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A B S T R A C T   

Sorghum contributes to the livelihoods of millions of food-insecure households in semi-arid agri-systems. Annual 
production widely fluctuates throughout India due to erratic rainfall and suboptimal agronomic practices. Our 
novel approach utilizes the digital reflection of post-rainy (rabi) sorghum production systems in India to help 
better understand its spatio-temporal variations and enable the designing of geography-specific, climate- 
responsive system interventions (Genotype × Management; GxM). For this, we evaluated a range of farmer- 
relevant agronomic management practices across three soil types (shallow, medium, and deep vertisols) in 
combination with observed ranges of biological variability in sorghum cultivar characteristics. We used the crop 
growth simulation model Agricultural Production Systems sIMulator (APSIM) to identify GxM combinations that 
can support the enhancement/ stability of post-rainy sorghum production systems in India. In general, we found 
the post-rainy sorghum systems would benefit from early-season sowing (16th - 23rd September), short crop 
duration (compared to Maldandi (M35–1), commonly grown crop type), and medium fertilizer inputs (70–70 kg 
urea ha− 1 as basal and top-dress application). In addition, site-specific crop management (M) and crop characters 
(G) optimizations would further enhance/ stabilize sorghum production. Simulations highlighted that in the 
poorly-endowed environmental context (i.e. shallow soils and low-rainfall areas), optimal G×M targets might 
involve water conservation GxM combinations, such as low plant populations and low fertilization along with 
low crop vigor and limited transpiration responsiveness. Details on site-specific optimum GxM are available in a 
web application at https://ls40.pef.czu.cz/maps/. To enable the use of the study outputs for certain applications 
(e.g. breeding), we separated the examined geographies based on similarities in optimum production charac-
teristics and similarities in system response to GxM interventions into four “homogeneous system units” (HSU; i. 
e. geographical units within which reduced GxM interactions are expected). These HSUs intended to offer 
geography-specific targets to prioritize, test, and introduce distinct G×M interventions. We conclude that the 
APSIM-powered framework presented provides region-specific Genotype × Management options that could 
become a blueprint for defining quantitative breeding targets that achieve enhanced productivity/ stability of 
dry-season sorghum cultivation throughout India.   
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1. Introduction 

Sorghum (Sorghum bicolor (L.) Moench) is a largely variable crop 
species adapted to cultivation across tropical to temperate climates and 
grown primarily for human food and animal feed as well as for the 
production of biofuels (Habyarimana et al., 2019). In India, sorghum is 
one of the few multi-purpose, resilient crops suitable for marginal lands 
during the post-rainy (rabi) season (typically September - January) and 
supports the livelihoods of millions. Frequent droughts caused by cli-
matic variability combined with low input agronomic practices are the 
main reasons why the farmer’s yields across the rabi sorghum tract 
fluctuate and the average grain yields stagnate at ~800 kg ha− 1 despite 
yield potential being much higher (~3500 kg ha− 1; Ambadi et al., 2018; 
Dayakar Rao et al., 2009). A sensible way to bridge this yield gap is to 
analyze the major constraints of the production system (Kholová et al., 
2013) and design the appropriate Genotype × Management (G×M) in-
terventions to lift current yields closer to their potential (Soltani et al., 
2016; Pradhan et al., 2015; Chauhan and Rachaputi, 2014; Kholová 
et al., 2014). Traditionally, multi-location field trials are used to eval-
uate cultivar, management, and environment interactions (GxExM) 
in-situ. However, field trials are time and resource-consuming and re-
sults are often difficult to extrapolate to other sites and seasons. In this 
situation, validated crop modeling set-ups in conjunction with field data 
can extrapolate the GxExM analyses across the spatio-temporal scales 
and can be used to capture the system’s behavior and fluctuating GxExM 
interactions. By doing so, this approach can complement in-vivo field 
observations with in-silico predictions which could not be covered 
experimentally (Jones et al., 2017). For sorghum, several crop models 
have been implemented in simulation frameworks such as the Decision 
Support System for Agrotechnology Transfer (DSSAT) (Jones et al., 
2003), Agricultural Production Systems sIMulator (APSIM) (Holzworth 
et al., 2015) or Samara (Dingkuhn et al., 2011). These models differ in 
the implementation of algorithms to capture the soil-crop-atmosphere 
interactions. 

In prior studies, we found that an APSIM based set-up can reliably 
reflect the agronomy of post-rainy season sorghum production systems 
(Kholová et al., 2013, 2014). Therefore, in our present work, we aim to 
expand the existing post-rainy sorghum simulation set-up and deploy 
the structure in order to identify the optimum Genotype × Management 
options to improve/ stabilize sorghum production. This analysis is 
intended to support crop improvement program decision making on 
region-specific crop and management interventions that can potentially 
improve/ stabilize production across the rabi sorghum tract in India. 
This is presented in the form of an open-access interactive web-based 
tool to ensure stakeholders access and use. 

2. Materials and methods 

2.1. Overview 

The majority of the Indian rabi sorghum grain is produced in 
Maharashtra, Karnataka, Andhra Pradesh, and Telangana (as per 
Kholová et al. (2013) and is the unique production system prioritized for 
this study. The parameters for three soil types characteristic of these 
major production areas were collated from available databases (Na-
tional Bureau of Soil Survey and Land Use Planning, International Soil 
Reference and Information Centre). The gridded meteorological infor-
mation was obtained from Agricultural Modern-Era Retrospective 
Analysis for Research and Applications (AgMERRA) – National Aero-
nautics and Space Administration (NASA) and evaluated as most suit-
able when tested against the observed meteorological information (also 
in Hajjarpoor et al., 2018). Crop simulations were developed using the 
sorghum model in APSIM (see Holzworth et al., 2015; Keating et al., 
2003; Hammer et al., 2010). The rabi sorghum crop type M35–1 and its 
validated genotypic coefficients were used as a base for the agri-system 
evaluation (Hammer et al., 2010; Ravi Kumar et al., 2009; Kholová et al., 

2013, 2014). This base was further expanded with system-relevant 
combinations of management practices and rabi-sorghum relevant 
cultivar parameters. The spatio-temporal information on optimum Ge-
notype x Environment and production parameters were finally used to 
separate the region into clusters with higher levels of similarities in these 
characteristics. 

