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A B S T R A C T   

The Unmanned aerial vehicles (UAVs) - based imaging is being intensively explored for precise crop evaluation. 
Various optical sensors, such as RGB, multi-spectral, and hyper-spectral cameras, can be used for this purpose. 
Consistent image quality is crucial for accurate plant trait prediction (i.e., phenotyping). However, achieving 
consistent image quality can pose a challenge as image qualities can be affected by i) UAV and camera technical 
settings, ii) environment, and iii) crop and field characters which are not always under the direct control of the 
UAV operator. Therefore, capturing the images requires the establishment of robust protocols to acquire images 
of suitable quality, and there is a lack of systematic studies on this topic in the public domain. Therefore, in this 
case study, we present an approach (protocols, tools, and analytics) that addressed this particular gap in our 
specific context. In our case, we had the drone (DJI Inspire 1 Raw) available, equipped with RGB camera (DJI 
Zenmuse x5), which needed to be standardized for phenotyping of the annual crops’ canopy cover (CC). To 
achieve this, we have taken 69 flights in Hyderabad, India, on 5 different cereal and legume crops (∼ 300 ge
notypes) in different vegetative growth stages with different combinations of technical setups of UAV and camera 
and across the environmental conditions typical for that region. For each crop-genotype combination, the ground 
truth (for CC) was rapidly estimated using an automated phenomic platform (LeasyScan phenomics platform, 
ICRISAT). This data-set enabled us to 1) quantify the sensitivity of image acquisition to the main technical, 
environmental and crop-related factors and this analysis was then used to develop the image acquisition pro
tocols specific to our UAV-camera system. This process was significantly eased by automated ground-truth 
collection. We also 2) identified the important image quality indicators that integrated the effects of 1) and 
these indicators were used to develop the quality control protocols for inspecting the images post accquisition. To 
ease 2), we present a web-based application available at (https://github.com/GattuPriyanka/Framework-for-UA 
V-image-quality.git) which automatically calculates these key image quality indicators. 

Overall, we present a methodology for establishing the image acquisition protocol and quality check for ob
tained images, enabling a high accuracy of plant trait inference. This methodology was demonstrated on a 
particular UAV-camera set-up and focused on a specific crop trait (CC) at the ICRISAT research station 
(Hyderabad, India). We envision that, in the future, a similar image quality control system could facilitate the 
interoperability of data from various UAV-imaging set-ups.  
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1. Introduction 

Global demand for food is projected to increase with the expansion of 
the human population, escalating climate risks, and deterioration of 
agricultural land (Hunter et al., 2017; Elferink and Schierhorn, 2016; 
Agrimonti et al., 2021). The crop improvement needs to be more than 
doubled by 2030 to accommodate these future needs (Elferink and 
Schierhorn, 2016). The new technologies might prove critical to accel
erate the research and development of climate-ready crops, which 
require precise crop characterization (i.e., phenotyping) (Furbank and 
Tester, 2011). Until now, much of the field-based phenotyping relies on 
manual methods that are destructive, error-prone, time and 
cost-intensive (Yang et al., 2020). In recent years, imaging sensors such 
as RGB, multi-spectral, hyper-spectral, and LiDAR mounted on various 
vectors such as satellites, drones, ground vehicles, planes, and gantries, 
are being explored to scale up the assessment of the field-grown crops 
(Yang et al., 2017). Imaging techniques based on UAV vectors (Yang 
et al., 2017; Xie and Yang, 2020a) are rapidly percolating in different 
agriculture-related research disciplines worldwide (e.g., crop improve
ment, precision agriculture, plant sciences) (Tsouros et al., 2019; Jang 
et al., 2020). In India, the site of our case study, the legal framework for 
using UAVs for agriculture was established only in early 2021 (M. of 
Civil Aviation team; D. G. of Civil Aviation team). The lack of clear 
regulations before 2021 has slowed down the process required to build 
the capacity for establishing UAVs in the agricultural sector (Joshi et al., 
2020; Singh et al.). The clarity of regulations for UAVs utilization in 
agriculture may now lead to significant growth in this sector and 
contribute to achieving the country’s goals such as sustainability of 
agricultural production (e.g., precision agriculture, application of 
agro-chemicals, accessing crop health, and precise crop phenotyping). 

Apart from country-specific legal issues, standardized deployment of 

UAV-based technology for precise crop phenotyping is a complex and 
challenging task which, compared to other applications, requires spe
cific field preparations (Selvaraj et al., 2020), precise ground truth 
generation, protocols allowing to capture images of suitable quality, 
develop reliable trait-prediction models, data pre-processing and pro
cessing methodology (Bhandari et al., 2023), software, etc. 

In the presented case study, we revisited the basic requirements for 
the standardized capture of images and quality check of the acquired 
images to support reliable phenotyping tasks on annual crops (overview 
on Fig. 2). It is well documented that captured images can be distorted 
(Fig. 1) due to;  

● Technical UAV set-ups; (UAV type [fixed/propelling wings], gimble 
stability, speed, altitude, trajectory overlap (Dandois et al., 2015; 
Wierzbicki et al.; Sieberth et al., 2016)). 

● Camera set-up; (camera resolution, optical parameters and sensi
tivity to the signal, aperture, exposition time and its control 
[”shutter” or ”roller”]) (Wierzbicki et al.).  

● Outdoor environments during the flight (wind speed, solar radiation, 
air humidity, etc. (Dandois et al., 2015; Wierzbicki et al.; Sieberth 
et al., 2016)).  

● Additionally, the crop and soil characteristics might also be the 
source of variability in image quality (e.g., canopy structure and its 
contrast with the soil). 

As a combined result of these technical, environmental and biological 
factors, the produced images can be distorted, exhibiting variable spatial 
resolution, texture, contrast, brightness, etc. 

Practically, there are several ways how the distortions in image 
quality could be addressed. 

Fig. 1. Potential sources of image distortions during image acquisition by UAV system.  
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1. Before and during the flight, it is important to avoid threshold situ
ations that are likely to generate distorted images. This can be ach
ieved by standardizing the protocol for image acquisition. 

2. After the flight, it is necessary to rapidly identify any image distor
tions that were not handled by the acquisition protocols (Step 1). 
This allows for the possibility of repeating the flight if the image 
quality is deemed insufficient - this can be done by suitable image 
quality metrics, which estimate the aggregated effects of all sources 
of image distortion.  

3. During and after the image processing, it is necessary to address 
distortions that were not handled by steps 1 and 2. In this case, 
statistical methods can be employed to detect abnormal values of the 
extracted crop traits, and the flight is repeated as soon as these are 
detected. 

Additionally, different image analytical methods are usually used to 
predict various crop traits, which implies that the prediction of different 
traits might be sensitive to different types of image distortions (James 
and Robson, 2014). For instance, this case study focuses on the esti
mation of crop canopy cover (CC). The prediction of CC from the images 
depends on effectively separating and counting pixels belonging to the 
canopy and soil based on the color spectra (Bali and Singh, 2015; Khan, 
2014). For this task, we might expect the image color-related distortions 
(e.g., blur and contrast) would affect the quality of CC prediction the 
most. On the other hand, for different phenotyping tasks like plant 
height prediction, the digital elevation model (DEM) method is usually 
used (Bunruang and Kaewplang, 2021). In this case, the plant height 
prediction accuracy would depend on the accuracy of DEM rather than 
the resolution of orthomosaic (Bunruang and Kaewplang, 2021), and we 
might expect image distortions affecting the orthomosaic stitching 
would have a major effect. Therefore, it is anticipated that the image 
quality indicators will be specific to the trait which is being predicted. 

