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A genomic variation map provides  
insights into peanut diversity in China  
and associations with 28 agronomic traits

Qing Lu    1,4 , Lu Huang1,4, Hao Liu    1,4, Vanika Garg2, Sunil S. Gangurde    3, 
Haifen Li1, Annapurna Chitikineni2, Dandan Guo1, Manish K. Pandey    3, 
Shaoxiong Li1, Haiyan Liu1, Runfeng Wang1, Quanqing Deng1, Puxuan Du1, 
Rajeev K. Varshney    2 , Xuanqiang Liang    1 , Yanbin Hong    1  & 
Xiaoping Chen    1 

Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food 
legume crop. China is one of the world’s largest peanut producers and 
consumers. However, genomic variations underlying the migration 
and divergence of peanuts in China remain unclear. Here we reported a 
genome-wide variation map based on the resequencing of 390 peanut 
accessions, suggesting that peanuts might have been introduced into 
southern and northern China separately, forming two cultivation centers. 
Selective sweep analysis highlights asymmetric selection between the two 
subgenomes during peanut improvement. A classical pedigree from South 
China offers a context for the examination of the impact of artificial selection 
on peanut genome. Genome-wide association studies identified 22,309 
significant associations with 28 agronomic traits, including candidate  
genes for plant architecture and oil biosynthesis. Our findings shed light 
on peanut migration and diversity in China and provide valuable genomic 
resources for peanut improvement.

Peanut (Arachis hypogaea L.) is an important oil and food legume  
worldwide, offering nutritional elements and economic value to address 
malnutrition and poverty1. In China, peanut is an important source 
of vegetable oil for its residents and a major cash crop for increasing 
farmer income and lifting them out of poverty. It is distri buted across 
southern and northern regions, with a total production of 18.05 million  
tons, accounting for 33.64% of the world’s production (FAOSTAT, 
2020). Peanut was possibly derived from the hybridi zation between 
its two progenitors, Arachis duranensis and Arachis ipaensis, in the 
southwestern Mato Grosso do Sul region of Brazil (South America) 
and was domesticated 6,000 years ago and then widely dispersed in 

post-Columbian times2–8. Historical records suggest that peanut was 
introduced into China via three possible paths as follows: Africa–India–
South China (SC), South America–Indonesia–SC (through the Indian 
Ocean) and Mexico–Philippines–SC (through the Acapulco–Manila 
galleon trade route)7. China, being outside the world’s propagation 
centers, is among the countries that have benefited from the use of 
imported germplasm. The usage of introduced peanuts, including 
landraces and breeding lines, has brought great diversity to improved 
varieties in both northern and southern regions of China. Distinct pea-
nut market types have been formed between southern China (Spanish 
type, small pod) and northern China (Virginia type, large pod), creating 
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as NonC-0, NonC-1 and NonC-2 (Supplementary Fig. 4c,d). The NonC-0 
accessions were not well separated into substructures at K = 3 and 4 
(Fig. 1c), indicating that the NonC-0 gene pool might be monophyletic.  
Furthermore, the NonC-1 accessions, mainly from North America  
(especially the United States and Mexico), were clustered closely with 
the NC group, primarily from northern China with a center in Shandong 
and Henan provinces. The NonC-2 accessions from South and Southeast 
Asia were integrated into the SC group, mainly collected from southern 
China centered on the Pearl River Delta dominated by Guangdong  
and Guangxi provinces (Fig. 1b,c). Moreover, the fixation index (FST) 
values between NonC-1 and NC (0.08) and between NonC-2 and SC 
(0.07) were the lowest, followed by that between NC and SC (0.13; 
Fig. 1f). These results suggested that contributions of the NonC-1  
and NonC-2 gene pools to NC and SC genotypes, respectively, are 
evident. Admixture due to genetic introgression also showed clear 
evidence of genetic heterogeneity in NC and SC genotypes (when K = 4; 
Fig. 1c), indicating frequent gene exchanges between China’s two main 
peanut production areas during the long-term breeding process.

To investigate the migration routes of Chinese peanuts intro-
duced from abroad, phylogenetic relationship and gene flow were 
examined using Treemix36, which implements composite likelihood  
to infer probable population splits. The results showed that the  
direction of gene flow for NC peanut accessions was mainly from  
North America (Supplementary Fig. 5a), whereas SC accessions were 
mainly from South and Southeast Asia (Supplementary Fig. 5b,c). These 
findings were consistent with the result of DIYABC37 analysis (when  
scenario = 5; Supplementary Fig. 5d,e). This graph model inferred 
that peanut was introduced into China through two major propa-
gation routes. In northern China, peanut was introduced from  
North America, while those in southern China migrated from South 
and Southeast Asia (Supplementary Fig. 5f ). These migrations 
resulted in the emergence of two major peanut cultivation centers 
in China. One is the Pearl River Delta, from which peanuts spread 
to southwestern and southeastern China, as well as Southeast Asia. 
The other is the NC Plain, from which peanuts spread to northeast-
ern China (Fig. 1b and Supplementary Fig. 5f). The NC and SC pea-
nut cultivation centers reflected the different production systems 
and climate environments in the respective regions, representing 
the large-pod (like Virginia type) and small-pod (like Spanish type) 
market types, respectively. These results indicated that the two pea-
nut cultivation centers have a crucial role in the spread of peanuts in  
China. Nucleotide diversity (π) analysis showed that NonC-0 had the 
highest π values (2.14 × 10−4; Fig. 1f), suggesting that genotypes in 
the NonC-0 can be used to expand the genetic base for future pea-
nut improvement in China. The mean linkage disequilibrium (LD) 
decay distance of the whole genome was 92.3 kb (decaying to r2 of  
approximately 0.16); however, for the At and Bt subgenomes, it was 
104.2 kb and 59.2 kb, respectively (Fig. 1g). Moreover, the LD decay 
distance was greatest for NC, followed by SC and NonC (Supplemen-
tary Fig. 4e).

