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Abstract

With the ongoing global warming, the occurrence and amplitude of extreme weather events have
increased over the West African Sahel. The increasing frequency of heavy rain events, can negatively
affect the lowland crops’ growth and production. Two-season field experiments were conducted near
Ouagadougou (Burkina Faso) to test the effects of temporary flooding and surface water stagnation on
maize (Zea mays L.) growth and productivity. The treatments were organized into a split-split plot
design. Three factors were monitored, including aboveground flooding levels (i.e., 0 cm, 2-3 cm, and
7-8 cm), flooding duration (i.e., three days and six days), and growth stages (i.e., six-leaf stage (V6),
tasseling stage (VT) and milky stage (R3)). Optimal crop management was practiced to Obatanpa
cultivar planted during the rainy season and flooding was induced by over-irrigation. The results show
that three days and six days of flooding, reduced grain yield by at least 35% when they occurred at the
tasseling stage. Only 4—6 days of flooding reduced grain yield by 21% at the six-leaf stage. Further
scrutiny, using the stress day index (SDI), revealed that the penalty on yield increases exponentially
under flooding conditions as the value of the stress day index increases. Considering the new
characteristics of the rainfall regime in the West African Sahel, dominated by a high frequency of heavy
rain events and wet spells, temporary floods, and water stagnation are tremendously contributing to
yield loss of on-farm maize. As the region’s climate changes, we hypothesize that excess water stress
will become the next cause of food insecurity in the area.

1. Introduction

Rainfall variability has increased over the West African Sahel with the ongoing global warming. Besides the
erratic intra-seasonal distribution of rain events leading to mixed (wet-dry) patterns of the rainy seasons (Salack
etal2016), the amplitude and the frequency of heavy rain events have significantly increased (Taylor etal 2017,
Salack et al 2018) as well as wet spells (Bichet and Diedhiou 2018), showing a glimpse of what the future rainfall
regime may look like. According to climate projections, rainfall intensity may likely increase in the region (Sylla
etal2015). This trend of the regional climate will bring more complexities to rainfed cropping systems
management.

So far, the most documented abiotic constraints for cereals, among the staple crops of the Sahel, have been
low soil fertility and drought (Badu-Apraku and Fakorede 2017). The stress due to excess water, which results in
soil waterlogging, flooding, and water stagnation, is underestimated, even though it is among the most severe
constraints affecting lowland crops’ growth, development, and production (Ren et al 2014). Waterlogging
occurs whenever the soil moisture reaches saturation. Still, there is no free water layer to accumulate, while
flooding is a phenomenon in which a water layer with a certain height appears and remains for some time on the
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soil surface (Tian et al 2020). Both cases cause inadequate root respiration and plant photosynthesis. They are
potentially harmful to certain cereal crops such as maize and millet, which are critical for food security in the
Sahel (Tian et al 2019, 2020).

Heavy rain events are the leading cause of soil waterlogging, flooding, and water stagnation. They amplify
erosion of arable land in high runoff areas and soil nutrients leaching and fungal infestations of some crops
(Rosenzweig etal 2001, Salack et al 2015, Guan et al 2015). Soil waterlogging stress affects 12% of the world’s
growing areas (Shabala 2011, Xu et al 2013). This risk increases at some locations in West African zones due to
the increased occurrence of heavy rain events (Salack et al 2018).

Widely cultivated on smallholder farms in West Africa, maize covers around 25 million hectares, producing
38 million tons of grain annually. It is grown primarily for food and accounts for 20% of the calorie intake of
50% of the population (Smale et al 2013, Badu-Apraku and Fakorede 2017). Maize plants have no naturally
occurring air spaces in their roots; therefore, with a gradual decline in soil oxygen, the plant suffers from hypoxia
(low oxygen) followed by anoxia (no oxygen) when they are exposed to prolonged soil moisture exceeding 80%
of the field capacity (Zaidi er al 2003, Ren et al 2016). Often, the early seedling, the knee-high, the tasseling, and
the milk stages are the most critical crop growth stages tested during the selection of maize cultivars capable of
withstanding excessive soil moisture conditions (Zaidi et al 2004, Liu et al 2010). From experiments conducted
in China, Li et al (2011) showed that more than three days of waterlogging can decrease the maize yield by 40%.
Tian et al (2019) found that the grain yield can reduce by 65%-80% with nine days of waterlogging at the seedling
stage, but this duration has no significant adverse effect at the tasseling stage. When waterlogging occurs around
the flowering stage, the grain yield can be suppressed because of the shortened grain filling duration (Yang et al
2016). Apart from the yield loss, the plants’ survival rate is also used to select the crop varieties according to their
tolerance to excessive soil moisture (Estebana, Solilap 2016).

