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Greening of human-dominated ecosystems in India
Taejin Park 1,2✉, Murali K. Gumma 3, Weile Wang1, Pranay Panjala 3, Sunil K. Dubey 4 &

Ramakrishna R. Nemani1,2

Satellite data show the Earth has been greening and identify croplands in India as one of the

most prominent greening hotspots. Though India’s agriculture has been dependent on irri-

gation enhancement to reduce crop water stress and increase production, the spatiotemporal

dynamics of how irrigation influenced the satellite observed greenness remains unclear. Here,

we use satellite-derived leaf area data and survey-based agricultural statistics together with

results from state-of-the-art Land Surface Models (LSM) to investigate the role of irrigation

in the greening of India’s croplands. We find that satellite observations provide multiple lines

of evidence showing strong contributions of irrigation to significant greening during dry

season and in drier environments. The national statistics support irrigation-driven yield

enhancement and increased dry season cropping intensity. These suggest a continuous shift

in India’s agriculture toward an irrigation-driven dry season cropping system and confirm the

importance of land management in the greening phenomenon. However, the LSMs identify

CO2 fertilization as a primary driver of greening whereas land use and management have

marginal impacts on the simulated leaf area changes. This finding urges a closer collaboration

of the modeling, Earth observation, and land system science communities to improve

representation of land management in the Earth system modeling.
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Long-term satellite observations show the Earth has been
greening (increasing greenness or green leaf area)1–6. This
global scale land surface change can lead to significant

consequences in the Earth’s energy, water, and carbon cycles5,
and has been recognized as highly credible evidence of intensified
terrestrial biosphere activity in response to anthropogenic climate
change7. Recent studies attributed the satellite-observed vegeta-
tion changes to environmental drivers and identified CO2 ferti-
lization, climate change, nitrogen deposition, and land cover/use
changes (LCLUC) as underlying drivers of global greening in the
order of contribution5,8–10. Despite the consensus on the poten-
tial role of CO2 fertilization on the observed greening, a com-
prehensive understanding of the satellite-observed vegetation
changes and their associated mechanisms is still lacking and
debated6,11,12.

One of the most important but understudied drivers of global
greening is human land use and management, especially over
global croplands6. Cropland is the most pervasive anthropogenic
biome occupying approximately 1244Mha (about 9.5% of ice-free
land mass) of the Earth’s land surface11. Studies based on satellite
remote sensing have identified six global breadbaskets as greening
hotspots: India, USA, Canada, Europe, Brazil, and sub-Saharan
regions6,13,14. This prominent greening of croplands underscores
the overlooked role of human land use and management in global
greening research, thereby necessitating a comprehensive inves-
tigation into how land management practices have triggered a
significant increase in leaf area on a large scale. Notably, special
attention should be directed towards investigating Indian crop-
lands, as they alone contribute to over 11% of the total net
increase in global leaf area and these croplands exhibit the most
extensive greening, encompassing 69% of the total vegetated
regions in India6. Given the challenges faced by India’s agri-
cultural system due to changing climate and water resources, it
becomes crucial to understand the underlying drivers of this
cropland greening. Such understanding will enable us to better
project future changes in Indian agriculture systems and conse-
quently prepare for ensuring food security.

Agriculture in India is the primary source of livelihood for
more than 58% of India’s 1.4 billion population and it thus plays
important roles in the social and political economy15. There are
two dominant cropping seasons in India based on monsoon, i.e.,
Kharif (June–October, wet season) and Rabi (November–May,
dry season). The Kharif season crops (e.g., rice, maize, etc.) are
grown with the onset of monsoon and generally require more
water. Crops in the Rabi season (e.g., wheat, barley, etc.) are
generally sown in winter and harvested before monsoon season.
Rabi crops need cold weather for growth and need less water than
the Kharif crops. Despite the lower water demands of Rabi crops,
drier Rabi season without monsoon necessitates substantial water
inputs requiring an irrigation-assisted cropping system. Irrigation
stands as India’s most crucial land management practice in
agriculture since the Green Revolution, serving as a tool to alle-
viate drought stress and thus increase crop yield and
production16,17. Notably, the country boasts the world’s largest
irrigated area18. This irrigation-associated crop yield enhance-
ment can be anticipated as a key driver in the observed Indian
cropland greening19. Yet, the spatiotemporal dynamics of how
irrigation has changed the satellite-observed greenness as well as
the national crop yield remains unclear. Subsequently, the degree
to which land surface models (LSMs), which have been used for
the greening attribution studies, accurately represent the changes
in leaf area associated with human land management is not fully
understood.

