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CHAPTER – I 

INTRODUCTION 

 
 

Plant germplasm is a nonrenewable natural resource indispensable for the sustenance of human 

life on this earth. In the search for desirable genes in different crop species, plant breeders and 

biotechnologists depend upon crop diversity as an immediate resource to use in tailoring new 

varieties and hybrids or for reconstructing the existing genotypes in accordance with the 

requirements of time and space. Analysis of genetic relationships in crop species is an important 

component of crop improvement programs as it serves to provide information about genetic 

diversity, which can be useful for various breeding applications. 

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a monocot species belonging to the 

Poaceae family and has a relatively small diploid genome (2n=2x=14) with a DNA content of 1C 

=2.36 pg (Martel et al., 1997). It is a highly cross-pollinated crop and possesses abundant 

phenotypic variation. It has a number of wild relatives (n=5, 7, 8 and 9) including a large group 

with 2n=14 with which it can be intercrossed (Jauhar, 1968; Jauhar, 1981; Jauhar and Hanna, 

1998). Globally, pearl millet is the fifth most important food-grain crop following rice, wheat, 

maize and sorghum. It has the highest levels of tolerance to heat and drought among tropical 

cereals and is grown on more than 26 million ha in the arid and semi-arid regions of Asia and 

Africa and 9-10 million ha in India (Khairwal et al., 2007), where its grain is often a basic staple 

for the poorest people. In addition, it has a relatively short growing season (60-90 days) that 

allows double cropping after wheat, mustard, or winter legume crops have been harvested. It has 

received relatively little attention of researchers compared to its potential contribution to 

humanity and is still regarded as an ‘orphan’ crop. So there is a need to better understand the 

diversity and genetic basis of this crop. 

Pearl millet has great importance as forage and stover crop also and its vegetative matter 

provides excellent forage because it has low hydrocyanic acid content, and is rich in protein, 

calcium, phosphorous and other minerals (Athwal and Gupta, 1966). Lack of adequate foliar 

disease resistance can dramatically reduce the livestock feeding value of pearl millet green forage 

or crop residues remaining after harvest of a pearl millet grain crop (Wilson et al., 1991). Hash et 

al. (2003) have obtained some useful experience in quantitative trait loci (QTL) mapping and 

marker-assisted selection (MAS) for stover yield, foliar disease resistance, and in vitro estimates 

of the nutritive value of various stover fractions for ruminants in pearl millet and sorghum. In 

addition to this, QTL mapping of disease resistance (Jones et al., 2002; Morgan et al., 1998; Hash 

and Witcombe, 2001; Breese et al., 2002), drought tolerance (Yadav et al., 2004; Bidinger et al., 

2007) and the association of flowering time with genotype x environment interaction of grain and 

stover yield (Yadav et al., 2003) has been done; but so far there are no reports on QTL 



 

identification for foliar disease resistance in pearl millet that is effective in Asia or Africa. Among 

the various foliar diseases of economic importance in pearl millet like downy mildew, rust, 

pyricularia leaf spot and blast; rust, caused by the fungus Puccinia substriata var indica is the 

worst production constraint for this crop worldwide, leading to losses of up to 76% in grain 

production, as well as major losses in fodder quality (Wilson et al., 1996). Therefore, improving 

pearl millet rust resistance to reduce annual yield and quality losses has become a high priority 

for breeders. 

Pearl millet cultivars are generated from a narrow gene pool and current breeding 

programs do not make use of wild pearl millets, and there is only limited use of landrace 

germplasm. Genetic diversity studies in Pennisetum germplasm offer possibilities for their use in 

improving pearl millet open-pollinated varieties and hybrids. These efforts require effective DNA 

marker-based fingerprinting strategies for rapid assessment of genetic relationships. Such DNA 

markers are also required for the construction of molecular linkage maps for efficient QTL 

mapping (the first step in the genetic dissection of target traits) and MAS for trait introgression, 

as molecular markers play an important role in improving our understanding in respect of the 

genetic basis of economically important traits and are efficient tools to speed up crop 

improvement (Langridge, 2005; Varshney and Tuberosa, 2007). 

During the past decades, various molecular markers have been developed and applied in 

crop genetic diversity analysis, gene or QTL mapping, and molecular marker-aided selection. 

Restriction fragment length polymorphisms (RFLPs) (Botstein et al., 1980; Miller, 1990), random 

amplified polymorphic DNAs (RAPDs) (Williams et al., 1990; Gonzalez, 1993), microsatellites 

or simple sequence repeats (SSRs) (Weber and May, 1989; Akkaya et al., 1992; Jain et al., 1994), 

sequence-tagged-sites (STSs) (Talbert et al., 1994), and amplified fragment length 

polymorphisms (AFLPs) (Vos et al., 1995) are among those that have been most commonly used. 

These technologies can genotype agricultural crops with varying degrees of efficiency. Among 

these, microsatellite markers remain standard as they are highly polymorphic, require a small 

amount of DNA, exhibit codominant inheritance, can be easily automated, allow high throughput 

screening, recognise multiple alleles and are distributed throughout the genome, can be 

exchanged between laboratories and are highly transferable between populations (Gupta et al., 

1999, Jeffreys et al., 1985; Tautz et al., 1986, Hernandez et al., 2002). Compared to better-

studied cereals such as rice, wheat, maize, and barley, there has been relatively little research on 

the development and application of molecular genetic tools for pearl millet (Liu et al., 1996, 

1997; Busso et al., 1995; Burton and Wilson, 1995; Bhattacharjee et al., 2002; Azhaguvel et al., 

2003; Bidinger et al., 2007). RFLPs (Liu et al., 1994 b), STSs (Gale et al., 2001), AFLPs (vom 

Brocke et al., 2003), genomic SSRs (Qi et al., 2004; Allouis et al., 2001; Budak et al., 2003), 

single-strand conformational polymorphisms (Bertin et al., 2005), and genic SSRs (Senthilvel et 

al., 2004, 2008; Mariac et al., 2006; Yadav et al., 2007) have been developed for pearl millet. 
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Most of the currently available marker systems are gel-based and have various degrees of 

limitations associated with their capability to quickly develop and/or rapidly assay large numbers 

of markers. Although some of the limitations can be overcome by utilizing specialized hardware 

such as high-throughput capillary electrophoresis machines, which can improve allelic 

discrimination ability, reproducibility and speed. However, the majority of the limitations are 

related to the sequential nature, low reproducibility, high assay costs of the marker technologies. 

In addition, development of SSR, STS and single nucleotide polymorphism (SNP) markers is 

reliant on DNA sequence information. Thus, the available markers significantly limit the capacity 

of breeding programs to obtain sufficient return on investment to justify the routine use of 

marker-assisted breeding for many traits and particularly quantitative traits. Recently, SSRs have 

become the markers of choice for cereal genetic analysis and mapping (Varshney et al., 2007), 

but their suitability for high-throughput mapping does not favorably compare to the new SNP-

based genotyping techniques (Kilian et al., 2005). Moreover, SSR-multiplexing in order to drive 

down marker data point costs requires extensive, additional optimization (Hayden et al., 2008). 

Marker technologies are undergoing a transition from predominantly serial assays that 

measure the size of DNA fragments to hybridization-based assays with high multiplexing levels. 

Two hybridization-based technologies have emerged: SNPs (Chee et al., 1996) and Diversity 

Arrays Technology (DArT) (Jaccoud et al., 2001; Wenzl et al., 2004). Several microarray-based 

marker methods have been developed, but most of these still require sequence information 

(Pastinen et al., 2000; Cutler et al., 2001; Flavell et al., 2003; Borevitz et al., 2003; Winzeler, 

2003; Li et al., 2004; Ji et al., 2004). It has been established that SNP is the most abundant 

marker type, promising nearly unlimited supply of markers (Chee et al., 1996). Although the 

progress in genome sequencing and SNP identification has been impressive in humans and a 

limited number of model organisms, the high cost of SNP marker discovery and assay 

development limits their applicability for many crops, especially for the ‘orphan’ crops and 

polyploid species. Consequently, a low cost, high-throughput and electrophoresis-independent 

technique that can generate hundreds of molecular markers that cover the entire genome in a 

single, simple and reliable experiment was required to improve upon those tedious and time-

consuming methodologies, especially for those crops with less-developed molecular markers like 

pearl millet, barley, maize, potato and tobacco (Luikart et al., 2003). So, DArT was developed, 

which performs well in polyploid species and can be rapidly developed for practically any 

genome in contrast to SNPs and offers a practical solution to the problems as both marker 

discovery and routine analysis are carried out using the same, hybridization-based assay. So, it is 

a cost effective, solid state platform, hybridisation-based marker technology that offers a high 

multiplexing level being able to simultaneously type several thousand loci per assay, while being 

independent of sequence information (Jaccoud et al., 2001; Wenzl et al., 2004). The cost of DArT 

markers per data point has been reported to be 10-fold lower than the cost of SSR (Xia et al., 
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2005). This genotyping method was developed originally for rice (Jaccoud et al., 2001) and has 

subsequently been used in genetic mapping and fingerprinting studies in many other crops 

including barley (Wenzl et al., 2006; Alsop et al., 2007; Hearnden et al., 2007), cassava (Xia et 

al., 2005), Arabidopsis (Wittenberg et al., 2005), pigeonpea (Yang et al., 2006), rice (Xie et al., 

2006), wheat (Akbari et al., 2006; Crossa et al., 2007; Neumann et al., 2010), sorghum (Bouchet 

et al., 2007; Jordan et al., 2007; Mace et al., 2008), sugarcane (Heller-Uszynska et al., 2007), 

banana (Hippolyte et al., 2007; Huttner et al., 2007; Risterucci et al., 2009), Festuca-Lolium 

complex (Kopecký et al., 2009), oat (Tinker et al., 2009) and rye (Bolibok-Bragoszewska et al., 

2009). DArT assays generate whole-genome fingerprints by scoring the presence versus absence 

of DNA fragments in genomic representations generated from genomic DNA and combine a 

complexity reduction method (Wenzl et al., 2004). 

Genetic linkage maps developed so far for pearl millet are mainly based on RFLPs and 

SSRs (Liu et al., 1994 b; Qi et al., 2004), and generally provide less than optimal genome 

coverage and marker density. Genetic maps produced in four different crosses of pearl millet 

have been integrated to develop a consensus map of 353 RFLP and 65 SSR markers (Qi et al., 

2004). In this map, 85% of the markers are clustered and occupy less than one third of the total 

map length. This phenomenon is independent of the cross. Extreme localization of recombination 

toward the chromosome ends, resulting in gaps on the genetic map of 30 cM or more in the distal 

regions, is typical for pearl millet. The unequal distribution of recombination has consequences 

for the transfer of genes controlling important agronomic traits from donor to elite pearl millet 

germplasm. To date, only circa 85 PCR compatible markers have been mapped in pearl millet. 

The length of published linkage maps so far ranged from 280 cM (Jones et al., 2002) to 675 cM 

(Senthilvel et al., 2008). Hence, there is a need to fill the gaps in these maps and saturate them for 

further exploitation. DArT has the potential to generate hundreds of high-quality genomic 

dominant markers with a cost- and time-competitive trade-off (Kilian et al., 2005). DArT markers 

can be used for diversity analyses and to construct high density genetic linkage maps. The high 

number of DArT markers generated in a single assay not only provides a precise estimate of 

genetic relationships among genotypes, but also their even distribution over the genome offers 

real advantage for a range of molecular breeding and genomic applications. 

 Thus, keeping the above facts in view, the present investigation was carried out with the 

following objectives: 

1. To develop a DArT platform for pearl millet genotyping and diversity analysis. 

2. To assess utility of DArT technology in diversity analyses compared to SSR markers 

previously used in characterizing a genetically diverse set of parental inbreds of available 

pearl millet mapping populations and construction of a pearl millet genetic linkage map 

based on DArT markers. 

3. To identify quantitative trait loci associated with rust resistance in pearl millet. 
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 CHAPTER – II                                               

           REVIEW OF LITERATURE 

 

Genetic diversity plays a huge role in the survival and adaptability of a species. With very little 

gene variation within the species, healthy reproduction becomes increasingly difficult, and 

offsprings suffer problems due to inbreeding. Plant genetic resource is the component of genetic 

diversity that provides raw material for breeding new varieties of crops better able to cope with 

biotic and abiotic stresses. The richness and range of the diversity of landraces is now under 

threat because of many factors (Myers, 1994) and future progress in crop improvement largely 

depends on immediate conservation of genetic resources. 

2.1   Genetic diversity analysis in plants 

Accurate assessment of genetic diversity can be invaluable in crop breeding for diverse 

applications like analysis of genetic variability in cultivars (Cox et al., 1986), identifying diverse 

parental combinations to create segregating progenies with maximum genetic variability for 

further selection (Barrett and Kidwell, 1998) and introgressing desirable genes from diverse 

germplasm into the available genetic base (Thompson et al., 1998). An understanding of genetic 

relationships among inbreds or pure lines can be useful in planning crosses, in assigning lines to 

specific heterotic groups, and for precise identification with respect to plant varietal protection 

(Hallauer and Miranda, 1988). 

A number of methods are currently available for analysis of genetic diversity. These 

methods have relied on pedigree data (Bernardo, 1993; Messmer et al., 1993; van Hintum and 

Haalman, 1994), morphological data (Smith and Smith, 1992; Bar-Hen et al., 1995), agronomic 

performance data, biochemical data obtained by analysis of isozymes (Hamrick and Godt, 1997) 

and storage proteins (Smith et al., 1987) and recently, DNA-based markers that allow faster and 

more reliable differentiation of genotypes and assessment of genetic diversity (Law et al., 1998; 

Cooke and Reeves, 1998; Donini et al., 2000 a, b; Koebner et al., 2003; Mohammadi and 

Prasanna, 2003). 

2.2 Genetic diversity in pearl millet 

Pearl millet is a highly cross-pollinated species and genetic diversity in the species is distributed 

both within and among cultivars. Due to its highly outcrossing breeding behaviour, its apparent 

origin from several independent domestication events (Poncet et al., 1998) and the wide range of 

stressful environments in which it has traditionally been cultivated, pearl millet exhibits a 

tremendous amount of polymorphism at both phenotypic and genotypic levels (Liu et al., 1992, 

1994 a, b). Analyzing pearl millet genetic diversity, its origin and its dynamics is important for 

germplasm conservation and to increase knowledge useful for breeding programs. The more 

complicated distribution of diversity in pearl millet, as well as the higher degree of marker 
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polymorphism, makes genetic diversity studies in this crop more complicated than in the other 

crops. Thus, the breeding behaviour of pearl millet, and the structure of genetic diversity within 

this species, has strong implications for the use of molecular markers in its diversity assessment. 

DNA-based markers have been applied successfully to discriminate between individual 

genotypes in a wide range of plant species (Epplen et al., 1991). In pearl millet, limited efforts 

have been made to study genetic diversity and various markers used included isozymes (Tostain 

et al., 1987; Tostain and Marchais, 1989; Tostain, 1992, 1994), RFLPs (Bhattacharjee et al., 

2002), AFLPs (vom Brocke et al., 2003), and recently microsatellites (Budak et al., 2003; Mariac 

et al., 2006; Chakauya and Tongoona, 2008; Kapila et al., 2008). The availability of DNA-based 

markers has provided more powerful tools for the detailed assessment of genetic diversity in 

cultivated and wild plants (Melchinger et al., 1994). Karp and Edwards (1995) demonstrated that 

RFLP markers are polymorphic, reproducible and, because of their co-dominant nature, ideal for 

the discrimination of genotypes. RFLP analyses showed that genetic polymorphism in the pearl 

millet gene pool is very high, not only between species (Liu et al., 1992), but also within 

landraces of the cultigen (Pilat-Andre et al., 1992). This is because the crop is allogamous and, 

most importantly, subject to frequent genetic exchange between wild and cultivated genotypes 

(Brunken, 1977). Bhattacharjee et al. (2002) assessed genetic diversity within and between a 

subset of core landrace accessions with a set of selected RFLP markers. A total of 51 alleles were 

detected using 16 different probe-enzyme combinations, revealing high within-accession 

variability (30.9%); however, the variability between accessions was significantly higher (69.1%) 

than that within accessions. Development and utilization of PCR-based markers such as SSRs is a 

valuable asset for estimating genetic diversity, the identification of unique genotypes as 

potentially important new sources of alleles for enhancing important characteristics, analyzing the 

evolutionary and historical development of cultivars at the genomic level in pearl millet breeding 

programs (Budak et al., 2003; Kapila et al., 2008). Chandra-Shekara et al. (2007) indicated 

moderate genetic divergence among elite pearl millet germplasm, besides unraveling the genetic 

relationships among male-sterile lines and restorers using RAPDs and SSRs. Mariac et al. (2006) 

and Oumar et al. (2008) observed significantly lower numbers of alleles and lower gene diversity 

in cultivated pearl millet accessions than in wild accessions using SSRs. 

2.3 Markers and their importance 

Conventional cereal breeding is time consuming and environment dependent. Use of molecular 

markers can increase breeding efficiency and genetic gains from selection relative to phenotypic 

selection alone (Knapp, 1998; Eathington et al., 1997; Lande and Thompson, 1990). Hence, over 

the past 30 years, molecular marker technologies have been developed and applied to plant 

breeding, enabling breeders to use the genetic composition or genotypes of plants as a criterion 

for selection and breeding progress. Although DNA sequencing is a straightforward approach for 

identifying variation at a locus, historically it has been expensive and laborious. A wide variety of 
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alternative techniques have, therefore, been developed for visualizing DNA sequence 

polymorphism. As full genome sequences will not be available for many species of interest in the 

near future, it has been important to find strategies for developing and using molecular markers 

when sequence resources are limited. So, scientists have been using genetic markers for indirect 

analysis of genetic variation, development of improved cultivars (Sharma et al., 2002; Varshney 

et al., 2006; Collard and Mackill, 2008), establishment of linkage maps that allow breeders to 

conduct applied research to identify, characterize and use genetic variability in economically 

important plants (Frova et al., 1999; Crossa et al., 1999). The main reasons supporting the 

utilization of molecular markers in breeding programs are the heritability of markers 

(theoretically 100%), and their cost, which is potentially lower than the conventional phenotypic 

selection (Winter and Kahl, 1995). In addition, molecular markers can be used for selection for 

traits with low heritability, identification of resistance or tolerance for biotic or abiotic stresses in 

plants, the gene introgression coming from native or exotic germplasm (Gupta et al., 1996), 

estimation of genetic relatedness among accessions, cultivar description (Smith et al., 1992) and 

the identification of QTLs that control important agronomic traits (Dudley, 1993). 

DNA or molecular markers are identifiable DNA sequences, found at specific locations 

of the genome, transmitted by the standard laws of inheritance from one generation to the next 

(Semagn et al., 2006 a) and reflect heritable differences (e.g., polymorphisms) in homologous 

DNA sequences among individuals. An ideal molecular marker should have some desirable 

properties like easy availability, rapid and easy to assay, highly polymorphic and reproducible, 

codominant inheritance and recurrent occurrence in genome, selectively neutral to environmental 

conditions or management practices, and easy exchange of data between different laboratories. 

However, it is really difficult to get molecular markers fully meeting the above criteria. A large 

number of reviews have been published on molecular markers and their application in crop 

improvement (Jain et al., 2002; Lörz and Wenzel, 2005). 

2.4  Types of molecular markers 

The molecular markers can be classified into different groups based on mode of transmission, 

mode of gene action and method of analysis. For hybridization-based markers, DNA profiles are 

visualized by hybridizing restriction endonuclease digested DNA fragments, to a labelled probe, 

which is a DNA fragment of known sequence. In constrast, PCR-based markers involve in vitro 

amplification of particular DNA sequences with the help of specifically or arbitrarily chosen 

oligonucleotide sequences (primers) and a thermostable DNA polymerase enzyme. The amplified 

DNA fragments are separated by electrophoresis (Sharma et al., 2008). 