Most of these findings and conclusions were drawn from experiments conducted in pots (Yang et al 2016,
Kaur et al 2019, Otie et al 2019), lysimeters, and greenhouse enclosures (Lizaso and Ritchie 1997, Zugui et al
2013). Very few experiments were conducted under field conditions (Ren et al 2014, 2016, Tian et al 2019), and
almost none were implemented in the ambient environmental realities of the West African semi-arid regions. In
this study, we tested and provided further insights on the effects of temporary flooding and surface water
stagnation on the growth, development, and production of Obatanpa maize cultivar in ambient on-farm
conditions of the West African Sahel.

2. Methods

2.1. Site description

The West African Sahel is the region that stretches from the East of Lac Chad to the West Coast of Senegal,
between latitudes 10°N to 20°N, covering thereby the whole country of Burkina Faso. In this region, the rainy
season is dominated by the West African monsoon. The large-scale patterns show onset in May-June and
cessation in September-beginning of October with 95%-99% of the annual rainfall volume distributed across
June-July-August-September. Our investigations were conducted during the 2017 and 2018 rainy seasons, at
Boassa (12°16°56.6'N, 1°36°14.1’W), in the suburb of Ouagadougou, the capital city of Burkina Faso
(supplementary, figure S1 (available online at stacks.iop.org/ERC/4/045004/mmedia)). The analysis of the
topographic patterns on the contour map (Figure S2) shows that the elevations vary from 311.80 m (at the north-
western part of the field) to 311.20 m (at the south-eastern part of the field). This pattern drives the direction of
runoff flow (Figure S2).

During the experiments, every 10 min, weather variables such as solar radiation, maximum and minimum
temperatures, relative humidity, wind speed, and rainfall were collected using an automatic weather station
installed on-site. The site had similar climatic conditions as Ouagadougou, with 841.6 mm and 795.4 mm total
rainfall recorded between May-October, and the average temperature was 35 °Cand 37 °C in 2017 and 2018,
respectively. The maximum daily temperature recorded in May was 41.5 °Cin 2017 and 43.6 °C in 2018. The
monthly relative humidity varied from 19%-76% in 2017 and 19%—82% in 2018. The total potential
evapotranspiration was lowest in August (157 mm and 160 mm) but reached its maximum in March (322 mm
and 315 mm) for 2017 and 2018.

The treatments were set-up, on an imperfectly drained, eutric gleyic fluvisol, more profound than 120 cm.
Fluvisols occur on materials deposited in aqueous sedimentary environments, such as inland fluvial and
lacustrine fresh-water environments, marine environments, and coastal salting or brackish marsh environment,
of which deltas are a particular case. They cover an estimated area of over 350 million hectares worldwide. In
West Africa, they cover a vast area in Senegal, Gambia, Guinea Bissau, Sierra Leone, Liberia, the Volta basin, and
the Niger Delta (supplementary, figure S3). On our experimental site, the upper soil layer (29 cm) was dark grey
with a silty-sandy texture. From 29 cm to 70 cm depth, the layer was brown with sandy-clay texture and
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Table 1. Description of the treatments implemented at the experimental site of Boassa.