In this study, we formulate and address the following research
question: What is the role of irrigation as a human land manage-
ment practice in the observed greening patterns in Indian croplands?

We incorporate satellite remote sensing and survey-based Indian
agriculture statistics to investigate the satellite-observed greening
patterns and explore the underlying mechanisms. We further uti-
lize the results from experiments using the state-of-the-art dynamic
global vegetation models (DGVMs) factorial simulations to attri-
bute the leaf area changes to underlying drivers and examine the
identified roles through comparisons to the satellite measurements
and national statistics.

Results
Rapid dry season greening in India. We use 19 years of NASA
Terra and Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) leaf area index (LAI) data to detect changes in green-
ness over India’s croplands (Methods). During the last two dec-
ades, the annual MODIS LAI record shows a widespread greening
(increasing) trend across Indian croplands (Fig. 1). The observed
greening is prevalent over northwestern provinces, especially,
Punjab, Haryana, Rajasthan, Gujarat, and Madhya Pradesh
(Fig. 1a). About 64.6 % of the Indian croplands reveal a greening
trend (p < 0.1) whereas 0.9 % of the croplands display a browning
(decreasing, p < 0.1) trend. The rate of annual LAI change at the
national scale is estimated by 0.069 ± 0.021 m2 ∙m-2∙decade-1

(p < 0.001). The spatial patterns of the observed increasing green
leaf area in the Rabi (dry) and Kharif (wet or monsoon) seasons
are noticeably different (Fig. 1b, c). For instance, central India
(Madhya Pradesh) displays a strong increase of LAI
(0.131 ± 0.031 m2 ∙m-2∙decade-1) during the Rabi season whereas
a weak increase of LAI (0.022 ± 0.019 m2 ∙m-2∙decade-1) during
the Kharif season. Punjab, known as the most fertile region in
India, shows a strong greening signal in both the Rabi and Kharif
seasons. Overall, LAI change in the Indian croplands during the
Rabi season is 0.082 ± 0.021 m2 ∙m-2∙decade-1 (p < 0.001) and it is
38% greater magnitude of change compared to the Kharif season
LAI change (0.059 ± 0.020 m2 ∙m-2∙decade-1, p < 0.001) (Fig. 1d).
The observed greening extent of the Rabi season LAI (64.6 % of
the cropland) largely overlaps with the patterns of annual LAI
change, and it is much larger than the Kharif season greening
(40.6% of the cropland) (Fig. 1e). Note that about 2.5 % of the
croplands display a decreasing LAI trend during the Kharif sea-
son while only 0.9 % of the regions exhibit declining LAI trends
in the Rabi season. Our analysis further differentiates to what
extent the seasonally varying greening in Indian cropland is
associated with different crop types (Fig. 1f). We find that wheat
is predominantly responsible for half of the cropland areas
exhibiting the Rabi season greening (64.6% of total cropland
area), while rice (27.1%), pulse (12.7%), millet (10.7%), and maize
(10.3%) are associated with 61% of the Kharif season greening
area (40.6% of total cropland area). The greening over wheat-
cropped areas during the Rabi season consistently emerges as a
strong greening region in terms of annual-scale LAI changes
(Fig. 1a, b). These results from satellite observations indicate
that the dry season greening is more prevalent and dominates
overall (annual) Indian cropland greening during the last two
decades.

