shown the benefit of RFOs in
human health (Dinoto et al., 2006; Fernando et al., 2010; Takagi
et al., 2016; Pacifici et al., 2017; Collins et al., 2018; Ose et al.,
2018; Xu et al., 2018; Zartl et al., 2018; Amorim et al., 2020;
Cardoso et al., 2021). Moreover, RFOs can be converted into
prebiotic molecules using enzymes via catalytic transformations.
For example, levansucrase can convert raffinose to melibiose and
stachyose to mannotriose (Park et al., 2003; Xu et al., 2017;
Jadaun et al., 2019).

Recent studies reported the prebiotic potential of the RFOs
in human guts; they promoted the growth of beneficial bacterias
such as Bifidobacteria and Lactobacilli and reduced the harmful
bacterias present in the colon (Mao et al., 2014; Takagi et al., 2016;
Ose et al., 2018; Zartl et al., 2018; Amorim et al., 2020). Apart
from the beneficial effect on gut microbiota, RFOs administration
improved the intestine microbial composition in healthy adults
(Dinoto et al., 2006; Fernando et al., 2010), improved the growth
of sturgeon hybrids (Xu et al., 2018), improved the Fe availability
and intestinal brush border membrane functionality in Gallus

1www.beanogas.com
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gallus (Pacifici et al., 2017), and RFOs increased the number
of Lactobacillus (beneficial bacteria) present in the vaginal
microbiota (Collins et al., 2018). Many other biological activities
of RFOs have been reported apart from the prebiotic potential,
such as anti-allergic (Nagura et al., 2002; Watanabe et al., 2004),
anti-obesity, anti-diabetic, and prevention of non-alcoholic
fatty liver disease through inhibition of lipid accumulation
(Muthukumaran et al., 2018), reduction of fecal ammonia and
indole (Nagura et al., 1999; Elliott et al., 2017), cryoprotection
(Elliott et al., 2017), and inhibition of Pseudomonas aeruginosa
biofilm formation (Kim et al., 2016).

Lupin seeds have high RFOs compared to other pulses
(Martínez-Villaluenga et al., 2005; Johnson et al., 2017). The
extract from lupin seeds had positive effects on the survival of
probiotic cultures in dairy products (Martínez-Villaluenga et al.,
2006), and RFOs isolated from the novel plants Rehmannia
glutinosa, used as food ingredients to prevent ROS-related liver
damage (Dai et al., 2018). RFOs also reduced the severity of colon
inflammation in mice (Zhang et al., 2013). Raffinose isolated
from the rhizome of Costus speciosus inhibits lipid accumulation
(Muthukumaran et al., 2018), and stachyose prevents ulcerative
colitis in mice (He et al., 2020). RFOs are reported to have a
therapeutic effect on curing cutaneous disorders (Na et al., 2017).
Largely, RFOs may have diverse applications in food (human),
feed (animal), cosmetic, health (human, plant, and animal),
and pharmaceutical, and received food for specified health uses
(FOSHU) status in 2003 (Bailey, 2005), and widely consumed as
a functional ingredient in Japan (Takakuwa et al., 2007). However,
wider recognition in other parts of the world as functional foods
is not yet reached.

EMERGING RESEARCH ISSUES

Raffinose family oligosaccharides could be exploited as functional
foods. Its multi-functional benefits are still yet to be realized
in human and animal well-being. RFOs positively affect the gut
microbiota, large intestines, and colon health and could be used
as therapeutic agents to reduce inflammation, diabetics, allergies,
etc. RFOs are considered the prime suspect for flatulence in
humans and animals. Hence, for the crops with high RFOs,
especially grain legumes, adoption in the food and feed system
is heavily impaired due to the flatulence problem. Therefore,
we need to strike the right balance of RFO content in crops to
promote them as functional foods. Still, the right concentration
of RFOs needed for human well-being is the area to be explored
further. Moreover, except Japan, other parts of the world have yet
to approve RFOs as functional foods.

Achieving desirable sugar profiles without compromising
yield, protein, oil, and other micronutrients in grain legumes is
important to satisfy the changing dietary habits. A significant
negative correlation was reported between protein content
and RFOs in soybean (Hartwig et al., 1997; Bueno et al.,
2018). But a significant positive correlation was reported
between oil and RFO content in soybean (Patil et al., 2017;
Bueno et al., 2018). We need to fine-tune the portion of
protein, fat, sugar, and oil contents in grain legumes through
breeding by developing genotypes with high yield and balanced
nutrition. Recently, CRISPR knockouts helped reduce the RFO
contents considerably in soybean, including the major RFO
sugar stachyose, by 35%. But raffinose content was increased
to 42%, and protein and fat contents were also increased
(Le et al., 2020).

Future research must focus on mitigating the issues related to
quality and soluble sugars in legumes. Sprouting was reported
to reduce the RFO contents in seeds in various legumes (Åman,
1979; Raman et al., 2019). Reduction of myo-inositol level led to
a drastic decrease of galactinol and RFO levels in mutant soybean
seeds (Hitz et al., 2002). Mutations in myoinositol phosphate
synthase may affect RFO concentration, and they are potential
targets for modifications of RFO content in plants. There is an
urgent need to understand the relationship between galactinol
synthase activity and the accumulation of RFO in plant tissues,
which would be another exciting area of research. Finally, fine-
tuning the optimum level of RFOs in crop plants to reap
the benefits of RFOs in plant and human health is yet to be
explored further.
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