Treatment  Description

CK control with barriers, representing the aboveground water level of 0 cm applied during 3 or 6 days at the six-leaf, tasseling or
milky stages. There was no irrigation for this treatment.
T2D3V6 water level at 2-3 cm applied 3 days at the six-leaf stage
T2D3VT water level at 2-3cm applied 3 days at the tasseling stage
T2D3R3 water level at 2-3cm applied 3 days at the milky stage
T2D6V6 water level at 2-3cm applied 6 days at the six-leaf stage
T2D6VT water level at 2-3cm applied 6 days at the tasseling stage
T2D6R3 water level at 2-3cm applied 6 days at the milky stage
T7D3V6 water level at 7-8 cm applied 3 days at the six-leaf stage
T7D3VT water level at 7-8cm applied 3 days at the tasseling stage
T7D3R3 water level at 7-8cm applied 3 days at the milky stage
T7D6V6 water level at 7-8cm applied 6 days at the six-leaf stage
T7D6VT water level at 7- 8cm applied 6 days at the tasseling stage
T7D6R3 water level at 7-8cm applied 6 days at the milky stage

maize
crop
20 cm
high
7-micron — bund
tarpaulin layer
buried up to Soil

0.7m deep surface

()

Figure 1. Sketch a plot unit set-up of the experimental design in 2017 and 2018 (I) at Boassa experimental station. (II) Upper view of
the plot unit and (IIT) Facial of plots layout.
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Table 2. Cropping calendar and crop management practices during 2017 and 2018 at Boassa experimental site.

Crop Dates Dates
management 2017 2018 Characteristics of the operation
Tarpaulin set- 22 Jun 30
ting-up May
Bunding 6Jul 25 Jun
Manual plough 6Jul 27 Jun
Sowing 8Jul 17 Jul 62500 plants. ha !
First manual 17 Jul 29 Aug
weeding
First 26 Jul 8 Aug 625kg. ha~! of NPK 20-10-10
fertilization

Second manual 3 Aug 7 Sep
weeding

Flooding at 11Aug 18 Aug
jointing stage

First pest 15 Aug 6ml. ha ' PYRINEX QUICK 212 EC containing 12 g.1"" of Deltamethrin and 200 g1 ' of
control Chlorpyrifos

29 Aug 21.13g.ha~ ' EMACOT 50WG containing Emamectin benzoate at 19 g.1™"

Third manual 22Aug  30Sep
weeding

Second 27Aug  7Sep
fertilization

62.5kg. ha™ ' of Urea (46% N)

375kg. ha™' of Ammonium sulphate (21% N)
Flooding at tas- 30Aug  8Sep

seling stage
Second pest 6 Sep 8 ml. ha~' PYRINEX QUICK 212 EC containing 12 g.1"" of Deltamethrin and 200 g1 " of
control Chlorpyrifos
1 Sep 21.13g. ha~ ' EMACOT 50WG containing Emamectin benzoate at 19 g.1™"
Fourth manual 25 Sep
weeding
Third pest 25 Sep 12ml ha™' PYRINEX QUICK 212 EC containing 12 g.1"! of Deltamethrin and 200 g1~ of
control Chlorpyrifos
Flooding at 29Sep  25Sep
milky stage
Pest treatment 30 Sep 12 ml. ha™ ' PYRINEX QUICK 212 EC containing 12 g1~ ' of Deltamethrin and 200 g.1"' of
Chlorpyrifos
Harvest 140ct  20Oct

contained yellow-brown particles from redox reactions. The supplementary table S1 provides other detailed soil
profile characteristics up to 120 cm depth.

2.2. Experimental design and treatments

A split-split plot experimental design was set up with three replications, 13 randomly distributed treatments of
6.76 m> each. The factors considered were three aboveground water levels (i.e., 0 cm, 2-3 cm, and 7-8 cm), two
flooding durations (i.e., three days and six days,) and three maize growth stages (i.e., six-leaf or jointing stage
(V6), tasseling stage (VT), milky stage (R3)) of the Obatanpa cultivar. The experimental design included one
non-flooded control (i.e., a relative control plot with plastic tarpaulin barrier (CK) representing 0 cm of water
level applied during 3 or 6 days at the three growth stages). Table 1 provides details on the treatments.

A 7 microns black plastic tarpaulin was buried from the surface to 70 cm depth. It was combined with 20 cm
height bunds (figure 1(a)) to induce stagnation and avoid runoff and lateral advection of water during the
flooding periods. Manual plowing was used to construct the bunds. The plots were separated by 100 cm as an
inter-plot spacing (figure 1(b), (c)).