Genome-wide association analysis for agronomic traits
The genome-wide variation map enabled GWAS for 28 agronomic  
traits in four peanut-growing seasons in 2017 and 2018 in Guangzhou, 
China (Supplementary Table 4 and Supplementary Fig. 6). Correlation 
coefficients among these traits were calculated using the best linear 
unbiased prediction (BLUP) combined phenotypes (Supplementary  
Fig. 7). GWAS analysis was performed for 28 traits, resulting in a total  
of 22,309 significant associations, including 17,803 unique significant 
SNPs (Supplementary Fig. 8 and Supplementary Tables 5 and 6). More over, 
791 significant SNPs associated with six traits were detected more than 
once in different environments or using BLUPs (Supplementary Table 7).  
These repetitive associations were mainly observed in four major 
regions on chromosomes A03 (17.4–95.0 Mb), A09 (5.8–8.9 Mb),  
A10 (16.1–16.2 Mb) and B09 (158.9–159.0 Mb; Supplementary Fig. 8).  

two major Chinese transmission centers. Exploring the genetic diversity 
of germplasm for cultivar improvement is a priority in enhancing the 
yield capacity for peanuts. However, the genomic variations under-
lying the phenotypic diversity owning to natural and artificial selec-
tions have not yet been fully investigated, and only a few germplasm  
have been used for improving agronomic traits9.

Diverse consumption needs have always been an important  
driving force for improving agronomic traits in peanuts. A few genetic 
loci have been discovered for several traits with traditional linkage  
and association mapping10–17. Resequencing of germplasm is an  
integral part of identifying the genomic variations and is essential 
to accelerate genomic research. A genome-wide association study 
(GWAS) is appropriate for identifying genomic variations associated 
with agronomic traits using a natural population18. Substantial progress  
has been made in the genome sequencing of diploid crops, such as 
rice19,20, maize21, soybean22, chickpea23,24, castor bean25 and millet26, 
as well as in polyploid crops, including cotton27,28, rapeseed29,30 and 
wheat31. However, GWAS-based genetic dissection with high through-
put genotyping data in peanuts is limited32,33.

The availability of the high-quality genomes of cultivated  
peanut6,7,34 and its two progenitors5,35 has facilitated sequencing-based 
trait mapping and marker development for important traits. Here 
we resequenced a total of 390 peanut accessions to evaluate the 
genome-wide diversity of landraces and breeding lines in southern and 
northern regions of China, compared to accessions from regions out-
side of China and conducted GWAS for 28 agronomic traits. To further 
explore the genomic signatures of breeder-driven selection, we rese-
quenced 11 elite varieties, including 2 landraces and 9 breeding lines, 
from a classical pedigree in the breeding programs in southern China. 
Our results provide important insights into the transmission of pea-
nuts after introduction into China, the genetic diversity and genomic 
variation underlying peanut agronomic traits, and valuable genomic 
resources and candidate genes applicable for peanut improvement.

Results
Genome-wide variation map for peanut
We resequenced 390 worldwide peanut accessions, including 261 
(66.92%) from northern and southern regions of China, and 129 (33.08%) 
from regions outside of China (Fig. 1a,b and Supplementary Table 1). 
A total of 1.29 × 1013 bases of raw data were generated, with an average 
sequencing depth of 10.95× (8.70–16.92×) and genome coverage of 
97.21% (96.04–97.69%; Supplementary Table 1). The sequencing data 
were aligned to the A. hypogaea cv. Fuhuasheng reference genome34, 
resulting in the identification of 8,803,668 single-nucleotide poly-
morphisms (SNPs) and 2,137,963 insertions and deletions (InDels; Sup-
plementary Tables 2 and 3 and Supplementary Fig. 1). Of these SNPs, 
13.24% were present in the coding regions. Of the identified InDels, 8,452 
and 5,414 were annotated as frameshift and nonframeshift variations, 
respectively (Supplementary Table 2 and Supplementary Fig. 2). We 
observed a higher number of SNPs and density in the B subgenome  
(Bt; 4.99 million SNPs and 3.70 per kb) as compared to the A subgenome 
(At; 3.66 million SNPs and 3.15 per kb). However, the InDel densities  
were similar between the two subgenomes (0.82 and 0.85 InDels per  
kb in Bt and At, respectively; Supplementary Table 3 and Supplemen-
tary Fig. 3).