There are various types of DNA-based molecular markers such as RFLP, RAPD, AFLP, 

STS, SSR, expressed sequence tag (EST), inter-simple sequence repeat (ISSR), SNP, and DArT 

(reviewed by Semagn et al., 2006 a). These may differ in a variety of ways, such as their 

technical requirements; the amount of time, money and labour needed; the number of genetic 
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markers that can be detected throughout the genome and the amount of genetic variation found at 

each marker in a given population (Choudhary et al., 2008). RFLP is the most widely used 

hybridization-based molecular marker. RAPD, AFLP, ISSR, EST, SSR, STS etc. are PCR-based 

markers and SNPs are sequence-based DNA markers. SSRs are mostly codominant markers and 

are indeed excellent for studies of population genetics and mapping (Jarne and Lagoda, 1996; 

Goldstein and Schlotterer, 1999), QTL analysis, forensics, and diagnostics (Powell et al., 1996; 

Schlotterer, 2004; Varshney et al., 2005). The use of fluorescent primers in combination with 

automatic capillary or gel-based DNA sequencers has been adapted in most advanced laboratories 

and SSRs are excellent markers for fluorescent techniques, multiplexing and high-throughput 

analysis. SNPs have enjoyed massive popularity for their high density within the genome and 

their ease of characterization. However, their identification requires access to reliable DNA 

sequence from the complete range of plants strains/varieties or ecotypes that will subsequently be 

used. Further, the sequential nature of the above gel-based marker systems reduces throughput, 

increasing costs per assay. DArT is one of the recently developed microarray hybridization-based 

DNA marker technique that enables simultaneous genotyping of several hundred polymorphic 

loci across the genome (Jaccoud et al., 2001; Wenzl et al., 2004). No molecular markers are 

available yet that fulfill all requirements needed by researchers. According to the kind of study to 

be undertaken, one can choose among the variety of molecular techniques that combines at least 

some desirable properties. 

2.5  Diversity Arrays Technology (DArT) 

The DArT technology was originally developed by A. Kilian and D. Jaccoud (Jaccoud et al., 

2001) at the Centre for Application of Molecular Biology to International Agriculture 

(CAMBIA). The inventors promote it as an open source (nonexclusive) technology with a great 

potential for genetic diversity and mapping studies in a number of crops. It is a novel, solid-state, 

microarray-based, open-platform method for genomewide discovery and genotyping of genetic 

variation. A DArT marker is a segment of genomic DNA, the presence of which is polymorphic 

in a defined genomic representation. DArT markers are biallelic and behave in a dominant 

(present vs absent) or co-dominant (2 doses vs 1 dose vs absent) manner. DArT operates on the 

principle that the genomic representation contains two types of fragments: constant fragments, 

found in any representation prepared from a DNA sample from an individual belonging to a given 

species, and variable (polymorphic) fragments called molecular markers, only found in some but 

not all of the representations. The variable fragments called DArT markers are informative 

because they reflect sequence variation that determines the fraction of the original DNA sample 

that is included in the representation. DArT allows simultaneous scoring of hundreds of 

restriction site based polymorphisms between genotypes and does not require DNA sequence 

information or site-specific oligonucleotides. To identify the polymorphic markers, a complexity 

reduction method is applied on the metagenome, a pool of genomes representing the germplasm 
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of interest. The genomic representation obtained from this pool is then cloned and individual 

inserts are arrayed on a microarray resulting in a “discovery array.” Labeled genomic 

representations prepared from the individuals can be genotyped by hybridisation to the discovery 

array. Polymorphic clones (DArT markers) show variable hybridization signal intensities for 

different individuals. The hybridization signal for each marker is measured and converted into a 

score. DArT fingerprints will be useful for accelerating plant breeding, and for the 

characterisation and management of genetic diversity in domesticated species as well as in their 

wild relatives. Wenzl et al. (2004), Syvanen (1999) and Xia et al. (2005) reported simultaneous 

analysis of hundreds of markers at once, with the added advantage of much lower cost per marker 

than other technologies like SNPs and microsatellites (Huttner et al., 2005). In contrast to current 

SNP technologies, DArT performs well in polyploid species such as wheat (Akbari et al., 2006; 

Wenzl et al., 2007), banana (Kilian, 2007) and sugarcane (Heller-Uszynska et al., 2007). 

 DArT offers low cost, quick, high throughput, electrophoresis-independent, highly 

reproducible and sequence-independent genotyping. The other advantages include fast data 

acquisition and analysis, detection of single-base changes as well as insertions/deletions, 

detection of differences in DNA methylation depending on the enzyme used to generate the 

fragments, generatation of sequence-ready clones, minimal DNA sample requirement, good 

transferability of markers among breeding populations, and high quality markers. The same 

platform is used for both discovery and scoring of markers, therefore, no assay development is 

required after the initial marker discovery. The system is highly automated and the data generated 

will have increasing value with continuing advances in bioinformatics, particularly if 

polymorphic clones are sequenced. The genetic scope of DArT analysis is defined by the user and 

easily expandable. This technique, however, has also its own limitations as DArT markers are 

primarily dominant and the microarray-based technique that several steps, including preparation 

of genomic representations for the target species, cloning, and data management and analysis. 

The latter requires dedicated software such as DArTsoft and DArTdb. The establishment of a 

DArT system, therefore, demands extensive investment both in laboratory facilities and skilled 

manpower. Intellectual property constraints and process variation also limit its widespread use. 

2.6  Applications of DArT 

Potential applications of DArT include genome profiling and genome background screening, 

rapid construction of high-density genetic linkage maps (Akbari et al., 2006; Alsop et al., 2007; 

Mace et al., 2008), identification of QTLs (Alsop et al., 2007; Pozniak et al., 2007;  Rheault et 

al., 2007), association mapping (Bouchet et al., 2007), rapid introgression of genomic regions in 

accelerated backcrossing programs, simultaneous marker-assisted selection for several traits, 

microbial diagnostics, evaluation of genetic diversity, rapid germplasm characterization and 

tracking genome methylation changes in a cost-effective and high-throughput manner (Jaccoud et 

al., 2001; Wenzl et al., 2004). The types of polymorphism detected by DArT (single nucleotide 
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polymorphisms, insertion-deletions and methylation changes) expand the potential of traditionally 

used markers, increasing power to ascertain the structure of germplasm collections. Wenzl et al. 

(2007) used a DArT platform for quantitative bulk segregant analysis (BSA) in barley and found 

that DArT-BSA identifies genetic loci that influence phenotypic characters in barley with at least 

5 cM accuracy and should prove useful as a generic tool for high-throughput, quantitative BSA in 

plants irrespective of their ploidy level. 

2.7  Availability of DArT for different species/crops 

As the DArT technique proved to be efficient for marker discovery and screening in various 

species, it has been applied in a number of plant, animal, microbial and fungal species. It has 

most widely been used in plants and has proven to be successful in the various species like rice 

(Xie et al., 2006), cassava (Xia et al., 2005), barley (Wenzl et al., 2004, 2006), wheat (Akbari et 

al., 2006; Semagn et al., 2006 b; White et al., 2008), pigeonpea (Yang et al., 2006), sorghum 

(Mace et al., 2008), Arabidopsis (Wittenberg et al., 2005), banana (Risterucci et al., 2009; Kilian, 

2007), eucalyptus (Lezar et al., 2004), fern and moss (James et al., 2006). In addition, DArT 

platforms have been developed for other crop species such as lupin, potato, quinoa, rice, ryegrass, 

coconut, apple, lily and tomato (Wang et al., 2006; Kilian et al., 2005). Currently DArT Pty. Ltd. 

provides DArT genotyping services for a number of these species. Further, Triticarte Pty. Ltd., a 

joint venture between the Value Added Wheat CRC Ltd. and DArT Pty. Ltd., has been 

established to deliver genotyping services for barley and wheat breeders (Huttner et al., 2006). 

Xie et al. (2006) used and validated DArT for rice genotyping in a high throughput 

manner and 1152 clones were re-arrayed on a slide and used to fingerprint 17 of 24 germplasms. 

Xia et al. (2005) used DArT for high-throughput genotyping of cassava and its wild relatives and 

detected nearly 1,000 candidate polymorphic clones using two arrays. The genetic relationships 

among the samples analyzed with DArT were consistent with existing information on these 

samples. Hurtado et al. (2008) compared SSR and DArT markers for assessing genetic diversity 

in cassava and suggested that SSR markers, while low throughput in comparison with DArTs, are 

relatively better at detecting genetic differentiation in cassava germplasm collections. Wenzl et al. 

(2004) used DArT for whole-genome profiling of barley and constructed a genetic map for a 

cross between cultivars Steptoe and Morex. Most of the DArT markers (98.8%) were 

incorporated into a linkage map whose quality was superior to that of an RFLP-based framework 

map (Wenzl et al., 2004). The resulting map included 385 unique DArT markers and spanned 

1,137 cM. A polymorphism-enriched PstI/BstNI array was produced from 1,920 candidate 

polymorphic clones. Wenzl et al. (2006) built a high-density consensus map of barley linking 

DArT markers to SSR, RFLP and STS loci, this comprised 2,935 loci (2,085 DArT, 850 other 

loci) and spanned 1,161 cM. A similar study in Arabidopsis confirmed the Mendelian behavior of 

DArT markers, and also established perfect co-linearity between the genetic and the physical 

maps (Wittenberg et al., 2005). Hearnden et al. (2007) developed a high-density genetic map in 
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wide barley cross between cultivated barley (Hordeum vulgare) and wild subspecies H. vulgare 

ssp. spontaneum. The map comprises 1,000 loci, including 558 SSR (detected by 536 primer 

pairs) and 442 DArT markers. To incorporate novel alleles into cultivated barley, Alsop et al. 

(2007) crossed a wild barley accession possessing multiple disease resistance (Damon) with a 

malting cultivar (Harrington) and constructed a DArT marker-based linkage map for 

qualitative/quantitative trait analysis of disease resistance loci. A genotyping array was developed 

for sorghum representing approximately 12,000 genomic clones using PstI+BanII complexity 

with a subset of clones obtained through the suppression subtractive hybridisation method. Over 

500 markers detected variation among 90 accessions used in a diversity analysis and an integrated 

linkage map was also constructed with DArT markers, which spanned 1431.6 cM (Mace et al., 

2008). Yang et al. (2006) reported the development of DArT for pigeonpea using a PstI/HaeIII 

array, which revealed low levels of genetic diversity in cultivated pigeonpea compared to its wild 

relatives. A total of nearly 700 markers were identified with the average call rate of 96.0% and 

the scoring reproducibility of 99.7%. Semagn et al. (2006 b) compared the utility of DArT with 

AFLP and SSR markers, in a genetic linkage map of a doubled-haploid hexaploid wheat 

population. The map contains a total of 624 markers with 189 DArTs, 165 AFLPs and 270 SSRs, 

and spans 2595.5 cM. It has been successfully used to identify novel QTLs for resistance to 

Fusarium head blight and powdery mildew. Akbari et al. (2006) used DArT for high-throughput 

profiling of the hexaploid wheat genome and generated a large number of high-quality markers in 

wheat (99.8% allele-calling concordance and approximately 95% call rate). Mantovani et al. 

(2008) developed a DArT platform for durum wheat. The integrated DArT-SSR map included 

554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM. White et al. (2008) analyzed 

the genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT 

markers. Risterucci et al. (2009) used DArT for high-throughput DNA analyses in Musa and 

found that DArT markers revealed genetic relationships among Musa genotypes consistent with 

those provided by the other markers technologies, but at a significantly higher resolution and 

speed, and reduced cost. Bonin et al. (2008) used a new miniature inverted repeat transposable 

element (MITE) based genome complexity reduction method taking advantage of the abundance 

of MITEs in the genome of mosquito Aedes aegypti and constructed a library comprising more 

than 6,000 DArT clones. 

2.8 Molecular markers in pearl millet 

The first major milestone was achieved in 1993 with the creation of a genetic linkage map of the 

pearl millet genome with 181 RFLP markers (Liu et al., 1994 b). By 2001, hundreds of pearl 

millet molecular markers had been created (Liu et al., 1994 b; Allouis et al., 2001; Qi et al., 

2001), detailed marker-based genetic linkage maps produced (Liu et al., 1994 b, 1996; Devos et 

al., 2000) and using those maps QTLs for pearl millet downy mildew resistance were flagged 

(Jones et al., 1995, 2002; Azhaguvel, 2001; Kolesnikova, 2001; Breese et al., 2002). Initially, 
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most DNA marker-based studies in pearl millet used RFLP markers (Liu et al., 1994 b). These 

markers were used in studies of recombination rates (Liu et al., 1996) and genetic diversity 

(Bhattacharjee et al., 2002), and QTL mapping of disease resistance (Jones et al., 1995, 2002; 

Morgan et al., 1998; Hash and Witcombe, 2001; Breese et al., 2002), drought tolerance (Yadav et 

al., 1999, 2002, 2004; Bidinger et al., 2007), and the association of flowering time with genotype 

x environment interaction of grain and stover yield (Yadav et al., 2003). The potential of DNA 

markers such as microsatellites, minisatellites, STS markers (Gale et al., 2001), AFLPs (vom 

Brocke et al., 2003) and RAPDs was also investigated in pearl millet. Various SSR markers were 

developed for pearl millet (Qi et al., 2001, 2004; Allouis et al., 2001; Budak et al., 2003) but 

many more are required for their applied use in plant breeding. Discovery of microsatellites in 

ESTs provides the opportunity to develop SSR markers (EST-SSRs) in a simple and direct way, 

i.e., by electronic searches (data mining) of EST databases. Senthilvel et al. (2004, 2008), Mariac 

et al. (2006), Yadav et al. (2007) used this approach to design SSR markers for pearl millet. 

Mishra et al. (2007) isolated ESTs from subtracted cDNA libraries of pearl millet and a total of 

2,494 EST sequences were clustered and assembled into a collection of 1,850 unique sequences 

with 224 contigs and 1,626 singleton sequences. A new marker system, single-strand 

conformational polymorphism (SSCP)-SNP, was developed using annotated rice genomic 

sequences to initially predict the intron-exon borders in millet ESTs and then to design primers 

that would amplify across these introns (Bertin et al., 2005). 

2.9  QTL mapping in pearl millet 

With rapid advancement of molecular technology, it is now possible to use molecular marker 

information to map major QTLs on chromosomes (Paterson et al., 1988, 1991; Hilbert et al., 

1991; Jacob et al., 1991; Stuber et al., 1992). Mapping is putting markers in order, indicating the 

relative genetic distances between them, and assigning them to their linkage groups on the basis 

of the recombination values from all their pairwise combinations. QTL mapping provides a 

means to dissect complex phenotypic characters into their component traits (QTLs), and allows 

the identification of molecular markers linked to desirable QTLs, so that these can be directly 

used in marker-assisted selection (Tanksley et al., 1989; Lee, 1995; Schneider et al., 1997; 

Mohan et al., 1997; Paterson, 1996 a, b). The theory of QTL mapping was first described in 1923 

by Sax and was further elaborated by Thoday (1961). QTLs are identified via statistical 

procedures that integrate genotypic and phenotypic data. QTL mapping studies have been 

reported in most crop plants for diverse traits including yield, quality, disease and insect 

resistance, abiotic stress tolerance and environmental adaptation. QTL mapping requires a 

suitable mapping population generated from phenotypically contrasting parents, a saturated 

linkage map based on molecular markers, reliable phenotypic screening of mapping population, 

appropriate statistical packages to analyze the genotypic information in combination with 

phenotypic information for QTL detection. A number of methods for mapping QTL and 
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estimating their effects have been suggested and investigated (Edwards et al., 1987; Haley and 

Knott, 1992; Jiang and Zeng, 1995; Lander and Botstein, 1989; Jansen and Stam, 1994; Utz and 

Melchinger, 1994; Zeng, 1994). Methods for QTL mapping range from the simplest method of 

single-marker analysis (Sax, 1923) to more sophisticated methods such as interval mapping 

(Lander and Botstein, 1989; Haley and Knott, 1992), joint mapping (Kearsey and Hyne, 1994), 

multiple regression (Wright and Mowers, 1994; Whittaker et al., 1996), and composite interval 

mapping (Zeng, 1994). Software packages for mapping include MAPMAKER/QTL (Lincoln et 

al., 1993), JoinMap (Stam, 1993), QTL Cartographer (Basten et al., 1994), PLABQTL (Utz and 

Melchinger, 1996), QGene (Nelson, 1997), and TASSEL (Buckler, 2007). 

Genetic linkage maps in pearl millet have been constructed and QTLs identified and 

mapped for downy mildew resistance (Jones et al., 1995, 2002; Breese et al., 2002; Gulia, 2004; 

Gulia et al., 2007), rust and blast resistance (Morgan et al., 1998), drought tolerance (Yadav et 

al., 2002, 2004), flowering time and grain and stover yield (Yadav et al., 2003), and ruminant 

nutritional quality of straw (Hash et al., 2003), for characterstics involved in domestication 

(Poncet et al., 2000, 2002). Jones et al. (2002) detected the same two QTLs for resistance to 

downy mildew in pearl millet in two different environments i.e. field and glasshouse. One QTL 

had a major effect and explained up to 60% of the phenotypic variation, while the other had a 

minor effect and explained up to 16% of the phenotypic variation. Bidinger et al. (2007) 

identified QTLs that improve grain yield across the full range of postflowering moisture 

conditions, rather than just in drought-stressed environments. Yadav et al. (2002) studied QTLs 

associated with traits determining grain and stover yield in pearl millet under terminal drought-

stress conditions and found a QTL associated with grain yield per se and the drought tolerance of 

grain yield mapped on linkage group 2, explaining up to 23% of the phenotypic variation. 

2.10 Rust resistance in pearl millet 

Pearl millet rust (Puccinia penniseti Zimm=P. substriata var.
 
indica) can reduce yields in hybrid 

seed production fields, quality in forage, and occasionally grain yields. Thus, rust resistance has 

become a high priority for pearl millet breeders. Rust was first reported on pearl millet in 1904 

(Zimmerman, 1904 in Singh and King, 1991). It was first recorded in India as being caused by 

Puccnia penniseti Zimm. (Ramakrishnan and Soumini, 1948) and in the U.S. in 1954 as P. 

penniseti Zimm. (Luttrell, 1954) and as P. substriata var indica in 1973 (Wells et al., 1973). It 

can infect pearl millet at any stage during the growing season and resistance genes are the 

primary control method for rust on pearl millet. Resistance to rust has been reported in some pearl 

millet germplasm accessions and breeding lines (Wilson, 1993 a; Singh et al., 1997). However, 

lines that were resistant in India are susceptible in USA indicating existence of different 

physiological races in India and USA (Wilson 1991, Tapsoba and Wilson, 1996). Although a 

number of germplasm accessions and some breeding lines have shown good level of rust 

resistance (Singh et al., 1997), identification of resistance in elite advanced breeding lines is 
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likely to be more useful and effective in resistance breeding than transferring resistance from a 

germplasm accession, which requires more time and resources. Andrews et al. (1985) reported 

that a single dominant gene, Rpp1, conferred rust resistance effective in India. The original source 

of rust resistance deployed in USA came from a wild subspecies [P. glaucum subspecies monodii 

(Maire) Brunken] of pearl millet from Senegal (Hanna et al., 1985). This resistance gene was 

labeled Rr1 and was used in the parental lines ‘Tift 85DB’ (Hanna et al., 1987) and ‘Tift 65’ 

(Burton and Wilson, 1995), a grain hybrid (Hanna, 1993), and a forage cultivar (Hanna et al., 

1988). Beginning in 1992, the complete resistance conferred by Rr1 was overcome by a new race 

or races of the rust pathogen (Wilson, 1993 b), and today rust can be found on all lines with this 

gene. However, the Rr1 gene still confers resistance to many rust isolates purified from natural 

rust populations and therefore should be used in any new resistant cultivar. A second source of 

rust resistance comes from the Senegalese pearl millet landrace ‘Sa Fe’. This resistance is 

believed to be controlled by more than one gene (Hanna and Wells, 1993). Screening with 

different isolates of P. substriata var. indica showed that the gene(s) of this second source of 

resistance are different from the Rr1 gene (Tapsoba and Wilson, 1996). This resistance has been 

incorporated into the breeding line ‘Tift 89D2’ (Hanna and Wells, 1993) and is effective against 

most isolates virulent to the Rr1 gene. Morgan et al. (1998) used RAPDs and RFLPs and mapped 

rust resistance genes on linkage groups 3 (Rr1) and 4 of the pearl millet map. 