Over-irrigation was applied to the plots using a solar-powered borehole to pump underground water into
three graduated water tanks of 1 m’ capacity (supplementary figure S4(a), (b)). Each water tank was linked to the
plots with a network of polyvinyl chloride (PVC) pipes of 10 cm in diameter. The installed valves at the end of the
pipes and the graduation on the water tanks were used to measure the amount of water used for irrigation
(supplementary figure S4(c), (d)).
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Figure 2. Excess water stress factor (SEW30) (I) and Stress-Day Index (SDI) variation by treatment (II). Bar charts topped with the

same letter showed no significant difference at 95% confidence interval according to Tukey’s Multiple Range Test. Standard deviations
are indicated by the error bars.

2.3. Data sampling and analysis

Optimal crop management practices, including field operations, dates, types, and rates of pesticide and fertilizer,
were applied during the experiments. The technical itineraries applied are summarized in table 2. The daily
water table in the 30 cm topsoil was regularly recorded through piezometers installed in the center of each plot.
This water table data is used to estimate the stress-day factor (SEW30), following equation (1) (Kanwar et al
1988, 1998, Evans and Skaggs 1984):

n
SEW30 = ) (30 — WTD) (1)

1
where nis the number of days (i = 1,2, ... n) and WTD; is the water table depth (in cm) in the 30 cm topsoil on
the day i. In this estimation, the depth of the water table is zero for the days when the water table is above the soil
surface. SEW30 is defined as the sum of excess water that occurs each day in the primary root zone of the top 30
cm soil layer (Setter and Waters 2003). Hence, SEW30 values expressed in ‘cm.day’ quantify the excessive soil
water conditions.

The stress-day index (SDI) concept quantifies in cm.day, the cumulative stress of wetness on the maize plant

during the growing season following equation (2) (Kanwar 1988):

SDI = > (CS; x SD)) )
j
Where m is the number of growth stages, CS;values are normalized crop susceptibility factors for stage j, and SD;
is a stress-day factor for stage j in cm.day. supplementary table S2 provides the normalized maize susceptibility
factors for each growth stage.

From 30 days after sowing (DAS), maize vegetative material was sampled every 15 days on a set of 5 randomly
selected plants. This vegetative material is used to observe the crop growth and development parameters (e.g.,
plant height, leaflength, width, tasseling and flowering stages) and derive another variable such as the leaf area
index (LAI). A ribbon meter graduated in millimeters was used to measure the plant height from the collar to the
apex of the meristem. The green leaflength and maximum width were measured with a ruler from its sheath to
its tip and at mid-length of the leaf, respectively. The leaf area (LA) was calculated following equation (3):

LA = Leaf length * maximum width * k 3)

where k is a shape factor with the value of 0.75 and the maximum width represents the highest value of width at
the time of measurement. LAI was calculated as the ratio of LA to the horizontal soil surface area occupied by
each planting hill (Ren et al 2014).

Without any effect on the experiment, aboveground biomass was also collected by destructively sampling,
on the specific lines, from two planting holes per plot, at 48 DAS, 68 DAS, and harvest. Then, biomass samples
were dried in an oven at 70°C for 72 h to determine the accumulated dry aboveground biomass in 2017 and
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Table 3. Variation of the height, the leaf area index, and the flowering stage of Obatanpa cultivar under different treatments

. Height (cm) Leafarea index ) .