Despite the advancements in UAV-based technology have signifi
cantly reduced these distortions, the know-how is usually an intellectual 
property of the technology manufacturers and companies (Ardupilot; 
Uche and Audu, 2021; Manobharathi et al.; Asia) and, frequently, too 
generic to suit the specific end-use requirements (e.g., crop breeders 
might have more stringent requirements for crop trait prediction accu
racy than agronomists, etc.). Hence, there was a need to develop a more 
specific yet simple, rapid, and reproducible methodology to define and 
control the image quality parameters to achieve particular accuracy of 
trait predictions as per the requirements of the end-users. We expect the 
image quality control procedures will become even more important for 
the interoperability of data taken by different UAV-set-ups across sites; 
unfortunately, the available literature is short of such examples. 

Therefore, the overall aim of this study was to establish a repeatable, 
simple, and rapid method to standardize image capture by UAV-RGB 
sensor set-up and rapid image quality check of captured images which 
are essential for accurate trait inference from obtained images. The 
specific objectives to achieve this aim were.  

1. To study and quantify the effects of technical, environmental, and 
crop variables that affect the image quality and crop trait prediction 
accuracy (canopy cover (CC) was chosen to demonstrate the 
approach).  

2. To establish the image quality metrics (image quality indicators, 
IQIs) enabling quantifications of the image distortions that affect the 
accuracy of crop trait inference (CC) from images.  

3. Based on the above, provide a repeatable methodology for rapid 
standardization of UAV-based image acquisition and rapid quality 
control of captured images. 

2. Material and methods 

The overview of materials and methods is visualized in Fig. 2. This 
section briefly describes the plant material used for the study (legumes 

and cereals crops) and the ranges of environmental variables, technical 
set-ups, and crop characteristics tested for their influence on captured 
image quality. The section describes the image acquisition process using 
available UAV-RGB set-up and documents the approach for rapid gen
eration of ground truth for plant canopy cover (CC) using an automated 
phenomics platform (LeasyScan, ICRISAT, Hyderabad, India). Further
more, this section elaborates on the mathematical and statistical appa
ratus used to 1) quantify the effect of technical, environmental, and crop 
variables on the accuracy of CC prediction from acquired RGB images, 2) 
calculate integrated image quality indicators and quantify their relation 
to the accuracy of CC inference from UAV-acquired images, and 3) de
scribes the web-based application to obtain the metrics indicative of the 
image quality in a short span of the time after the flight. 

2.1. Plant material 

Here, we used more than 300 genotypes in six experiments. These 
experiments included two cereal and three legume species [cereals 
(sorghum (Sorghum bicolor), pearl millet (Pennisetum glaucum)), and le
gumes (chickpea (Cicer arietinum), mung bean (Vigna radiata), pigeon 
pea (Cajanus cajan)]. These included the diversity panels, breeding 
material, elite lines, and specific bi-parental mapping populations 
(Upadhyaya and Vetriventhan; Upadhyaya et al., 2008; Upadhyaya 
et al., 2007). The details of each experiment are given in Table 1. This 
study was carried out at LeasyScan (LS) platform at International Crops 
Research Institute for Semi-Arid Tropics (ICRISAT), Hyderabad, India 
(17.5111◦N, 78.2752◦E). 

2.2. Conditions of crop growth 

The experiments were conducted at the LeasyScan (LS) platform 
from October 2018 to October 2019. A detailed description of the system 
is elaborated in (Vadez et al., 2015). In brief, the LS system consists of 
4800 sectors where each sector (Fig. 2) is one experimental unit planted 
with one genotype (Vadez et al., 2015). Plants are cultivated in vertisol 
at a density comparable to a recommended agricultural practice (i.e., ∼
30 plants.m− 2 for smaller legume crops or 12 plants.m− 2 for larger cereal 
crops) and fertilized as per the standard agronomic practices (I. C. of 
Agricultural Research). All experiments used in this study were auto
matically irrigated till soil water saturation in a regular interval of 3–5 
days to avoid drought effect on the crop. The duration of each experi
ment was typically 28 − 38 days (from planting to experiment termi
nation). During the plant’s vegetative growth, the parameters related to 
canopy functional-structural properties were recorded automatically by 
the PlantEye(R) technology (F300). 

2.3. Collection of crop variables and ground truth at LeasyScan platform 

In this study, we utilized the state-of-the-art LeasyScan (LS) tech
nology at ICRISAT, India, to measure plant functional-structural traits. 
The platform consists of a set of 8 scanners (PlantEye F300 (PE), Phe
nospex, Heerlen, The Netherlands (Phenospex and PlantEye F500)) that 
move above the crop, generating 3D digital plant reflection, which is 
then used to infer the canopy traits. Out of all the traits estimated by this 
system, plant height was used as a crop character, potentially influ
encing the image quality captured by the UAV-RGB set-up. The canopy 
cover (CC) was our target trait which we aimed to infer from UAV-based 
RGB imaging, and its equivalent (the ”projected leaf area”) generated by 
LeasyScan was used as its ground truth (GT) measurements. In this 
study, we monitored cereals and legume crops during the vegetative 
stage, typically <0.3m. This diligent way of automated, massive, and 
standardized ground truth collection enabled the estimation of the 
target crop trait (i.e., canopy cover) at a relevant scale for our case study 
and re-producible for other trait targets and UAV-based set-ups in the 
future. 
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2.4. Monitoring environmental variables 

The LS system is equipped with the Campbell weather station 
(Intermountain Environmental, Inc.) to monitor environmental vari
ables used in this study (incl. the wind speed [m.s− 1] and solar radiation 
[W.(s ∗ m2)

− 1)]), recorded every minute). Wind speed and solar radia
tion were prioritized in our study as much of the literature points to their 
effect on image quality capture by UAV-based imaging systems (Dandois 
et al., 2015; Wierzbicki et al.; Sieberth et al., 2016). Solar radiation 
might affect the brightness of images (Li et al., 2016), while the wind 

might disturb the programmed path of UAV motion, which could distort 
the images. These environmental variables were aligned to the time 
when images were captured by UAV. The average value of the wind 
speed and solar radiation was considered for the duration of each flight 
(typically 10 − 12 min). The ranges of wind speed and solar radiation 
recorded in this study were representative of the Hyderabad location 
and are summarized in Table 2. 

Table 1 
Details of experiments used in the study. The crops were grown at the LeasyScan platform (Vadez et al., 2015), where the ground truth measurements were auto
matically collected by validated PlantEye technology (F300, (Phenospex and PlantEye F500)). In the experiments, different types of plant material from five crop 
species were assessed. The plant material was imaged by UAV twice a week, and the ground truth was measured by PE sensors daily for its height and projected leaf 
area within the indicated dates.  