Efforts to develop rust-resistant pearl millet hybrids have been impeded by variability for 

virulence in the pathogen population in the southeastern United States. Virulence to Rr1 (Wilson, 

1993 b) and the subsequent identification of many pathotypes (Tapsoba and Wilson, 1996) has 

indicated the potential response to control through the use of major gene resistance. It was 

hypothesized that the increased genetic heterogeneity for rust resistance resulting from 

intermating or its subsequent enhancement through stacking of the resistance genes within 

heterogeneous populations should significantly suppress disease with an accompanying yield 

advantage (Tapsoba and Wilson, 1999). Partial rust resistance could complement race-specific 

resistance and has been identified in pearl millet inbreds (Pannu et al., 1996; Sokhi and Singh, 

1984; Wilson, 1994). Wilson (1994) evaluated inbreds Tift 383, 700481-21-8 and ICMP 501 for 

partial rust resistance in comparison to susceptible inbred Tift 23DB. The partial resistance of 

‘ICMP 501’ was of particular interest because of its high levels of expression in segregating 

progeny, significant dominance and additive genetic effects, and control by relatively few genes 

(Wilson, 1997). The expression and inheritance of partial rust resistance of pearl millet inbreds 

700481-21-8 and ICMP 501 crossed to moderately susceptible Tift 383 were evaluated. The 

number of genes conferring partial resistance was estimated to be 2 for 700481-21-8 and 2.5 for 

ICMP 501 (Wilson, 2006). 
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CHAPTER – III 

                                                                      MATERIALS AND METHODS 

 
 

The present investigation entitled “Genetic diversity analysis in pearl millet (Pennisetum 

glaucum) using Diversity Arrays Technology (DArT)” was conducted in the Applied Genomics 

Laboratory of the Global Theme-Biotechnology at the International Crops Research Institute for 

the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh. The details of materials used 

and methods adopted during the course of this investigation are described below: 

3.1 MATERIALS 

3.1.1 Plant material 

The seeds of pearl millet (Pennisetum glaucum) for the present study were procured from the RS, 

Paroda Gene Bank and pearl millet breeding unit, Global Theme-Crop Improvement, ICRISAT, 

Patancheru, Andhra Pradesh. 

3.1.2 Chemicals  

During the course of investigation, precautions were taken to use chemicals of high purity only. 

All the enzymes used in the present study were from New England Biolabs (NEB), UK or 

Sibenzyme Ltd., Russia. Analytical grade chemicals from Qualigens, India; Sigma Chemicals 

Company, USA; Hi-Media, India; USB Corporation, USA; Amersham, UK and Life 

Technologies, USA were used for carrying out all the experiments.  

3.1.3 Glasswares and plasticwares 

All the glasswares used were of the borosilicate quality obtained from Borosil India. Poly-L-

lysine-coated glass slides were procured from Thermo Scientific, USA and coverslips were from 

Corning and Menzel, Germany. Disposable petridishes, micropipette tips, centrifuge tubes, 96 

and 384-well PCR plates and 384-well library storage plates were from Tarsons Products Private 

Ltd., India; Axygen Scientific, USA and Genetix, respectively. 

3.2 METHODS 

3.2.1 Development of DArT platform for pearl millet genotyping and diversity analysis 

3.2.1.1 Sterilization of glassware and culture media 

The glassware was washed properly and rinsed with distilled water and sterilized in hot air oven 

at 180°C for 2-3 hours. Scalpels, forceps, spreader were flame sterilized using 70 per cent ethanol 

prior to use. Centrifuge tubes, microtips, PCR plates, spatula, oakridge tubes, culture media were 

sterilized by autoclaving at 1 kg/cm2 at 121°C for 15 minutes.  

Stock solutions of antibiotics such as kanamycin, ampicillin and other solutions like X-

gal, freezing medium and DArT spotter were filter sterilized using millipore syringe filters of 

pore size 0.2 µm. 
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3.2.1.2 Seed germination and DNA isolation 

To develop the pearl millet DArT array, seeds of 95 diverse genotypes of pearl millet (Table 1) 

were sown in pots in a glass house and after 10 days young leaves were collected for DNA 

isolation. DNA was extracted using the SDS buffer method described below: 

Procedure for DNA isolation 

Approximately 50 mg of young tender leaves were taken and 450 µl of SDS buffer was added 

and the leaves were ground in a Genogrinder. The ground sample was kept in 65°C water bath for 

20 minutes and the contents were mixed inbetween 2-3 times. 450 µl of phenol+chloroform 

(24:1) mixture was added to it and mixed gently. It was centrifuged at 5500 rpm for 10 minutes. 

Supernatant was collected and equal volume of chilled isopropanol was added to it and mixed 

gently. Then, it was kept at -20°C for 10 minutes and centrifuged at 5500 rpm for 10 minutes. 

Supernatant was discarded and the pellet was collected. To the pellet, 200 µl of low salt TE + 5 µl 

of RNase (10 mg/ml) was added and pellet was disturbed by tapping gently. Then, it was kept in 

37°C incubator for 40 minutes. 200 µl of phenol+chloroform was added to it and mixed gently. 

Centrifugation was done at 5500 rpm for 5 minutes. Supernatant was collected and 200 µl of 

phenol+chloroform was added to it and mixed gently and centrifuged at 5000 rpm for 5 minutes. 

Supernatant was collected and 300 µl of absolute ethanol (100%) and 15 µl of 3 M sodium 

acetate (pH 5.2) was added per sample. It was mixed gently and kept at -20°C for 10 minutes. It 

was centrifuged at 6000 rpm for 10 minutes. It was decanted and then 200 µl of 70% ethanol was 

added and centrifuged at 5500 rpm for 5 minutes. It was decanted again and vaccum dried for 5-

10 minutes. 100 µl of T10E10 was added per sample and kept at room temperature for 30 minutes. 

3.2.1.3 Quantification and dilution of DNA 

DNA was quantified on 0.8% agarose gel.  

Gel loading orange dye (for 100 ml) 

        0.5M EDTA (pH=8.0)                              10 ml 

        5M NaCl                                                     1 ml 

        Glycerol                                                    50 ml 

        MQ H2O                                                   39 ml 

After adding the above components Orange G dye powder was added until the colour was 

sufficiently dark and mixed properly. 

Procedure 

To prepare gel, 0.8 g of agarose was melted in 100 ml of 1X TBE buffer in microwave oven and 

cooled to 50°C by keeping at room temperature for 5-10 minutes. Now, 5 µl of 10 mg/ml stock of 

ethidium bromide was added to it. The gel plate was sealed on both sides with tape and a comb 

was inserted and the gel solution was poured in it gently. Then, it was allowed to solidify for 30 

minutes. After setting, the seal tapes were removed from both sides and comb was removed 

gently. The gel plate was placed in an electrophoresis unit and it was filled with 1X TBE buffer. 
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 Table 1. Pearl millet genotypes used for array development  
 

S. 

No. 

Genotype 

ID 

Origin Biological 

status 

Region Remarks 

1 IP 11841 IND Landrace Asia Core collection 

2 IP 11353 BFA Landrace Africa Core collection, large seed (>18 g) 

3 IP 15710 TZA Landrace Africa Core collection 

4 IP 11917 SLE Landrace Africa Very late, post rainy (>125 days) 

5 IP 20546 NGA Landrace Africa Plant height -tall, rainy  

6 IP 10759 SDN Landrace Africa Purplish black seed,endosperm 
texture-mostly starchy 

7 IP 10945 SDN Landrace Africa Core collection 

8 IP 6869 KEN Landrace Africa Core collection 

9 IP 13137 NER Landrace Africa Core collection 

10 IP 9286 TGO Landrace Africa Core collection 

11 IP 13344 SDN Landrace Africa Total tillers (<2) 

12 IP 8129 ICRISAT Breeding 
material (BM) 

   Thin panicle-rainy (<11 mm) 

13 IP 13121 NER Landrace Africa Core collection 

14 IP 19408 TCD Landrace Africa Core collection 

15 IP 5923 SEN Landrace Africa Endosperm texture-mostly 
corneous 

16 IP 8172 ICRISAT BM     Top leaves yellow 

17 IP 18294 ICRISAT BM      Resistant to downy mildew (DM) 

18 IP 13927 ZWE Landrace Africa Sweet stalk 

19 IP 21184 ICRISAT BM    Resistant to DM 

20 IP 21178 ICRISAT BM     Resistant to DM  

21 IP 21163 ICRISAT BM     Resistant to DM  

22 IP 7118 IND Landrace Asia Core collection 

23 IP 9981 ZMB Landrace Africa Core collection 

24 IP 6793 MWI Landrace Africa Core collection 

25 IP 7998 BWA Landrace Africa Panicle shape_globose 

26 IP 8823 ZWE Landrace Africa Resistant to rust 

27 IP 21268 ICRISAT BM     Multiple disease resistant (ergot, 
smut and DM)  

28 IP 7979 ICRISAT BM     Dumb-bell; purple spike 

29 IP 9597 YEM Landrace Asia High fodder yield potential  

30 IP 21162 ICRISAT BM     Resistant to DM  

31 IP 8074 ICRISAT BM     Core collection 

32 IP 18090 PAK Landrace Asia Core collection 

33 IP 9651 NGA Landrace Africa High seed yield potential  



 

34 IP 21491 ICRISAT BM     Resistant to rust 

35 IP 8041 GHA Landrace Africa Zebra 

36 IP 8182 ICRISAT BM     Seed color-purple 

37 IP 21172 ICRISAT BM     Resistant to DM  

38 IP 21187 ICRISAT BM     Resistant to DM  

39 IP 12644 ICRISAT BM     Small panicle- post rainy (<6 cm) 

40 IP 14926 UGA Landrace Africa Core collection 

41 IP 21181 ICRISAT BM     Resistant to DM  

42 IP 4021 IND Landrace Asia Early-rainy (<37 days), early - 
post rainy  (<40 days);  thin 
panicle (<11 mm) 

43 IP 17995 IND BM Asia Panicle shape-dumb-bell 

44 IP 2058 NGA Landrace Africa Total tillers (<2) 

45 IP 7795 IND Landrace Asia Panicle shape-club 

46 IP 22092 NER Wild Africa P. edicellatum-resistant to DM  

47 IP 21864 TZA Wild Africa P. edicellatum-resistant to DM  

48 IP 21901 TZA Wild Africa P. polystachion-resistant to DM  

49 IP 22017 SDN Wild Africa P. violaceum 

50 IP 21779 SDN Wild Africa P. mollissimum 

51 IP 22419 ICRISAT          Common-resistant to ergot 

52 IP 21789 IND Wild Asia P. pedicellatum-resistant to DM 

53 IP 21694 ZWE Wild Africa P. violaceum 

54 IP 21933 USA Wild North 
America 

P. schweinfurthii-resistant to DM 

55 IP 22031 MLI Wild Africa P. violaceum-resistant to DM  

56 IP 22102 MOZ Wild Africa P. polystachion-resistant to DM 

57 Tift 23 
D2B1-P5 

ICRISAT  Mapping 
population-
parental line 
(MPPL) 

North 
America 

 

58 843 B ICRISAT  Pearl millet 
line of 
interest  

North 
America 

Susceptible to DM, ergot and smut 

59 Tift 383 ICRISAT  Pearl millet 
line of 
interest 

  

60 IP 21973 IND Wild Asia P. violaceum-resistant to DM 

61 ICMB 
90111-P6 

ICRISAT  MPPL   

62 P 1449-2-
P1 

ICRISAT  MPPL    

63 P 310-17-B ICRISAT  MPPL    

64 IP 10437 BEN Landrace Africa Core collection, very late-rainy 
(>151 days), large seed (>18 g) 



 

65 IP 19125 NAM Landrace Africa Forage type 

66 PRLT 
2/89-33 

ICRISAT  MPPL   

67 H 77/833-
2-P5 (NT) 

ICRISAT  MPPL   

68 ICMP 451-
P8 

ICRISAT  MPPL   

69 PT 732B-
P2 

ICRISAT  MPPL   

70 ICMB 841-
P3 

ICRISAT  MPPL   

71 ICMP 
85410-P7 

ICRISAT  MPPL   

72 Tift 238D1-
P158 

ICRISAT  MPPL North 
America 

 

73 81B-P6 ICRISAT  MPPL   

74 IP 18293-
P152 

ICRISAT  MPPL   

75 W 504-1-
P1 

ICRISAT  MPPL   

76 JBV 2 IND    

77 863B-P2 ICRISAT  MPPL   

78 IPC 804-P4 ICRISAT  MPPL   

79 WSIL-P8 ICRISAT  MPPL   

80 ICTP 8203    Check 

81 LGD 1-B-
10 

ICRISAT  MPPL   

82 ICMR 
01004 

ICRISAT     

83 IP 6037     

84 IP 9453     

85 IP 11670     

86 IP 11765     

87 IP 14317     

88 IP 14811     

89 IP 15533     

90 IP 17405     

91 IP 17956     

92 IP 21155     

93 IP 22138 TZA Wild Africa P. ramosum-resistant to DM 

94 IP 21897 ZMB Wild Africa P. olystachion-resistant to DM 

95 IP 21950 IND Wild Asia P. orientale-resistant to DM 
 



 

The DNA sample was prepared by adding 5 µl of gel loading dye and 1 µl of the DNA sample 

and then it was loaded on agarose gel and electrophoresis unit was run at 80 V for 20 minutes and 

then gel was visualized under UV and photographed on the gel documentation system. After 

quantification of DNA, it was diluted to 50 ng/µl.   

3.2.1.4 Restriction enzyme digestion and adapter ligation 

DNA (50 ng/µl) of suitable genotypes was taken and combined restriction digestion and ligation 

reaction was carried out to reduce complexity of the genome sample by using PstI restriction 

enzyme as a rare cutter and BanII as a frequent cutter with simultaneous ligation of adapters 

complementary to PstI overhangs and PCR amplification of intact PstI fragments with adapters 

ligated at both ends. 

To prepare the digestion/ligation reaction the following components were added to a 1.5 

ml microcentrifuge tube as given below: 
 

                           Component Conc. used Volume/reaction (µl) 

10X R.E. buffer (100 mM Tris-OAc, 500 mM KOAc,  

100 mM Mg (OAc)2, 50 mM DTT, pH 7.8) 

         1X              0.70 

100X BSA         1X              0.07 

50 mM ATP        1 mM              0.14 

PstI adapter (5 µM)       0.05 µM              0.07 

T4 DNA ligase (2000 U/µl)    140 U(=2.1 

  Weiss units) 

             0.07 

PstI R.E. (20 U/µl)       1.4 U              0.07 

BanII R.E. (10 U/µl)       1.4 U              0.14 

MQ H2O          -              4.74 

DNA (50 ng/µl)      50 ng              1.0 

Total                7.0  

 

After setting the reaction it was incubated at 37°C for 2 hours and stored at -80°C. 

Oligo sequence of PstI adapters 

PstI-adapter 1: 5’ CACGATGGATCCAGTGCA 3’ 

PstI-adapter 2: 5’ CTGGATCCATCGTGCA 3’ 

Adapter preparation 

Equal volumes of each of the two PstI adapters (500 µM) were mixed and incubated at 80°C for 5 

minutes. It was cooled to room temperature and spinned. 5 µM of working conc. of adapter was 

prepared and stored at -20°C. 

 

 
 20 



 

3.2.1.5  PCR amplification of the genomic representation (target preparation) 

PCR amplification of intact PstI fragments with adapters ligated at both ends was carried out 

using adapter specific primer (PstI+0). The various components used for PCR reaction are as 

follows: 

           Component      Conc. used    Volume/reaction (µl) 

10X PCR buffer            1X                  5.0 

50 mM MgCl2          1.5 mM                  1.5 

2 mM dNTPs          0.2 mM                  5.0 

PstI+0 primer (500 µM)          0.4 µM                  0.04 

Taq polymerase (Sibenzyme 5 U/µl)           2 U                  0.4 

MQ H2O             -                37.06 

Digestion/Ligation product             -                  1.0 

Total                 50.0  

 

Target PCR primer (PstI+0) and cycling conditions 

Pst1+0 primer:    5י GATGGATCCAGTGCAG 3י  

Thirty cycles of amplification were carried out in a thermocycler (MJ Research). The programme 

consisted of the following conditions:  

Cycling conditions used for Target PCR   

Initial denaturation 4 min. at 94°C 

Denaturation 20 s at 94°C 

Annealing 40 s at 58°C 

Extension 1 min. at 72°C 

No. of cycles 30 

Final extension 7 min. at 72°C 

 

The amplified product was analysed on 1.5% agarose gel as described in section 3.2.1.3. 

3.2.1.6 Genomic library preparation 

To prepare a genomic library various steps were followed, which are described below: 

3.2.1.6.1 Transformation of fragments in E. coli using electroporation 

Products generated in PCR amplification (genomic representations = targets) were cloned using 

TOPO TA cloning kit of Invitrogen. 

Procedure 

Two µl of target PCR product was taken from each of the 95 genotypes (Table 1) and was pooled 

together. Four µl of this pooled product was ligated to the pCR2.1-TOPO vector by mixing 4 µl 

of pooled PCR product, 1 µl of salt solution (1:4 diluted) and 1 µl of pCR2.1-TOPO vector. Now, 
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this total 6 µl TOPO cloning reaction was incubated at room temperature for 15 minutes. TOP10 

electrocompetent cells were thawed on ice and 2 µl TOPO ligation mix was added into a vial 

(approx. 50-60 µl) of One Shot electrocompetent E. coli cells and was mixed gently without 

pipetting up and down. Then, it was incubated on ice for 15 minutes. The cuvette was kept in the 

icebox of the electroporator (GIBCO-BRL Electroporator) and 30 µl product was added to it and 

electroporated using 800 µF capacitance, 16kΩ voltage booster, and 320 DC volts. The 

eletroporated product was added in to 500 µl of SOC medium and the remaining 30 µl product 

was also electroporated in the same way and added to the same 500 µl SOC medium. Now, this 

transformed product was kept for shaking on a shaker for 1 hour at 150 rpm at 30°C. After 1 

hour, 25 µl of electroporated product was plated on LB plates having X-gal and ampicillin and 

the plates were incubated at 37°C in an incubator for 16-18 hours for blue-white screening. 

Composition of LB Agar (per litre) 

NaCl           5.0 g 

Tryptone                             10.0 g 

Yeast extract                          5.0 g 

Agar                                       15.0 g 

pH           7.0 

The above components were weighed and added to 800 ml of distilled water and mixed 

on magnetic stirrer and then final volume was made to 1 litre with distilled water. Now, it was 

autoclaved and after cooling it to 55°C, 1 ml of ampicillin (100 mg/ml) and 2 ml of X-gal (50 

mg/ml) were added to it and was poured into petriplates. 

3.2.1.6.2 Colony picking in freezing medium  

White colonies, i.e. transformed colonies, were picked with toothpicks and grown in freezing 

medium in 384-well storage plates for 18-24 hrs. 

Freezing medium (FM) preparation (per litre) 

Component solutions for long-term storage (20X stock solutions): 

FM mix 1: 177.54 g of K2HPO4·3H2O, 36.00 g KH2PO4 and 18.00 g (NH4)2SO4 were 

weighed and dissolved in 500 ml of MQ H2O. Then, it was filter-sterilized (0.22 µm) and 

distributed into 50 ml aliquots and stored at room temperature. 

FM mix 2:  10.00 g Na3-citrate·2H2O and 2.00 g MgSO4·7H2O were weighed and dissolved 

in 500 ml of MQ H2O. Then, it was filter-sterilized (0.22 µm) and distributed into 50 ml 

aliquots and stored at room temperature. 

Preparation of fresh FM 

14 g of premixed LB broth components were dissolved in 860 ml MQ water. Then, it was 

autoclaved and cooled and 50 ml of FM mix 1, 50 ml of FM mix 2, 44 ml of glycerol, 1 ml of 100 

mg/ml ampicillin and 1 ml of 100 mg/ml kanamycin solution were added under sterile conditions. 
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It was mixed well by inversion and dispensed into 384-well storage plates and sealed with thick 

plastic seals and stored at -20°C. 