Treatments’ Flowering stage (DAS ”)
30DAS 45DAS 60 DAS 75DAS 30DAS 60 DAS 75DAS

CK 84.12 £ 5.51b 180.24 £ 5.19 abc 241.32 £39ab 240.93 £ 4.66 ab 1.04 & 0.12a 4.7 £ 0.45ab 3.42 £ 0.99 ab 51.92 £ 0.74 bc
T2D3R3 94 + 9.99ab 189.46 + 2.27 abc 246.88 £ 9.69 ab 248.87 + 10.32ab 1.04 £0.2a 4.67 + 0.2 abc 3.08 &+ 1.26 ab 53.17 £ 0.58 ab
T2D3V6 95.6 + 8.47ab 163.11 £ 17.98 bed 219.18 £ 30.21b 227.2 £ 16.81b 1.29 £ 0.364a 4.75 + 0.56 ab 3.17 £ 1.13ab 51.5 £ 1.32bc
T2D3VT 90.12 £ 19.05ab 184.46 £ 21.06 abc 238.39 £ 16.87ab 235.9 & 7.48 ab 1.08 & 0.16a 3.8 £ 0.43 bed 2.79 £ 0.58ab 51.67 & 1.44 bc
T2D6R3 91.69 £ 9.13ab 197.52 + 18.62 ab 241.27 £+ 16.35ab 245.57 £ 8.26ab 1.34 £ 0.18a 5.09 £ 0.46a 3.16 &+ 1.09ab 50 + 2.5 bc
T2D6V6 89.44 £+ 7.25ab 137.37 £ 15.49d 184.27 £ 23.86¢ 181.2 £ 29.67 ¢ 1.15 £ 0.164a 3.56 £ 0.87 cd 2.61 £ 1.61b 55.17 & 1.44a
T2D6VT 86.21 £ 6.07 ab 174.63 £ 7.34 abcd 233.93 £ 11.81ab 237.17 £ 18.89ab "I.1 £0.15a 3.11 4+ 0.984 2,66 £ 0.9b 52.33 £ 0.58 abc
T7D3R3 102.24 + 2.85ab 203.74 + 10.964a 257.52 &+ 14.34a 261.37 = 7.81a 1.31 £ 0.37a 5.11 £ 0.6a 4.01 £ 1.04ab 51.08 + 0.38 bc
T7D3V6 107.91 £ 1791a 184.22 + 24.13 abc 242.06 + 10.38 ab 237.97 £ 13.15ab 134 £ 0.41a 52 £+ 0.38a 4.12 £+ 0.69 ab 49.67 £ 3.4c¢
T7D3VT 104.44 £ 11.65a 194.61 + 14.18 abc 251.99 + 5.64ab 247.87 £ 5.65ab 1.37 £ 0.584a 4.56 + 0.71 abc 2.59 + 14b 50.83 £ 1.53 bc
T7D6R3 86.08 £ 0.96ab 172.81 £ 7.99 abcd 250.1 + 16.19ab 247.93 + 11.07 ab 1.07 £ 0.08a 5.26 £ 0.48a 4224+ 09ab 51.83 + 0.76 bc
T7D6V6 87.48 + 10.35ab 156.78 £ 21.54cd 219.55 £ 8.7b 219.13 £ 597b 1.08 £ 0.37a 4.38 + 0.23 abc 4.61 £ 0.8a 52.5 £ labc
T7D6VT 92.17 £ 18.87 ab 187.75 + 28.26 abc 244.96 + 19.33 ab 242.2 £ 22.22ab 1.07 £ 0.27a 3.68 £ 0.73 bed 2.4+ 0.55b 51.67 £ 2.08 bc

2 Treatments are described in table 1.

" day after sowing; averages values + standard deviations followed by the same letter within the same column showed no significant difference at 95% confidence interval according to Tukey’s Multiple Range Test.

suiysiiand dol
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Figure 3. Relationship between Stress Day Index (SDI) and maize (Obatanpa cultivar) yield loss in case of flooding at the six-leaf stage
(I), at the tasseling stage (IT) at the milky stage (IIT), and the overall relationship considering all the three phenological stages (IV).

2018. After the physiological maturity, except for the ears on the borderlines and the plants’ lines targeted for the
aboveground biomass samples, all other ears were harvested, and the harvested plants were counted. After being
dried under sunlight for 15 days, the ears were weighted and determined the grain yield. The weight of the grain
yield per treatment was the input for estimating the relative yield loss (RYL) following equation (4)

RYL = 100 x 2r = Yex (4)

Yex
Ycxis the grain yield from the relative control treatment with barriers (CK), and Yry is the grain yield of each of
the other treatments.

The analysis of variance (ANOVA) was performed for the excess water stress-day factor (SEW30), the stress
day index (SDI), the height, the leaf area index (LAI), the flowering stage, the aboveground biomass, and grain
yield observed during the 2-year experiment (supplementary table S3). We used the ‘agriciolae’ package built for
R software (De Mendiburu 2020), and comparisons among different factors and treatments were based on the
Tukey Multiple Range test at a 95% confidence interval (p < 0.05).