Experiment No. Crop Plant material type Date Flight 
Frequency 

Ground truth generated 

1 Sorghum, Pearl millet Diversity panel and Breeding material 22.10.2018 
– 
29.11.2018 

Twice in week Plant height, 
Projected leaf area 

2 Chickpea (CP), Mung bean (MB) Released Cultivars (MB) and Mapping populations (CP) 25.12.2018 
– 
25.01.2019 

Twice in week Plant height, 
Projected leaf area 

3 Pearl millet Released Cultivars and Elite breeding material 05.02.2019 
– 
21.02.2019 

Twice in week Plant height, 
Projected leaf area 

4 Pearl millet Released Cultivars and Elite breeding material 22.05.2019 
– 
10.06.2019 

Twice in week Plant height, 
Projected leaf area 

5 Pigeon pea Diversity panel 28.08.2019 
– 
18.09.2019 

Twice in week Plant height, 
Projected leaf area 

6 Sorghum (SG), Chickpea Diversity panel (SG) and Mapping Populations 
(SG, CP) 

10.10.2019 
– 
31.10.2019 

Twice in week Plant height, 
Projected leaf area  

Fig. 2. Graphical Overview of Material and Methods. This includes 1) raising the plant material at the LeasyScan platform which enabled automatic ground truth 
collection (canopy cover, CC), 2) imaging the crop using a UAV-RGB imaging set-up and measuring the sources of image variability (i.e., environmental variations, 
crop variables, Technical set-up), 3) calculation of the image distortion metrics (Integrated image quality indicators, IIQIs) which is eased by a software application 
and 4) statistical analysis enabling the identification of important variables that affect CC prediction accuracy and image quality check after the acquisition. 
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2.5. Description of UAV and camera set-up to acquire RGB images 

The RGB images were acquired using DJI Zenmuse X5 mounted on a 
four-rotor UAV (DJI Inspire 1 Raw) at the LS platform with a takeoff 
weight of 3.1 kg, as shown in Fig. 2. The camera-generated images of a 
4608 × 3456 size (Exmor APS HD CMOS) and a focal length of 15 mm, 
the camera produced typically 230 − 400 color images per flight (one 

image per 2 s) with Red, Green, Blue bands based on the area covered by 
UAV and flight altitude. The maximum flight time and speed of this UAV 
set-up are typically ∼ 12 − 15 minutes and 18 m s− 1 under no wind 
conditions. A detailed description of UAV (DJI Inspire 1) and RGB 
camera is present in (DJI Zenmuse x5). 

Fig. 3. (a-f)Detailed dissection of significant relations between the target variable (R2/Var for CC) and the variables influencing the quality of UAV-captured images 
(see Table 4). The data in Fig. 3(a–e) were transformed to logarithmic scale in both axes. Similarly, data in Fig. 3(f) was transformed to logarithmic scale in X-axes. 
The relation between log(R2/Var for CC) and log(aperture) (3a), log(crop height) (3b), log(solar radiation) (3c), log(over-exposed pixels) (3d), log(NIQE) (3e), Blur- 
DCT (3f), followed the significant linear segmental relationship. The significant change in the variables of the linear regression (X0: “change point,” Y0: “threshold 
point”) indicated that the quality of trait prediction from the images having the variable value > Y0 is significantly changed (i.e., higher log(R2/Var for CC) indicates 
the lower quality of the target trait prediction changes at Y0). 
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2.5.1. UAV flight path 
Firstly, ground control points (GCPs) were placed at the LS platform. 

The location of GCP plays a vital role in the reconstruction of the area 
captured through UAV images. The GCPs were surveyed with Trimble 
R10 GNSS Receiver (Trimble), which provided coordinates of GCPs ( ±
18 cm accuracy). A total of 40 GCPs were placed at the LS platform. The 
flight path was created by feeding the Global Position System (GPS) 
coordinates (expressed as the combination of latitude and longitude) of 
the location into Mission Planner software (ArduPilot Dev team (Ardu
pilot)) by considering the desired UAV set-up (altitude, speed, and 
overlap). The altitude, speed, and overlap were manually fed into the 
Mission Planner. UAV overlap was of two types. One is forward overlap, 
the common area between two successive images in the same flight path; 
the other is side overlap, the common area between two images in 
adjacent flight paths. Both values of overlaps were varied in the same 
way (for 80% overlap, both the forward and side overlap was varied 
80%) to test their influence on the accuracy of CC inference (Dandois 
et al., 2015). The actual ranges of tested technical UAV set-ups consid
ered in this study are given in Table 2. 

2.5.2. Camera set-up 
The camera used in this study allowed for variation in aperture and 

exposition time. The range of camera set-up used is summarized in 
Table 2.  

1. Aperture: It is defined as the width of the lens opening by which 
light passes into the camera. The camera set-up has the option for 
aperture set-up within the range f/1.7 − f/16. This impacts the 
brightness of the captured image. A large aperture (a wide opening) 
allows much light, resulting in a brighter image and vice-versa.  

2. Exposition time (Shutter speed): It is defined as the duration 
during which the camera sensor has been exposed to the scene. The 
camera set-up has the option for the exposition time within the range 
∼ 8s − 1/8000s. Low exposition time causes a shorter duration of the 
image sensor exposed to the scene by freezing the movement, thus 
resulting in a darker image. Whereas high exposition time results in a 
brighter image but introduces blur in the image from UAV and 
subject movement (plants in this study). Hence, low exposition time 
(faster shutter speed) is preferred when the object is in motion, 
whereas high exposition time (slow shutter speed) might be more 
appropriate for capturing still objects. 

2.6. Integrated image quality indicators 

We investigated several methods to evaluate the integrated effect of 
technical set-up, environmental and crop variables (Table 2) on the 
image distortion and, consequently, on the accuracy of the CC predic
tion. In photography, there are established metrics to assess image 
distortion. In general, image quality assessment (IQA) methods include 
subjective methods based on humans’ perception (i.e., “how realistic the 
image looks”) and objective computational methods. The objective IQA 
methods can be further classified as (Wang et al., 2004): i) IQA based on 
full-reference images, which compare a reference and a test image and 
predict the quality of the test image in terms of an objective score, ii) 
IQA based on reduced-reference methods which predict the quality of a 
test image by comparing through partial information of the corre
sponding reference image, and iii) IQA based on no-reference images (i. 
e., “blind IQA”), which predict the quality of a test image as perceived by 
human observers without a reference image. For our case of UAV-based 
images where no prior reference images for estimating the quality 
usually exist, the no-reference IQA metrics appeared more suitable 

Table 2 
Details of environmental, technical, and crop variables were investigated for 
their affects on the UAV-captured image quality. For each variable, the range of 
its variation across all datasets used in this study are listed.  

Variable type Variable [Unit] Range 

Environmental Variations 
Environmental Windspeed [m.s− 1] 0–5.068 

Solar radiation [W.(s ∗ m2)
− 1)] 0.25–391.8 

Time of Day (ToD) [h] 7–16 
Technical Set-up 
UAV Set-up Speed [m.s− 1] 1–5 

Altitude [m] 5–30 
Overlap [%] 70–180 

Camera Set-up Aperture f/7.1 − f/1.7 
Exposition time [s] 1/320 − 1/8000 

Crop Variables 
Crop Variables Crop stage (number of days after sowing, 

DAS) 
9–38 

Crop height [mm] Cereals: 12 − 295 
Legumes: 7 − 80  

Table 3 
The table lists the image quality indicators (Integrated Image Quality Indicators, 
IIQI) calculated for each set of images per particular flight. The range in IIQI 
variation was caused by the variation in the technical, environmental, and crop 
variables during the UAV imaging (details in Table 2). Some of these IIQIs were 
previously reported to influence the quality of trait prediction from UAV- 
captured images. The relation of these IIQIs to the direct quality of the trait 
prediction (i.e., R2/Var for canopy cover) was further investigated (details in 
Table 4, Fig. 3).  