3.2.1.7 Insert amplification using colony PCR 

Different individual inserts were PCR amplified directly from overnight grown bacteria plate by 

doing replication with the help of 384-tooth replicator. The various components used for PCR 

reaction are as follows: 
 

   Component      Conc. used     Volume/reaction  (µl) 

10 X PCR buffer           1X                1.5 

50 mM MgCl2          1.5 mM                0.45 

100 mM dNTPs (dATP, dCTP, dGTP, dTTP)          0.2 mM    0.03x4=0.12 

M13 forward primer (500 µM)          0.1 µM                0.003 

M13 reverse primer (500 µM)          0.1 µM                0.003 

Taq polymerase (Sibenzyme, 5 U/µl)           0.3 U                0.06 

MQ H2O -              11.864 

Insert DNA (5 times dip by 384-well replicator) -                1.0 

Total               15.0 

 

Colony PCR M13 primers and cycling conditions 

M13 forward primer            5י GTTTTCCCAGTCACGACGTTG 3י  

M13 reverse primer              5י TGAGCGGATAACAATTTCACACAG 3י 

Forty cycles of amplification were carried out in a thermocycler (Applied Biosystems) and the 

programme consisted of the following conditions:  

Cycling conditions used for colony PCR  

 

 Pre-PCR Step 1 3 min. at 95°C 

Pre-PCR Step 2 35 s at 57°C 

Pre-PCR Step 3 1 min. at 72°C 

Denaturation 35 s at 94°C 

Annealing 35 s at 52°C 

Extension 1 min. at 72°C 

No. of cycles 40 

Final extension 7 min. at 72°C 

 

The amplified product was analysed on 1.5% agarose gel as described in section 3.2.1.3. The 

plate was considered as amplified successfully and passed quality control (QC) if less than 10% 

of inserts failed to amplify and/or multibands amplified.  
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3.2.1.8 Spotting plates preparation 

Composition of spotting buffer/DArT spotter (per litre)  

 D-sorbitol                                      273.255g 

 TEA HCl (triethonolammonium hydrochloride)                 18.57g  

 dextran                                               5.0g 

 CHAPS                                               0.2g  

250 ml of MQ water was taken in a 2-litre glass beaker and the above components were added to 

it. These were mixed by magnetic stirrer on hot plate and allowed the solution temperature to 

come down. Then, 500 ml of DMSO (dimethyl sulfoxide) was added after completely dissolving 

the salts and final volume was made to 1 litre by water. It was stored at room temperature. 

Procedure 

Quality control (QC) passed PCR plates were processed by drying at 37°C overnight (18 hours) 

by wrapping in kimwipes. After that 35 µl of 77% ethanol was added to each well and the plates 

were spun briefly to collect ethanol at bottom and incubated at room temperature for 1.5 hour. 

Then, the plates were spun at 4000 rpm for 40 minutes at 30°C. Now, ethanol was decanted by 

inverting the plates and the plates were kept upside down and blotted on kimwipes. The plates 

were dried at 37°C for 1 hour by wrapping in kimwipes. After drying the plates, 20 µl of DArT 

spotter was added to each well and plates were then sealed with thin film and spun briefly and 

vortexed. Now, the plates were left at room temperature for 2 days and in these 2 days the plates 

were shaken by vortexing and spun several times to dissolve DNA properly. 

3.2.1.9. Printing of array on slides using MicroGrid II microarrayer 

The fragments were arrayed with two replicates per fragment onto poly-L-lysine-coated glass 

slides using a MicroGrid II arrayer (Biorobotics, Cambridge, UK) and after printing, slides were 

kept at room temperature for at least 24 hours before slide processing. 

3.2.1.10. Slide pretreatment/processing 

Barcode labels were printed and stuck onto the slides before processing. Two beakers of 2 litre 

capacity were taken with 2 litre of MQ water in each and kept in microwave oven to heat the 

water to 92°C. To 1 litre MQ water contained in a bottle, 200 µl of 0.5 M DTT and 200 µl of 0.5 

M EDTA were added, and the solution then was distributed into four containers one for each slide 

rack. Two slide racks were put in each beaker and rotated slowly for 2 minutes to denature the 

DNA. Then, the slide racks were put into four containers and slowly shaken up and down. The 

water was removed slowly by placing on a paper towel with kimwipes. Slide racks were spun 

down in a centrifuge for 10 minutes at 1000 rpm to remove water from the slides. Then, the slides 

were kept in a vaccum desiccator for 1-2 hours for drying. 

3.2.1.11  Target precipitation/purification for hybridisation 

Target PCR was performed for DNA samples from 24 pearl millet inbred lines (Table 2) for 

diversity analysis and two different RIL mapping populations (H 77/833 - 2 x PRLT 2/89 -33 and  

  24 



 

  Table 2. Pearl millet inbred lines used for diversity analysis 

 

S. No. Genotype Origin and characteristics 

1 H 77/833-2 Bred at CCS HAU, Hisar, India by selfing and selection within a 
Rajasthani landrace population 

2 PRLT 2/89-33 Inbred derived from the ICRISAT Bold Seeded Early 
Composite, elite breeding population based predominantly on 
Iniadi landrace germplasm from West Africa 

3 ICMB 841-P3 Bred at ICRISAT by pure-line selection for downy mildew 
resistance in seed lot of elite maintainer line MS 5141B 

4 863B-P2 Bred at ICRISAT from Iniadi landrace material from Togo by 
selfing and selection 

5 Tift 23D2B1-P1-
P5 

Bred at the Coastal Plain Experiment Station by introducing the 
d2 dwarfing gene into the genetic background of elite seed 
parent maintainer line Tift 23B1 

6 WSIL-P8 Selection from IP 18292, genetic stock developed in ICRISAT 
from a complex cross of diverse parental materials 

7 PT 732B-P2 Tamil Nadu Agricultural University, Coimbatore, India  
8 P1449-2-P1 Selection (IP 21168) made at ICRISAT from germplasm 

accession IP 5853 originated from Senegal 
9 LGD 1-B-10 Derivative of (B70 × Tift 756)-1-4-5 based on Iniadi landrace 

germplasm from Togo (B70) and a breeding line from the 
Coastal Plain Experiment Station, USA (Tift 756) 

10 ICMP 85410-P7 Derivative of (IPC 165 × IPC 220)-64 based on a germplasm 
from Uganda, Mali and Nigeria 

11 81B-P6 Downy mildew (DM) resistant selection from gamma radiation-
treated Tift 23D2B1 

12 ICMP 451-P8 Derived from LCSN 72-1-2-1-1, a selection made in Upper 
Volta from the ICRISAT Center Late Composite 

13 ICMP 451-P6 Derived from LCSN 72-1-2-1-1, a selection made in Upper 
Volta from the ICRISAT Center Late Composite 

14 H 77/833-2-
P5(NT) 

Sub-selection of H 77/833-2, which was originally bred at CCS 
HAU, Hisar, India from a Rajasthani landrace population 

15 W 504-1-P1 Inbred line from the IARI, New Delhi 
16 P310-17-Bk Bred at ICRISAT  by selfing and selection within germplasm 

accession IP 6329 originating from Mali, West Africa 
17 IP 18293-P152 Isolated at ICRISAT from a segregating population from the 

cross IP 10399 × IP 10729 
18 Tift 238D1-P158 Developed at the Coastal Plain Experiment Station, Tifton, USA 
19 ICMB 89111-P6 DM susceptible selection from within ICMB 89111, which was 

bred at ICRISAT from the cross 843B × (Gero New Source × 
Saria Synthetic-48-40-4)-1-9-8 

20 ICMB 90111-P6 DM resistant selection from ICMP 423 (IPC 94), which has the 
pedigree EC-S3-211-1-2 

21 81B-P8 DM resistant selection from gamma radiation-treated Tift 
23D2B1 

22 IPC 804 Developed at ICRISAT by crossing S 10LB (PAU, Ludhiana, 
India from a Serere Composite) and LCSN 1225-6-3-
1(Kamboinse, Burkina Faso from ICRISAT’s Late Composite) 

23 ICMR 01004 Bred by MAB at ICRISAT using ICMP 451-P6 as donor 
H 77/833-2 as recurrent. Moderately susceptible to rust 

24 ICMR 01007 Bred by MAB at ICRISAT using ICMP 451-P6 as donor 
H 77/833-2 as recurrent. Resistant to rust 



 

 

81B-P6 x ICMP 451-P8) consisting of 140 F7 and 168 F7 RILs, respectively, as described in 

section 3.2.1.5 and then these targets were precipitated by adding equal volume of isopropanol to 

each well and mixed by pipetting. The plate was sealed and incubated at room temperature for 15 

minutes and was centrifuged at 4000 rpm for 40 minutes at 30°C. The supernatant was discarded 

by inverting the plate and blotted on kimwipes to remove excess isopropanol. Two volumes of 

77% ethanol were added to each well and the pellet was washed for 10 minutes. It was 

centrifuged at 4000 rpm for 40 minutes at 30°C. The supernatant was discarded by inverting the 

plate and blotted on kimwipes to remove excess ethanol. The plate was dried at 37°C for 1 hour. 

3.2.1.12   Target labelling  

Labelling mix was prepared as follows: 
 

  Component        Concentration used    Volume/reaction (µl) 

  MQ H2O - 3.5  

  10 X NEB2 buffer 1X 0.5  

  Random decamers (500 µM) 50 µM 0.5  

  Labelling dNTPs 2 mM dATP, 2 mM dCTP,  

2 mMdGTP, 0.2 mMdTTP 

0.5  

  Total  5.0 

 

Five µl of labelling mix was added to the dried target purified pellet. It was spun briefly to collect 

the sample at bottom and denatured at 95°C for 3 minutes and was held at 25°C. Then, it was 

spun briefly and Cy3 and Cy5 dye mix was prepared in the following order: 

         Component Concentration used Volume/reaction (µl) 

     MQ H2O - 4.2  

     10X NEB2 Buffer 1X 0.5  

     Cy3/Cy5 (25 nmoles) 0.5 nmol 0.1  

     Klenow exo- (5U/µl) 1 U 0.2  

      Total  5.0  

  

Five µl of the Cy dye mix was added to the denatured target and incubated at 37°C for 3 hours by 

wrapping in aluminium foil as Cy dye is light sensitive. 

3.2.1.13   Hybridization 

Hybridization chambers were made ready by arranging the slides on them. 10 µl each of the Cy3 

and Cy5 dye labelled product was taken and 50 µl of the DArT hybridizer was added to it and 

mixed by pipetting. This 70 µl product was kept in PCR machine at 95°C for 3 minutes and 56°C 

for 5 minutes. Then, it was held at 55°C and 60 µl of the target-hybridizer mix was added to the 

 26 



 

slide in the form of small drops and then a dust free coverslip (24 x 60 mm) was put on the slide 

without introducing bubbles. The hybridization chamber was covered and screws were fixed 

tightly and it was placed into a waterbath at 63°C for overnight incubation. 

3.2.1.14   DArT-hybridizer preparation (for 500 ml) 

Two 96-well plates of TOPO polylinker fragment were amplified using a reaction mixture 

consisting of 11.9 ml H2O, 1.5 ml 10X buffer, 30 µl of 100 mM dATP, 30 µl of 100 mM dCTP, 

30 µl of 100 mM dGTP, 5 µl of 100 mM dTTP, 250 µl of 10 mM AA-dUTP, 100 µl of 500 µM 

M13F, 100 µl of 500 µM M13R, 1 ml of 5 U/µl Sibenzyme Taq polymerase and 3.75µl of 10 

ng/µl pCR2.1-TOPO plasmid. The reaction mixture was distributed into two 96-well PCR plates 

(75 µl per well). Forty cycles of amplification were carried out in a thermocycler using 94°C for 

30 s, 50°C for 30 s, 72°C for 1 minute and final extension at 72°C for 7 minutes. PCR product 

from the two plates were pooled together and checked on agarose gels. The total PCR product 

was distributed into two 50 ml centrifugation tubes and precipitated by adding 600 µl of 3 M 

NaOAc (pH 5.3) and mixed. Now, 15.6 ml of 100% ethanol was added to each tube and mixed 

and kept at -80°C for 30 minutes. It was spun at 7000 rpm for 3 hours at 4°C and after 

centrifugation supernatant was discarded carefully. The pellet was washed with 8.8 ml of 70% 

ethanol and the supernatant was discarded carefully. The pellet was dried at 37°C for 2-3 hours. 

Each pellet was dissolved in 400 µl H2O. To purify and re-precipitate the PCR product, 1.5 ml of 

PCI (phenol-chloroform-isoamylalcohol) was added to it and vortexed. It was spun at 7000 rpm 

at 4°C for 30 minutes. The upper phase was transferred into fresh tube and 1.5 ml of CI 

(chloroform-isoamylalcohol) was added to it and vortexed and spun at 7000 rpm 30 minutes. The 

upper phase was transfered into a fresh tube and 38 µl of 3 M NaOAc (pH 5.3) and 2.8 ml of 

100% ethanol was added and mixed well by inverting the tube several times. It was spun at 7000 

rpm at 4° for 1 hour. The pellet was washed twice with 3.8 ml of 70% ethanol by spinning at 

7000 rpm for 30 minutes each time. Pellet was dried at 37°C and dissolved in 1.0 ml H2O. To 

chemically cross-link FAM to the TOPO polylinker, 850 mg NaHCO3 was dissolved in 7.2 ml 

H2O and 25 mg of 5-(and-6)-carboxyfluorescein succinimidylester (FAMSE) was dissolved in 

600 µl of DMSO. 900 µl of NaHCO3 solution was added to 2 ml of the DNA solution in the 

centrifugation tube and was mixed well by vortexing. 600 µl of FAMSE solution was added to it 

and mixed by inverting the tube several times. The solution was distributed into two 

centrifugation tubes and was left at the bench for 1 hour in a light-protected container. After 1 

hour, 6.3 ml of H2O was added to each aliquot and mixed well by vortexing. 800 µl of 3 M 

NaOAc (pH 5.3) was added to each of the aliquots and mixed. 19 ml of 100% ethanol was added 

to each of the aliquots and mixed by inversion. It was spun at 7000 rpm at 4°C for 3 hours. 

Supernatant was discarded carefully and the pellet (deep yellow to orange) was washed with 8.8 

ml of 70% ethanol and spun for 1 hour and then dried at 37°C in a light-protected container. Each 

pellet was dissolved in 1.25ml of H2O and spun at 7000 rpm at 4°C for 30 minutes to remove 
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undissolved particulates. Supernatant was collected in a fresh tube and pellet was again 

suspended in 650 µl H2O and spun for 30 minutes and the supernatant was collected. To prepare 

DArT-hybridizer one bottle (500 ml) of ExpressHyb solution was melted in a 60°C incubator for 

24 hours and it was shaken on a magnetic stirrer placed within the 60°C incubator. 50 ml of 

herring sperm DNA solution (10 mg/ml) was prepared and boiled in a microwave oven and added 

to the stirring ExpressHyb solution. 2 ml of 0.5 M EDTA (pH 8.0) and 2.4 ml of the FAM-

labelled TOPO polylinker (the remaining 1.2 ml was stored for later use) were added and the 

mixture was left for stirring in the incubator for at least 30 minutes. A second magnetic stirrer 

was heated outside the incubator to approximately 60°C and solution was kept over it. It was 

filtered using vaccum filter and aliquoted into 15 ml falcon tubes and stored at -80°C. 

3.2.1.15  Slide washing  

Procedure 

One litre of each of four washing solutions were transfered from the stock solutions into 1 litre 

bottles labelled as “wash 1 + DTT” to “wash 4 + DTT,” respectively. 200 µl of 0.5 M DTT was 

added to each bottle and mixed well by inversion. One litre wash 1+DTT solution was further 

distributed into four black containers (250 ml each) labelled as wash 1+DTT. Similarly, the other 

three solutions were also distributed in the respective black containers. The hybridization 

chambers were taken out from the waterbath one by one and coverslips were removed from slides 

using a scalpel in one hand and holding the edge of slide with other hand. Then, the slides were 

put in slide racks that were already kept in black containers having wash 1+DTT. The racks were 

moved up and down for 1 minute and left for 4 minutes in the same solution. Then, the racks 

were transferred into wash 2+DTT and moved up and down for 1 minute and left for 4 minutes. 

These were transferred to wash 3+DTT and moved up and down for1 minute and kept for 1 

minute. The racks were moved up and down in wash 4+DTT for 30 s. After finishing the washing 

procedure, 1 ml of 0.5 M DTT was added in 5 litres MQ water and racks were moved up and 

down by holding. These were spun briefly to remove water droplets from the slides and kept in a 

vaccum desiccator (covered with black cover) for 1 hour to dry.  

Preparation of washing stock solutions (per litre) 

Wash 1: 950 ml of MQ H2O was taken in a bottle and 50 ml of 20X SSC and 10 ml of 10% 

SDS were added to it and mixed thoroughly. 

Wash 2: 950 ml of MQ H2O was taken in a bottle and 50 ml of 20X SSC was added to it and 

mixed thoroughly. 

Wash 3: 1 litre of MQ H2O was taken in a bottle and 10 ml of 20X SSC was added to it and 

mixed thoroughly. 

Wash 4: 1 litre of MQ H2O was taken in a bottle and 1ml of 20X SSC was added to it and 

mixed thoroughly. 
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20X SSC (per litre) 

700 ml of MQ H2O was taken in a flask and 175.32 g of sodium chloride, 88.23 g of sodium 

citrate were added to it. Then, it was mixed on magnetic stirrer to dissolve completely and final 

volume was made to 1 litre and autoclaved. 

10% SDS (sodium dodecyl sulphate) (per litre) 

800 ml of MQ H2O was taken in a beaker and kept on hot magnetic stirrer and 100 g of SDS was 

added to it. It was mixed to dissolve completely and final volume was made to 1 litre and 

autoclaved. 

0.5 M DTT (dithiothreitol) (for 10ml) 

9 ml of autoclaved MQ water was taken in a beaker and 0.771 g of DTT was added to it. Then, it 

was dissolved completely and final volume was made to 10 ml.  

3.2.1.16   Slide scanning and data extraction 

Slides were scanned using a robotic microarray confocal laser scanner (Tecan LS300 scanner) 

and images were generated for each of the fluorescent dyes using the appropriate laser/filter 

combination (Cy3: 543 nm; Cy5: 633 nm; 6-FAM: 488 nm). DArTsoft, a software package 

developed at DArT P/L was used to automatically analyze each batch of TIF image pairs 

generated in the experiment. The software localized spots, rejected those with a weak reference 

signal, computed and normalized the relative hybridization intensities [=log (Cy3target/FAM 

reference)] of all spots, calculated the median value for replicate spots, identified polymorphic 

clones by using a combination of ANOVA and fuzzy K-means clustering at a fuzziness level of 

1.5 and finally, the relative hybridization intensities of polymorphic clones in the representation 

hybridized to a slide are converted into present (“1”) or absent (“0”) based on the membership 

probability estimates computed by the clustering algorithm. Markers that showed conflicting 

scores between the replicates or could not be scored in either of the replicates were scored as 

unknown. The Polymorphism Information Content (PIC), a measure of informativeness of a 

genetic marker and three quality parameters were computed for each marker: the percentage of 

scored DNA samples (call rate), the between-cluster (‘‘0’’ vs. ‘‘1’’) variance of the relative 

(denominated by the reference) target hybridization intensity as a percentage of the total relative 

intensity variance (P value) and the multivariate equivalent of the P parameter (Q value) (Storey 

and Tibshirani, 2003).  

3.2.1.17  Genetic diversity analysis using DArT data 

The DArTsoft-generated 0–1 scores of the polymorphic DArT markers found among the inbred 

lines were used as input for DARwin 5.0 software http://darwin.cirad.fr/darwin) developed at 

Cirad and analyzed using the single data option and genetic distances were estimated using the 

Jaccard dissimilarity index. Diversity trees were built using the unweighted Neighbor-Joining 

(NJ) algorithm. 
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3.2.2 Pearl millet genotyping using SSR markers 

3.2.2.1 PCR using SSR markers 

Multiplex PCR was carried out to amplify SSR loci for RIL mapping population based on cross 

81B x ICMP 451, consisting of 168 F7 RILs. 27 fluorescently labelled SSRs and 3 M13-labelled 

SSRs were used (Table 3). For M13-labelled primers a three-primer strategy was used with 

1:15:15 ratio for forward primer with M13 tail, regular reverse primer and universal fluorescent-

labelled M13 primer, respectively. The various components used for PCR reaction are as follows: 
 

 

        Component Concentration used Volume/reaction (µl) 

       10X PCR buffer 1X 0.5 

       50 mM MgCl2   1.0 mM 0.1 

       2 mM dNTPs   0.2 mM 0.5 

       Primer (2 pm) 0.4 pm 1.0 

      Taq polymerase (NEB 5 U/µl)                    0.2 U  0.04 

      MQ H2O -  1.86 

      DNA (5 ng/µl) 5 ng 1.0 

      Total  5.0 
 

Cycling conditions used for PCR       

Forty cycles of amplification were carried out in a thermocycler (Applied Biosystems) using a 

touchdown programme having the following conditions:  
 

     Initial denaturation 3 min. at 94°C 

       1 min. at 94°C 

     Touchdown step 1 min. at 56°C 

 1 min. at 72°C 

      No. of cycles 5 

      Denaturation 1 min. at 94°C 

      Annealing 1 min. at 51°C 

      Extension 1 min. at 72°C 

      No. of cycles 40 

      Final extension 20 min. at 72°C 
 

The amplified product was analysed on 1.5% agarose gel as described in section 3.2.1.3.  