2.2. APSIM sorghum module 

APSIM set-ups from previous work (Ravi Kumar et al., 2009; Kholová 
et al., 2013, 2014) were used in this study to simulate sorghum growth 
and development with a range of weather and soil information, man-
agement, and genetic coefficients representing the major post-rainy 
sorghum production regions. Altogether, we ran 4,299,264 simula-
tions to analyze the post-rainy sorghum production system in India. A 
detailed description of the APSIM model is available in Holzworth et al. 
(2014, 2015) and Hammer et al. (2010). In short, the APSIM sorghum 
module algorithms process the interactions between the daily weather 
(rainfall, minimum and maximum temperature, solar radiation) and soil 
inputs considering the crop management practices and crop genetic 
coefficients to arbitrate the daily status of the soil-crop-atmosphere 
continuum and integrates this information into comprehensive outputs 
on crop development, growth and the production used for further 
analysis in this study. 

2.3. Model inputs 

2.3.1. Soil information 
Throughout the main rabi sorghum production tract in India 

(Maharashtra, Karnataka, Andhra Pradesh, and Telangana), sorghum is 
usually grown on vertisols (International Soil Reference and Information 
Centre; Kumar et al., 2017). The variation in soil depth and water 
holding capacity significantly influences crop production. Accordingly, 
for each simulation unit, the Genotype × Management options were 
tested in the context of the 3 vertisol composites (bulk density ~1.4 g 
cm-3; ~0.7% organic carbon; C:N ~14.5) with varying soil depth and 
plant available water (PAW); i.e. shallow (70 cm depth; 94 mm PAW); 
medium (105 cm depth; 132 mm PAW); deep (150 cm depth; 144 mm 
PAW). In all soils, the soil nitrogen content was set for 50 kg ha− 1 NO3 
and 10 kg ha− 1 NH4. The soil conditions were automatically 
re-initialized before each season’s simulation. These soil parameters 
were compiled from the reports of measured soil parameters gathered by 
the International Soil Reference and Information Centre (ISRIC) and the 
National Bureau of Soil Survey and Land Use Planning (NBSS & LUP) in 
Bangalore. 

2.3.2. Weather information 
As there is a general lack of quality weather information accessible in 

India, we tested several commonly used synthetic weather data (daily 
Tmin, Tmax, rainfall) from different sources (Agricultural Modern-Era 
Retrospective Analysis for Research and Applications (AgMERRA; 
https://data.giss.nasa.gov/impacts/agmipcf/agmerra/), NASA-POWER 
(https://power.larc.nasa.gov) and MarkSim (MarkSim® GCM - DSSAT 
weather file generator (cgiar.org)). To complement these datasets, solar 
radiation was estimated using an algorithm based on sunshine hours and 
extraterrestrial radiation (Soltani and Hoogenboom, 2003; Soltani and 
Sinclair, 2012). The synthetic weather data was then compared with the 
observed weather information according to i) their agreement with 
observed Tmax and Tmin and sum of rainfall and ii) the agreement 
between the mean simulated yields using observed weather data were 
compared against yields using synthetic weather data from the same 
locations. The distribution of meteorological stations and records used 
for comparison with synthetic data is described in Supplementary Fig. 1. 

We used standard metrics to indicate the goodness of fit; i.e. corre-
lation coefficient (R2), root mean square error (RMSE - Eq. 1), and index 
of agreement (D-index). The D-index was proposed by Willmott et al. 
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(1985) specifically for modeling studies. D-index value range is − 1–1 
(Eq. 2) and, accordingly, a D-index value closer to one indicates closer 
agreement between the two variables compared. 

Equations are listed below: 

RMSE(root mean square error) =

[
∑n
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n
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where n is the number of observations, Pi is the predicted observation, 
Oi is a measured observation, and P′

i= Pi - M and O
′

i = Oi - M (M is the 
mean of the observed variable). 

2.3.3. Crop specific coefficients used in the APSIM model 
Crop coefficients need to be specified in APSIM-sorghum to reflect 

the growth and developmental characteristics of a crop cultivar. In our 
case, we used rabi sorghum – Maldandi, M35–1 (Kholová et al., 2013; 
Ravi Kumar et al., 2009; tt_endjuv_to_ini = 250; TPLA max = 2.8; VPD 
responsiveness = 0.95) crop coefficients to define a rabi sorghum 
“template”. The synthetic cultivars were created by altering the M35–1 
genotypic coefficients (Kholová et al., 2014) which had previously been 
found relevant for the development of improved rabi-sorghum cultivars, 
extensively studied, quantified, and tested in-vivo and in-silico using the 
APSIM platform (Kholová et al., 2013, 2014; Ronanki et al., 2018; Vadez 
et al., 2011). These include 1) “tt_endjuv_to_ini” which corresponds to a 
duration of end-of-juvenile to panicle-initiation developmental phase 
[thermal time units; TT] and specify the crop cycle duration; 2) coeffi-
cient of “TPLAmax” function which specifies the growth of total plant 
leaf area during the plant development, and 3) “VPD responsiveness” 
which defines the crop transpiration responsiveness to vapor pressure 

deficit (Hammer et al., 2010; https://www.apsim.info/documenta 
tion/model-documentation/crop-module-documentation/sorghum/). 
The parameters and their ranges used in this study are reported in  
Table 1. 

2.4. Simulations setup 

APSIM is a process-based cropping systems simulation tool capable 
of reproducing the range of agronomic interventions and the base of 
several commercial applications; e.g. YieldProphet ® (Yield Prophet) 
(Hochman et al., 2009), WhopperCropper (The Regional Institute - J. 
Managing Climate Variability - Crops), CropARM (Decision support 
tools and modeling | Tasmanian Institute of Agriculture (utas.edu.au) 
(Richter et al., 2017). The APSIM sorghum module v. 7.6, with incor-
porated algorithms enabling simulations of crop transpiration respon-
siveness to atmospheric drought (details in Kholová et al., 2014), was 
set-up for each of the 311 gridded weather time-series (31 seasons; 
AgMERRA-NASA series), soils typically sown to rabi sorghum in the 
region (shallow, medium and deep vertisol; Trivedi, 2009; Jirali et al., 
2010; https://www.millets.res.in/farmer/Recommended_pack-
ages_of_practices_Rabi_sorghum.pdf), 3 cultivar-specific parameters 
representing the biological variation in sorghum crops (G) and a range of 
management practices (M) relevant for the region. This resulted in 4, 
299,264 simulations (Table 1). The baseline for the simulations was 
inspired by the recommended management practices for growing 
post-rainy season sorghum documented by Rooney et al. (2007), Trivedi 
(2009), and Olson (2012). The range of variation in the crop manage-
ment practices (Ravi Kumar et al., 2009) relevant for the region was 
used as per the discussion with experts from the Indian Institute of 
Millets Research (IIMR), and International Crops Research Institute for 
Semi-Arid Tropics (ICRISAT) crop improvement teams and farmers 
(Table 1). Dimes and Revanuru (2004) previously tested the suitability 
of APSIM to reproduce these M interventions (Nitrogen), Turner and Rao 
(2013) looked at plant density and cultivar duration and Akinseye et al. 
(2020) sowing dates. The sowing within each of the specified sowing 
windows (Table 1) was triggered by a minimum of 9 mm of rainfall 
within 5 days. Upon meeting these requirements, APSIM initiated the 
sowing with the specified combination of inputs. The soil carbon and 
nitrogen were re-initialized before each sorghum season. The soil 
moisture profile at sowing was assumed to be fully saturated after the 
rainy season in all grids and, in addition, farmers often use irrigation 
after sowing to ensure germination (Trivedi, 2009). After setting up the 
simulation runs, all the Genotype × Management combinations were 
evaluated in-silico in all grids covering the rabi sorghum production 
regions. 