Integrated Image Quality Indicators (IIQI) 
[references] 

Range 

BRISQUE (Mittal et al., 2012a) 14.99–47.77 
NIQE (Mittal et al., 2012b) 2.0–5.1 
Resolution of Orthomosaic (Agisoft) 1.06 − 4.53[mm.pixel− 1] 
Point cloud density (Agisoft) 33.95 − 238.33[points. 

m− 2] 
Over-exposed pixels 6.28 − 268.78 × 104 

Under-exposed pixels 0 − 9.85 × 104 

Blur-DCT (De and Masilamani, 2016) 2.95–7.23  

Table 4 
Variable Importance in Projection (VIP) scores to assess the importance of the 
variables for the accuracy of the trait prediction (i.e., R2/Var for CC) from UAV- 
captured RGB images. These include: Technical set-up, Environmental varia
tions, Crop variables (details in Table 2), and IIQI (details in Table 3). VIP score 
enables the comparison of the proportion of variation of the target variable (R2/ 
Var for CC) explained by each investigated variable. The higher value of the VIP 
indicates tighter relation between the investigated variable and the target var
iable (R2/Var for CC). VIP score > 0.9 is considered to identify important vari
ables that significantly affect the target variable (Galindo-Prieto et al., 2014). 
These are highlighted in bold font (crop height, aperture, solar radiation, 
Blur-DCT, over-exposed pixels, and NIQE). The details of these particular re
lations were further investigated (details in Fig. 3).  

Variable type Variable VIP Score 

Environmental variations Wind speed 0.566 
Solar radiation 1.274 
Time of Day 0.640 

UAV Set-up UAV altitude 0.676 
UAV overlap 0.833 
UAV speed 0.621 

Camera Set-up Aperture 2.307 
Exposition time 0.659 

Crop parameters Crop height 1.365 
Crop stage 0.426 

IIQI Blur - DCT 0.988 
Under-exposed pixels 0.898 
Over-exposed pixels 0.989 
BRISQUE 0.551 
NIQE 0.991 
Point cloud density 0.821 
Resolution of orthomosaic 0.885  
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(Kamble and Bhurchandi, 2015) and were investigated in more detail.  

1. Blind/Reference-less Image Spatial Quality Evaluator 
(BRISQUE): BRISQUE is built to extract the natural scene statistics 
(NSS) features from the given image and predict a quality score using 
support vector regression which expresses the level of image 
distortion. BRISQUE is trained on an image database with images of 
known distortion (blur, noise, compression artifacts, etc.), with the 
lower BRISQUE values indicating better image quality (Mittal et al., 
2012a).  

2. Naturalness Image Quality Evaluator (NIQE): NIQE represents 
another indicator to evaluate the NSS features, which uses a multi
variate Gaussian distribution to measure the distortion of images. 
Therefore, the NIQE score of an image represents the distance be
tween the Gaussian distributions of a distorted and natural image. 
Thus, low NIQE values indicate a better quality of an image (Mittal 
et al., 2012b).  

3. Point Cloud Density (PCD): PCD reflects the average number of 
points per unit area [points.m− 2] after creating point cloud from the 
UAV images using Agisoft Photoscan software (Agisoft). Higher point 
cloud density would typically provide greater resolution of the im
ages indicating image post-processing efficiency.  

4. Resolution of Orthomosaic: The level of detail achieved per pixel 
after stitching the images together into the orthomosaic (created 
using Agisoft Photoscan software) created from UAV images [in mm. 
pixel− 1].  

5. Blur: We used Digital Cosine Transform (DCT) - based (called as 
Blur-DCT) (De and Masilamani, 2016) blur detection algorithm to 
evaluate the obtained images. The blur-DCT algorithm uses a cosine 
transformation of images. It produces complex number values for the 
output image, which can be displayed with two images, either with 
the real and imaginary part or with magnitude and phase. For our 
purpose, we used only the magnitude of the cosine transformation, 
which contains most of the information about the geometric struc
ture of the spatial image domain. We then calculated the mean 
magnitude values of all images in the dataset. In this way, the blurry 
images were indicated by lower blur-DCT values.  

6. Over-exposed and Under-exposed pixels: The total number of 
pixels in the range 250–255 (over-exposed pixels) and 0 − 5 (under- 
exposed pixels) in the gray level for every image was calculated. 
Consequently, an average of these values was computed in the entire 
dataset. Here, the lower average number of over- and under-exposed 
images signifies better image quality. 

All the above quality metrics were calculated using MATLAB 2019a. 

2.6.1. Software application for computing IIQI 
A Python-based (version greater than 3.7) application was developed 

to compute the IIQI rapidly after completion of the flight. The applica
tion, its documentation, and the instruction for its use were elaborated at 
(https://github.com/GattuPriyanka/Framework-for-UAV-image-qua 
lity.git). The IIQIs computation time depends on the number of images 
in the dataset and the computation platform, and in this study, it took 10 
− 15 min for flights containing 150 − 400 images. This application was 
designed to check the key IIQI as soon as possible after the flight and 
take an IIQI metrics-driven decision on the image collection strategy 
(Fig. 4). 

2.7. Direct image quality metrics expressing the trait prediction accuracy 

To measure the image quality directly, we designed the accuracy 
metrics describing the relation between the ground truth (GT) mea
surements of the target plant trait (Section 2.3) and the target plant trait 
extracted from obtained images (i.e., R2/Var). To demonstrate the 
approach, we chose to use the single and relatively simple plant trait - i. 
e., canopy coverage (CC; defined as the ratio of the vertical projection 

area of canopy on the ground to the total canopy area [m2.m− 2]). We 
considered the previously validated estimations of CC from LeasyScan 
(Vadez et al., 2015) as GT and compared this to the CC estimates from 
UAV-obtained images. 

The RGB images were processed using Agisoft Photoscan (Agisoft) 
tool to create an orthomosaic. Then, shapefiles were created on the 
orthomosaic through the QGIS (QGIS) tool. The individual sectors (each 
containing a different crop-genotype combination, see section 2.2) from 
the LeasyScan field were segmented in RStudio (RStudio). A total of 100 
sectors were extracted from each dataset. Each photographed sector was 
an RGB image containing foreground (plants) and background (soil, 
irrigation pipes, tray border). The RGB image was transformed to HSV 
(Hue Saturation Value) space, and the Hue channel was extracted. The 
hue channel comprises plants and background (soil or sector border). 
The region of interest is plants. The plants were segmented from the 
background by applying the Otsu thresholding (Otsu, 1979) to the hue 
channel, which assumes that the hue image has a background and a 
foreground where it minimizes the intra-class variance and maximizes 
the inter-class variance between the two, which resulted in a binary 
image with white pixels as plants and black pixels as background. The 
Otsu threshold was automatically calculated for each sector. The canopy 
coverage (CC) of each sector was calculated as the ratio of the number of 
white pixels (plants) to the total number of pixels in the sector (Equation 
(1)). 