Genomic diversity and phylogeography of peanut in China
Phylogenetic and population structure analyses showed that all acces-
sions were clustered into three groups (K = 3), namely non-China (NonC)-0,  
North China (NC) and SC (Fig. 1c,d and Supplementary Fig. 4a).  
Principal component analysis (PCA) indicated that all accessions were 
clustered into three main groups, roughly corresponding to their  
phylogenetic classifications and respective geographic distributions 
(Fig. 1a–e and Supplementary Fig. 4b). In addition, all accessions from 
gene banks outside of China were split into three subclades, referred to 
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Two loci that were strongly associated with oleic acid (OA) metabo-
lism were found on A09 and B09, which were harbored by FAD2A 
(LOC112712140) and FAD2B (LOC112776164), respectively (Supplemen-
tary Fig. 8), which were known to regulate the conversion from OA to  
linoleic acid (LA)38. Another major region on A10 for seed coat color 
(SCC) was found near J3K16K (named AhTc1), which has been reported  
to control peanut purple testa color39 (Supplementary Fig. 8). Regard-
ing the quality-related traits, the ratio of oleic and linoleic (ROLA) was  
associated with 7,141 SNPs, followed by SCC (4,586), LA (2,497), OA (1,317) 
and palmitic acid (PA; 1,057). In terms of the yield-related traits, the  
highest number of SNPs was associated with seed number per pod (SNPP; 
3,118), followed by seed length (SL; 341). For the plant-type-related 
traits, main stem height (MSH) and first branch length (FBL) had 
almost the same number of associated SNPs (494 and 452, respectively;  
Supplementary Table 6).

To explore gene linkage and pleiotropy, the newly detected SNPs 
and known genes associated with different traits were mapped on each 
chromosome (Fig. 2a). We identified 1,654 SNPs that were associated 
with at least two traits (Supplementary Table 8). Importantly, 74% 
(1,224) of these SNPs were associated with at least two of four seed 
quality-related traits (OA, LA, ROLA and PA). Two loci, close to FAD2A and 
FAD2B, were also substantially associated with PA, suggesting that they 
might be involved in OA, LA and PA metabolisms (Fig. 2b and Supple-
mentary Fig. 8). In addition, we found that 24 SNPs on A05 (8,627,257–
13,086,683 bp) and 58 SNPs on B06 (142,951,711–149,177,818 bp) were 
substantially associated with at least two traits of pod width (PW), 
pod thickness (PT), hundred pod weight (HPW), SL and hundred 
seed weight (HSW; Fig. 2c), which was in agreement with the pheno-
typic correlation analysis (Supplementary Fig. 7). Moreover, 15 SNPs  
on A09 (8,042,653–8,613,448 bp) were substantially associated with 
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both pod length (PL) and SNPP, which were also found to exhibit a posi-
tive correlation (r = 0.30; Fig. 2c and Supplementary Fig. 7). For MSH 
and FBL traits, 309 pleiotropic associations were detected throughout 
the genome (Supplementary Fig. 9 and Supplementary Table 8). These 
findings will help to identify potential pleiotropic genes that may  
be strong determinants of phenotypic variations under natural and arti-
ficial selection in peanuts. Subsequently, a total of 16,018 non redundant 
genes were identified within an approximate average LD decay region 
(Supplementary Tables 9 and 10). Compared to the Bt (7,196), the At 
contained more predicted genes (8,645; Supplementary Table 10).  
Most of these genes showed distinct tissue-specific expression  
patterns (Fig. 2d).

Selective sweeps and asymmetric subgenome selection
Crop improvement is the outcome of continuous artificial selection 
for high yield and quality. Consequently, many agronomic traits have 
been dramatically improved following successive artificial selection, 
resulting in decreased genetic diversity of peanut germplasm. In this 
study, significant phenotypic variations of the yield- and quality-related 
traits were observed among the NonC, NC and SC subpopulations  
(Supplementary Fig. 10). To examine the genetic variations occur-
ring along the history of artificial selection, genome-wide selective  
signals were detected among the three subpopulations by the cross- 
population composite likelihood ratio (XP-CLR)40. Using the top 
5% XP-CLR values, 5,827 (NonC versus NC), 5,825 (NonC versus SC)  
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and 5,788 (NC versus SC) selective sweeps were identified (Fig. 3a–c  
and Supplementary Table 11). Among them, 32 selective sweep  
windows overlapped, indicating that these regions might contain mul-
tiple key genes related to artificial selection (Supplementary Fig. 11).

Furthermore, we combined selective and associated signals for 
yield and quality traits to explore their relationships. The analysis identi-
fied 50 selective signals overlapping with previously reported QTLs for 
various traits (Supplementary Table 11). Moreover, 2,204 substantially 
associated SNPs located in 1,016 selective sweep regions were identified 
(Fig. 3a–c and Supplementary Table 12). Several SNPs associated with 
SCC on chromosome A03 (14.9–101.1 Mb) were found to fit into selective 
signals among the three subpopulations (Fig. 3a–d). Selective signals 
were consistently detected on chromosomes A05 (7.0–12.0 Mb) and B06 
(142.0–149.0 Mb; Fig. 3a–c), where significant genome-wide associations 
for yield-related traits were also identified (Fig. 3e,f). Furthermore, the 
π ratio was higher for chromosome B06 than other chromosomes, sug-
gesting that major genes related to yield traits were potentially located 
in the selective sweep regions (Supplementary Fig. 12a–c). Strong selec-
tive sweep signals were observed on chromosome A03 (95.9–133.5 Mb), 
which overlapped with GWAS signals for oil quality traits such as OA, 

LA, ROLA and PA (Fig. 3b,g). Multiple selective signals were found on 
chromosomes A09 and B09, which overlapped with FAD2A and FAD2B, 
respectively (Fig. 3a–c,h). Overall, the overlapping signals identified in 
this study were mainly associated with yield and oil quality traits, consist-
ent with the improvement in high yield and quality in breeding programs.