2.5. Automation of APSIM runs with C# 

The APSIM sorghum model was run using environmental data 
spanning 31 years with a total of 13,824 Genotype × Management 
combinations in 311 grids. In total 4,299,264 simulations were per-
formed to generate the complete set of output files. This is a time- 
consuming task and a single commodity computer would take years to 
run this amount of simulations (Jarolímek et al., 2019). Additionally, 
the system requires huge storage capacities to hold the generated output 
files. Despite the fact that APSIM is designed to perform intended runs, 
the number of simulations exceeded the capacity of its in-built features. 
Therefore, we used supporting software tools for automation and 
scheduling of the designed factorial runs to tackle the large number of 
simulations. Simulations were generated by a custom software solution 
developed using the.NET framework and C# programming language. 
This resulted in a special software application that scheduled and 
generated simulation runs in batches as per the computational capacity 
of the available high-performance computing facility at the Czech Uni-
versity of Life Sciences Prague (128 GB RAM, 16 core AMD EPYC 7281 
2.7 GHz CPUs). Therefore, the batches were run in parallel on 7 

Table 1 
Overview of the variation in crop management (M) practices and in crop genetic 
(G) coefficients (representing a range of biologically relevant crop variants) 
tested by the crop growth model in the context of different soils. These resulted 
in 13,824 GxM combinations that were simulated within 311 grids to evaluate 
the optimum GxM supporting crops production/ resilience across post-rainy 
sorghum production systems in India. Here the tt_endjuv_to_ini corresponds to 
the duration of the end of juvenile to panicle initiation phase [thermal time 
units]; TPLA stands for total plant leaf area and corresponds to the power co-
efficient of the TPLAmax function, VPD stands for vapor pressure deficit of two 
crop types (VPD responsive and non-responsive crop types were created as 
detailed in Kholová et al., 2014).  

M/ 
G/ 
soil 

G/M/soil variation (APSIM coefficient/ 
module used) 

Range of variation in G/M/soil 
(varied unit) 

soil Soil Shallow soil (70 cm); Medium 
soil (105 cm); Deep soil (150 cm) 

M Sowing window 16th September – 23rd 
September; 
23rd September – 30th 
September; 
30th September – 7th October; 
7th October - 14th October; 
14th October – 21st October; 
21st October – 28th October 

M Planting density 6; 8; 10; 12; 14; 16 plants m− 2 

M Nitrogen fertilization (Urea application 
schedule) 

0–0; 20–20; 50–50; 
100–100 kg ha− 1 

G Crop duration 
(tt_endjuv_to_ini; [TT]) 

Very Early (150); Early (200); 
Medium (250); Late (300) 

G Rate of canopy growth, vigor [power 
coefficient for TPLA max function in 
APSIM] 

Low (2.4); Medium (2.6); High 
(2.8); Very high (3.0) 

G Transpiration responsiveness 
[Capacity of the canopy to limit 
transpiration in high VPD] 

Low (0.95); High (0.80)  
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high-performance computers. Further technical details on this process 
are documented in Jarolímek et al. (2019). 

2.6. Output analysis and visualization using interactive online tools and 
maps 

Each of the simulation output files containing a particular Genotype 
× Management scenario generated for 31 seasons within each grid was 
evaluated for the main agronomically important parameters linked to 

the production quantity (mean of grain yield, stover yield, Eq. 3), and 
production stability (frequency of years with yield failure, Eqs. 4–6 and 
standard deviation of total biomass - grain and stover, Eq. 3). This was 
achieved by creating the index to weigh each of these outputs according 
to its anticipated importance of the farmers’ demands on sorghum 
production in two scenarios: “production” and “stability” scenarios 
(Table 2, Eqs. 3–7; similarly in Thornton et al., 2018). The range of 
approaches to quantify agri-system production and stability were 
comprehensively reviewed in Zampieri et al. (2020) (used in e.g. Des-
camps et al., 2018, Thornton et al., 2018). In this work, we adapted some 
of these simple concepts to evaluate production and stability based on 
the available crop model outputs. 

The “production scenario” intended to reflect the likely demand of 
the more economically secure sorghum farmers and increased the 
weightage of production indicators (mean of grain yield, stover yield, 
Eq. 3, Table 2). The “stability scenario” was designed to reflect the likely 
needs of economically vulnerable sorghum farmers and so the propor-
tionally higher weightage was introduced to production stability in-
dicators, minimizing the probability of grain yield failure and year-to- 
year total biomass fluctuations, (Eqs. 4–6, Eq. 3; Table 2). Accord-
ingly, in the production scenario, the index considered the production 
factor weight of 70% (grain and stover yield; 40%; 30%) and 30% 
weightage of stability indicators that penalized production fluctuations 
and yield failure, i.e. frequency of years where crops failed to reach the 
grain filling stage with grain yield 0 and biomass deviation; 15%, 15% 
respectively (Table 2, Eqs. 3–7). ￼I￼n the “stability” scenario, the 
higher weightage was introduced ￼to￼ the stability indicators￼,￼ i.e. 
weightage of production factors was only 30% (grain and stover yield; 
17.14%; 12.86% respectively) with 70% weightage on stability in-
dicators￼, i.e.￼ frequency of years with yield failure and biomass de-
viation; 35%, 35%, respectively￼ (￼Table 2, Eqs. 3–7). 