Canopy Coverage(CC) =
Total number of White Pixels (plants)
Total number of Pixels in the sector

(1) 

The estimated CC values were compared to the ground truth - Pro
jected Leaf Area [mm2/mm2] produced by the PlantEye scanners (Sec
tion 2.3). The metrics describing the relation between the GT estimated 
by the LS platform and UAV-based estimates for 100 sectors were 
generated. To homogenize metrics of relatively heterogeneous datasets 
(different crops at different growth stages), we used the goodness of fit 
(R2) normalized by the individual dataset variance (i.e., R2/Var) of the 
estimated CC (using Matlab, 2019a tool). Finally, the correlation anal
ysis of R2/Var for CC extracted from all datasets (69 datasets) and the 
environmental, technical, and crop variables and integrated image 
quality indicators (IIQIs) were drawn. In this way, the analysis was 
sensitive to the accuracy of the trait of interest, i.e., CC. This specific 
relation enabled us to estimate the individual variable and IIQI impor
tance for the accuracy of CC prediction (Fig. 3), quantify their ranges 
where we can expect homogeneous accuracy of CC prediction (Fig. 3), 
and further analyze the interdependence of environmental/technical/ 
crop variables and/or the integrated image quality indicators (see sec
tion 2.6) with the accuracy of CC prediction from the images (see section 
2.8). 

2.8. Statistical analysis 

The statistical apparatus used in this study was built to identify the 
technical, environmental, and crop factors that can significantly distort 
the RGB images acquired by UAV-carried RGB camera and quantify their 
consequences regarding the accuracy of traits predicted from obtained 
images. 

2.8.1. Variables considered in this study 
In this analysis, the parameters of UAV set-up, camera set-up, envi

ronmental variations, crop variables, and integrated image quality in
dicators were considered as predictor variables (X). The ratio of 
goodness of fit to variance (i.e., R2/Var for CC) of the processed trait was 
considered as the response variable (Y). Next, we analyzed the relation 
of these 17 descriptors of technical set-up, environmental variables 
during the flight, crop variables, integrated image quality indicators 
(Section 2.6), and the metrics describing success of the CC prediction 
from the acquired crop images (R2/Var for CC, (Section 2.7). In this way, 
the analyses were specific to the target trait (CC). 
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2.8.2. Quantification of the predictor variables importance 
Partial Least Square Regression (PLSR) (Ng) analysis was applied to 

69 datasets (consisting of 17 predictor variables and one response var
iable (R2/Var for CC)) to interpret a relation between the predictor and 
response variable. Out of the 17 predictors which might have influenced 
the response variable (R2/Var), we aimed to quantify the importance of 
the predictor variables based on the proportion of explained variability 
in R2/Var for CC. For this, the PLSR was followed by computing “Vari
able Importance in Projection (VIP)” scores (Galindo-Prieto et al., 2014), 
equation (2). The variance explained by each component of the PLSR 
model was fed as input to VIP (as in equation (2)). As per (Galindo-Prieto 
et al., 2014), the predictor variable with a higher VIP score (~>1) can be 
considered comparatively more important for CC prediction accuracy 
than the variables with lower VIP scores (VIP values are summarized in 
Table 4). 

VIPj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p
∑m

a=1

SSa(waj
/⃦
⃦waj

⃦
⃦)

2

∑m
a=1SSa

√
√
√
√ (2) 

Where p is the number of predictor variables, SSa is the sum of 
squares explained by ath component, waj is the weight of jth predictor 
variable in ath component of the PLS model. 

The combination of PLSR and VIP scores pointed to the compara
tively more important predictors, which were primarily analyzed for 
their relation to R2/Var for CC. The predictors identified as significant 
were the aperture of the camera, crop height, solar radiation, Blur-DCT, 
over-exposed pixels, and NIQE. 

2.8.3. Regression analysis of predictor variables with R2/Var for CC 
The predictor variables identified in 2.8.2 (Aperture, crop height, 

solar radiation, NIQE, Blur-DCT, over-exposed pixels) were regressed 
against the R2/Var for CC. The data for some of the variables (i.e., in 
aperture, crop height, solar radiation, NIQE, and over-exposed pixels) 
had to be transformed into the logarithmic scale on both axes to inter
pret the relations between the variables (aperture - Fig. 3a), crop height - 
Fig. 3b), solar radiation - Fig. 3c), Over-exposed pixels - Fig. 3d), NIQE - 
Fig. 3e), while for some variables (Blur-DCT) the logarithmic trans
formation was not required for the Y axes (Fig. 3f). Consequently, we 
fitted the segmented linear regression model (using MATLAB 2019a) to 
specify the threshold (X0, Y0) where the relation between the parameters 
changed (Fig. 3). 

3. Results 

3.1. Dataset characteristics 

A total of 69 datasets from six experiments (Table 1) with various 
technical and environmental variables were collected using a UAV - RGB 
camera set-up at the LeasyScan platform. The images of cereals and le
gumes were collected at different stages of vegetative crop growth (5 
legume and cereal species). The range of technical variables, the vari
ation in environmental factors typical for this site as well as crop vari
ability across all experiments were the ultimate requirement to study the 
effect of individual variables on the image quality and, consequently, on 
the accuracy of the plant trait prediction from these images (Table 2). 

The tested ranges of the technical, environmental, and crop variables 
(Table 2) influenced the quality of collected images and notably affected 
the accuracy of the trait prediction inferred from these images (Fig. 3). 
These are also reflected in the seven integrated image quality indicators: 
BRISQUE, NIQE, resolution of orthomosaic, point cloud density, over- 
exposed and under-exposed pixels, and Blur-DCT (“integrated” image 
quality indicators, Table 3), some of which also showed the significant 
relation to the accuracy of the canopy cover inference ((R2/Var for CC 
which is a “direct” image quality indicator). The direct image quality 
indicator for CC prediction was expressed as R2 of the relation between 
the CC ground truth and CC estimated from the UAV-carried RGB 

camera, i.e., (R2 ranging from 0.15 to 0.91). 

3.2. Effect of tested variables on accuracy of the CC inference from 
images taken by UAV-carried RGB camera 

To compare the influence of all 17 tested variables (Tables 2 and 3) 
on inference of the crop CC from images (R2/Var for CC), we computed 
the VIP scores (Equation (2), Table 4). The VIP scores were computed by 
feeding the variance explained by each component of the PLSR model as 
input to VIP. These VIP values allowed us to quantify and compare the 
relatedness between the tested variables and the direct indicator of the 
image quality (R2/Var for CC). Here, the higher VIP values pointed to the 
explanatory variables with stronger relatedness to the variable 
explained, i.e., R2/Var for CC (Table 4): Crop height, Aperture of Cam
era, Solar radiation, Blur-DCT, over-exposed pixels, NIQE. These vari
ables will have explained a higher proportion of variability in R2/Var for 
CC compared to the rest and were further dissected using the regression 
analysis (Fig. 3, section 3.3). 

3.3. Dissection of relation between the explanatory variables with the 
accuracy of CC prediction 

Based on the VIP score (Table 4, section 3.2), we have further 
inspected relations between R2/Var for CC and the six important vari
ables (technical, environmental, and crop variables and integrated 
image quality indicators; Tables 2 and 3). We found that the relation of 
these variables: crop height, aperture, solar radiation, NIQE, over- 
exposed pixels, and Blur-DCT with R2/Var for CC could be approxi
mated by a segmented linear regression (Fig. 3). Performing the two- 
segment linear regression on these variables (from Fig. 3a-f) further 
revealed the point (“threshold value”) where the relation of the variable 
to R2/Var for CC significantly changed (Fig. 3). In some cases, the 
change in relationship was also accompanied by the change in variance 
of that relation (i.e., increase in the 95% confidence interval, Fig. 3). The 
identified coordinates of that point delineated the threshold for a 
particular explanatory variable (Y coordinate) where the accuracy of 
inference of the plant trait (CC) from such images significantly changed 
(Fig. 3). 