We examined the selective signals at the subgenome and chromo-
some levels and found that more selective signals were detected in Bt 
(10,873) than in At (6,516; Fig. 3i), resulting in longer selective sweep 
regions in Bt (143.6 Mb, accounting for 10.64% of Bt) as compared to At 
(78.7 Mb, accounting for 6.78% of At; Fig. 3j). At the chromosome level, 
B09 had the highest (15.4%) proportion of selective sweep regions, 
while A06 had the lowest (1.3%; Fig. 3j). These results were supported 
by calculating the π ratio among the three subpopulations (Supple-
mentary Fig. 12d,e). These findings suggested that the subgenomes 
of cultivated peanuts have been asymmetrically modified by natural 
or artificial selection.

Pedigree-based genomic signatures of artificial selection
After being introduced into northern and southern regions of  
China, peanuts in both regions have independently undergone  
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Fig. 3 | Genome-wide screening of selective sweep regions and GWAS signals. 
a–c, Whole-genome screening of selective sweep regions and the overlapping 
GWAS signals. d, Manhattan plot of GWAS for SCC on chromosome A03.  
e,f, Manhattan plot of GWAS for yield-related traits on A05 and B06.  
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natural and strong artificial selection in breeding programs aimed at 
improving important agronomic traits, particularly yield. More than 
half a century of breeder-driven selection has resulted in significant 
changes in pod yield and related traits, with distinct genomic modi-
fications and phenotypes targeted by different breeders. Here we  
exemplify the impact of artificial selection on genomic variations with 
the pedigree of Yueyou7hao, a widely planted peanut cultivar in south-
ern China during the last two decades (Fig. 4a,b). Of the Yueyou7hao 

pedigree, 11 elite varieties, including 2 landraces and 9 breeding lines, 
were selected for whole-genome resequencing, identifying a total of 
2,394,915 high-quality SNPs, with an average density of 0.92 SNPs per 
kb (Fig. 4c and Supplementary Tables 13 and 14).

By employing identity-by-decent (IBD) to trace key genomic 
regions, we identified 16,743 IBD fragments derived from the ten back-
bone parents. Yueyou116 (Pd07) and Yueyou367 (Pd09) inherited the 
lowest and highest numbers of foreground IBD fragments, accounting 
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for 0.39% and 6.71% of the genome, respectively (Fig. 4d and Supple-
mentary Table 15). The traceable IBD fragments and genes were more 
abundant in At than Bt, indicating that At contributed more to the 
genomic content of Yueyou7hao (Supplementary Fig. 13). Further-
more, these IBD fragments overlapped with a total of 8,873 significant 
SNPs associated with yield- and quality-related traits, accounting for 
almost half (49.8%) of the total number of significant nonredundant 
associations (17,083; Fig. 4d and Supplementary Table 15). Of particu-
lar importance were 2,064 core traceable IBD fragments that were 
repeatedly identified in at least two backbone accessions, covering 
3,528 significant SNPs involving 8,436 genes (Supplementary Table 16). 
These core fragments included a series of adjacent fragments on B06  
that overlapped with multiple significant SNPs associated with 
plant-type-, yield-, and quality-related traits (Supplementary Table 16).  
Moreover, two important core fragments, IBD1132 (147,953,751–
148,066,862 bp) and IBD1133 (148,427,293–148,508,442 bp), located 
at the end of B06, included up to five significant SNPs associated 
with PT and PW (Supplementary Table 16). The GWAS-based analy-
sis showed that these five SNPs were located in an 886.7-kb LD block 
(B06: 147,693,870–148,580,715 bp) overlapping two genetic varia-
tions associated with seed weight and pod weight identified in a previ-
ous study41 (Fig. 4e,f). This region contained 16 candidate genes with 
exonic variations, one of which (Ahy_B06g085890, named AhANT) is 
highly homologous to ANT (At4g37750), which regulates the hormone  
signaling pathway controlling seed size in Arabidopsis42,43. The struc-
ture of the encoded protein demonstrated that AhANT includes two 
YRG elements and one RAYD element, which are two key conserved 
elements in the AP2 domain44 (Supplementary Fig. 14). Importantly,  
a nonsynonymous SNP (C/A) detected in AhANT resulted in an 
amino acid change from proline to threonine (Fig. 4g). The pod- and 
seed-related trait values were substantially higher for the accessions 
with the CC genotype than the AA genotype (Fig. 4h,i).

Candidate gene for branching habit
Branching habit is an important agronomic trait in peanuts assessed  
by plant lateral branch dispersion (PLD; Supplementary Figs. 6 and 15). 
In this study, 13 significant SNPs for PLD were identified on chromo-
some B03 (Fig. 5a). LD block analyses revealed six genes in a 35.4-kb  
block (140,740,474–140,775,860 bp), which contains the most sig-
nificantly associated SNP (140,774,302 bp; P = 1 × 10−7; Fig. 5b,c and  
Supplementary Table 17). Gene annotation showed that Ahy_
B03g068305 (named AhBSK1) encodes a homolog of brassinosteroid 
(BR) signaling kinase, which might be involved in regulating the plant 
architecture, as previously reported in Setaria italica45 and Arabidop-
sis46. Exon variation revealed that AhBSK1 contains one nonsynony-
mous SNP (C/G), resulting in the conversion of cysteine to tryptophan. 
Moreover, genotype-based association showed that the GG genotype 
was mainly found in accessions with a larger PLD (Fig. 5d), which was 
further confirmed in the runner-type accession PF (GG genotype)  
and the erect-type accession ZL (CC genotype). In addition, an InDel 
was found in the coding sequence region (Fig. 5e,f and Supplemen-
tary Fig. 16). Previous RNA sequencing (RNA-seq) data34 showed  
that AhBSK1 was highly expressed in the pod, leaf and stem (Sup-
plementary Table 17). qRT–PCR analysis validated that AhBSK1 was 
highly expressed in the shell and leaf (Fig. 5g), and substantially highly 
expressed in runner-type varieties (GG genotype; Fig. 5h and Supple-
mentary Figs. 17 and 18). Because AhBSK1 may function in BR signaling, 
the quantitative detection of metabolites related to the BR pathway 
showed significant differences in different tissues between the PF and 
ZL varieties (Supplementary Fig. 19). The 24-epi-brassinolide (24-epiBL; 
a synthetic highly active BL analog) treatments substantially increased 
the seedling height for both PF and ZL varieties but increased the  
lateral bud growth only for PF at the seedling stage (Supplementary 
Fig. 20a–c). However, these effects were not found at the stages of 
flowering and pod-setting (Supplementary Fig. 20d–f). These findings 