The simulation index was calculated for each grid and combination 
of GxM and is an aggregated value of several features representing the 
simulation’s time series. A simulation index consisted of grain yield, 
stover yield, and biomass deviation scores which were calculated as 
differences from the mean normalized by dividing by standard devia-
tion, which is often referred to as “standard score” or “z-score” in sta-
tistics. The simulation average was calculated from the 31 years of 
simulation data for each particular GxM combination, while the overall 
average and standard deviation was calculated from all simulations 
within the same soil group in the given grid (Eq. 3). 

Grain yield, stover, and biomass deviation scores were calculated as 
standard score (calculated as difference from the mean divided by 
standard deviation): 

standard score of X =
average value of X − average value of ALL

standard deviation of ALL
(3)  

where X is a currently evaluated simulation and ALL are all simulations 
within the same soil group in that particular grid. 

Production failure score was calculated to penalize simulations that 
contained the years with grain yield failure (Eq. 4) or simulations where 
the ratio of successful growth years to ALL years was below 80% (Eq. 5). 
The final failure score (Eq. 6) considered the higher of the two values 
(which increase quadratically): 

yield failure score = (ratio of yield failure *10)2 (4)   

total failure score = max(yield failure score, simulation failure score) (6) 

The final simulation index (production and stability) was then 
calculated by multiplying the scores above (Eqs. 3, 6) by weights 
depending on the scenario (see Table 2). For example, the calculation of 
simulation weighting index for the production scenario was: 

simulation index = 0.4*grain score + 0.3*stover score

− 0.15*biomass score − 0.15*total failure score (7) 

For each grid, the simulation index for production and stability 
scenarios was generated and the 10 simulations resulting in the highest 
index within each scenario selected. Within each scenario, 10 simula-
tions with the maximum simulation index score were evaluated for the 
occurrence of particular Genotype × Management combinations. These 
were then stored in a database and can be use for visualization using an 
interactive web application available at https://ls40.pef.czu.cz/maps/; 
Source code is available at https://github.com/culs-fem-dit/APSIM- 
maps). The frontend uses React JavaScript framework and Google 
Maps API and the backend Nette PHP framework. Users can choose four 
parameters to be shown in the map - main variable, soil type, cultivation 
scenario, and cultivar (optimal G combinations or M35–1 representing 
Maldandi crop). Results for an entire grid are visualized in the form of a 
discrete heatmap. Additionally, users can show a second map for the 
comparison of different interventions and scenarios. In this way, the user 
can easily visualize the maximum attainable agronomically important 
parameters (grain and stover yield) with optimized Genotype and 
Management (or optimized M for currently grown M35–1 crop type) 
while understanding which Genotype and Management combinations 
lead to this outcome within specific geographic units. 

Table 2 
The table shows the weightage of simulated production quantity (grain yield, 
stover yield) and production stability (biomass deviation, years with grain yield 
failure) indicators for the construction of the simulation weighting index. The 
value of each of the indicators was weighted (%) for the construction of a single 
simulation index (Eqs. 3–7). This was used to evaluate a particular GxM com-
bination across 31 seasons of simulations within a particular grid and separately 
for both scenarios.  

Scenario/ 
parameter 
weightage 

Grain Yield,  
Eq. (3) 

(average of 31 
simulated 

years) 

Stover 
Yield,Eq. (3) 
(average of 

31 
simulated 

years) 

Biomass 
deviation;Eq. 
(3) (across 31 

simulated 
years) 

Frequency of 
years with 
grain yield 

failure;Eq. (4) 
(across 31 
simulated 

years) 

Production 70% 30% 
40% 30% 15% 15% 

Stability 30% 70% 
17.14% 12.86% 35% 35%  

simulation failure score = max(((0.8 − ratio of successful simulation years)*10)2
, 0) (5)   
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2.7. APSIM output file analysis 

2.7.1. Identification of GxExM for optimal production and resilience 
scenarios 

Within each grid and soil type (representing a particular E) the 
output files representing particular Genotype × Management combina-
tions were evaluated using the production and stability scenario index 
(see Section 2.6). For each simulation grid, the obtained scenario- 
specific indexes were sorted and the resulting distribution evaluated 
using interquartile range and z-score to detect possible outliers (details 
in Suppl. Fig. 2). This approach revealed that the top-end of the distri-
bution does not contain any obvious outliers and that the approach of 
penalizing simulations with high yield failure or simulation failure rates 
(Eqs. 4 and 5) was sufficient to disqualify many of the simulations that 
appeared on the lower tail of the distribution. Additionally, the k-means 
clustering method was applied to visually inspect the proportion of the 
data that should be utilized for further analyses (Suppl. Fig. 2). After 

several manual iterations, we decided that the 10 simulations attaining 
the highest index for each scenario would be a sufficiently large sample 
to provide insight on the main characteristics of the sorghum system for 
a particular grid (Suppl. Fig. 2; Table 4a, b); These “10 best” simulations 
would now include the particular combinations of Genotype 
× Management leading to superior agronomic performance of the sys-
tem (E in the particular grid) in the “production” and “stability” sce-
narios. The analysis outputs within the “10 best” simulations are 
summarized in Suppl. Fig. 3a, b, and 4 - further grid details can be 
visualized and dissected using the web application. 

2.8. Identification of geographically homogeneous system units 

For this task, the Principal Components Analysis (PCA) was run for 
each combination of grid, soil, and scenario (production, stability) for 
the characteristics that define the 10 simulations attaining the highest 
scenario-related index (see above). The loadings for 3 Principal Com-
ponents (explaining altogether >80% of dataset variation) of each sce-
nario and soil have been averaged across each grid. Resulted average 
loadings of 311 grid items were initially separated into 3, 4 and 5 
clusters (R package; https://www.r-project.org/, Table 4), visualized 
and the cluster-specific production and stability characteristics calcu-
lated. Considering the 3–4–5 cluster characteristics and after consulta-
tion with experts (ICRISAT and IIMR sorghum breeding teams), 4 
clusters appeared the most sensible to be effectively used in crop 
improvement programs (discussed in 4.3). Subsequently, geographical 
distribution of the cluster associated with each grid item was visualized 
using ArcGIS software v.1.0 and the main characteristics within each 
cluster summarized (Fig. 3; optimal Genotype × Management and 
agronomic characteristics of cropping system). This approach allowed 
us to separate the geographies with relatively similar responses to the 
cultivars and management interventions (i.e. “homogeneous system 
units”). 