3.3.1. Technical variables  

1. Aperture: Out of the hereby tested ranges of technical variables (i.e., 
Table 2), the size of aperture, which regulates the amount of 
incoming light needed to capture the image, explained proportion
ally largest variation in R2/Var for CC. Consequently, the actual 
relation between log(aperture) settings and log(R2/Var for CC) is 
shown on Fig. 3a. Here, we can follow the decay of the relation with 
log(R2/Var for CC) and broader variance beyond the aperture setting 
< 5.7. This shows that for this particular set-up, the decrease in 
aperture < 5.7 is likely to decrease the accuracy of prediction of CC 
from such images. 

3.3.2. Crop variables  

1. Crop height: The crop height, estimated automatically by LeasyScan 
(Vadez et al., 2015), explained a large proportion of variation in log 
(R2/Var for CC). Fig. 3b showed that the relation between the log 
(crop height) and the accuracy of CC prediction from the crop higher 
than > 178 mm was changed. This shows that for this particular 
UAV-camera imaging set-up, the estimation of CC was less accurate 
when the crops grew beyond < 178 mm. 

3.3.3. Environmental variables  

1. Solar radiation: We found the lower solar radiation [W.(s ∗ m2)
− 1] 

values, were generally associated with increasing log(R2/Var for CC) 
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(Fig. 3c). We also observed a substantial decline in log(R2/Var for 
CC) with the solar radiation values < 290.43 [W.(s ∗ m2)

− 1
], which 

means that images taken under conditions with solar radiation 
>290.43 [W.(s ∗ m2)

− 1
] resulted in more accurate CC estimates. This 

signifies that for the reproducible CC estimation from the images 
taken by our UAV set-up, these need to be taken during the time of 
the day with similar or higher light intensity, i.e., between 10 : 00am 
− 02 : 00pm (for Hyderabad location, 17.5111 ◦N, 78.2752 ◦E). 

3.3.4. Integrated image quality indicators  

1. Over-exposed pixels: The relation between log(over-exposed 
pixels) in the available dataset and log(R2/Var for CC) (Fig. 3d) 
showed that the log(R2/Var for CC) increased with the average 
number of over-exposed pixels > 26 per image. This shows that a 
more robust estimate of CC is expected from images with the 
numbers of over-exposed pixels < 26 per image.  

2. NIQE: NIQE value is built to compare the measurable deviations 
(mean, covariance) of a given image with the deviations occurring in 
the natural scenes, with the lower NIQE values corresponding to 
higher quality images (Mittal et al., 2012b). The similar trend was 
apparent from our analysis - i.e., the relation between log(NIQE) and 
log(R2/Var for CC) (Fig. 3e) showed that the prediction capacity for 
CC decreased with the NIQE values beyond > 2.9. 

3. Blur-DCT: Blur-DCT measures the sharpness of an image in a fre
quency domain (using Cosine transformation of image (De and 
Masilamani, 2016)) with lower Blur-DCT values generally corre
sponding to higher quality images. Fig. 3f shows that, for our im
aging set-up, the relation between Blur-DCT and log(R2/Var for CC) 
was more scattered beyond the Blur-DCT > 3.8. This shows that the 
images with Blur-DCT > 3.8 are likely to compromise the accuracy of 
the CC prediction. 

4. Discussion 

The presented work was originally inspired by the increasing de
mand for rapid, high-throughput access to plant characteristics from 
plant-related research disciplines (e.g., breeding, physiology, agricul
tural sciences, etc.). UAV-enabled imaging represents a potentially time- 
and cost-effective option for precise plant phenotyping provided the 
methodology of image capture is repeatable and the trait estimation 
from these images is sufficiently accurate for the particular end-uses. In 
the presented case study, we addressed several bottlenecks necessary to 
establish the UAV-based RGB imaging for the precise plant phenotyping 
at ICRISAT, India: i.e., i) quantitative definition of image acquisition 
protocol by specific UAV-camera set-up for accurate target crop trait 
inference, ii) rapid quality check of the acquired images, and iii) rapid 
ground truth crop trait measurements to achieve i) and ii) time- 
effectively. We documented and enabled this approach by: i.e., 1) 
method to identify and quantify the factors influencing the accuracy of 
plant trait inference from captured images, 2) software application 
enabling evaluation of the image quality in a short span of time and 3) 
rapid generation of ground truth plant characteristics necessary for 1) 
and 2) using stationary phenomics platform (LeasyScan). We also pro
vided the means to replicate this approach de novo to support the 
practitioners with similar use cases, particularly those requiring high 
phenotyping accuracy. 

4.1. Case study description 

There are numerous literature sources documenting the utilization of 
UAV-based imaging in agricultural research (Xie and Yang, 2020b; Feng 
et al., 2021a; Wan et al., 2021; Hu et al., 2021; Volpato et al., 2021; 
Johansen et al., 2020; Wilke et al., 2021; Lu et al., 2021; Chandra et al.; 
Alzadjali et al., 2021; Chivasa et al., 2021; Ayhan et al., 2020; Hu et al., 

2018). In fact, UAV imaging appears to be likely on its way to become a 
standard method for the evaluation of plant-environment continuum 
features across the agricultural sector. For some applications, e.g., for 
precise crop traits evaluation in breeding (Britannica), the high quality 
of the images is a key requirement for precise and repeatable assessment 
of crop features. In the private domain, there are now numerous 
guidelines provided by UAV and sensor manufacturers and training 
schools to optimize the acquisition of images; nevertheless, these might 
be too generic to suit some specific end-uses (Uche and Audu, 2021; 
Manobharathi et al.; Asia). Despite the remote sensing research com
munity stresses the image quality issues related to image acquisition (e. 
g. (Zeng et al., 2022),), we found only a few publicly available studies 
documenting details for standardization of UAV image acquisition (Yang 
et al., 2017; Xie and Yang, 2020b; Shawn Carlisle Kefauver et al.; Feng 
et al., 2021b), and even fewer of them reported the quantitative methods 
to evaluate image quality (summarized in Table 5 (Dandois et al., 2015; 
Wierzbicki et al.; Sieberth et al., 2016; Mesas-Carrascosa et al., 2015; Lee 
and Sung, 2016; Lim et al., 2018)). In the majority of other studies, the 
technical variables considered for UAV and camera set-ups are usually 
not comprehensively described (Dandois et al., 2015; Wierzbicki et al.; 
Sieberth et al., 2016; Volpato et al., 2021; Johansen et al., 2020; Lu 
et al., 2021; Alzadjali et al., 2021; Chivasa et al., 2021; Ayhan et al., 
2020; Hu et al., 2018; Mesas-Carrascosa et al., 2015; Lee and Sung, 
2016; Lim et al., 2018). We argue that the lack of quantitative standards 
for image acquisition and image quality control might compromise 
repeatability of the given study as well as data interoperability with 
other studies (e.g. (Zeng et al., 2022)). 