suggested that BRs may be important for controlling branching habits 
during the early growth stage in peanuts.

Subsequently, the AhBSK1 with GG genotype was overexpressed 
in Arabidopsis (Fig. 5i). The overexpressing transgenic plants flowered 
earlier, had larger biomass, and showed higher plant height, more 
branches and longer branch length (Fig. 5j–n). However, the trans-
genic plants had slightly smaller pods than the wild type (Fig. 5o,p). In  
addition, the overexpression (OE) of AhBSK1 (GG genotype) in  
Oryza sativa L. spp. Japonica cv. Nipponbare increased the flag leaf 
angle, seed size and panicle length (Fig. 5q–x and Supplementary  
Fig. 21). Overall, we concluded that AhBSK1 is a key candidate gene 
involved in the regulation of peanut-branching habits.

Candidate gene for oil biosynthesis
Improving oil content and quality are important goals for peanut breed-
ers. Thus, GWAS was also performed to identify candidate genes for oil 
content and quality. A total of 41, 43, 19 and 1 significant SNP on chromo-
some A08 were identified for PA, LA, OA and OC, respectively (Supple-
mentary Table 18). Among them, one pleiotropic SNP (44,514,436 bp) 
was associated with LA, OA and OC, and another SNP (44,411,216 bp) 
was associated with PA (Fig. 6a and Supplementary Table 18). The 
XP-CLR values indicated that these SNPs underwent positive selection  
(Fig. 6b). LD block analysis helped us focus on a 74.2-kb region 
(44,466,905–44,541,087 bp), containing six candidate genes  
(Fig. 6c). Three of them contained nonsynonymous SNPs, but only 
Ahy_A08g040760 (named AhWRI1) was highly homologous to wrinkled1 
(Supplementary Tables 19 and 20), which was involved in lipid biosyn-
thesis47–51. Phylogenetic analysis showed that AhWRI1 was a close relative 
to homologs in oil crops such as soybean and rapeseed (Supplementary 
Fig. 22). The nonsynonymous SNP (G/T) of AhWRI1 resulted in an amino 
acid change from arginine to methionine (Fig. 6d). The GG genotype 
was substantially associated with an increased OC and decreased LA 
and PA (Fig. 6e). The expression pattern of AhWRI1 in seed was found 
to be similar to some of the genes involved in de novo fatty acid (FA) 
synthesis, elongation and triacylglycerol synthesis34 (Fig. 6f and Sup-
plementary Table 21). RNA-seq data showed that AhWRI1 was highly 
expressed in pods and seeds, especially during the seed-filling stages 
(Supplementary Table 19 and Supplementary Fig. 23). Two varieties, 
GH4238 (TT genotype) and CY1016 (GG genotype), with significant dif-
ferences in OC, OA, LA and PA (Fig. 6g, h), were selected for differential 
expression analysis. The qRT–PCR revealed that AhWRI1 was highly 
expressed in the seed, while other predicted genes showed no signifi-
cant expression (Fig. 6i and Supplementary Fig. 24), and its expression 
levels in the shell and seed were substantially higher in CY1016 than that 
in GH4238 (Fig. 6j). Moreover, the expression of AhWRI1 was gradually 
increased during seed development with the highest expression level 
at seed-filling stages, consistent with the RNA-seq analyses (Fig. 6k  
and Supplementary Table 19). In addition, AhWRI1 showed higher 
expression levels in randomly selected high-oil-content varieties than 
in low-oil-content varieties (Supplementary Fig. 25).

Transgenic Arabidopsis plants with overexpressed AhWRI1 (GG 
genotype) showed larger rosette leaves, early flowering, larger pods 
and longer seeds than the wild type (Fig. 6l–q). Particularly, the seed oil 
content was about 4.7% higher for the transgenic plants than wild-type 
plants (Fig. 6r). The transmission electron microscopy images indi-
cated that the transgenic plants had a lower oil body density and a 
greater oil body volume than the wild type (Fig. 6m,s,t). Hence, we 
speculated that AhWRI1 might control oil content by regulating the 
oil body volume. Moreover, the AhWRI1-OE showed different levels of 
FA composition (Fig. 6u), with a higher unsaturated FA level than wild 
type (Fig. 6v). However, there was no significant difference in rosette 
leaf, pod and seed size and oil content between the transgenic plants 
of TT genotype and the wild type (Supplementary Fig. 26). Therefore, 
we concluded that AhWRI1 is a new candidate gene underlying peanut 
oil content and quality.
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Fig. 6 | GWAS for oil traits and AhWRI1 identification. a, Manhattan plots for 
SNPs associated with oil traits on chromosome A08. The dashed lines represent 
the significant threshold (P = 1 × 10−6, Bonferroni correction). b, Selective sweep 
on chromosome A08. c, LD heatmap and the candidate gene AhWRI1 (red box). 
d, Gene structure and a nonsynonymous SNP of AhWRI1. e, Box plot of oil traits 
between GG (349 accessions) and TT (33 accessions) genotypes. f, Expression 
tendency of AhWRI1 and key oil metabolism genes. g,h, Phenotypes of GH4238 
and CY1016 accessions and their oil traits. Scale bars, 5 cm. i,j, Relative expression 
(i) and its comparison (j) of AhWRI1 in GH4238 and CY1016 accessions. k, Relative 
expression of AhWRI1 in developing seeds. Scale bar, 1 cm. l, Relative expression 
of AhWRI1 in OE and wild-type (Col) Arabidopsis. m, Plant (top), pod and seed 