3. Results 

3.1. Selection of an appropriate source of meteorological input 

To identify the most reliable source of meteorological input, three 
data sources were obtained and tested (AgMERRA-NASA, NASA- 
POWER, MarkSIM (these are described in detail in Ruane et al., 2015; 
Thornton et al., 2018; Jones et al., 2002; Rienecker et al., 2011). In all 
three datasets, there was a good agreement with the observed monthly 
temperature averages (Tmin, Tmax; Table 3). The monthly in-season 

Table 3 
Statistical metrics used for evaluation of agreement between the three sources of 
gridded meteorological characteristics (AgMERRA-NASA, NASA-POWER, 
MarkSIM) with observed meteorological characteristics; R2 (Pearson’s correla-
tion coefficient), RMSE (root mean squared error), D-index. The actual correla-
tions are visualized for AgMERRA-NASA data on Fig. 1a, b and Fig. 2a, b.  

Weather Source Meteorological/ agronomic 
characteristic 

R2 RMSE D- 
index 

AgMERRA- 
NASA 

Maximum Temperature (monthly 
means) 

0.88 1.06 0.96 

Minimum Temperature (monthly 
means) 

0.83 2.03 0.89 

Rainfall (monthly in-season mean) 0.86 0.61 0.96 
Grain Yield (site average) 0.88 691 0.96 
Biomass (site average) 0.88 1857 0.74 

NASA-POWER Maximum Temperature (monthly 
means) 

0.68 1.74 0.89 

Minimum Temperature (monthly 
means) 

0.79 1.46 0.94 

Rainfall (monthly in-season mean) 0.96 0.34 0.98 
Grain Yield (site average) 0.36 1520 0.27 
Biomass (site average) 0.27 2708 0.36 

MARKSIM Maximum Temperature (monthly 
means) 

0.48 2.36 0.81 

Minimum Temperature (monthly 
means) 

0.71 1.85 0.90 

Rainfall (monthly in-season mean) 0.74 0.85 0.95 
Grain Yield (site average) 0.25 1988 0.19 
Biomass (site average) 0.32 3047 0.19  

Fig. 1. a, b. Comparison of minimum (red circles) and maximum (blue circles) temperature from the gridded AgMERRA weather dataset with observed temperature 
(a) and comparison of in-season rainfall (October - March) from the gridded AgMERRA weather dataset with observed rainfall of the same period (b). In each graph, 
the middle (red) line represents 1:1 relation and the other (blue) lines represent the 30% divergence percentile of the 1:1 line. (For interpretation of the references to 
colour in this figure, the reader is referred to the web version of this article.) 
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rainfall averages were still in good agreement for AgMERRA-NASA and 
NASA-POWER datasets but the statistical metrics were notably lower for 
the MarkSIM data (Table 3). Consequently, the statistical metrics 
describing the relation between agronomic parameters simulated with 
the observed meteorological datasets and the three tested sources of 
gridded meteorological information were considerably better for 
AgMERRA-NASA (Table 3; visualized in Fig. 1a, b, Fig. 2a, b). Based on 
these results, gridded AgMERRA-NASA data was used to expand the 
spatio-temporal dimensions of simulations. Consequently, 311 gridded 
meteorological records (each grid size 0.5◦x 0.5◦ encompassing 31 years 
of weather records (1980–2010)) were used to cover the major rabi 
sorghum production tract in India. 

3.2. Genotype × Management runs across the grid; main characteristics 
of the processes, generated data and maps 

The APSIM sorghum model was run across the Indian rabi sorghum 
production tract (311 grid items) producing a total of 4,299,264 simu-
lations. Computation took approximately 14 days including several 
downtime periods and generated 14.6 TB of output data. APSIM is 
natively set to generate the data in raw text format. Therefore, specif-
ically for our study, follow-up processing was necessary to extract and 
parse the relevant pieces of information. This text information was 
transformed into.csv file format to ease the calculations required for the 
study (a program was written in C# language to select only the relevant 
data. All this data is available at DOI:10.5281/zenodo.5256068 
(https://zenodo.org/record/5256068#. YSYy_S0Rpf0). Statistical 

Fig. 2. a, b. Comparison of (a) grain yield and (b) total biomass simulation output from the APSIM model with observed weather data versus running APSIM with the 
synthetic data of AgMERRA (from Fig. 1a, b). Middle (red) lines represent a 1:1 line and the other (blue) lines denote a 30% divergence percentile of the 1:1 line. (For 
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

Table 4a 
The overview of crop production parameters (grain, stover and total biomass yield [kg ha− 1]) and parameters linked to crop stability (proportion of seasons with grain 
yield failure and standard deviation in total biomass production) averaged across “10 best” simulations attaining highest scenario-weighting index within each 
scenario and for each of the 3 soils. These parameters were evaluated for site-specific optimal G combinations with optimized M practices (Table 4a) and Maldandi- 
specific G parameters with optimized M practices (M35–1; Table 4b).  

Scenario Soil Grain yield [kg ha− 1] Stover yield [kg ha− 1] Proportion of seasons with grain yield failure [%] Deviation in total biomass production 
[kg ha− 1] 

Production All soils 2690 4911 16 986 
Shallow 2166 4185 35 1146 
Medium 2819 5279 14 1104 
Deep 3085 5270 0 707 

Stability All soils 2455 4318 0 551 
Shallow 2032 3459 1 556 
Medium 2718 4667 0 644 
Deep 2615 4827 0 452  

Table 4b 
The overview of crop production parameters (grain, stover and total biomass yield [kg ha− 1]) and parameters linked to crop stability (proportion of seasons with grain 
yield failure and standard deviation in total biomass production) averaged across “10 best” simulations attaining highest scenario-weighting index within each 
scenario and for each of the 3 soils. These parameters were evaluated for site-specific optimal G combinations with optimized M practices (Table 4a) and Maldandi- 
specific G parameters with optimized M practices (M35–1; Table 4b).  

Scenario Soil Grain yield [kg ha− 1] Stover yield [kg ha− 1] Proportion of seasons with grain yield failure [%] Deviation in total biomass production [kg ha− 1] 

Production All soils 2298 4607 22 830 
Shallow 1753 3927 50 982 
Medium 2445 4895 14 914 
Deep 2695 5000 0 595 

Stability All soils 2136 4217 5 570 
Shallow 1649 3479 12 638 
Medium 2368 4543 2 644 
Deep 2391 4630 0 429  
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analysis was done using the MS Excel environment in combination with 
basic tools provided by excel and specialized macros written in Visual 
Basic specifically for this task. 