3.2.2.2 Analysis of PCR product on ABI 3730 DNA analyzer  

Two µl PCR product was taken from each marker of the multiplex set (markers labeled with 

different dyes) and pooled together for simultaneous detection of the amplified alleles. 7µl of 

formamide and 0.2 µl of fragment size standard GeneScanTM 500 LIZ were added to the pooled 

PCR product and run on ABI 3730 DNA/Genetic analyzer (Applied Biosystems). 
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Table 3. Pearl millet SSR markers used for genotyping of 168 F7 RILs of cross 81B-P6 x ICMP 451-P8 

 

S. 

No. 

Marker locus Size Motif Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 

1 Xpsmp2031 180-200 (CCA)3(TCC)3 CACATCCGCAAGAGACACCAAAT TTTGGGGGTGTAGGTTTTGTTG 

2 Xpsmp2231 210-235 (TG)12GG(TA)4 TTGCCTGAAGACGTGCAATCGTCC CTTAATGCGTCTAGAGAGTTAAGTTG 

3 Xpsmp2089 110-130 (AC)15 TTCGCCGCTGCTACATACTT TGTGCATGTTGCTGGTCATT 

4 Xpsmp2251 140-200 (TG)6 TCAAACATAGATATGCCGTGCCTCC CAGCAAGTCGTGAGGTTCGGATA 

5 Xpsmp2225 220-240 (GT)12 CCGTACTGATGATACTGATGGTT TGGGAGGTAAGCTCAGTAGTGT 

6 Xpsmp2255 255-300 (TG)34 CATCTAAACACAACCAATCTTGAAC TGGCACTCTTAAATTGACGCAT 

7 Xpsmp2266 180-200 (GA)17 CAAGGATGGCTGAAGGGCTATG TTTCCAGCCCACACCAGTAATC 

8 Xpsmp2208 230-300 (GT)10 GAAAGAGCAAACTGAACAATCCC ACTTTGCCCTGGATGATCCTC 

9 Xpsmp2248 145-165 (TG)10 TCTGTTTGTTTGGGTCAGGTCCTTC CGAATACGTATGGAGAACTGCGCATC 

10 Xpsmp2236 210-235 (TG)4(GT)4 ATAAGTGGGACCCACATGCAGCAC CGAAAGACTAGCAAAATTGCGCCTTC 

11 Xpsmp2249 115-160 (GT)7imperfect CAGTCTCTAACAAACAAACACGGC GACAGCAACCAACTCCAAACTCCA 

12 Xpsmp2275 260-290 (GTT)10 CCAGTGCCTGCATTCTTGGC3 GCATCGAATACTTCATCTCA 

13 Xpsmp2270 130-155 (GA)26imperfect AACCAGAGAAGTACATGGCCCG CGACGAACAAATTAAGGCTCTC 

14 Xpsmp2261 165-190 (GA)16 AATGAAAATCCATCCCATTTCGCC CGAGGACGAGGAGGGCGATT 



 

15 Xpsmp2227 175-190 (GT)7 ACACCAAACACCAACCATAAAG TCGTCAGCAATCACTAATGACC 

16 Xpsmp2219 210-280 (GT)7 ACTGATGGAATCTGCTGTGGAA GCCCGAAGAAAAGAGAACATAGAA 

17 m13_Xpsmp2237 245-265 (GT)8 TGGCCTTGGCCTTTCCACGCTT CAATCAGTCCGTAGTCCACACCCCA 

18 Xctm12 310-340 (CT)12 GTTGCAAGCAGGAGTAGATCGA CGCTCTGTAGGTTGAACTCCTT 

19 Xpsmp2273 140-160 (GA)12 AACCCCACCAGTAAGTTGTGCTGC GATGACGACAAGACCTTCTCTCC 

20 Xicmp3027 185-210 (GAT)6 ACACCATCACCGACAACAAA AGTGACCTGGGGTACAGACG 

21 Xicmp3088 150-175 (TCC)8 TCAGGTGGAGATCGATGTTG TTACGGGAGGATGAGGATG  

22 Xctm25 255-280 (CT)34 GCGAAGTAGAACACCGCGCT GCACTTCCTCCTCGCCGTCA 

23 Xpsmp2080 155-190 (AC)14 CAGAATCCCCACATCTGCAT TGCAACTGAGCGAAGATCAA 

24 Xpsmp2069 210-230 (CA)26 CCCATCTGAAATCTGGCTGAGAA CCGTGTTCGTACATGGTTTTGC 

25 m13_Xpsmp2232 220-240 (TG)8 TGTTGTTGGGAGAGGGTATGAG CTCTCGCCATTCTTCAAGTTCA 

26 Xicmp3050 195-215 (TA)8 ATGTCCAGTGTTGACGGTGA CGGGGAAGAGACAGGCTACT 

27 m13_Xpsmp2229 220-280 (GT)5 CCACTACCTTCGTCTTCCTCCATTC GTCCGTTCCGTTAGTTGTTGCC 

28 Xicmp3032 180-200 (GCT)8(ACAT)3 AGGTAGCCGAGGAAGGTGAG CAACAGCATCAAGCAGGAGA 

29 Xpsmp2085 155-170 (AC)11 GCACATCATCTCTATAGTATGCAG GCATCCGTCATCAGGAAATAA 

30 Xctm10 180-200 (CT)22 GAGGCAAAAGTGGAAGACAG TTGATTCCCGGTTCTATCGA 



 

3.2.2.3 Data collection and analysis  

The data was collected automatically by the detection of the different fluorescences and analyzed 

by GeneMapper v4.0 software (Applied Biosystems). 

3.2.3     Genetic linkage mapping 

The scores of all polymorphic DArT (0/1) and SSR markers were converted into genotype codes 

(‘A’, ‘B’) according to the scores of the parents after genotyping both mapping populations with 

DArT array and SSR markers. Linkage analysis was accomplished using the programs: JoinMap 

(Stam, 1993), GMendel version 0.8b (Holloway and Knapps, 1993) and RECORD (van Os et al., 

2005). Grouping was done by JoinMap and GMendel while order was finalized using RECORD. 

CentiMorgan (cM) distances were calculated using the Haldane function and the maps were 

developed using MapChart 2.2. (Voorrips, 2002). DArT markers were named with the prefix 

“PgPb” where ‘Pg’ stands for Pennisetum glaucum, ‘P’ for PstI (primary restriction enzyme used) 

and ‘b’ for BanII (secondary restriction enzyme used) followed by numbers corresponding to 

unique clone ID. 

QTL mapping for rust resistance in pearl millet 

Greenhouse screening for rust resistance  

Along with susceptible (ICMB 89111, ICMB 06222) and resistant (ICML 11, ICMP 451) check 

entries, 167 F7 RILs segregating for rust resistance from cross 81B-P6 (susceptible) × ICMP 451-

P8 (resistant) were sown in pots (15 seeds/pot) filled with sterilized soil-sand-FYM (farmyard 

manure) mix (2:1:1) and placed in a completely randomized design in a glasshouse where cool air 

blowers were initiated when the temperature exceeded 25°C. The experiment was conducted in 

four replications and there were two pot replicates per genotype in each replication. Irrigation was 

performed daily and seedlings were thinned to 10 plants/pot. Eight days after sowing, when the 

seedlings were at the third leaf stage, the inoculum was prepared. Leaves from 2-3 months old 

infected plants were detached and wiped with a spatula to harvest spores into tap water at room 

temperature. The spore suspension was filtered through a piece of cloth and its concentration was 

assessed using a haemocytometer and then adjusted to ≈ 1.0 × 105 uredinispores per ml. To 1 litre 

aqueous urediniospores suspension of Puccinia substriata var indica, 1 ml of Tween 20 was 

added, which acts as a sticker (so that spores could remain attached on leaf surfaces) as well as a 

dispersing agent (so that clumps of spores were not formed in the suspension). Each pot of 

seedlings was sprayed with approximately 4 ml of inoculum using a hand-pumped sprayer. The 

pots were then covered with a moist polythene sheet to maintain a high level of humidity and 

incubated in dark in the growth chamber at 25°C for 20 hours to promote infection. After 20 

hours, the pots were shifted to glasshouse benches and exposed to high humidity (>90% RH) 

under misting. Rust severity was recorded 12 days after inoculation based on percentage of 

infected leaf area within each pot (Fig. 1). 
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Statistical analysis 

 Analysis of variance (ANOVA) 

All the analyses were performed using Genstat 12th edition from Rothamsted, UK. Analysis of 

variance (ANOVA) was performed using completely randomized design. 

3.2.4.2.2  Parameters of variability 

(i) Mean 

Mean value (X) of each character was worked out dividing the sum of the observed 

values by the corresponding number of observations: 

 X = Σ Xij / N 

     where, 

     Xij = any observation in the ithentry and jth replication, and  

     N = total number of observations 

(ii) Range 

Lowest and highest values for each character were recorded. 

(iii) Heritability 

Heritability (h2) was calculated according to the formula given below: 

h2 = σ2g / (σ2g+ σ2e) 

where, 

σ2g = genotypic variance  

σ2e = error variance  

3.2.4.3 QTL analysis  

Phenotypic data was averaged for each entry and sorted to correspond with the progeny order 

of the genotypes (marker data). The total number of progeny individuals from the cross (81B-

P6 × ICMP 451-P8) with both phenotypic and genotypic information was 146. QTL analysis 

was performed by Composite Interval Mapping with PlabQTL (Utz and Melchinger, 1996).  
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CHAPTER – IV 

                                                                          EXPERIMENTAL RESULTS 

 
 

 

The present investigation aimed at genetic diversity analysis and QTL mapping in pearl millet 

was accomplished using Diversity Array Technology (DArT), which is a microarray-based 

hybridization and high-throughput DNA-genotyping technology. It was carried out in four steps - 

Development of the DArT array, diversity analysis of diverse pearl millet inbred genotypes using 

DArT markers, genotyping of two pearl millet RIL mapping populations using DArT and SSR 

markers followed by linkage map construction and QTL mapping for rust resistance. The results 

of these studies are presented in this chapter with the help of appropriate tables and suitable 

figures. 

4.1 Development of the DArT array 

4.1.1 Preparation of genomic representations 

High quality genomic DNA was extracted from 95 diverse pearl millet genotypes (Table 1). This 

was quantified on agarose gel and diluted to 50 ng/µl (Fig. 2). A PstI- based complexity reduction 

method was used to develop the array, where PstI enzyme acts as rare cutter and a frequent cutter 

is used in combination with it. The intact PstI fragments with adapters ligated at both ends were 

amplified using adapter-specific primer to produce genomic representations. Different 

combinations of PstI with one of the following frequent-cutting restriction endonucleases: BanII, 

ApoI, AluI, BstNI, HpaII, TaqI, MseI, and StyI were tested. The products were analyzed by 

electrophoresis on a 1.5% agarose gel and all other combinations except PstI/BanII were 

excluded as they were showing one or more strong bands, whereas PstI/BanII gave a 

homogenous smear free from observable bands with good distribution of fragments (Figs. 3, 4) 

and so this genomic representation was used to construct the library. 

4.1.2 Genomic library and genotyping array 

PstI/BanII genomic representations from 95 pearl millet genotypes were pooled together and 

cloned using a TOPO TA cloning kit. White colonies (i.e. transformed colonies) (Fig. 5) were 

obtained with good transformation efficiency. These were picked and inserts were amplified from 

individual clones so that part of the polylinker region of the cloning vector was co-amplified. The 

amplified product was analyzed on 1.5% agarose gels and fragments of 300-1000 bp were 

obtained (Fig. 6). The amplified inserts were precipitated and the DNA was re-suspended in 

spotting buffer. The fragments were arrayed with two replicates per fragment in a randomized 

manner onto poly-L-lysine-coated glass slides using a MicroGrid II arrayer and uniform spots 

were obtained. The array consisted of 7680 clones and overall 10% missing fragments were 

found in the array. Thus, the array has approximately 6912 clones. 
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4.2 Diversity analysis of diverse pearl millet genotypes using the DArT array 

4.2.1 Genotyping of diverse pearl millet genotypes using the DArT array 

Genomic representations were generated from each of 24 diverse pearl millet inbred lines (Table 

2) using the same complexity reduction method used for DArT library construction (PstI/BanII) 

and homogenous smears were obtained when these were analyzed on 1.5% agarose gel (Fig. 7). 

The fluorescent-labelled representations were hybridized to the array and the images were 

scanned, which showed good hybridization intensity (Fig. 8). DArTSoft was used for data 

analysis and 574 polymorphic clones (DArT markers) were identified from a total of 6912 clones 

on the array (8.3% polymorphic clones). The call rate, which reflects the total percentage of non-

missing scores for a certain clone across all samples in the experiment, ranged from 80.5 to 100% 

with an average of 91.6% and the scoring reproducibility was 100%. DArT markers displayed 

high polymorphism information content (PIC) values, ranging from 0.04 to 0.50, with an average 

of 0.30. The P and Q values, which are measurements of variation across individuals, ranged 

from 47.6 to 96.9% (average 76.1%) and 47.2 to 95.6% (average 75.2%), respectively (Table 4). 
 

   Table 4. Performance of pearl millet PstI/BanII DArT array 

Average Sample 

P 

value 

(%) 

Q 

value 

(%) 

Call 

rate 

(%) 

PIC 

value 

Reprodu

cibility 

(%) 

No. of 

clones on 

array 

No. of 

poly 

morphic 

clones 

%age of 

poly 

morphic 

clones 

24 diverse 

inbred 

genotypes 

76.1 75.2 91.6 0.30 100 6912 574 8.3 

81B-P6 x 

ICMP 451-

P8 

81.3 80.9 89.5 0.46 100 6912 256 3.7 

H 77/833-2 x 

PRLT 2/89-

33 

79.5 79.1 87.6 0.47 99.5 6912 310 4.5 

 

4.2.2 Genetic relationship among pearl millet inbred lines revealed by DArT 

A dendrogram, which displays genetic relationship among genotypes analyzed, was constructed 

based on 574 DArT markers for 24 pearl millet inbred genotypes. The data matrix containing the 

0/1 scores (absence/presence) of the polymorphic DArT markers found among the inbred lines 

was analysed with DARwin 5.0 software using the single data option and genetic distances were 

estimated using the Jaccard dissimilarity index. A diversity tree was built using the unweighted 

Neighbor - Joining (NJ) algorithm. This cluster analysis discriminated well between the 24 inbred 
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lines of pearl millet (Fig. 9) and they were grouped into two main clusters where cluster I was 

having 12 inbred lines, including restorer lines, downy mildew resistance sources and Iniadi 

landrace-derived lines. Cluster II contained 11 inbreds, which were mainly seed parents whereas 

inbred ICMB 90111-P6, derived from the ICRISAT Early Composite, was entirely separated 

from the two main clusters. Of twelve inbreds grouped in cluster I, four (IPC 804-P4, ICMP 

85410-P7, PRLT 2/89-33, and 863B-P2) were derived from Iniadi landrace. IPC 804-P4 and 

ICMP 85410-P7 are strong male-fertility restorers for the A1 cytoplasmic-genetic male-sterility 

system, whereas 863B-P2 is a maintainer. ICMP 85410-P7, PRLT 2/89-33 and 863B-P2 are 

downy mildew resistant parents of pearl millet mapping populations. The two inbreds P1449-2-

P1 and P310-17-Bk, which are tall and downy mildew resistant mapping population parents of 

West African origin, were grouped together. The other six inbred fertility restorer lines 

(H 77/833-2, H 77/833-2-P5 (NT), ICMR 01004, ICMR 01007, ICMP 451-P8, and ICMP 451-

P6) in this cluster were grouped together where H 77/833-2 is derived from a Rajasthani landrace 

population, H 77/833-2-P5 (NT) is a sub-selection (probably derived from an outcross) of 

H 77/833-2 and both are susceptible to downy mildew and rust. ICMP 451-P8 and ICMP 451-P6 

grouped together as both of these are derived from the same inbred line (LCSN 72-1-2-1-1) and 

are moderately resistant to downy mildew and resistant to rust. ICMR 01004 is moderately 

susceptible and ICMR 01007 is resistant to rust, and both are resistant to downy mildew and were 

bred by marker-assisted backcrossing of disease resistance from donor parent ICMP 451-P6 into 

the genetic background of recurrent parent H 77/833-2.  

In cluster II, five inbreds (ICMB 841-P3, Tift 23D2B1-P5, 81B-P6 and 81B-P8, IP 18293-

P152) were grouped together, four of which are d2 dwarf lines. Out of these five inbreds, 

genetically tall ICMB 841-P3 and d2 dwarf Tift 23D2B1-P5, are expected to cluster together as 

they share genetically tall Tift 23B1 as a common ancestor and the two sub-selections of 81B, 

namely 81B-P6 and 81B-P8, were also clustered with these as 81B is a product of an induced 

mutation breeding program based on Tift 23D2B1. Among these inbreds, ICMB 841-P3, 

Tift 23D2B1-P5, 81B-P6 and 81B-P8 are maintainers for the A1 cytoplasmic-genetic male-sterility 

system. ICMB 841-P3, 81B-P6, 81B-P8, and IP 18293-P152 are all at least moderately resistant 

to downy mildew while Tift 23D2B1-P5 is highly susceptible to downy mildew. The other four 

inbreds (ICMB 89111-P6, WSIL-P8, PT 732B -P2, and LGD 1-B-10) of cluster II were grouped 

together and all are d2 dwarf lines. Out of these, ICMB 89111-P6 and LGD 1-B-10 are downy 

mildew susceptible while WSIL-P8 is downy mildew resistant. W504-1-P1 and Tift 238D1-P158 

were the other two inbreds in cluster II and both are downy mildew susceptible. W504-1-P1 is 

genetically tall and Tift 238D1-P158 is a d1 dwarf fertility restorer line for the A1 cytoplasmic-

genetic male-sterility system. 
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4.3 Genotyping of the mapping populations using DArT and SSR markers and linkage 

map construction 

4.3.1 Genotyping of pearl millet RIL mapping population based on 81B-P6 x ICMP 451-

P8 using DArT array 

High quality genomic DNA was extracted for 168 F7 RILs from the cross 81B-P6 x ICMP 451-

P8. Genomic representations were generated from DNA samples of each of these RILs as well as 

their parents using the same complexity reduction method used for library construction.The 

fluorescent-labelled representations were hybridized to the array and the images were scanned 

and then analysed using DArTSoft. 256 polymorphic clones (DArT markers) were identified in a 

total of 6912 clones (3.7% of polymorphic clones) on the array. The call rate ranged from 80.3 to 

98.4% with an average of 89.5% and the scoring reproducibility was 100%. DArT markers 

displayed high PIC values, ranging from 0.27 to 0.50 with an average of 0.46. The P and Q values 

ranged from 65.1 to 92.9% (average 81.3%) and 64.8 to 92.5% (average 80.9%), respectively 

(Table 4). 

4.3.2 Genotyping of pearl millet RIL mapping population based on 81B-P6 x ICMP 451-

P8 using SSRs 

The RIL mapping population was genotyped using 30 SSR primer pairs (Table 3), with capillary 

electrophoretic separation of fluorescent-labelled PCR products. From this, 25 SSRs (83.3%) 

detected reliably-scorable polymorphism (Figs. 10A and 10B). 