Nonetheless, the quantitative evaluation of image quality requires 
not only a large amount of images but also related ground truth mea
surements (i.e., UAV- independent evaluation of plant trait characters, 
which is time- and cost-intensive when done manually). Therefore, it 
might be possible that this particular gap could be related to the diffi
culties to generate the ground truth data at required scale. This seems to 
correspond to the existing literature, which usually reports a very 
limited dataset (typically ∼ 2 − 10 flights (Wierzbicki et al.; Sieberth 
et al., 2016; Mesas-Carrascosa et al., 2015; Lee and Sung, 2016; Lim 
et al., 2018)) compared to our study (69 flights, ∼ 150 − 400 images per 
flight). In the presented case study, the constraints related to ground 
truth availability were overcome by utilization of the LeasyScan plat
form, which is built to generate the ground truth with a high precision 
and enormous throughput (Vadez et al., 2015). This allowed us to collect 
a sufficiently large dataset, i.e., images and ground truth, in a relatively 
short period. This dataset was collected across the range of environ
mental conditions expected in the target latitudes (solar radiation, wind 
speed; Hyderabad, India), annual crop species typical in that region (3 
legume and 2 cereal species) with varied technical camera/UAV set-ups 
(Table 2). Altogether, we followed 10 variables, and this is considerably 
more compared to the available literature where the testing was typi
cally done for few factors at a time, if at all (Dandois et al., 2015; 
Wierzbicki et al.; Sieberth et al., 2016; Mesas-Carrascosa et al., 2015; Lee 
and Sung, 2016; Lim et al., 2018) (Table 5). Consequently, despite we 
identified many image quality metrics used in photography ((Mittal 
et al., 2012a; Mittal et al., 2012b; Agisoft; De and Masilamani, 2016)), 
we found very few image quality indicators considered in UAV-based 
sensing; Typically, the spatial resolution of orthomosaics is used (Dan
dois et al., 2015; Wierzbicki et al.; Sieberth et al., 2016; Mesas-Carras
cosa et al., 2015; Lee and Sung, 2016; Lim et al., 2018), and, in few 
cases, the point cloud density (Wierzbicki et al.), blur metrics (e.g., 
SIEDS; saturation image edge difference standard-deviation) (Sieberth 
et al., 2016), and few methods adapted from satellite-sensing (Chivasa 
et al., 2021). 

4.2. Parameters related to accuracy of trait inference and their use for 
image acquisition and quality control process 

Variations in technical set-up, environmental, and crop variables (10 
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variables, Table 2) distorted the images taken by our UAV-RGB imaging 
set-up. Different types of image distortions were measured by specific 
“integrated” image quality indicators, IIQIs: We tested 5 IIQIs which are 
generically used for image quality evaluation in photography: NIQE 
(Mittal et al., 2012b), BRISQUE (Mittal et al., 2012a), Blur-DCT (De and 
Masilamani, 2016), below- and over-exposed pixels) as well as 2 IIQIs 
typically used in remote-sensing (point cloud density (Agisoft), resolu
tion of orthomosaic (Agisoft)). Consequently, we investigated the rela
tion of all these 17 variables (i.e., technical set-up, environmental 
variations, crop variables, and IIQIs) on the accuracy of the crop CC 
prediction across the 69 collected dataset (measured as R2/Var for CC). 
We found other studies considered the RMSE, R2 (Dandois et al., 2015) 
as metrics to evaluate the effect of some of these variables on the ac
curacy of trait inference. However, in the case study, which uses a broad 
and diverse dataset, it was necessary to normalize these parameters to 
cross-compare the individual data from individual flights (hence R2/Var 
for CC was calculated for 69 dataset). Furthermore, to compare the effect 
of all variables on the accuracy of the trait prediction, we deployed the 
multi-factorial regression methods (PLSR) followed by variable impor
tance in projection (VIP). Although these statistical tools are regularly 
used in other research disciplines (classically for building chemo-metric 
models in near-infrared spectroscopy), their application for this purpose 
is unique. PLSR, followed by VIP, pointed to 6 variables with compar
atively larger effects on the accuracy of the crop CC prediction. The 
consequent simple regression analysis of these six identified variables 
with R2/Var for CC revealed the nature of this relation (Fig. 3). All 
variables fitted the linear segmented regression model with the signifi
cant threshold (regression “breakpoint”), which signified the important 
change in the parameters of the relation between the variable and 
R2/Var for CC (Fig. 3). 

This threshold analysis quantitatively defined the technical, envi
ronmental, and crop parameters space within which the trait of interest 
(CC) can be accurately inferred. This information was then used to 
define the range of operating conditions which should be respected to 
acquire images for accurate CC inference by this particular UAV-RGB 
imaging set-up. Furthermore, the same threshold analysis also quanti
tatively defined the degree of image distortion resulting from the vari
ability in technical, environmental, and crop parameters. The degree of 
image distortion was measured by integrated image quality indicators, 
beyond which the accuracy of crop CC inference was compromised. This 
information on IIQIs thresholds was then used to inspect the quality of 
the acquired images after the acquisition. A software application has 
been developed to ease the calculation of these IIQIs after the flight 
(https://github.com/GattuPriyanka/Framework-for-UAV-image-qua 
lity.git). Based on the IIQIs, the generated images can be readily eval
uated after the flight is completed, and an appropriate decision on the 
collected images can be taken (see Fig. 4). It is also important to note 
that the statistical apparatus was built to be sensitive to the particular 
trait (CC), and the threshold values of the variables for other target traits 
are expected to be different. 

4.3. Possible implications for practitioners 

With the presented case study, we intended to demonstrate a con
crete methodology and tools enabling quantitative analysis of the 
technical, environmental, and crop parameters that could impact the 
quality of captured RGB images and, consequently, the accuracy of the 
crop traits prediction from these images. We could not identify any 
publicly available literature that would document any similar quanti
tative method enabling the UAV users to i) standardize the image cap
ture methodology and ii) check the quality of the acquired images based 
on concrete metrics sensitive to their particular UAV set-up and target 
trait. With the globalization of research initiatives, adherence to known 
standards will become a necessity ((Kim, 2020). In plant research, such 
initiatives are already existing; e.g., IPPN (IPPN), BrAPI (Selby et al., 
2019), crop ontology (Crop ontology)). Therefore, the presented study is 

Table 5 
Summary of the literature sources (Dandois et al., 2015; Wierzbicki et al.; Sie
berth et al., 2016; Mesas-Carrascosa et al., 2015; Lee and Sung, 2016; Lim et al., 
2018) relevant for the variable comparison with the presented study. These 
studies documented, in some way, the influence of particular dataset characters 
on the quality of the target trait prediction from the UAV-captured images. The 
table summarized the dataset characters considered in other studies and its 
relevant counterparts investigated in the presented study. The implications of 
this comparison are further discussed in section 4.  