3.3. Production gains achievable by optimizing crop management and 
cultivar choice 

Table 3a, b summarize the agronomic performance indicators of the 
top 10 best-simulated scenarios (i.e. attaining the highest index under 
production and stability scenario) for optimal cultivar (i.e. optimal 
combination of G-factors for each environment (grid Table 4a) and 
M35–1 (i.e. G-factors specific for the M35–1 maldandi crop type; 
Table 4b) across and within each of the tested soils and across all tested 
geographies (i.e. simulation units; environments represented by grids). 
As expected, crop production was predicted to be higher on deeper soils 
for optimal cultivars and M35–1. Furthermore, the simulations revealed 
that the site-specific optimization of the cultivar is expected to enhance 
the grain yields by around 10% (~350 kg ha− 1) and stover yields 
around 5% (~200 kg ha− 1). The optimal cultivar was further expected 
to minimize the proportion of years with grain yield failure compared to 
M35–1 across the tested conditions. On the other hand, site-specific 
cultivar optimization was predicted to cause more fluctuations in pro-
duction across the years (higher biomass deviation indicating lower 
system stability) compared to M35–1 in the production scenario 
(compare Table 4a, b). 

3.4. Identification of “homogeneous system units” based on the 
geographical distribution of optimal Genotype × management 

The Genotype × Management interventions leading to maximum 
index of system production and stability are summarized in Table 4a (for 
optimal G combinations, i.e. optimal cultivars) and 4b (for the G com-
bination specifying the maldandi M 35–1 cultivar). The spatial vari-
ability in the optimum G and M intervention can be found in Suppl. Fig. 
3a (for optimal cultivars in certain production scenarios), Suppl. Fig. 3b 
(for the optimal cultivar in the “stability” scenario), and could be further 

geo-spatially explored using the web application (Fig. 2). Here it was 
apparent that the optimum Genotype × Management would be location 
and soil specific. Nevertheless, from Suppl. Fig. 3a, b, and the web 
application (Fig. 3), we could visually observe distinct geographical 
North-West to South-East patterns that changed with the soil depths and 
scenarios. Generally, there was a trend favoring interventions with high 
doses of N-fertilizer and earlier planting windows (except in the North- 
West regions, which were predicted to benefit from later sowing win-
dows). In the most stringent scenarios (i.e. stability, shallow soils, North- 
West geographies), the optimal M tended to favor combinations with 
lower planting densities. Across all of the investigated geographies and 
scenarios, the optimal cultivars most frequently involved combinations 
of short-duration and high vigor characters. The North-Western regions 
would specifically benefit from the introduction of crops with tight 
canopy transpiration control (transpiration responsiveness 0.85, Suppl. 
Fig. 3a, b). 

Similarly, we visualized the geographical distribution of optimum 
management practices for the maldandi crop type (M35–1; Suppl. Fig. 4, 
the web application). Output highlighted that there was an apparent 
North-West to South-East gradient in optimal M combinations. Most of 
the optimal M combinations generally favoured much lower planting 
densities and lower fertilizer inputs compared to the optimized crop type 
(i.e. compared to site-specific G combinations, compare optimal M from 
Suppl. Fig. 3a, b with Suppl. Fig. 4). Also, similarly to the site-specific 
optimized crop types analysis, the North-West part of the investigated 
region would benefit from later planting windows more than the rest of 
the production region (compare Suppl. Fig. 3a, b with Suppl. Fig. 4). 

Using PCA, the outputs from each of the simulation units (“grids”) 
were clustered into the four geographical units based on their similar-
ities in production/ stability system characteristics as well as optimized 
combinations of G and M parameters. Such analysis, in principle, 
seperated the grids into the geographical regions with the similarities in 
system response to G and M interventions (Fig. 4). When visualized, 
these four geographical units formed the pattern of concentric layers 
around the “core” of the North-Western part of the sorghum production 
area (HSU_1; light blue, Fig. 3). The main system characteristics along 

Fig. 3. The visualization of the APSIM simulations outputs via the web application (https://ls40.pef.czu.cz/maps). Each of the panels shows the target post-rainy 
sorghum growing region in the peninsular part of the Indian sub-continent. The coloured grids (0.5◦x 0.5◦) signify the geographical variation in management 
(M) practices and crop characters (G) expected to contribute to the improvement of post-rainy sorghum production/ stability. The user can choose to visualize the 
grain and stover yield (under “variable”) potentially achievable for the currently grown maldandi crop type (by choosing “M 35–1′′) or optimized cultivar (“All”) for a 
particular soil type (“Deep”/”Medium”/”Shallow”) and scenario (“Production”/”Stability”). Furthermore, users can visualize which level of M (density, sowing 
window, fertilization) and G (vigour, crop duration, transpiration responsiveness) contributes towards optimal production for the particular cultivar, soil, and 
scenario and in which region. The actual level of the chosen variable can be visualized by clicking on the grid of interest. The tool has a feature to visualize two maps 
at the time (green box “Add map”) for comparison. (For interpretation of the references to colour in this figure, the reader is referred to the web version of 
this article.) 
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with the optimal Genotype × Management combinations within these 
geographical units were summarized in Table 5. Generally, Table 5 il-
lustrates that with the increasing distance from this core (HSU_1) the 
production potential and system stability would increase in the direction 
towards HSU_4 (stover and grain yield production as well as system 
stability indicators). This was also well-reflected in optimmalized G and 
M parameters within each HSU; i.e. planting density, crop duration, and 
plant vigor. A parameter indicating plant responsiveness to VPD also 
increased with increasing distance from the production core (from 
HSU_1 towards HSU_4). Across all HSUs, most of the optimal Genotype 
× Management combinations leaned towards the early sowing windows 
and stable fertilizer doses ~ 70–70 kg ha− 1 (basal dose - top-dressing). 
Table 5. 

4. Discussion 

4.1. Deployment of high-performance computations for effective APSIM- 
runs 

The technical details and challenges involved in this computational 
exercise were described in Jarolímek et al. (2019). In principle, we used 
a cluster of seven high-performance computers and tested several op-
tions to distribute the computations across the cluster effectively. This 
involved separation of the simulation set-ups into batches, which were 
consequently scheduled and run manually. This exercise enabled us to 
design the structure of the software tools for the computational facility 
used. This allows for further process automation should similar exercises 
be required with the cluster in the future. Alternative software resources 
available in the public domain, specialized for computational distribu-
tion such as HTCondor (https://research.cs.wisc.edu/htcondor/) might 
be also considered. Another option to be tested would include running 

Fig. 4. The map of India over-layed with the four identified “homogeneous system units” (HSU, highlighted in different colors; summary system characteristics of the 
HSU clusters are in Table 5). Each of the grids (0.5◦x 0.5◦) is expected to respond more homogeneously to particular GxM interventions than the remaining grids 
within one HSU compared to the grids from a different HSU. The discrete black circles on the map highlight the current post-rainy sorghum testing sites within an All 
India Coordinated Research Project (AICRP; http://www.millets.res.in/aicrp.php). 
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the simulations using commercial cloud services, such as Azure or 
Amazon Web Services. 