Role of irrigation in dry season greening. The role of irrigation
in modulating leaf area changes over Indian croplands is evaluated
using irrigated and unirrigated area maps18 (Supplementary Fig. 1).
According to the irrigation maps, 87.8 Mha of the Indian croplands
is irrigated. Indo-Gangetic Plain and foothills of Himalayas are the
primary irrigated croplands. Over croplands across India, we
observe distinct and different LAI seasonality over irrigated and
unirrigated regions (Fig. 2a, b). Monthly composited MODIS LAI
data reveals that irrigated croplands generally have double crop-
ping systems and show higher LAIs in both dry (Rabi) and wet
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(Kharif) seasons, whereas the unirrigated (rainfed) regions display
a single peak seasonality during the wet monsoon season indicating
a primary cropping activity during a year. This difference in sea-
sonality indicates an irrigation-driven increase in cropping

intensity in Indian croplands20,21. There are other noticeable dif-
ferences in seasonal changes of LAIs (Δ MODIS LAI in Fig. 2a, b)
between areas irrigated and unirrigated. While we observe com-
parable increases of seasonal leaf area over both irrigated and

Fig. 1 Changes in MODIS leaf area index (LAI) over 2000–2018. a Spatial pattern of decadal trends in annual average MODIS LAI over Indian croplands.
Statistically significant trends (Mann–Kendall test, p < 0.1) are color-coded. Gray areas show croplands with statistically insignificant trends. White areas
depict non-croplands including forests, barren lands, permanent ice-covered areas, permanent wetlands, and built-up areas. Black and blue lines are state
and country boundaries. b Same as a but for Rabi season (November– May, dry season). c Same as a but for Kharif season (June–October, wet season).
d Time series of annual (green), Rabi (red), and Kharif (blue) season LAI change. e Percent of greening and browning across Indian croplands in the annual,
Rabi, and Kharif seasons during the last two decades (2000−2018). Red, orange, gray, light green, and dark green stand for significant negative,
insignificant negative, no change, insignificant positive, and significant positive trends. Here p-value 0.1 is used for defining statistically significant trends.
f Crop types over the areas showing significant positive LAI trends during Rabi (64.6% of total cropland areas) and Kharif (40.6% of total cropland areas)
seasons.

Fig. 2 Changes in seasonal MODIS LAI in irrigated and unirrigated Indian croplands. a Seasonal variation of LAI in the irrigated Indian croplands. LAIs in
two separate periods (green line: first 5 years, blue line: last 5 years) and their monthly differences (red bar) are plotted. b Same as a but for the unirrigated
croplands. c Time series of Rabi-season averaged LAIs over the irrigated (blue) and unirrigated (red) croplands. d Same as c but for the Kharif season.
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unirrigated areas during the Kharif season, in the Rabi season, we
find a greater degree of LAI increase over irrigated croplands
compared to the unirrigated lands. Our time series analysis accords
with these patterns (Fig. 2c, d). It indicates a comparable degree of
LAI increase during the Kharif season (June–October) over both
irrigated (0.066 ± 0.027m2 ∙m-2∙decade-1, p= 0.002) and uni-
rrigated (0.055 ± 0.017 m2 ∙m-2∙decade-1, p < 0.001) croplands.
However, the increase of LAI in the Rabi season (November–May)
is 35 % greater than the LAI increase in the Kharif season: irrigated
(0.096 ± 0.022m2 ∙m-2∙decade-1, p < 0.001) and unirrigated
(0.071 ± 0.024 m2 ∙m-2∙decade-1, p < 0.001). Wheat is the most
extensively irrigated crop type in India’s agriculture. About 95% of
the total wheat cropping area has been irrigated. Our results shown
in Fig. 1f indicate that most of the greening during the Rabi season
is linked to regions where wheat is cultivated. This independent
evidence further bolsters the argument for irrigation-driven
greening in India. Note that both irrigated and unirrigated crop-
lands share similar interannual variation during dry and wet sea-
sons suggesting a large-scale response of croplands to strong
climate variability (e.g., 2015–16 drought)22.