3. Results

3.1. Soil water dynamics and excess water stress

During the 2-year experiment, the 2-3 cm and 7-8 cm flooding depths above the soil surface were induced using
average amounts of water worth 145.5 mm/day and 210.3 mm/day (at V6 stage), 139 mm/day, and 175.6 mm/
day (at VT stage) and 156.3 mm/day to 176.3 mm/day (at R3 stage). The excess water caused different water
level dynamics per treatment which were translated into excess water stress indices (figure 2). Due to the
fluctuation of the water level in the topsoil with the rainfall events of the seasons, the natural soil waterlogging
was highly dependent on the field topography. Indeed, the water dynamics in the topsoil of the control plots have
shown a variation of level according to the slope with 9.5% probability to observe water level in this topsoil at
downhill compared to 3.5% probability to observed the same on plots located uphill (supplementary figure S5).
In the 30 cm topsoil, the daily water level fluctuations converted into excess water stress-day factor (SEW30) and
stress-day index (SDI) showed uniform distribution of excess water stress across replications. Compared to the
control plots having 88 cm.day, SEW30 increased significantly when the plots were flooded at VT (323 cm.day)
and V6 stages (351 cm.day) at 2—-3 cm aboveground. With the increase in the duration of water stagnation,
SEW30 and SDI of 6-day flooded plots were significantly higher than the control plots. SEW30 and SDI
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Table 4. Aboveground biomass and grain yield variations of Obatanpa cultivar during the

experiment
) Aboveground biomass (kg. ha ')
Treatment”
48 DAS" 68 DAS 94 DAS

CK 3000.0 + 991.7 ab 17309.1 + 3009.0 ab 15196.8 + 5546.2 abc
T2D3R3 2656.2 + 870.0 ab 16276.5 + 5088.5 abcd 13754.2 + 3229.1 abcd
T2D3Ve 2420.1 4 798.5 ab 10203.1 &+ 3147.0cd 11612.3 + 4562.4 cde
T2D3VT 2562.5 + 1299.0 ab 13097.2 + 4219.8 abcd 8483.5 £+ 742.1¢f
T2D6R3 3142.4 4+ 1413.6 ab 17179.7 £ 236.7 abc 14822.7 + 5288.9 abc
T2D6V6 1909.7 4+ 318.2b 9102.1 4 4609.7 d 6843.3 £ 3229.2f
T2D6VT 3506.9 + 872.1ab 11835.7 + 2405.5 bed 8330.3 + 3783.8¢f
T7D3R3 3859.4 + 274.7a 19645.7 + 3418.2a 16924.4 + 1442.3 ab
T7D3V6 2767.4 + 427.2 ab 16278.5 + 5711.5 abcd 16634.7 + 4421.5ab
T7D3VT 4192.7 + 564.3a 17072.1 £ 2262.2 abc 9262.3 + 985.5 def
T7D6R3 3357.6 + 603.5ab 16691.0 £ 1344.0 abc 17617.9 £ 1333.5a
T7D6V6 2671.9 + 489.4ab 9084.3 + 2469.0d 12751.6 + 829.2 bede
T7D6VT 2895.8 + 1454.5ab 13572.3 + 4869.6 abcd 9964.1 + 265.6 def

* Treatments are described in table 1

® day after sowing; averages values + standard deviations followed by the same letter within the
same column showed no significant difference at 95% confidence interval according to Tukey’s
Multiple Range Test.

increased considerably in the case of 2-3 cm flooding downhill compared to 7-8 cm flooding uphill (figure 2,
supplementary table S4).