(middle) and oil body (bottom) sizes of the OE and Col. Scale bars in plant, pod 
and seed, 1 cm; scale bars in cells, 20 μm. n–t, Statistical analyses of pod and seed 
sizes (n–q), oil content (r), and oil body density (s) and size (t) in the OE and Col. 
u,v, FA compositions, and unsaturated and saturated FA compositions of the OE 
and Col. In box plots (e, s and t), centerline, median; box lower and upper edges, 
the 25% and 75% quartiles, respectively; whiskers, 1.5× IQR; and colored dots, 
outliers. Sample sizes in s and t are n = 10 cells examined over three independent 
experiments. Data in h–l are given as mean ± s.e.; n = 3 biologically independent 
samples. Data in h, n–r, u and v are given as mean ± s.e.; n = 4 biologically 
independent samples. P values were calculated by two-tailed Student’s t test  
(e, h, j and n–t).
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Discussion
The consistent growth in the global population has led to a rapid 
increase in global food demand, posing a challenge to global food 
security52. Peanut is an important crop in developing countries of 
Asia and Africa, particularly in the semi-arid tropics of the world. It 
is a source of OA-rich oil, protein, dietary fiber and various vitamins, 
which can help to combat malnutrition in developing countries.  
Due to continuous artificial directional selection, the diversity of crops 
has been drastically reduced, and breeders are engaged in bringing  
the wild alleles into the cultivated gene pool to diversify the genetic 
base for crop improvement. Therefore, it is particularly important to  
determine genetic variations and identify new alleles associated with  
the peanut phenotype through a comprehensive large-scale genomic 
analysis. In peanuts, huge genomic resources have been developed, 
including genome sequences of wild progenitor species A. ipaensis  
and A. duranensis5,35 as well as cultivars Tifrunner6, Shitouqi7 and 
Fuhuasheng34. Although some studies have been conducted for 
genetic diversity analysis in peanuts, the resolution was limited53–56. 
Our study reported a genomic variation analysis in a global collec-
tion of 390 peanut germplasm. We performed GWAS for 28 com-
ponent traits, which identified multiple selective signals relevant  
to crop improvement, thousands of significant associations, and several  
candidate genes related to key agronomic traits. In this study, the  
AhANT was identified to be associated with seed and pod weight on 
chromosome B06. The ANT-like genes control organ cell number and  
size throughout shoot development and negatively regulate salt 
tolerance in Arabidopsis42. An important candidate gene AhBSK1, 
BR-signaling kinase family57, encoding a serine/threonine-protein kinase, 
was associated with peanut-branching habits. The AhWRI1, encoding 
an ethylene-responsive transcription factor, was identified as being 
involved in oil biosynthesis in peanut and other crops58,59. As an effective 
transgenic system has not been established in peanuts, these genes for 
key agronomic traits are still considered candidate genes, although the 
heterologous expression of these genes improved corresponding traits 
in Arabidopsis or rice. Future studies, including functional genomics 
methods (for instance, transformation and gene editing), will need to 
be conducted to verify the biological effects of these genes in peanuts.

In summary, this study involving the large-scale resequencing of 
peanut accessions generated a substantial amount of new genomic 
data and identified multiple candidate genes applicable to peanut 
molecular breeding to accelerate crop improvement.

Online content
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
Plant materials and sequencing
All 390 analyzed accessions were collected from major global 
peanut-growing countries, including India, the USA and China, and 
conserved at the Crop Research Institute, Guangdong Academy of 
Agriculture Sciences, Guangzhou, China. To ensure the genetic purity 
of each accession, we first cultivated all accessions in 2016 (early and 
late growing seasons) and then harvested pods of each accession from 
individual plants. During the two growing seasons in 2017 and 2018, the 
accessions were cultivated at the experimental station of Guangdong 
Academy of Agricultural Sciences, Guangzhou, China. Tender leaves 
were collected from individual seedlings and immediately frozen in 
liquid nitrogen for the subsequent DNA extraction. Total genomic DNA 
(1.5 μg per sample) was extracted using a CTAB method. Whole-genome 
sequencing libraries were constructed using the TruseqNano DNA 
HT Sample Preparation Kit (Illumina), after which index codes were 
added to attribute sequences to specific samples. The libraries were 
sequenced using the Illumina HiSeq X Ten platform. and a total of 
1.29 × 1013 bases were obtained, with a 150-bp read length.