4.3.3 Genetic linkage map construction for RIL mapping population based on 81B-P6 x 

ICMP 451-P8 

4.3.3.1 Genetic linkage map 

The scores of all polymorphic DArT and SSR markers were converted into genotype codes (‘A’, 

‘B’) according to the scores of the parents (‘A’ = homozygous for 81B-P6 allele; ‘B’ = 

homozygous for ICMP 451-P8 allele) and heterozygotes (‘H’) were recorded as missing data. Out 

of 25 polymorphic SSRs screened, 4 markers were removed having ‘D’ scores (i.e., not ‘B’, so 

either ‘H’ or ‘A’); and data for 49 polymorphic IPES (ICRISAT Pearl millet EST Stress) EST-

SSR markers already generated (data provided by ICRISAT) were also added for linkage map 

construction. So, a total of 326 polymorphic markers (256 DArT and 70 SSRs) were used for 

assembling the linkage map using data from 146 RILs. Out of this, 286 loci (229 DArT markers 

and 57 SSRs) (Table 5) were distributed across the expected 7 linkage groups using logarithm of 

odds (LOD) thresholds ranging from 2-10 and a recombination frequency (r) threshold less than 

0.4 using JoinMap and 40 markers (27 DArTs and 13 SSRs) remained unlinked. The order of 

markers in each linkage group was finalized using RECORD software, which is faster and more 

suitable for construction of high-density linkage maps than JoinMap. The map built with JoinMap 

was inflated by 47.0% when compared with that built using RECORD.  
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Figure 10 (A). GeneMapper  profile for an amplified SSR marker showing polymorphism 
 
 

 

 
 

Figure 10 (B). GeneMapper profile for an amplified SSR marker showing monomorphism  
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   Table 5. Distribution of DArT and SSR markers on two genetic linkage maps. 

SSRs RIL Population Total no. of 

markers 

DArTs 

Xipes Xctm Xpsmp Xicmp 

81B-P6 x ICMP 451-P8 286 229 38 2 15 2 

H 77/833-2 x PRLT 2/89-33 321 258 37 4 13 9 

Common across the two RIL 

populations 

78 56 15 2 3 2 

 
 

 

 

 The final genetic map (Figs. 11 A, B) spanned a total length of 740.3 cM (Haldane) with 

an average adjacent-marker distance of 2.7 cM, and an average density of 0.39 markers/cM. The 

total number of mapped loci per linkage group (LG) ranged from 23 on LG 6 to 59 on LG 2, and 

the average was 40.9 loci/LG. The longest individual linkage group map was for LG 7 (153.5 

cM), the shortest was for LG 6 (45.0 cM), and the average LG length was 105.8 cM. The density 

of markers on the individual linkage group maps ranged from 0.29 markers/cM on LG 5 to 0.51 

markers/cM on LG 6. Map distances between 2 consecutive markers varied from 0 to 21 cM, and 

263 of the 279 intervals (94.3%) were less than 10 cM. There were only 16 intervals (5.7%) 

larger than 10 cM, and the largest gap between markers was observed on LG 7 (21.0 cM). Many 

DArT markers were present as clusters in telomeric regions (e.g., the top of LG 1) (Fig. 11 A). 

The details of each linkage group are described below and in Table 6.  
 

 

  Table 6. Linkage group details of DArT- and SSR- based genetic map for pearl millet RIL   

population based on cross (81B-P6 x ICMP 451-P8) 
 

Linkage 

group 

DArT 

marker 

loci 

SSR 

marker 

loci 

Total 

marker 

loci 

Length 

(cM) 

Adjacent-

marker 

interval (cM) 

Density 

(markers/cM) 

LG 1 40 14 54 128.0 2.42 0.42 

LG 2 49 10 59 118.5 2.04 0.50 

LG 3 28 7 35 69.6 2.05 0.50 

LG 4 36 6 42 133.6 3.26 0.31 

LG 5 21 6 27 92.1 3.54 0.29 

LG 6 15 8 23 45.0 2.05 0.51 

LG 7 40 6 46 153.5 3.41 0.30 

Total 229 57 286 740.3 2.65 0.39 
 

Linkage Group 1 

Total map length of LG 1 was 128.0 cM and it consisted of 54 markers. Map distances between 2 

consecutive markers varied from 0 to 18.0 cM, with an average adjacent-marker interval of 2.42 

cM and average marker density of 0.42 markers/cM. 
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Linkage Group 2 

LG 2 had the highest number of markers mapped i.e. 59, with segregation of 49 of these distorted 

in favor of alleles from female parent 81B-P6. The total map length was 118.5 cM and map 

distances between 2 consecutive markers varied from 0 to 16.2 cM, with an average adjacent-

marker interval of 2.04 cM, which was smallest among all 7 linkage groups for this RIL 

population. The average density of markers in this group was 0.50 markers/cM. 

Linkage Group 3 

Thirty-five markers were placed in LG 3, which had a total length of 69.6 cM. The adjacent-

marker intervals ranged from 0 to 8.4 cM, with an average of 2.05 cM and an average density of 

0.50 markers/cM. 

Linkage Group 4 

LG 4 is the second longest group with a map length of 133.6 cM. 42 markers (41 showing 

distorted segregation favoring alleles from male parent ICMP 451-P8) were placed in this group. 

Adjacent-marker intervals ranged from 0 to 14.8 cM with an average of 3.26 cM and an average 

density of 0.31 markers/cM. 

Linkage Group 5 

The total length of LG 5 (Fig. 11 B) was 92.1 cM with 27 markers. Map distances between 2 

consecutive markers varied from 0 to 16.8 cM, with the largest average adjacent-marker interval 

of 3.54 cM 

Linkage Group 6  

LG 6 had the lowest number of markers mapped, i.e. 23. This was the shortest group with a total 

map length of only 45.0 cM. Map distances between 2 consecutive markers varied from 0 to 6.5 

cM, with an average adjacent-marker interval of 2.05 cM, and average marker density of 0.51 

markers/cM, which is highest among all 7 linkage groups for this RIL population. 

Linkage Group 7 

Forty-six markers were placed in LG 7, which had a longest map length of 153.5 cM. The 

adjacent-marker intervals observed in this group ranged from 0 to 21.0 cM, with an average of 

3.41 cM, and an average marker density of 0.30 markers/cM. 

4.3.3.2 Segregation distortion of markers 

Significant segregation distortion from the expected 1:1 Mendelian ratio was found for 124 

(38.0%) out of 326 markers genotyped across these 146 RILs. Sixty markers (18.4%) showed 

distortion in favor of the 81B-P6 allele (49 mapped to LG 2) whereas 64 (19.6%) showed 

distortion in favor of the ICMP 451-P8 allele (41 mapped to LG 4), with missing data (genotypes 

scored either missing or heterozygote) of 10.7%. Out of the 286 markers mapped, 118 (41.2%) 

showed distorted segregation with 57 markers (19.9%) showing distortion in favor of the 81B-P6 

allele and 61 (21.3%) in favor of the ICMP 451-P8 allele, with 10.8% missing data. Distorted 

markers (Figs. 11 A, B) favoring 81B-P6 were found on LG 2 (49 out of 59 markers mapping to 
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this group), LG 3 and LG 6 while those favoring ICMP 451-P8 were mapped on LG 1, LG 3, LG 

4 (41 out of 42 markers mapping to this group), LG 5 and LG 7. LG 3 showed skewed markers 

favoring alleles from either parent. The details of distorted markers are given in Table 7. 
 

   Table 7. Segregation distortion of mapped markers in (81B-P6 x ICMP 451-P8)-and 

(H 77/833-2 x PRLT 2/89-33)-based RIL populations of pearl millet 

 

81B-P6 x ICMP 451-P8 H 77/833-2 x PRLT 2/89-33 

Linkage 

group 

No. of markers 

favoring allele 

81B-P6 

No. of markers 

favoring allele 

ICMP 451-P8 

Linkage 

group 

No. of 

markers 

favoring 

allele 

H 77/833-2 

No. of markers 

favoring allele 

PRLT 2/89-33 

LG 1 - 8 LG 1 - 32 

LG 2 49 - LG 2 29 1 

LG 3 4 1 LG 3 - 7 

LG 4 - 41 LG 4 1 1 

LG 5 - 7 LG 5 - 9 

LG 6 4 - LG 6 - 25 

LG 7 - 4 LG 7 - 7 

Total 57 61 Total 30 82 
 

4.3.4 Genotyping of pearl millet RIL mapping population based on H 77/833-2 x 

PRLT 2/89-33 using DArT array 

High quality genomic DNA samples extracted from 140 F7 RILs from the cross H 77/833-2 x 

PRLT 2/89-33 were used for preparation of genomic representations using PstI/BanII-based 

complexity reduction and homogenous smears were obtained. After screening of 6912 random 

genomic pearl millet clones with this population, 310 polymorphic DArT markers (4.5%) were 

identified. The call rate ranged from 79.3 to 98.9% with an average of 87.6%, and the scoring 

reproducibility range was from 97.2 to 100% with an average of 99.5%. DArT markers displayed 

PIC values ranging from 0.24 to 0.50 with an average of 0.47. The P and Q values ranged from 

60.8 to 94.5% (average 79.5%) and 60.6 to 94.0% (average 79.1%), respectively (Table 4). 

4.3.5 Genetic linkage map construction of mapping RIL population based on H 77/833-2 

x PRLT 2/89-33 

4.3.5.1 Genetic linkage map 

Of the 310 available DArT markers, 309 DArT and 80 previously genotyped polymorphic SSR 

markers (data provided by ICRISAT), i.e. a total of 389 markers, were used for assembling the 

linkage map using data from 137 RILs. Out of this, 318 loci were distributed across 7 linkage 
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groups using GMendel at a LOD threshold value of 4.0 and a recombination frequency threshold 

less than 0.12. The unlinked markers were tried using “Try” command of Mapmaker. Markers 

violating map stability were removed and linkage groups were reanalyzed to construct a 

stabilized map. Thus, a total of 321 loci (258 DArTs and 63 SSRs) (Table 5) were integrated into 

the genetic map (Figs. 12 A, B). The order of markers in each linkage group was finalized using 

RECORD software. The resultant map had a total length of 1148 cM (Haldane), with an average 

density of 0.28 markers/cM, and an average adjacent-marker interval length of 3.66 cM. The 

length of individual linkage groups ranged between 77.8 cM for LG 3 and 370.3 cM for LG 2 and 

the average linkage group length was 164 cM. The total number of mapped loci per linkage group 

ranged from 28 (LG 5) to 80 (LG 2), with an average of 45.8 loci. The average adjacent-marker 

interval lengths ranged from 2.15 cM (LG 6) to 4.69 cM (LG 2), with corresponding map 

densities ranging from 0.22 to 0.48 markers/cM for LG 2 and LG 6, respectively. Map distance 

between adjacent markers varied from 0 to 35.3 cM and 91.7% of the intervals (288 out of 314 

intervals) were <10 cM. There were 26 map regions (8.3%) with adjacent-marker distances >10 

cM and the largest distance between adjacent markers was observed on LG 2 (35.3 cM). Many 

DArT markers were present as clusters in telomeric regions, e.g. the top portions of LG 1, LG 2 

and LG 4 (Fig. 12 A). The details of each linkage group are described below and in Table 8. 
 

   Table  8. Linkage group details of DArT- and SSR-based genetic map for pearl millet 

RIL population based on cross (H 77/833-2 x PRLT 2/89-33) 

Linkage 

group 

DArT 

marker 

loci 

SSR 

marker 

loci 

Total 

marker 

loci 

Length 

(cM) 

Adjacent-

marker 

interval (cM) 

Density 

(markers/cM) 

LG 1 44 17 61 215.9 3.60 0.28 

LG 2 69 11 80 370.3 4.69 0.22 

LG 3 23 7 30 77.8 2.68 0.39 

LG 4 42 5 47 156.1 3.39 0.30 

LG 5 21 7 28 111.8 4.14 0.25 

LG 6 33 6 39 81.7 2.15 0.48 

LG 7 26 10 36 134.4 3.84 0.27 

Total 258 63 321 1148.0 3.66 0.28 
 

Linkage Group 1 

The map length of LG 1 was 215.9 cM. It was the second longest group for this RIL population 

and had 61 markers. Map distances between 2 consecutive markers varied from 0 to 14.9 cM, 

with an average adjacent-marker interval length of 3.60 cM and average marker density of 0.28 

markers/cM. 
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Linkage Group 2 

LG 2 was the lengthiest group having a map length of 370.3 cM along with the highest number of 

markers, i.e. 80 markers. Map distances between 2 consecutive markers ranged from 0 to 35.3 

cM, with the highest average adjacent-marker interval length of 4.69 cM and lowest average 

marker density of 0.22 markers/cM among all seven groups for this RIL population. 

Linkage Group 3 

LG 3 was the shortest group with a map length of 77.8 cM accommodating 30 markers. Map 

distances between 2 consecutive markers varied from 0 to 9.5 cM, with an average adjacent-

marker interval length of 2.68 cM, and an average map density of  0.39 markers/cM. 

Linkage Group 4 

Forty-seven markers occupied LG 4, spanning 156.1 cM. Map distances between 2 consecutive 

markers ranged from 0 to 12.1 cM, with an average adjacent-marker interval of 3.39 cM, and an 

average map density of 0.30 markers/cM. 

Linkage Group 5 

LG 5 had a map length of 111.8 cM (Fig. 12 B), along with smallest number of markers, i.e. 28. 

Map distances between 2 consecutive markers varied from 0 to 15.8 cM, with an average 

adjacent-marker interval of 4.14 cM, and an average map density of 0.25 markers/cM. 

Linkage Group 6 

Thirty-nine markers were placed in LG 6, which had a map length of 81.7 cM. The adjacent-

marker distance ranged from 0 to 9.9 cM, with the lowest average adjacent-marker interval of 

2.15 cM and highest average map density of 0.48 markers/cM among all seven groups for this 

RIL population. 

Linkage Group 7 

LG 7 accommodated 36 markers within its map length of 134.4 cM. The adjacent-marker 

distance ranged from 0 to 23.4 cM, with an average adjacent-marker interval of 3.84 cM, and an 

average map density of 0.27 markers/cM. 

4.3.5.2 Segregation distortion of markers 

Segregation analysis data indicated that distortion was found in 136 (34.9%) out of 389 markers 

analyzed for these 137 RILs. Thirty-seven marker loci (9.5%) showed distortion in favor of the 

H 77/833-2 allele, whereas 99 (25.4%) showed distortion in favour of the PRLT 2/89-33 allele, 

with missing data of 12.2%. Out of the 321 mapped markers, 112 (34.9%) showed significant 

segregation distortion from the expected 1:1 Mendelian ratio. The number of mapped markers 

showing segregation distortion (Figs. 12 A, B) in favour of the PRLT 2/89-33 allele were more 

numerous i.e 82 (25.5%) than the 30 markers (9.3%) showing distortion in favor of the H 77/833-

2 allele, with 12% missing data. The 30 markers that showed distortion in favor of the H 77/833-2 

allele were distributed on LG 2 (29 of 80 mapped loci) and LG 4 (1 out of 47 mapped loci). The 

82 markers that showed distortion in favor of the PRLT2/89 - 33 allele were distributed across all  
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seven linkage groups, but were concentrated on LG 1 (32 of 61 mapped loci) and LG 6 (25 of 39 

mapped loci). LG 2 and LG 4 showed regions with distortion favouring alleles of either parent. 

The details of distorted markers are given in Table 7. 

4.3.6 Comparison of genetic linkage maps of two populations 

Both the linkage maps had relatively high marker densities, with the highest numbers of markers 

mapped on LG 2 in both populations while it was lowest on LG 5 for the (H 77/833-2 x 

PRLT 2/89-33)-based map and on LG 6 in case of that for (81B-P6 x ICMP 451-P8) (Tables 6, 

8). More markers (321), distributed over a larger portion of the genome (1148 cM) with a larger 

average adjacent-marker interval of 3.66 cM and lower density (0.28 markers/cM), were mapped 

for the (H 77/833-2 x PRLT 2/89-33)-based RIL population; while there were 286 markers 

spanning a total length of just 740.3 cM (average adjacent-marker interval of 2.65 cM and map 

density of 0.39 markers/cM) mapped using the (81B-P6 x ICMP 451-P8)-based RIL population 

(Figs. 11 A, B and 12 A, B). There were 78 common markers (56 DArTs and 22 SSRs) (Table 5) 

across the two RIL populations and the number of common markers was 20, 16, 8, 8, 6, 13, and 7 

for LG 1 to LG 7, respectively (Table 9). The markers were in the same order in two populations 

except LG 1 and LG 2 where some order swapping of (mostly) closely linked markers was 

observed within some blocks, which was not unexpected given the moderate sizes of the two 

mapping populations. 

4.4 QTL analysis for rust resistance 

4.4.1 Analysis of variance (ANOVA) 

Artificial inoculation of pot-grown seedlings was performed to assess rust reaction on 167 RILs 

derived from the cross (81B-P6 x ICMP 451-P8). Rust severity (%) was recorded 12 days after 

inoculation based on percentage of infected leaf area within each pot and it ranged from 0 to 95%. 

Highly significant differences were detected by ANOVA between individual RIL progenies. 

Mean of rust severity (%) was calculated for each RIL using the data from four replications and it 

ranged from 0.25 to 89.38% (grand mean 35.0%) (Fig. 13) with an operational heritability of 

99%, SEm of 2.5%, and CV of 7.1%. Parental line ICMP 451-P8 was resistant and exhibited 

some symptoms of infection against rust in a few replications, with a mean rust severity of 4.6%, 

while parental line 81B-P6 was completely susceptible and recorded 77.8% disease incidence. 

Among various control entries, ICML 11 was moderately resistant (10.6% rust severity), 

ICMB 89111 (55.4%) was susceptible and ICMB 06222 (83.5%) was highly susceptible. Of the 

167 RILs, 32 were resistant, 18 moderately resistant, 73 moderately susceptible, 40 susceptible 

and remaining 4 lines were highly susceptible to rust (Table 10). 