3.1.1. Effects of waterlogging on maize plant height, leaf area index (LAI), and flowering

The analysis of variance showed that maize plant height was significantly affected at every growth stage where the
temporary flooding was induced from 45 DAS to the end of the growth cycle (table S5). Plant height was reduced
by 7% at 75 DAS under a short duration of flooding at the V6 stage, and this reduction reached 11% after 6-day
water stagnation. At the V6 stage, the 2-3 cm above-surface water depth has reduced the plant height by 16% and
15% at 60 DAS and 75 DAS compared to the control treatment CK (table 3). With 3 or 6 days of submersion, the
reduction in LAl was at least 13% at the VT stage (60 DAS), and 10% at the V6 stage in case of 6 days of
submersion (60 DAS). At 75 DAS, the LAI continued to decrease for the plants flooded at the VT stage by 16%,
but for those flooded at the V6 stage, LAl was increased by 4%. The flowering dates were delayed by three days
under six days flooding at the V6 stage induced by 2—3 cm aboveground (table 3 and supplementary table S5).

3.1.2. Effects of waterlogging on maize aboveground biomass and grain yield

When flooded at VT and V6, the final aboveground biomass was reduced by 27% and 14%, respectively.
However, when waterlogging occurred at the R3 stage, there was a non-significant variation (+1% to +4%) in
the final aboveground biomass (table 4, Table S7). The grain yield was also reduced by 35% and 7% on average,
with flooding occurring at VT and V6 stages, respectively. Therefore, at least three days of water stagnation (e.g.,
2-3 cm or 7-8 cm above surface water level) at the VT stage were enough to shorten the grain filling phase and
have reduced the grain yield by 35%, as compared to the control treatments (table 4). But at the V6 stage, six days
of submersion reduced the yield by 21%, while three days of submersion induced a 6% grain yield increase. This
contrast was also observed when maize was flooded during 3 and 6 days at the R3 stage as the grain yield slightly
increased by 8% and 2% (supplementary table S6).

The relative yield index (RYL) generated from equation (4) was regressed against the SDI to assess the grain
yield losses concerning excess-water stress. Considering all the tested growth stages (V6, VT, and R3) and the
control plot CK, an exponential negative relationship was found between the SDI and the RYL with statistically
significant coefficients of determination, as shown in figure 3(a)—(d).

4. Discussion

On-farm flooding and water stagnation depend on field topography and management practices (Fu et al 2000,
Qin eral 2013), soil type, drainage potential, and exposure to heavy rain events (Lim and Lee 2017, Tang et al
2018). Our results show that phenological traits such as flowering and plant height may be adversely affected
when they occur. The delay in height growth of maize plants, observed during the 2-year ambient on-farm
conditions when flooding occurred at V6 for six days, agrees with the results of Singh and Ghildyal (1980) and
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Tian et al (2020), who noticed significant stunting for maize with the increasing duration of flooding at the V6.
Knowing that plant height is constituted by internodes, the stunted growth of maize could be attributable toa
reduction in the internode length under excess-water stress reported by Valerie and Moses (2016), which is the
cause of plant dwarfness under this condition.

The late inception of the flowering, when maize is flooded at the jointing stage, observed during these on-
farm experiments agree with Zaidi et al (2003), Lone and Warsi (2009), and Wang et al (2012). Those authors
observed a delay in maize’s tasseling, anthesis, and silking stages after flooding was induced at the early vegetative
stages and found that disruptions in reproductive stages resulted in poor pollination, affecting the overall grain
production. The meaningful LAI reductions, observed when waterlogging occurred at the VT stage, contrasted
with Ren et al (2014), who showed that the most significant LAI reduction of 24% was observed when the
waterlogging occurred during the vegetative phase (stage V3 and V6). However, when maize is flooded at the VT
stage, high plant mortality, decreased total leaf number, leaf area, and dry matter accumulation were reported by
Zaidi et al (2004) and Shah et al (2012).

Photosynthesis is one of the most sensitive physiological processes to water stress (Ramachandra et al 2004).
Some studies showed that waterlogging stress damages chlorophyll and decrease the chlorophyll content.
Therefore, the subsequent decline in the photosynthetic enzyme activity and the reduction in the photosynthetic
rate inhibit plant growth, leaf area expansion, and biomass accumulation, ultimately resulting in a decrease in
crop yield (Smethurst et al 2005). Our study observed a significant biomass loss when flooding occurred during
the six-leaf (V6) and tasselling stages. This is aligned with Tian et al (2019), who reported that the effect of
waterlogging stress on the dry matter accumulation of maize is greatest at the V3 stage, followed by V6 and VT.