It is important to note that the new version of APSIM is being 
developed (NextGen APSIM; https://apsimnextgeneration.netlify.app). 
NextGen APSIM modules are already capable of running multiple sim-
ulations much more efficiently compared to classic APSIM software 
(https://www.apsim.info). However, transiting this massive work to the 
NextGen APSIM-based framework would require rigorous cross- 
validation of the model functions that are key for the presented study 
as well as the model set-up. Nonetheless, the necessity of transitioning to 
the NextGen system must be seriously considered, especially in the 
context of rising demand for a similar types of analysis (e.g. in the 
context of CGIAR crop improvement program modernizations; https:// 
excellenceinbreeding.org/; https://bigdata.cgiar.org/event/webinar- 
target-population-of-environments-tpe-beyond-helping-make-better- 
crop-improvement-practice/). 

4.2. Cultivar x Management effects and their optimal combinations for 
higher and stable sorghum production 

APSIM has been used to model management and genetic in-
terventions for various cropping systems (e.g. wheat, chickpea, maize, 
potato; Chenu et al., 2011, 2013; Chapman et al., 2000a, 2000b, 2000c; 
Lobell et al., 2015, Chauhan et al., 2008; Chauhan et al., 2013; Beah 
et al., 2021; De Silva et al., 2021; Ojeda et al., 2020, 2021). Currently, 
APSIM is a base for several commercial applications used by different 
stakeholders such as farmers or breeders (YieldProphet ® (Yield 
Prophet), WhopperCropper (The Regional Institute - J.Managing 
Climate Variability - Crops), CropARM (Decision support tools and 
modeling | Tasmanian Institute of Agriculture (utas.edu.au)). In the case 
of sorghum, the APSIM model has been used to evaluate the production 
regions assessed in this study and the effect of management and crop 
genetic interventions (Ravi Kumar et al., 2009 - maldandi sorghum 
parameterization; Kholová et al., 2013 - rabi sorghum systems charac-
terization; Kholová et al., 2014 - evaluation of genetic interventions; 
Dimes and Revanuru, 2004 - nitrogen application; Turner and Rao, 2013 
- effect of planting density & duration of cultivars; Akinseye et al., 2020 - 

effect of sowing dates). 
In the context of this study, where accessing observed meteorological 

information is problematic, we transited the entire modeling framework 
into the AgMERRA-NASA-based gridded framework (Ruane et al., 2015) 
to allow for more geographically precise and spatially balanced analysis. 
Out of the tested options (NASA-POWER, MarkSIM, AgMERRA-NASA), 
the AgMERRA-NASA-based set-up (31 years of daily weather records) 
was found sufficient to represent the historical weather variability 
across the rabi-sorghum production region. The sorghum simulation 
outputs were, additionally, cross-compared with the ranges of agro-
nomic parameters reported from multi-year, multi-location agronomic 
trials conducted in post-rainy seasons within the Indian national sor-
ghum evaluation network (AICRIP project; http://www.millets.res.in/ 
aicrp.php). Information from these trials could not be closely 
compared with our simulations, as, for example, the tested genotypes 
are usually Maldandi types but not exactly M35–1 and the management 
practices in these trials usually involve “life-saving irrigation’’ or other 
agronomic practices that are rarely sufficiently documented to allow 
strict comparison. However, the crop production ranges and responses 
to the management practices (fertilization, planting density) reported 
from AICRIP sorghum testing trials (http://www.millets.res.in/aic-
sip13.php) were in reasonable agreement with the model outputs. 
Therefore, the AICRIP trials would be an interesting data source to 
further emulate the presented modeling framework. 

The modelling approach is one of the very few options that allows us 
to disentangle, quantify and optimize the effects of cultivar and crop 
management interventions (Jeuffroy et al., 2014; Lecomte et al., 2010; 
Chapman et al., 2002). This information is critical to guide any efforts 
for agri-system improvement and breeding. The vast amount of infor-
mation generated in this simulation exercise (14.6 TB) allowed us just 
this - i.e. to separate and quantify the effects of particular cultivar X 
management interventions on the important characteristics of the 
post-rainy sorghum cropping system. We found that the magnitude of 
any GxM intervention effect depended on the soil properties. Our find-
ings further indicated that, in general, site-specific fine-tuning the crop 
and crop agronomic practices within the breeder- and farmer- relevant 
ranges would have an important effect on crop production/ stability in 

Table 5 
The summary statistics of the system production and stability indicators resulting from optimized management (M) and genetic crop characters (G) within the 
identified Homogeneous System Unit (HSU) clusters as spatially defined in Fig. 4.  
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the rain-fed rabi sorghum belt of India. Despite the fact that we did not 
investigate the specific factors leading to production constraints, as in 
Kholová et al. (2013), our study emphasizes that crop products 
(accompanied by well-designed agronomic practices) for rain-fed sys-
tems have to be carefully tailored to the variability of production en-
vironments. We showed that the commonly occurring genetic variability 
in sorghum species is sufficient to enhance rabi-systems (i.e. duration, 
vigor and canopy conductance; Kholová et al., 2014; Bodner et al., 
2015). Significant improvements can be achieved by fitting existing 
cultivars with suitable management to the particular context of the 
rabi-production system or by generating new crop products using the 
resources generated in this study as a guideline. 