Dataset 
characters 
considered in the 
study 

Type/range of the investigated 
character [Literature source] 

Type/range of the 
investigated character 
[Presented study] 

Sensing target 
Sensing target Terrains (Wierzbicki et al;  

Sieberth et al., 2016;Lee and 
Sung, 2016;Lim et al., 2018), 
Agricultural fields ( 
Mesas-Carrascosa et al., 2015), 
Forests (Dandois et al., 2015) 

Agricultural fields (Cereals, 
Legumes) 

Number of flights 
No. of data sets/ 

flights 
2 − 10 (Lee and Sung, 2016; 
Lim et al., 2018; 
Mesas-Carrascosa et al., 2015; 
Sieberth et al., 2016; Wierzbicki 
et al) 

69 

UAV Set-up 
UAV Altitude 10 − 260m (Dandois et al., 

2015; Wierzbicki et al;Sieberth 
et al., 2016; Mesas-Carrascosa 
et al., 2015; Lee and Sung, 
2016; Lim et al., 2018) 

5 − 30m 

UAV Speed Not mentioned (Lee and Sung, 
2016; Lim et al., 2018; Sieberth 
et al., 2016; Wierzbicki et al) or 
fixed - 6m.s− 1 (Dandois et al., 
2015; Mesas-Carrascosa et al., 
2015) 

1 − 5 km− 1 

UAV Overlap 20 − 80% (Dandois et al., 
2015), 75% (Lee and Sung, 
2016; Sieberth et al., 2016), 
80% (Mesas-Carrascosa et al., 
2015) 

70 − 140% 

Camera set-up 
Aperture Not mentioned (Dandois et al., 

2015; Lee and Sung, 2016; Lim 
et al., 2018; Mesas-Carrascosa 
et al., 2015) or fixed (Sieberth 
et al., 2016; Wierzbicki et al) 

1.7–7.1 

Exposition time  1/320 − 1/8000s 
Environmental variations 
Wind speed 0.6 − 5.9 m s− 1 (Dandois et al., 

2015), .8 − 1.9 m s− 1 (Sieberth 
et al., 2016) 

Considered the average 
value during flight. These 
were obtained from PE 
scanner. Solar radiation Cloudy or Clear (Dandois et al., 

2015) 
Image Quality Indicators 
Quality Metrics Resolution of orthomosaic ( 

Dandois et al., 2015; Lee and 
Sung, 2016; Lim et al., 2018; 
Mesas-Carrascosa et al., 2015; 
Sieberth et al., 2016; Wierzbicki 
et al), Point cloud density ( 
Sieberth et al., 2016), Blur 
detection using SIEDS value ( 
Wierzbicki et al), Quality using 
edge analysis (Lim et al., 2018). 

Resolution of orthomosaic, 
Point cloud density, 
BRISQUE, NIQE, Blur-DCT, 
over-exposed, and under- 
exposed pixels. 

Comparative Metrics 
Method RMSE, R2 of orthomosaic or 

point cloud density (Wierzbicki 
et al) 

PLSR + VIP to identify 
important parameters. 
Segmental linear regression 
to identify threshold.  
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intended to be an initial step supporting such research integration 
(Fig. 4). It should be the subject for further testing and improvements by 
the community of practitioners. 

4.4. Limitations of the study and further directions 

UAV-based remote sensing for precise crop phenotyping is a complex 
exercise where the sources of errors in the trait prediction from images 
could originate from many sources (e.g., In the presented case study, we 
focused only on the errors related to the data collection, i.e., technical 
set-up, environmental conditions, and crop features, see Fig. 1). In 
further studies, we plan to expand and further investigate these partic
ular areas.  

1. Range of Technical, Environmental, and Crop Parameters 
Studied: The presented experiments were designed to encompass the 
ranges of environmental parameters (solar radiation, wind speed, 
time of the day) typical for the Hyderabad experimental station, and 
these might not represent the situation in other locations. Also, the 
list and the range of technical parameters tested in the study was 
limited by the particular UAV camera set-up (UAV: DJI Inspire 1 
Raw, Camera: DJI Zenmuse X5) we had available and is not 
exhaustive (UAV altitude, speed, image overlap, camera exposition 
time, aperture). Additionally, we focused only on variability in 5 
species of annual semi-arid crops typically cultivated in semi-arid 
tropical regions. Nevertheless, we covered a broad range of geno
types (∼ 300) and the key stages of critical vegetative crop devel
opment required for our end-use (∼ 40 days after sowing). 

Despite our study using only an RGB camera, the simple traits 
important for our target users group (e.g., crops breeding), such as 

hereby demonstrated canopy cover, further, e.g., plant height or plant 
count, can be reliably predicted from RGB images. Ultimately, in further 
studies, we will expand the proposed approach with different UAV 
camera set-ups (including multi- and hyper-spectral cameras) and 
ranges of the environmental sources of image distortions. This will 
include testing the images across the whole crop cycle, inferring 
different crop traits (e.g., plant height), and exploring other crop 
species.  

2. Expanded Portfolio of IIQIs and Real-time Computations: In the 
presented study, we tested only 7 IIQIs, out of which only 3 were 
significantly related to the accuracy of the trait inference from the 
images. While expanding the portfolio of target plant traits, we will 
also expand the tested IIQIs (e.g., PIQUE (Venkatanath et al., 2015)). 
Also, despite the fact that we developed a software application 
(https://github.com/GattuPriyanka/Framework-for-UAV-imag 
e-quality.git) to calculate these parameters for image quality 
assessment rapidly, the IIQIs are still calculated after the flight. This 
means there is still a time gap where the operator would not have 
access to the flight quality indicators, which might pose a limitation. 
Thus, in the next steps of the research, we will investigate how to 
compute the key IIQIs while taking the flight (e.g., using edge 
computing platforms like NVIDIA Jetson Nano), which should 
further streamline the process of image quality evaluation and 
related decisions. 

5. Conclusion 

UAV-based remote sensing is a rapidly evolving technology option to 
support precise crop phenotyping. The precise trait assessment from the 
UAV-based imaging systems is a complex process where the accuracy of 

Fig. 4. The workflow summarizes the processes investigated in our case study, which are necessary to standardize the image acquisition and assess the quality of 
images post acquisition. These processes aim to provide support for decisions on UAV image collection. 
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plant trait inference from captured images could be affected by multiple 
issues related to, e.g., field preparation, ground truth generation, tech
nical - environmental and crop-and-soil features, data pre-processing 
methodology, software and analysis. Since there is a general need for 
more publicly available systematic studies on these topics, we attempted 
such investigations in the presented case study. We quantified the effects 
of particular technical UAV-based set-up, environmental and crop pa
rameters on the quality of the captured images and, consequently, linked 
these factors to the capacity of trait inference from the captured images. 
Finally, we present an approach that could be replicated for other 
similar use cases, especially those requiring high accuracy of plant trait 
inference; 1) The method to identify and quantify the factors (technical, 
environmental, and crop-related) influencing the accuracy of plant trait 
inference from captured images. These can be used to develop the 
quantitative standard imaging procedure to inform UAV operators about 
the threshold situations beyond which the captured images are likely to 
be distorted and the accuracy of plant trait prediction significantly 
affected. 2) The image quality indicators integrating the effects of 1) and 
their threshold values beyond which the trait inference from such im
ages is significantly affected. We also present a software application 
enabling the evaluation of the image quality in a short span of time. 
These might be instrumental in informing UAV operators on the quality 
of captured images quickly after the flight to repeat the flight if the 
image qualities are potentially sub-optimal. 3) We also present an 
approach for the rapid generation of ground truth necessary for 1) and 2) 
using a stationary phenomics platform (LeasyScan). 

The presented approach is currently being tested across expanded 
conditions for different trait targets. While we keep enhancing the 
methods, we envisage that a similar approach would allow for the 
interoperability of results generated by UAV-imaging platforms in 
different research teams to better support agricultural research. 
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