The most considerable yield losses were experienced when water stagnation lasted at least three days during
the tasseling stage (VT) and six days during the early tested vegetative stage (V6). This result contrasts with Tian
etal (2019) and Liu et al (2010), who found no significant adverse effect of excessive water at the tasseling stage
and more sensitivity of maize to waterlogging from the early seedling stage to the tasselling stage, respectively.
However, when waterlogging occurs around the flowering stage, the grain yield can be suppressed because of the
shortened grain filling duration (Yang et al 2016), and recently, Estebana, Solilap (2016), showed that tasselling
stage was the most sensitive stage of the white maize under seven-day of waterlogging conditions. The yield loss
was exponentially related to the increased stress-day index during those growth stages. This was similar to results
reached by Kanwar (1988) after a similar experiment carried out in the USA.

Heavy rain events are the triggers of floods. Many people still lose their lives and properties in many parts of
the West African Sahel because of floods (Salack ef al 2018). The socio-economic costs associated with floods
continue to rise due to alack of proper detection and appreciation of the causes, impacts, and consequences of
floods on the well-being of farming systems and livelihoods. In the recent past, studies have shown that the
Sahelian rainfall regime is characterized by a lasting deficit of the number of rainy days while extreme rainfall
occurrence is on the rise (Panthou et al 2018). Future projections based on climate models point towards a
climate with less frequent, more intermittent, but more intense rainfall events over much of West Africa
(Fitzpatrick et al 2020). As the West African Sahel climate changes, water stagnation, and farm inundation will be
caused by the increased amplitude and frequency of heavy rain events (Taylor et al 2017, Salack et al 2018) and
wet spells (Bichet and Diedhiou 2018). Our results bring more insight into how wet stress can become very
challenging to rainfed farming systems of susceptible cereal crops as heavy rain events may likely increase in
frequency and amplitude (Taylor et al 2017, Salack et al 2018).

5. Conclusions

During the 2017 and 2018 rainy seasons, we investigated the effects of flooding and water stagnation on
Obatanpa maize cultivars under ambient field conditions. The trials took place on a farm, but conditions were
created to increase soil flooding, and water stagnation by over-irrigation and artificial reduction of runoff and
the sub-surface drainage. Soil water fluctuations, the water stagnation depths (i.e., 2-3 cm and 7-8 cm), and the
flooding durations (i.e., three days and six days) were monitored at different periods of growth and development
stages of the crop. The results showed that these compound events reduce plant height, leaf expansion and delay
the flowering phase. Temporary flooding at tasseling and six-leaf stages reduced aboveground biomass and grain
production. Grain yield loss increases exponentially with an increased number of wet stress days, making the
stress-day index (SDI) a valuable proxy to monitor and predict failure in maize production due to excess-water
stress.

Itis worth mentioning that various other challenges were encountered and addressed by applying some
technical itineraries of this study. For example, some plots were attacked by fall-army worms (Spodoptera
frugiperda) at the juvenile stage in both the 2017 and 2018 rainy seasons. Different types of pesticides were
applied to control the pest. On the other hand, to minimize the effect of micronutrient deficiency induced by
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leaching, we used the recommended dose of chemical fertilizers such as N—P—K 20—10-10, urea, and
ammonium sulfate at different dates by micro-dosing technique. All these challenges did not significantly
influence the result of the experiments.

Hence, this unique case study demonstrates the potential loss and damages to maize production in the
context of extreme rainfall and flooding in the Sahel region. Our results bring more insight into how wet stress
can become very challenging to rainfed farming systems of susceptible cereal crops. Results of this unique case
study demonstrate the potential loss and damages to maize production in the context of extreme precipitation
and flooding in this region. Our results also highlight the need for well-fitted adaptation options such as plant
breeding for more waterlogging tolerance, sustainable water management at field and basin levels, and crop
insurance need to be adopted to care for and alleviate loss and damages caused by soil waterlogging flooding, and
water stagnation under intense precipitation. Such cropland management options will help this region adapt to
the current and anticipated climate change and climate extremes.
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