Phenotyping
The 390 accessions were cultivated in four natural environments dur-
ing the early and late growing seasons of 2017 and 2018 in Guangzhou, 
China. Three replicates of all accessions were grown in a randomized 
complete block design. In each plot (6 columns × 6 rows), plants were 
separated by about 10 cm. A total of 28 agronomic traits, including 
plant type, yield, quality and disease resistance-related traits, were 
systematically characterized and scored at maturity. Details of the 
methods used to measure each trait are summarized in Supplementary 
Table 4 and Supplementary Fig. 6.

Sequence quality check and filtering
The quality of raw data was assessed using FastQC (v0.11.9; http://www. 
bioinformatics.babraham.ac.uk/projects/fastqc). To obtain high- 
quality sequencing data, we filtered the raw sequencing data using 
Trimmomatic (v0.36)60 to eliminate the following: (1) reads with ≥10% 
unidentified nucleotides; (2) reads with >10 adapter nucleotides (≤10% 
mismatches were allowed); and (3) reads with >50% bases having a 
Phred quality score of <5. Consequently, clean reads comprising about 
1.29 × 1013 bases were retained for subsequent analyses.

Variant detection and annotation
Mapping. All clean reads for each accession were mapped to the cul-
tivated peanut reference genome, A. hypogaea L. cv. Fuhuasheng34, 
using the command ‘mem -t 4 -k 32 -M’ of the Burrows-Wheeler Aligner 
(v0.7.8 -r455)61. To minimize the mismatches generated by the PCR 
amplification before sequencing, SAMtools (v0.1.19)62 was used to 
remove duplicated and low-quality (MQ < 30) reads and to convert the 
mapping results into a BAM format. The SAMtools program was also 
used to determine the sequencing depth of each site.

Variant calling. SNPs were identified using the Genome Analy-
sis Toolkit (GATK; v2.4-7-g5e89f01)63. The genome-wide SNPs were 
called at the population level. The SNP confidence score of GATK was 
set as >30, and stand_call_conf was set as 30. To exclude SNP calling 
errors caused by incorrect mapping or InDels, only high-quality SNPs 
(depth ≥ 4, MAF ≥ 0.05, miss ≤ 0.2) were retained for subsequent analy-
ses. The InDel calling procedure was similar to that used for identify-
ing SNPs, but the Unified Genotyper parameter ‘–glm indel only’ was 
applied. Moreover, only InDels ≥ 2 bp and ≤ 50 bp were considered.

Functional annotation. The identified SNPs were annotated according 
to the cultivated peanut reference genome using the ANNOVAR pack-
age (v2018 Apr16)64. On the basis of the annotated reference genome, 
the SNPs were localized to exonic regions (overlapping a coding exon), 

splicing sites (within 2 bp of a splicing junction), 5′ and 3′ UTRs, intronic 
regions (overlapping an intron), upstream and downstream regions 
(within a 1-kb region upstream or downstream of the transcription 
start site) and intergenic regions. The SNPs in coding exons that did 
not cause amino acid changes were considered to be synonymous 
SNPs. The remaining SNPs were classified as nonsynonymous SNPs. 
Additionally, mutations resulting in the introduction or loss of a stop 
codon were classified as stop gain or stop loss mutations, respectively. 
The InDels in exonic regions were classified based on whether they were 
frameshift (3 bp insertion or deletion) mutations.

Population structure and linkage disequilibrium analyses
A neighbor-joining phylogenetic tree was constructed according 
to the P-distance using TreeBest (v1.9.2)65, with a bootstrap value of 
1,000 to elucidate phylogenetic relationships from a genome-wide 
perspective. The population structure was analyzed using the expec-
tation–maximization algorithm in ADMIXTURE (v1.3.0)66, with the 
ancestry-specifying K ranging from 2 to 8 and 10,000 iterations per 
run. PCA was conducted using the parameter ‘–make –grm’ of the 
GCTA software (v1.93.0)67. The first three principal components were 
calculated using the parameter ‘–pca3’. Linkage disequilibrium was 
calculated using PopLDdecay (v3.30)68. The squared correlation coef-
ficient (r2) for the pairwise analysis of SNPs was calculated to evaluate 
the LD level of the whole genome and the two subgenomes. The pattern 
of gene flow was explored using Treemix (v1.13)36. To reduce the bias 
inference, the accessions with a genetic component larger than 0.6 
and phylogenetic cluster matched were used to construct the gene 
flow admixture tree. Admixture trees were constructed with m = 0–7 
migration events. The k parameter (number of SNPs for resampled 
block) was set as 500. Demographic history analysis was performed 
using DIYABC Random Forest (v1.2.1)37, which adopted the Random 
Forest approach for efficient scenario discrimination at a lower com-
putational burden. Based on the clustering results and prior knowledge 
of peanut history, we designed eight scenarios to explore the routes of 
peanut introduction into China. In the ‘Training set simulation’ module 
of DIYABC Random Forest, training datasets were generated using 
2,000 simulations for each scenario, and the prior distribution was set 
as uniform. Then the training datasets were subjected to the ‘Random 
Forest analyses’ module which constructed 1,000 trees to predict the 
best scenario and estimate the posterior probability.

Genome-wide selective signals
The XP-CLR values calculated by the XPCLR program (v1.1.2 (ref. 40);  
https://github.com/hardingnj/xpclr) were used to screen for 
genome-wide selective signals, using the mean likelihood score of a 
40-kb sliding window with a 20-kb step length. Three comparisons 
(NonC versus SC, NonC versus NC and SC versus NC) of the XP-CLR 
values were performed to evaluate the genome selection level. The 
top 5% of XP-CLR values were considered to identify selective sweep 
regions. To confirm the selective signals, transformed genetic diversity 
(π) ratios (log2(π ratio)) for the three comparisons were calculated 
using VCFtools (v0.1.15)69 for each 40 kb sliding window. The top 5% 
log2(π ratio) values were obtained as the candidate outliers of the 
selective sweeps.