4.4.2 QTL mapping 

For QTL mapping, the linkage map constructed with marker data from 146 F7 RILs derived from 

the cross (81B-P6 x ICMP 451-P8) was used. The primary data of rust severity percentage was 

converted  later  into  resistance percentage  and used for  QTL  analysis which was performed by 
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                        TTaabbllee  99..   LLiisstt   ooff   ccoommmmoonn  mmaarrkkeerrss  aaccrroossss  lliinnkkaaggee  mmaappss  ooff   ppeeaarrll  mmiill lleett  RRIILL  

ppooppuullaattiioonnss  bbaasseedd  oonn  ccrroosssseess  ((8811BB--PP66  xx  IICCMMPP  445511--PP88))  aanndd  ((HH  7777//883333--22  

xx  PPRRLLTT  22//8899--3333))   
  

SS..  NNoo..  MMaarrkkeerr  LLiinnkkaaggee  ggrroouupp  SS..   NNoo..  MMaarrkkeerr  LLiinnkkaaggee  ggrroouupp  

11  PPggPPbb1100116666  LLGG  11  4400  PPggPPbb66884455  LLGG  33  

22  PPggPPbb1111885588  LLGG  11  4411  PPggPPbb1111114433  LLGG  33  

33  PPggPPbb1111112266  LLGG  11  4422  PPggPPbb1100779911  LLGG  33  

44  XXiippeess00004422  LLGG  11  4433  XXccttmm1100  LLGG  33  

55  PPggPPbb1111999900  LLGG  11  4444  PPggPPbb77337799  LLGG  33  

66  XXiippeess00009988  LLGG  11  4455  PPggPPbb1111332255  LLGG  44  

77  XXppssmmpp22227733  LLGG  11  4466  PPggPPbb1133116611  LLGG  44  

88  XXiippeess00114466  LLGG  11  4477  PPggPPbb99889944  LLGG  44  

99  XXiippeess00112266  LLGG  11  4488  PPggPPbb99778888  LLGG  44  

1100  XXiippeess00110011  LLGG  11  4499  PPggPPbb1100774466  LLGG  44  

1111  PPggPPbb99220055  LLGG  11  5500  XXiippeess00118866  LLGG  44  

1122  PPggPPbb77993388  LLGG  11  5511  PPggPPbb99229933  LLGG  44  

1133  PPggPPbb77334499  LLGG  11  5522  XXiippeess00006666  LLGG  44  

1144  PPggPPbb1111771166  LLGG  11  5533  PPggPPbb77449944  LLGG  55  

1155  XXiiccmmpp33003322  LLGG  11  5544  PPggPPbb1122005522  LLGG  55  

1166  XXiippeess00000044  LLGG  11  5555  XXiippeess00115577  LLGG  55  

1177  PPggPPbb77338877  LLGG  11  5566  XXiippeess00009933  LLGG  55  

1188  XXccttmm1122  LLGG  11  5577  PPggPPbb1100881166  LLGG  55  

1199  PPggPPbb1100770055  LLGG  11  5588  PPggPPbb1100224444  LLGG  55  

2200  PPggPPbb99552299  LLGG  11  5599  PPggPPbb88001188  LLGG  66  

2211  PPggPPbb77443311  LLGG  22  6600  PPggPPbb55996699  LLGG  66  

2222  PPggPPbb77997799  LLGG  22  6611  PPggPPbb88666644  LLGG  66  

2233  XXppssmmpp22223377  LLGG  22  6622  XXiippeess00007711  LLGG  66  

2244  XXiippeess00000077  LLGG  22  6633  PPggPPbb1133111133  LLGG  66  

2255  PPggPPbb1100552255  LLGG  22  6644  XXiiccmmpp33005500  LLGG  66  

2266  PPggPPbb66118844  LLGG  22  6655  PPggPPbb77551166  LLGG  66  

2277  PPggPPbb66111177  LLGG  22  6666  PPggPPbb88993355  LLGG  66  

2288  XXiippeess00000033  LLGG  22  6677  XXppssmmpp22227700  LLGG  66  

2299  PPggPPbb88221144  LLGG  22  6688  PPggPPbb1100660033  LLGG  66  

3300  PPggPPbb99447744  LLGG  22  6699  PPggPPbb1111664455  LLGG  66  

3311  PPggPPbb88113399  LLGG  22  7700  PPggPPbb1111556633  LLGG  66  

3322  PPggPPbb88444433  LLGG  22  7711  PPggPPbb66441166  LLGG  66  

3333  PPggPPbb66666655  LLGG  22  7722  XXiippeess00110055  LLGG  77  

3344  PPggPPbb99333388  LLGG  22  7733  PPggPPbb99881199  LLGG  77  

3355  PPggPPbb1111770022  LLGG  22  7744  PPggPPbb1100447744  LLGG  77  

3366  PPggPPbb1122559988  LLGG  22  7755  PPggPPbb1100992299  LLGG  77  

3377  PPggPPbb88222288  LLGG  33  7766  PPggPPbb88770055  LLGG  77  

3388  PPggPPbb1111223355  LLGG  33  7777  PPggPPbb1122660044  LLGG  77  

3399  XXiippeess00116666  LLGG  33  7788  PPggPPbb1111996600  LLGG  77  
 



 

Table 10. Performance of pearl millet RILs derived from cross ( 81B-P6 x ICMP 451-P8) 

for pearl millet rust resistance under glasshouse conditions with artificial 

inoculation 

 

       Percentage severity     Reaction            No. of RILs 

0-10     Resistant 32 

10-20     Moderately resistant 18 

20-50     Moderately susceptible 73 

50-75     Susceptible 40 

75-90     Highly susceptible 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Frequency distribution of rust severity (%) among F7 RIL progenies from the 

pearl millet crosses (81B-P6 x   ICMP 451-P8) 
 

 
 

Composite Interval Mapping with PlabQTL using a LOD of 2.5 as the threshold value for QTL 

significance. A major QTL with a LOD value of 27 was mapped near the top of the LG 1 (Fig. 

14), explaining 58% of the observed phenotypic variation in rust reaction of the RIL progenies. 

At this locus, the allele of resistant parent ICMP 451-P8 conferred resistance.  
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In addition to this major QTL, two modifiers were also detected - one each on LG 4 and 

LG 7, explaining 9.0% and 8.3% of the observed phenotypic variation, respectively.The favorable 

allele for the LG 4 modifier was inherited from susceptible parent 81B-P6 whereas that for the 

LG 7 modifier  was  inherited from ICMP 451-P8. The details of QTLs detected are shown in 

Table 11 and the graphical representation of LOD values for all seven linkage groups are shown 

in Figures 15 A and B. 
 

Table 11. Summry of QTLs for pearl millet rust resistance detected using PlabQTL and 

data from RILs from cross (81B-P6 x ICMP 451-P8) 

 

Linkage 

group 

Flanking 

Markers 

Position 

(cM) 

LOD Variance 

explained 

Additive 

effect 

Inheritance 

LG 1 PgPb9412- 

PgPb7328 

8.0 27.30 57.8% 16.9 Major QTL; ICMP 

451-P8 

LG 4 PgPb12440- 

PgPb10793 

38.0 2.97 9.0% -1.1 QTL modifier; 81B-

P6 

LG 7 PgPb12801-

Xpsmp2236 

68.0 2.73 8.3% 2.6 QTL modifier; ICMP 

451-P8 
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Figure 15(A). Logarithm of odds (LOD) profiles for LG 1 thru LG 4 for rust 

resistance QTLs segregating in the (81B-P6 x ICMP 451-P8)-based 

pearl millet RIL population. The horizontal line across each graph 

indicates the threshold level used for QTL identification  

LG 1

-5

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Position (cM)

L
O

D
 s

c
o
re

       2.5

L G 2

0

0 .5

1

1 .5

2

2 .5

3

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0

P o s i t i o n  (c M )

L
O

D
 S

c
o

re

LG3

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

Position (cM)

L
O

D
 S

c
o
re

LG4

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Position (cM)

L
O

D
 S

c
o
re

 49 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15(B). Logarithm of odds (LOD) profiles for LG 5 thru LG 7 for rust 

resistance QTLs segregating in the (81B-P6 x ICMP 451-P8)-based 

pearl millet RIL population. The horizontal line across each graph 

indicates the threshold level used for QTL identification  
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   CHAPTER – V 

                                                                                                                    DISCUSSION 

 

 

Pearl millet (Pennisetum glaucum (L.) R. Br.) is an important grain, forage and stover crop, 

grown on more than 26 million ha in arid and semi-arid regions of Asia and Africa, where its 

grain is often used as basic staple food by the poorest people. However, this crop has received 

relatively little attention of researchers. So, there is a need to better understand the diversity and 

genetic basis of this crop. Molecular markers are efficient tools to speed up crop improvement 

(Langridge, 2005; Varshney and Tuberosa, 2007) and for the construction of molecular linkage 

maps, the first step in the genetic dissection of target traits. During the past decades, various types 

of DNA-based molecular markers (e.g., RFLPs, AFLPs, RAPDs, and SSRs) have been developed 

and applied in crop genetic diversity analysis, gene and QTL mapping, and molecular marker-

aided selection. However, all of these techniques share two common features: reliance on gel 

electrophoresis and low throughput. Consequently, a low cost, high-throughput and 

electrophoresis-independent technique was required to improve upon these tedious and time-

consuming methodologies, especially for those crops with less-developed molecular markers like 

pearl millet, barley, maize, potato and tobacco. 

Diversity arrays technology (DArT), for which proof of concept was first reported by 

Jaccoud et al. (2001), is becoming increasingly adopted in many species. The technology 

combines a complexity reduction method (Wenzl et al., 2004) with hybridization-based 

polymorphism detection using high-throughput, solid state platforms and has the potential to 

generate hundreds of high-quality genomic dominant markers with a cost- and time-competitive 

trade-off (Kilian et al., 2005). Thus, the present investigation is an attempt to develop and use 

DArT technology in pearl millet for genetic diversity assessment and QTL mapping. 

5.1 Complexity reduction and development of DArT array 

The first step in the DArT procedure involves reduction of the number of fragments present in a 

genomic representation to reveal large amount of genetic polymorphism. This process is called 

complexity reduction. If the number of unique genomic fragments (complexity) in the targets 

increases, possibilities for cross-hybridization and obtaining non-specific or low signal intensities 

increase. It is therefore essential to present subsets of the genome to the arrays to derive 

meaningful and specific signals. As DArT is a hybridization-based method, the genomic 

representation can be much more complex compared to those used in gel-based systems such as 

RAPDs and AFLPs. However, to discover polymorphisms based on SNPs, InDels or epigenetic 

differences and to obtain a sufficient labeling of all fragments present in the representation, 

complexity reduction is needed. A good complexity reduction method exhibits a high degree of 

reproducibility in sampling genomic fragments. Although a nearly unlimited number of methods 
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of sampling polymorphic sites in the genome could be envisioned, the methods used usually rely 

on restriction enzyme (RE) digestion, adapter ligation and amplification of adapter-ligated 

fragments. The initial proof-of-concept paper used AFLP protocols to create representations for 

DArT (Jaccoud et al., 2001). However, later the AFLP technique was abandoned for DArT for 

two reasons. First was that genomic representations produced exclusively by RE digestion were 

more polymorphic than those produced by RE digestion in combination with selective primers. 

Second, the proprietary status of AFLP in some countries imposes some restriction on the 

availability and delivery of DArT methods using this type of complexity reduction. Most of the 

current methods are based on PstI, the RE that was most frequently used to create genomic 

libraries of low-copy RFLP probes. PstI is sensitive to CXG methylation and does not cut the 

highly methylated, predominantly repetitive fraction of plant genomes (Rabinowicz et al., 1999). 

For most plant species, the number of fragments generated by PstI digestion, adapter ligation and 

amplification of PstI fragments is too large for efficient DArT assays. Therefore, PstI is used in 

combination with one or more frequently cutting enzymes, while only ligating adapters to the 

ends created by PstI and amplification of adapter-ligated fragments and this is now one of the 

methods of choice for plant genomes (Kilian et al., 2005). Restriction and ligation are performed 

simultaneously to minimize fragment-to-fragment ligation. 

The percentage of polymorphism that can be obtained with a certain complexity 

reduction method can be estimated by either in silico simulations or small-scale testing of 

different enzyme combinations. Computer simulations that calculate the number of fragments 

when using different enzyme combinations can be of high value if sequence information is 

present. These in silico calculations have been used for optimizing AFLP (Peters et al., 2001) and 

DArT (Wenzl et al., 2004; Wittenberg et al., 2005) complexity reduction methods. If there is no 

sequence information available, then testing a number of restriction enzyme combinations to 

obtain homogenous smear of fragments is a good alternative. These approaches have been used 

successfully in a number of DArT applications (Wenzl et al., 2004; Xia et al., 2005; Akbari et al., 

2006; Yang et al., 2006). Such practical experiments and computer simulations have shown that a 

complexity of between 10,000 and 20,000 fragments is optimal for DArT. With higher 

complexities it becomes difficult to obtain a sufficient labelling of all fragments present in the 

genomic representation and with lower complexities the redundancy (same restriction fragment 

identified more than once as a marker) in the DArT markers will increase. Based on this concept, 

different restriction enzyme combinations were tested for pearl millet and all representations 

showing one or more strong bands were excluded. The PstI/BanII representation was free from 

observable bands (Fig.3), and so was used to construct the library. Nearly all DArT complexity 

reduction methods reported so far have used PstI RE to generate adaptor-compatible overhangs, 

either alone (Wenzl et al., 2004; Xia et al., 2005) or in combination with EcoRI (Wittenberg et 

al., 2005). Yang et al. (2006) used a new enzyme combination, NdeI + Bsp1286I, to produce the 
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required adaptor-compatible overhangs. Bonin et al. (2008) described a new genome complexity 

reduction method taking advantage of the abundance of miniature inverted repeat transposable 

elements (MITEs) in the genome of A. aegypti. For Dendrobium species, a Chinese research 

group successfully enriched for the presence of polymorphic sequences by applying a subtraction 

method prior to library construction (Li et al., 2006). In addition, selective amplification (Jaccoud 

et al., 2001; Yamamoto and Yamamoto, 2004) and degenerated oligonucleotide primer (DOP)-

PCR (Jordan et al., 2002) methods for complexity reduction have successfully been used for 

genetic and epigenetic analysis on microarrays. 

The selection of unique and low-copy sequences is an inherent feature of the 

hybridization-based assay format of DArT and distinguishes DArT from mobility-based assay 

technologies such as AFLP. Another important feature of genomic representations is sequence 

complexity, which is determined by the number of unique fragments and their average length. 

Although DArT can theoretically work with representations of very high complexity, the platform 

currently implemented comprising glass microarrays, fluorescently labeled targets and a confocal 

laser scanner, supports assays with representations containing 5,000-20,000 unique fragments i.e. 

a number low enough to ensure the reproducibility of the PCR reaction, but high enough to yield 

a reasonable number of polymorphic markers. The pearl millet array generated for the current 

study consisted of 6912 clones, which is large enough to meet the requirements. The length of the 

fragments is determined by the restriction enzyme combination and the type of adapters used to 

amplify the representation. We obtained fragments in the size range of 300-1000 bp (Fig. 6). 

Representations with an average fragment size between 300 to 700 bp perform well on the 

microarray platform (Jaccoud et al., 2001; Wenzl et al., 2004; Xia et al., 2005). 

To prepare a library from the genomic representation, the adenylated PCR fragments 

have to be ligated into a cloning vector and transformed into electro-competent Escherichia coli 

cells. To achieve high transformation efficiencies it is important that all PCR products are 3’-end 

adenylated. An efficient adenylation can be obtained by increasing the final extension time at 

72°C after the last PCR cycle or by modifications of the primer used for amplification 

(Brownstein et al., 1996). 

The TOPO TA Cloning Kit having pCR2.1-TOPO vector was used for transformation as 

it provides a highly efficient, 5-minute, one-step cloning strategy for the direct insertion of Taq 

polymerase-amplified PCR products into a plasmid vector and no ligase, post-PCR procedures, or 

PCR primers containing specific sequences are required. The linearized vector supplied in this kit 

has a single, overhanging 3’ deoxythymidine (T) residue, which allows PCR inserts to ligate 

efficiently with the vector. Each restriction fragment was flanked by adapter sequences and small 

portions of the TOPO vector, which was labeled with carboxy-fluorecein 6-FAM and used as a 

reference signal for all spots. The signal intensity of the reference is used by DArTSoft to 

determine for each clone the amount of DNA spotted on the array. 
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DArTSoft enabled the selection of a high-quality marker dataset, by means of applying 

thresholds for a set of quality parameters. The results demonstrate that DArT markers are of good 

quality, as measured by their high PIC values, call rates and scoring reproducibility. The average 

call rate ranged from 87.6 to 91.6% for different experiments using the pearl millet array. The 

average scoring reproducibility ranged from 99.5 to 100%. DArT markers displayed high 

polymorphism information content (PIC), the average PIC values ranging from 0.30 to 0.47; with 

0.50 being the highest PIC value expected for a bi-allelic marker system. The average P and Q 

values ranged from 76.1 to 81.3% and 75.2 to 80.9%, respectively (Table 4), which is comparable 

to those reported by Risterucci et al. (2009), Yang et al. (2006) and Wenzl et al. (2004). 

5.2 Genetic relationships among pearl millet inbred lines  

Pearl millet cultivars are generated from a relatively narrow gene pool and current breeding 

programs make only limited use of landrace germplasm accessions and do not make use of wild 

pearl millets. Genetic diversity studies of Pennisetum germplasm generate information that 

facilitates efficient selection of such accessions for their use in improving pearl millet hybrids, 

hybrid parental lines and open-pollinated varieties. In the present study, the usefulness of DArT 

markers was demonstrated for the first time to effectively describe the genetic relationships 

among a set of pearl millet inbred lines. Such genetic differences in pearl millet have been studied 

previously by morphological and isozyme analysis (Tostain et al., 1987; Tostain and Marchais, 

1989; Tostain, 1992). A disadvantage of isozyme markers is that they are affected by 

environmental conditions and different stages of development (Falkenhagen, 1985). In addition, 

the number of isozyme loci that can be analyzed is limited and discrimination between different 

genotypes is not always possible (Tobolski and Kempery, 1992). Subsequently, RAPDs 

(Chowdari et al., 1998), RFLPs (Bhattacharjee et al., 2002), and SSRs (Budak et al., 2003; 

Kapila et al., 2008) have been used to estimate pearl millet genetic diversity. Microsatellites have 

proven informative to study genetic relationships among closely related plant species as well as 

among subpopulations of a single species (Bowcock et al., 1994) because of their exceptionally 

high level of polymorphism and these recognise multiple alleles and are distributed throughout 

the genome (Jeffreys et al., 1985; Tautz et al., 1986). In addition, microsatellites exhibit 

codominant inheritance and their detection can be readily automated (Hernandez et al., 2002). 

These features are essential for effective discrimination between closely related lines (Akkaya et 

al., 1992). 

The power of the DArT fingerprinting method lies in its ability to compare different 

genomes at a large number of loci in a single assay. The large numbers of markers that are 

simultaneously assayed by DArT provide a high level of resolution in genetic-diversity studies. 

Genetic-distance estimates derived using DArT are more likely to be accurate because the 

‘random’ nature of DArT markers should reduce the ascertainment bias when compared to 

technologies relying on targeted marker development. DArT markers allow the identification of 
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genomic regions shared between related genotypes; they effectively complement other molecular 

marker technologies for genetic diversity studies, genomics and breeding (Risterucci et al., 2009). 

DArT markers revealed genetic relationships among the pearl millet inbred lines that were 

consistent with those provided by other marker technologies, but at a significantly higher 

resolution and speed, and at reduced cost. The DArT-based cluster analysis discriminated well 

between 24 inbred lines of pearl millet (Fig. 9). Clusters generated using DArT were in complete 

agreement with the available pedigree data. Inbreds derived from the Iniadi landrace formed a 

perfect subcluster within cluster I. In cluster II, five inbreds (ICMB 841-P3, Tift 23D2B1-P5, 81B-

P6 and 81B-P8, and IP 18293-P152) were grouped together, four of which are d2 dwarf lines. Out 

of these five inbreds, genetically tall ICMB 841-P3 and d2 dwarf Tift 23D2B1-P5, are expected to 

cluster together as they share genetically tall Tift 23B1 as a common ancestor and the two sub-

selections of 81B, namely 81B-P6 and 81B-P8, were also clustered with these as 81B is a product 

of an induced mutation breeding program based on Tift 23D2B1. The known pedigree 

relationships of these five lines are better captured by this DArT-based diversity analysis than by 

the SSR- and SNP-based analysis recently reported by Thudi et al. (2010). 

5.3 Genetic linkage map based on DArT and SSR markers 

DArTSoft analysis identified 256 and 310 polymorphic markers segregating in the (81B-P6 x 

ICMP 451-P8)- and (H 77/833-2 x PRLT 2/89-33)-derived random inbred line populations, 

respectively, with high reproducibility and good P, Q, PIC values and call rates (Table 4). This 

good performance is partly due to the fact that SNP detection in DArT is mediated by the higher 

fidelity of restriction enzymes compared to primer annealing. The ‘methylation filtration’ effect 

arising from the use of PstI (a methylation-sensitive restriction enzyme) produces genomic 

representations enriched in the hypo-methylated ‘gene space’ of a genome. The actively 

expressed, low-copy regions of a genome, ‘gene space’ tends to be located in distal regions of the 

chromosome arms, a pattern that is clearly reflected in DArT-marker density along chromosome 

arms. Because the size of the ‘gene space’ varies much less than total genome size, DArT is fairly 

insensitive with respect to variation in genome size. 

The high number of available DArT markers, their cost-effectiveness and relatively high 

polymorphism content are ideal characteristics for their application in extensive genome-wide 

screening for QTL discovery, recurrent parent background recovery in marker-assisted 

backcrossing, isolation of genes via map-based cloning, comparative mapping, and genome 

organization studies (Varshney et al., 2007). Marker-assisted breeding is generally more efficient 

when molecular maps are well saturated, due to an increased chance of finding polymorphic 

markers in any genetic background in any genomic region of interest. This is the second report of 

the use of DArT technology in pearl millet after Kilian et al. (2009) and it is the first report where 

DArT markers were mapped in this species. The two genetic maps span 740.3 cM and 1148.0 

cM, corresponding to an average of 2.6 and 3.6 cM per marker, respectively. The linkage maps 
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constructed in this study are more highly saturated, include more markers and have smaller 

marker intervals than any previously constructed with RFLPs and/or SSRs. The genome coverage 

achieved makes the present maps particularly useful to select markers for use in whole genome 

breeding strategies and to saturate genomic regions of interest in other mapping populations. The 

maps showed a high level of genome coverage and distribution of markers was reasonably 

uniform including the distal regions of all chromosome arms (Figs. 11 A, B and 12 A, B). This 

resulted largely from the inclusion of DArT and EST-SSRs (Table 5). These markers typically 

show improved genome coverage compared to anonymous (non-coding) SSRs or AFLPs, which 

are characteristically clustered around the centromeric regions (Ramsay et al., 2000). This 

difference in genome coverage is thought to reflect the processes used to develop each type of 

marker. Anonymous SSRs are usually developed from random genomic libraries, in which 

microsatellites located in the heterochromatic regions are over-represented (Roder et al., 1998) 

and the development of EST-SSRs from genic regions reduces the representation of regions that 

are rich in repetitive DNA (Parida et al., 2006). Improved SSR density on the current maps was 

also facilitated by fluorescence-based marker detection and capillary electrophoresis (Hayden et 

al., 2005). This assay platform provides higher resolution for small allele size differences and 

multi-allelic markers compared to nondenaturing PAGE, which has been typically used in 

previous mapping studies (Karakousis et al., 2003). 