For this purpose, we provide the data generated along with the tool 
designed for further exploration by any stakeholders for free (e.g. post- 
rainy sorghum breeding programs, policy-makers or on-ground farmer 
advisory services). This tool is now ready to explore the spatial distri-
butions of optimal management practices for the Maldandi crop type 
(M35–1) as well as the production potentially achievable with other 
crop types (details in Fig. 2). As the map shows, these are dependent on 
the location, soil type, and scenarios considered. The estimated site- 
specific genetic enhancement of Maldandi has the potential to increase 
~10% ( ± 7%) grain and 5% ( ± 2%) stover production across all lo-
cations. The same intervention would stabilize grain production across 
seasons. We envision that a similar type of IT tool, could complement the 
recommendation packages (e.g. https://www.millets.res.in/farmer/ 
Recommended_packages_of_practices_Rabi_sorghum.pdf; periodically 
released by the Indian government) in order to enable the site-specific 
recommendations through on-ground agencies who can operate the 
simple interactive map. This framework should also serve as a base upon 
which further enhancements required by the different users can be built, 
such as crop improvement teams, policy makers, and farmer advisory 
services, which would enable its broader deployment and impact. 
Similar principles have been reflected in CropArm (http://www. 
armonline.com.au/#/wc), an APSIM-based tool developed to support 
decisions in Australian farming systems. To our knowledge, the pre-
sented online tool is the first of this kind that is able to support effective 
system design for climate risk-prone agri-systems in developing coun-
tries. The tool’s development demonstrates a diligent approach on how 
to condense the vast amount of data typically produced by crop mod-
elers into digestible information for non-experts. This approach will be 
further expanded for other regions and crops, evolved and sensitized to 
the indigenous agri-system requirements and contexts. 

4.3. Identification of homogeneous system units (HSUs) 

The primary beneficiaries in mind while developing the study were 
crop breeders. Breeders typically require crop modelers to identify ge-
ographies for which a particular crop product and agronomic manage-
ment can be developed and where it is best tested (e.g. BPAT review; 
https://plantbreedingassessment.org/bpat-project/bpatmission/) 
(Kholová et al., 2021). This kind of analysis required the further strati-
fication of the information held by the generated dataset. Firstly, we 
reduced the data dimensionality using principal component analysis 
(PCA) and consequently deployed the clustering approach to form 
geo-spatially distinct classes - the “homogeneous system units” (HSUs). 
This allowed us to separate the tested geographies (grids) into four HSUs 
based on similarities in optimum production characteristics and system 
responses to GxM interventions. Such novel assessments considerably 
extended the previously used approaches (environmental characteriza-
tion/ target population of environments) e.g. in Kholová et al. (2013), 
Hajjarpoor et al., (2018, 2021), Chauhan et al. (2013), Chenu et al. 
(2011), and Chapman et al. (2000a, 2000b). The “HSU” analysis allowed 
us to differentiate the geographies with maximum similarities within a 
geographic group and dissimilarities between the groups not only based 
on the modeled interactions of crop, environment, and management but 
also on system responsiveness to the Genotype × Management 

interventions. We suggest that such geospatial classification enable 
breeding programs to, for instance, optimize the distribution of the 
multi-location testing sites, improve the statistical treatment of the data 
generated in different geographies and precisely design and target crop 
product development efforts. For instance, in typical crop improvement 
programs, the crop is tested with very limited management options or 
the management is adapted only “post-mortem” when the genotype is 
already fixed. These circumstances inevitably stagnate the crop pro-
duction improvement in these complex systems. To overcome this gap, 
we provided a unique tool that allows for the simultaneous prediction of 
optimal crop management along with the suitable crop cultivar, which is 
otherwise impossible. We conclude that the presented APSIM-powered 
framework enables the improvement of breeding targets, empowering 
breeding programs to design region-specific Genotype × Management 
options ex-ante that could significantly accelerate efforts to improve 
productivity/ resilience of dry-season sorghum cultivation. 

4.4. Possible limitations of the study and continuous improvement of the 
framework 

Models are reflections of our imperfect knowledge, which is why it’s 
important to acknowledge the assumptions and other possible limita-
tions of the acquired modeling outputs. In our case, we need to mention 
the use of a gridded data source (AgMERRA-NASA) instead of the actual 
meteorological observations that may have been preferable. Although 
meteorological information is becoming more available as standard 
across the globe, many countries, like India, are still not well covered 
with accessible, high-quality, and up-to-date information. Since our 
study required homogeneous coverage of key regions, we chose to use 
NASA-generated information that has supported modeling of agri- 
systems similar to ours (Table 3, Fig. 1a, b, 2 a, b). In the ideal case, 
we would have had detailed agronomic evaluations of sorghum pro-
duction across locations to cross-validate the simulation set-up respon-
siveness to major system limitations (e.g. agronomic practices). As 
mentioned above, these datasets are very rare in the local context and 
their generation is cost- and time-intensive. While we work on such 
dataset generation, we do have numerous studies and even commercial 
products based on the APSIM sorghum module responsiveness to a range 
of M and G contexts (e.g. Akinseye et al., 2020; Dimes and Revanuru, 
2004; Turner and Rao, 2013). 

In future, we plan to use this sorghum modeling framework to sup-
port broader socio-economic modeling studies. Here we presented our 
attempt to demonstrate the generic approach, i.e. the scenario weighting 
index which is based on an educated guess founded on literature surveys 
(e.g. Blümmel and Rao, 2006, Tesfaye, 1998, Ravi et al., 2003, Reddy 
et al., 2005, Rao et al., 2017, Blümmel et al., 2015) and discussions with 
experts. Such estimates are to be improved as we progress in under-
standing and interlinking this work with socio-economic studies of the 
target population of stakeholders in particular regions. The under-
standing of community demands or particular user cases should, in 
principle, guide further simulation exercises and, among others, the 
resolution of simulations, the GxM scenarios tested, further assumptions 
made, tool co-creation, and design. 

5. Conclusion 

The presented work aims to translate current advances in crop 
modeling science into a quantitative understanding of crop production 
systems for the key pool of beneficiaries (e.g. breeding programs, farmer 
advisories, decision-makers, etc.) via a simple visualization tool. The 
presented framework simplifies the complex modeling data (~0.5 
million simulations, ~14 TB) and utilizes them to understand the 
context-dependencies of post-rainy sorghum agricultural systems even 
by a community of non-experts. Although numerous on-line tools have 
been developed, primarily to provide advice to large-scale agricultural 
producers in developed countries, these might not fit the requirements 
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of stakeholders in countries like India. We argue that to enable an 
effective understanding of the diversity of small-scale agriculture sys-
tems, the tool has to be tailored: (i) to be easily accessible (possibly free 
of cost) (ii) simple enough and sufficiently interactive, and (iii) 
encompass a valid range of the farming scenarios. We have developed 
draft tool and analytics with the example of post-rainy sorghum pro-
duction systems in India and will continue the customization and evo-
lution of the presented tool to serve the particular needs of various end- 
users. A similar approach can be now adapted to other agricultural 
production systems, especially those that are small-scale and low input. 
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