GWAS
In total, 28 sets of phenotypic and BLUP values were used to perform 
a large-scale GWAS involving 2,564,993 SNPs filtered at MAF > 0.05. 
The BLUP values of each trait in different environments were obtained 
using the BLUP algorithm of the lme4 package (https://cran.r-project.
org/web/packages/lme4/) in R (v4.0.2). The association analysis was 
performed using the Efficient Mixed-Model Association eXpedited 
(EMMAX) program70. The whole-genome significance threshold was 
set as −log10(P) ≥ 6 according to Bonferroni correction71. The signifi-
cant associated SNPs were thoroughly analyzed as follows. First, the 
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GWAS-associated signals were detected according to the threshold, and 
the LD block, which was defined based on the pairwise LD correlation 
(r2) ≥ 8, was used to estimate the candidate association regions. The 
LD block was calculated using the LDheatmap package72 in R (v4.0.2). 
Second, the nonsynonymous significant SNPs were further analyzed 
using the annotated variations. Third, each candidate gene containing 
a nonsynonymous significant SNP was subjected to functional anno-
tation and homology analyses. The homologs in the model species 
Arabidopsis were identified via a sequence comparison using TBtools 
(v2.028)73. Finally, the high-confidence candidate genes were char-
acterized by analyzing their expression and functions in transgenic 
Arabidopsis or Nipponbare plants.

Candidate gene expression and validation using qRT–PCR
Four RNA-seq datasets, two published34,74 and two unpublished (pro-
vided by H. Li and X.C.), were used for preliminary verification of the 
expression levels of candidate genes. A qRT–PCR analysis was per-
formed to confirm the candidate gene expression level. Total RNA 
was extracted with a Plant RNA Extraction Kit (TIANGEN, DP432) and 
reverse transcribed into cDNA using the PrimeScript-RT Reagent Kit 
(Takara, KR116) according to the manufacturer’s instructions. The 
qRT–PCR assay was performed in triplicate using SYBR Green Master 
Mix (Yeasen, 11203ES). The target gene expression level was calculated 
according to the comparative 2−∆∆Ct method75. Primers (Supplementary 
Table 22) were designed using Primer 3 (v4.1.0)76.

Gene cloning and plant transformation
The full-length open-reading frame of each selected gene was cloned 
by PCR using the cDNA reverse transcribed from the total RNA iso-
lated from seedlings as the template. The amplified PCR fragment 
was inserted into the pGEOEP35s-H-GFP vector for the subsequent 
expression under the control of the cauliflower mosaic virus 35S pro-
moter. The recombinant plasmid was introduced into Agrobacterium 
tumefaciens strain GV3101 and was used to transform Arabidopsis 
(Columbia type) by the floral dipping method77. After selecting accord-
ing to hygromycin B resistance, the T4 generation transgenic plants 
were used for the phenotypic analysis of the candidate gene. Pod and 
seed sizes were measured using an anatomical microscope with a ×1 
objective lens and a ×10 eye lens (Mshot). The primers used for gene 
cloning are listed in Supplementary Table 22. The phylogenetic tree 
was constructed using MEGA (v7.0) under the neighbor-joining method 
based on a tree file produced by the CLUSTALW model78.

IBD analysis
All 11 backbone varieties were sequenced using the Illumina HiSeq 
X Ten platform. After the quality control and filtering step, a total of 
2,394,915 SNPs were identified. To dissect the genetic components of 
the backbone parents, a method involving sliding windows and SNP 
ratios was used to detect IBD regions27. A window size of 200 SNPs and 
a step size of 20 SNPs were used to perform the genome-wide scans. 
To detect IBD fragments in the pedigree, the SNP ratio between Yuey-
ou7hao and individual older cultivars was calculated. An SNP ratio of 
≥ 95% in a window was used to identify an inheritable IBD fragment in 
the pedigree.

Statistical analysis
The statistical analyses were performed in R (v4.2.0). A two-tailed 
Student’s t test was conducted in R package ggsignif79 to compare the 
difference in gene expression levels, phenotypic values, metabolite 
contents and oil contents between two groups of samples.

Geographic map generation
The geographical location of the collection sites of all accessions in 
this study is marked on the map using ggplot2 (ref. 80) package in  
R (v4.2.0). In Fig. 2b, the Yellow River, the Yangtze River and the Pearl 

River are manually added to the map according to the public knowledge 
of China map.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All the 390 genomic sequence data for GWAS analysis have been depos-
ited in the National Center for Biotechnology Information (NCBI) 
database under BioProject number PRJNA776707. All the 11 varieties 
of genomic sequence data for IBD analysis have been deposited in 
the NCBI database under BioProject number PRJNA1031811. The SNP 
and InDel genotypes have been deposited in Zenodo81 (https://doi.
org/10.5281/zenodo.10054109). The published transcriptomic datasets 
for candidate gene expression analysis can be downloaded from the 
NCBI Sequence Read Archive under accession numbers SRP167797 
and SRP033292 mentioned in the corresponding original literature. 
Source data are provided with this paper.

Code availability
Custom scripts for calculating the coverage of the aligned sequence 
are available at Zenodo82 (https://doi.org/10.5281/zenodo.10023694).
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