Genetic linkage maps built with the RECORD software package were superior to those 

constructed with JoinMap or GMendel, and showed 47% expansion compared to those made 

using JoinMap. The RECORD map, therefore, was selected for this study. Various problems were 

encountered with JoinMap and GMendel. Inspection of the locus order given by GMendel 

revealed a considerable number of misplaced loci and inversions of complete blocks of loci, 

which led to artifactual crossovers and resulted in inflated maps. In addition, the program needed 

a very long time (up to several hours) for the calculation of the order of the markers in the linkage 

groups. The main cause for these problems was the high number of markers with similar 

segregation patterns. JoinMap 3.0 is one of the most commonly used programs for constructing 

linkage maps for plant populations, but this program generated erroneous results with the high-

density datasets used in the current study. JoinMap has a function to remove all markers with an 

identical segregation pattern. However, if two marker scores are very similar, but not identical 

due to missing values, JoinMap keeps both markers in the dataset. JoinMap tries to place these 

markers at the same position, which in many cases causes tension in the map. Problems with 

using JoinMap to analyze high-density datasets have been encountered by others as well (Isidore 

et al., 2003; van Os et al., 2005). 

To overcome these problems a new software package (RECORD) for ordering loci on 

genetic linkage maps was developed (van Os et al., 2005). RECORD finds the best possible 

marker order by minimization of the number of recombination events in a dataset of marker 
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segregation data. In contrast to JoinMap or MapMaker, the algorithm does not make use of many 

pairwise distance estimates, but it uses the much simpler raw segregation data and therefore is 

much faster. In addition, the RECORD algorithm does not have a problem with markers with 

similar, but not identical, segregation patterns. The value of RECORD for the construction of 

genetic linkage maps from high-density segregation data in potato (Isidore et al., 2003; van Os et 

al., 2006), flax (Vromans, 2006) and for building high-density consensus maps of multiple 

populations in barley (Wenzl et al., 2006) has recently been shown. For the markers that showed 

an identical scoring pattern, the reason could not be ascertained whether the underlying clones 

had identical sequences or co-segregated because of close linkage. 

SSR marker orders from the present study were compared with those from maps based on 

SSRs only (recently developed unpublished maps of 81B-P6 x ICMP 451-P8 and H 77/833-2 x 

PRLT 2/89-33 provided by ICRISAT) and were almost identical except for swapping of some 

marker orders within some blocks on a few linkage groups. Such differences in marker order 

among genetic maps is not unexpected, as genetic mapping only gives an indication of the 

relative positions and genetic distances of the markers to each other (Sourdille et al., 2004). 

Moreover, inconsistency in map position of these few SSRs could be explained by the presence of 

closely linked DArT loci. The order of loci that were common between the two maps was also 

very similar with limited order swapping. 78 markers representing all 7 linkage groups of pearl 

millet were mapped in both populations, which will permit the development of a well-saturated 

pearl millet consensus linkage map combining DArT and SSR markers. 

In the current study, a high proportion of DArT markers showed clustering in distal 

regions of several of the 14 chromosome arms (Figs. 11 A, B and 12 A, B) and such clustering of 

DArT markers was more frequent than that of SSRs. This is not surprising, keeping in mind that 

DArT markers were over four times more abundant than the SSRs in the two data sets (and the 

SSRs included both genic and genomic SSRs) (Table 5). It seems that DArT markers may have a 

stronger tendency than genomic SSR and AFLP markers in particular, to map to such gene-rich 

regions (Vuylsteke et al., 1999), although in the present study this may well have been due to use 

of the methylation-sensitive restriction enzyme PstI in complexity reduction of the initial library 

used in creating the DArT array, and subsequent preparation of DNA samples for hybridization to 

the array. The occurrence of DArT marker clusters in distal regions of chromosome arms was 

observed in previous DArT mapping studies on wheat (Akbari et al., 2006; Semagn et al., 2006b) 

and barley (Wenzl et al., 2004). Similar clustering in distal regions was also found in tetraploid 

wheat using PstI-based AFLP markers (Peng et al., 2000). The higher density of such clusters in 

distal regions could well be related to the trend of PstI-based markers to map in gene-rich, 

hypomethylated areas regions of the genome (Langridge and Chalmers, 1998; Moore, 2000). 

Nevertheless, it is worth noting that the high number of DArT clusters could also be a 

consequence of the presence of redundant clones on the arrayed genomic representation (Semagn 
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et al., 2006 b). Clustering around centromeres is a well-known phenomenon with all types of 

markers, resulting from centromeric suppression of recombination (Tanksley et al., 1992; Korol 

et al., 1994). The high proportion of clustering of DArT markers away from the centromeres may, 

therefore, be indicative of gene-rich regions. If this is indeed the case, DArT markers may prove 

particularly helpful for fine mapping of genes/QTLs residing in gene-rich regions, thereby 

facilitating positional cloning. 

The relatively large population sizes (146 RILs from 81B-P6 x ICMP 451-P8 and 137 

RILs from H 77/833-2 x PRLT 2/89-33) used for construction of the genetic linkage maps 

presented here as compared with other studies (62-120; Blanco et al., 1998, 2004; Röder et al., 

1998; Nachit et al., 2001; Elouafi and Nachit, 2004; Quarrie et al., 2005; Akbari et al., 2006) is 

highly advantageous for further exploitation of these maps. These larger population sizes improve 

the estimation of marker orders, which in turn improves the resolution of QTL mapping of 

agronomic traits. They also enable a greater resolution in the positioning of QTLs on the genetic 

map, while distribution of markers across the full length of the genome is required to detect all 

contributing loci (Chalmers et al., 2001). Furthermore, these maps are the most highly saturated 

linkage maps for pearl millet in terms of total numbers of markers mapped. However, it will be 

useful to use larger population sizes with such large numbers of markers in order to get more 

accuracy in marker order of these maps. 

5.4 Segregation distortion of markers 

Segregation distortion is defined as the deviation of observed genetic ratios from the expected 

Mendelian ratios in a given phenotypic or genotypic class within a segregating population. 

Various causes can lead to segregation distortion: chromosomal rearrangement (Faure et al., 

1993), alleles inducing gametic or zygotic selection (Xu et al., 1997; Lu et al., 2002), parental 

reproductive differences (Foolad et al., 1995), presence of lethal genes (Blanco et al., 1998), 

meiotic drive and competition between gametes for preferential fertilization (Lyttle, 1991). In 

general, normal Mendelian segregation can be viewed as a product of evolutionary co-adaptation, 

and of adjustment of genomic components within a species rather than an automatic outcome of 

the eukaryote meiotic mechanics (Korol et al., 1994). Indirect evidence for this is provided by the 

fact that segregation distortions frequently occur in the progeny of interspecific hybrids and are 

similar in manifestation to meiotic drive systems. Numerous examples of segregation distortion 

have been reported in many crop species including barley (Graner et al., 1991; Devaux et al., 

1995), rice (Causse et al., 1994; Xu et al., 1997), maize (Wendel et al., 1987; Lu et al., 2002) and 

wheat (Blanco et al., 2004; Peng et al., 2000; Quarrie et al., 2005). Segregation distortion is most 

commonly observed in interspecific crosses; however, previous studies showed distortion 

phenomenon also occurs in intraspecific pearl millet crosses (Liu et al., 1994 b; Busso et al., 

1995). While segregation distortion is a common phenomenon in different types of mapping 

populations, be it F2, RILs or double haploid (DH), RIL populations have the highest potential for 
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such distortions due to repeated generations of selection forces (Singh et al., 2007), which can be 

accentuated by loss of vigour with enforced inbreeding in outcrossing species such as pearl 

millet. The phenomenon of segregation distortion can be one of the limitations in map 

construction as it may affect both the establishment of linkage groups and estimation of 

recombination frequencies. Calculations of linkage distance usually assume no segregation 

distortion, which could cause over-estimation of recombination frequency between linked 

markers (Paran et al., 1995). But in the present study, the two F7 RIL populations, 81B-P6 x 

ICMP 451-P8 and H 77/833-2 x PRLT 2/89-33 showed 38.0% and 34.9% segregation distortion 

(Table 7) respectively, which did not appear to have much effect on map construction. In most 

previous studies, segregation distortion in favor of the female parent alleles was observed (Singh 

et al., 2007). In contrast, the present data showed distortion in favor of the male parent alleles in 

some genomic regions and female parent alleles in others, with the genomic regions exhibiting 

distorted segregation varying in the two RIL populations. This result should not be considered as 

a surprise if we take into account the variety of mechanisms that could contribute to the observed 

distortions such as meiotic drive, preferential abortion of gametes, effects of unusual gametophyte 

factors, non-random fertilization, and viability selection at post-syngamic stages. Clearly, these 

factors may work simultaneously and in opposite directions, favoring the alleles of the two 

parents in different genomic regions. Segregation distortion favoring alleles from a male parent 

has previously been reported in pearl millet by Liu et al. (1994 b), Azhaguvel (2001) and 

Kolesnikova (2001). It has been suggested that such segregation distortion is highly likely in 

pearl millet because of its protogynous nature (Liu et al., 1994 b) and sensitivity to inbreeding 

depression. 

5.5 QTL mapping for rust resistance 

The high density linkage map for the RIL population based on cross 81B-P6 x ICMP 451-P8 has 

been successfully used to identify QTLs for rust resistance. This study is a novel report on QTL 

mapping for rust resistance in pearl millet. The only previous report of rust resistance mapping 

(Morgan et al., 1998), reported QTLs for resistance to pathogen populations present in the 

southeastern USA, and these mapped to LG 3 and LG 4. In contrast, in the present study a major 

QTL effective in India was detected on LG 1, along with two QTL modifiers (one each on LG 4 

and LG 7), explaining 58% of observed phenotypic variation in rust reaction among the RIL 

progenies (Table 11). Highly significant differences detected by ANOVA between individual 

progenies, and high operational heritability of 0.99 demonstrated that resistance was segregating 

in the population and that much of the observed variation in rust reaction phenotype was 

attributable to genetic variation. Host rust reaction was continuously distributed in the population, 

(Fig. 13). However, this does not necessarily imply that the inheritance of rust reaction is 

complex and that many genes are segregating. In fact, as the frequency distribution of the RILs 

showed two peaks, it was anticipated that a large portion of the variation would prove to be 
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attributable to a single genomic region of large effect, and this was indeed the outcome of the 

QTL analysis. Andrews et al. (1985), and Hanna et al. (1985) previously reported that pearl 

millet rust resistance is conferred by single dominant genes (Rpp1 and Rr1, respectively) and 

susceptibility by their recessive alleles. The major rust resistance gene mapped in the present 

study is also likely to be genetically dominant although this was not tested. Further, unlike the Rr1 

gene reported by Hanna et al. (1985), it has proven durable, as it is still effective >20 years after 

its initial large-scale deployment in India in 1986 in dual-purpose pearl millet hybrid ICMH 451 

(MH 179) = 81A×ICMP 451. This study will help to assess the role of this rust resistance locus in 

providing a framework for marker-assisted selection and cloning of resistance genes. 

The results obtained from the present study indicate that DArT provides high quality 

markers that can be used to construct of high-density genetic linkage maps for plants with 

complex genomes even when no sequence information is available. DArT can effectively detect 

SNPs and InDels in the restriction sites that are used in complexity reduction during creation of 

the DArT array. An additional advantage is that DArT clones can readily be sequenced and thus 

provide information for their conversion into PCR-based markers. This can be advantageous in 

cases, such as the major rust resistance QTL detected in the present study on LG 1, when there 

are not yet any inexpensively assayed markers closely flanking a potential target that could be 

used in foreground selection for the favorable allele. DArT can be fine-tuned to detect 

polymorphism in species with various genome sizes. This fine-tuning can be achieved by using 

the appropriate complexity reduction method or by making use of enrichment techniques prior to 

cloning. Integration of DArT maps will be straightforward provided these are developed with the 

same array. High-density maps for map-based cloning and chromosome-landing approaches 

(Tanksley et al., 1995) could be rapidly built by pyramiding data from a limited number of 

independent arrays. Therefore, it can be believed that DArT is a good alternative to currently used 

techniques for whole-genome fingerprinting. By using a properly formatted genotyping array, the 

generation of a linkage map would typically take only three days. This throughput enables routine 

use of DArT in plant breeding programs; e.g., for exhaustive fingerprinting of germplasm, for 

quantitative trait locus identification, for genome background screening, for simultaneous marker-

assisted selection of several loci, or for accelerated introgression of selected genomic regions. 

Thus, DArT opens significant opportunities for plant breeding to benefit from whole-genome 

profiling, particularly in the context of improving traits with complex inheritance. 
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 CHAPTER – VI 

                  SUMMARY AND CONCLUSION 

 

In the present investigation, attempts have been made to analyze genetic diversity and identify 

QTLs for rust resistance in pearl millet using DArT. The study was broadly divided into three 

groups of activities: 

1. Development of a pearl millet DArT array and diversity analysis of diverse pearl millet 

inbred lines using this array. 

2. Genotyping of two mapping populations using DArT and SSR markers and linkage map 

construction. 

3. QTL identification for rust resistance. 

The results obtained in the present study are summarized below: 

1. PstI/BanII-based complexity reduction was used to develop a pearl millet DArT array 

with a DNA representation from 95 diverse genotypes. 

2. The amplified inserts obtained after transformation ranged from 300-1000 bp in size. 

3. The DArT array constructed consisted of 7680 clones with overall 10% missing 

fragments. Thus, overall the array has approximately 6912 clones. 

4. A set of 24 diverse pearl millet inbred lines were genotyped using the DArT array for 

diversity analysis. A total of 574 polymorphic DArT markers were identified from the 

total of 6912 clones on the array (8.3% of polymorphic clones), with 91.6% average call 

rate, 100% scoring reproducibility, 0.30 average PIC value, 76.1% average P value and 

75.2% average Q value. 

5. The DArT-based cluster analysis discriminated well between the 24 inbred lines of pearl 

millet and these were grouped into two main clusters. Cluster I was comprised of 12 

inbred lines including restorer lines, downy mildew resistance sources and Iniadi 

landrace-derived mapping population parental lines. Cluster II consisted of 11 inbreds, 

which were mainly seed parents; whereas ICMB 90111-P6, an inbred derived from the 

ICRISAT Early Composite, was entirely separated from the two main clusters. 

Relationships detected by this cluster analysis between different subsets of the 24 inbreds 

were in agreement with their known pedigree relationships. 

6. 168 F7 RILs from the cross 81B-P6 x ICMP 451-P8 were genotyped using the DArT 

array and 256 segregating DArT markers (3.7% of polymorphic clones) were identified. 

The average call rate was 89.5% with 100% scoring reproducibility, 0.46 average PIC 

value, 81.3% average P value and 80.9% average Q value. 

7. Scorable amplification products were detected by capillary electrophoresis for 25 

(83.3%) of 30 SSR markers used for genotyping of the (81B-P6 x ICMP 451-P8)-based 
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RIL mapping population. This data was merged with that for 49 SSRs previously 

genotyped at ICRISAT for this RIL population. 

8. Out of the total 326 polymorphic markers (256 DArT and 70 SSRs) used for assembling 

the linkage map using 146 RILs data for the cross 81B-P6 x ICMP 451-P8, 286 loci (229 

DArT markers and 57 SSRs) were mapped across the expected 7 linkage groups. The 

total map length was 740.3 cM (Haldane) with an average adjacent-marker distance of 

2.6 cM. 

9. After genotyping the RIL mapping population based on cross H 77/833-2 x PRLT 2/89-

33 with the DArT array, 310 polymorphic DArT markers (4.5%) were scored. The 

average call rate was 87.6% with 99.5% scoring reproducibility, 0.47 average PIC value, 

79.5% average P value and 79.1% average Q value. 

10. Along with 309 DArT markers, 80 previously genotyped polymorphic SSR markers were 

integrated into the data set. Out of these 389 markers, 321 loci (258 DArTs and 63 SSRs) 

were mapped across the expected 7 linkage groups. The (H 77/833-2 x PRLT 2/89-33)-

based genetic linkage map spanned 1148 cM (Haldane), with an average adjacent-marker 

distance of 3.6 cM. 

11. Out of 326 markers analyzed on 146 RILs of 81B-P6 x ICMP 451-P8, 124 (38.03%) 

showed segregation distortion from the expected 1:1 ratio. Sixty markers (18.4%) showed 

distortion in favor of the 81B-P6 allele whereas 64 (19.6%) showed distortion in favor of 

the ICMP 451-P8 allele. 

12. Segregation distortion was found in 136 markers (34.9%) out of 389 markers analyzed on 

137 RILs of H 77/833-2 x PRLT 2/89-33. Thirty-seven (9.5%) showed distortion in 

favour of the H 77/833-2 allele whereas 99 (25.4%) showed distortion in favour of the 

PRLT 2/89-33 allele. 

13. Seventy-eight markers (56 DArT and 22 SSRs) were common between the two RIL 

populations, permitting the development of a well-saturated pearl millet consensus 

linkage map of DArT and SSR markers. 

14. Rust reaction on 167 RILs of the cross 81B-P6 x ICMP 451-P8 was assessed using 

artificial inoculation of pot-grown seedlings and rust severity ranged from 0 to 95% with 

an operational heritability of 99%. 

15. Out of the 167 RILs, 32 lines were resistant, 18 moderately resistant, 73 moderately 

susceptible, 40 susceptible and the remaining 4 lines were highly susceptible to rust. 

Among the parents, 81B-P6 was highly susceptible and ICMP 451-P8 was resistant to 

rust. 

16. A major QTL (LOD 27) was detected near the top of linkage group 1 (LG 1) explaining 

58% of the observed phenotypic variation in rust reaction, along with two modifiers  (one 

each on LG 4 and LG 7) explaining 9% and 8% of the phenotypic variation, respectively. 
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Favourable alleles for the QTLs on LG 1 and LG 7 were from resistant parent ICMP 451-

P8. 

 It is concluded that the present study is the second report of the use of DArT 

technology in pearl millet and DArT markers were mapped for the first time in this species. 

The study has been proved to be useful for diversity assessment of inbred lines and for rapid 

development of reasonably-well saturated genetic linkage maps of RIL populations that can 

be used for precise and fine QTL mapping. It is anticipated that this DArT array will also 

prove useful for background genotyping in marker-assisted backcrossing programs to speed 

up recovery of elite recurrent parent genetic background on genomic regions outside that 

targeted for introgression of donor parent alleles. The rust resistance locus identified on LG 1 

is a novel report and will be useful for providing a framework for marker-assisted selection 

and cloning of resistance genes. 
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Abstract  

Diversity Arrays Technology (DArT) was used for diversity analysis and QTL mapping 
in pearl millet. DArT array was developed from 95 diverse genotypes using PstI/BanII 
complexity reduction method and consisted of 6912 clones. 574 DArT markers were 
identified after genotyping a diverse set of 24 inbred lines. Genetic relationships revealed 
by cluster analysis were in agreement with their known pedigree.  
 
Two mapping populations (81B-P6 x ICMP 451-P8 and H 77/833-2 x PRLT 2/89-33) 
were genotyped with DArT array and SSR markers and high-density genetic linkage 
maps were constructed. The maps of respective populations comprised of 286 loci with 
740.3 cM map length and 321 loci spanning 1148 cM. DArT markers were mapped for 
the first time in pearl millet. 78 markers were common across the two populations which 
allow the development of a well-saturated consensus linkage map. 

 
167 RILs derived from cross 81B-P6 x ICMP 451-P8 were assessed for rust reaction and 
a major QTL (LOD 27) was mapped near the top of LG 1 explaining 58% of the 
observed phenotypic variation and the allele of resistant parent ICMP 451-P8 conferred 
resistance. This study is a novel report on QTL mapping for rust resistance in pearl millet 
on LG 1.  
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