We hypothesize that irrigated croplands are more resistant to
water stress (or variability) so that the increases in LAI associated
with irrigation are greater in drier regions16,17,23. We categorize
croplands based on aridity levels (Supplementary Fig. 1a, arid,
semi-arid, dry sub-humid, and humid; see Methods) to
investigate the role of irrigation in the satellite-observed greening
over Indian croplands (Fig. 3). We find that irrigation assisted
croplands display the greatest increase of LAI over the arid
environment where aridity value (i.e., ratio between precipitation
and evapotranspiration) is lower than 0.2. and its degree of
increasing trend is gradually declining in less-water-limited
environments (Fig. 3a). In contrast, unirrigated croplands do
not show statistically meaningful differences in the decadal LAI
trends over varying aridity levels. We use the difference between
LAI trends in irrigated and unirrigated croplands as an indicator
of irrigation effectiveness. Our analysis confirms that irrigation is
highly effective in arid environments. The trend estimates over
the arid regions show a two times higher rate of LAI changes over
irrigated croplands compared to unirrigated croplands. There are
negligible trend differences observed in dry sub-humid and
humid environments. Further analysis evaluating the dependence
of LAI changes on precipitation variability confirms a less
sensitive response of irrigated regions to rainfall variability
compared to the unirrigated croplands. It implies a higher
effectiveness of irrigation in promoting cropland greenness over
water-limited environments.

Shift in Indian cropping system. We further examine linkages
between satellite remote sensing and independent survey-based
Indian agriculture statistics to ensure the satellite-observed
greening patterns and understand their underlying mechanisms.
We first compare annual LAI to annual yield estimates (Fig. 4a).
Our comparison indicates that historical MODIS LAI data can
capture national statistics of annual crop yield (R2= 0.63) con-
forming to the continuous increasing greenness and yield trends
during the last two decades. This agreement supports that remote
sensing-based national crop yield estimation is feasible and the
observed spatial pattern of greening over the Indian croplands is
valid. Indian agricultural statistics reveal a strong positive co-
variation (Rcorr= 1.00, p < 0.001) between total production
(36.51 ± 1.50 MT∙decade-1, p < 0.001) and yield
(293.46 ± 13.05 kg∙ha-1∙decade-1, p < 0.001), both exhibiting an
upward trend from 1960s onwards (Fig. 4b). While the increases
in cropping area played an important role in shaping the corre-
lation (Rcorr= 0.95, p < 0.001) between 1960s and 1980s, their
contribution later became weaker (Rcorr= –0.15, p= 0.339)
between 1990s and 2010s (Fig. 4c). As total production is a
function of yield and cropping area, strong coupling between
irrigation and yield (R2= 0.98) indicates a significant role of
irrigation in increasing crop yield and total crop production in
India (Fig. 4d). A one percent increase in irrigated area is esti-
mated to increase crop yield by 43.17 ± 0.77 kg∙ha-1. This strong
linkage between irrigation and crop yield supports a water-driven
crop yield enhancement in India16,24.

India has maintained stable total cropping areas (~120Mha)
during the last five decades but contrasting changes of the relative
proportions of Rabi and Kharif season cropping areas have been
observed (Fig. 5a). In the 1960s, the Rabi-season cropping area was
responsible for ~32% of total cropping areas in India. Continuous
increase of the Rabi-season portion (2.77 ± 0.24 Mha∙decade-1,
p < 0.001) reached 44% of total cropping areas in the 2010s, whereas
the Kharif season cropping area gradually declined over time
(⎯2.84 ± 0.42 Mha∙decade-1, p < 0.001) indicating a significant
expansion of Rabi-season cropping area (2.21 ± 0.13 %∙decade-1,
p < 0.001) in India. The observed expansion of the Rabi-season
cropping area is closely associated with the increasing irrigation
practices (Fig. 5b). These changes lead to the significant enhance-
ment of crop yield and total grain production during the Rabi-
season (Fig. 5c). We find that the rate of increasing yield in the Rabi
season (353.09 ± 13.16 kg∙ha-1∙decade-1, p < 0.001) is 45% greater
than the rate in the Kharif season (242.09 ± 12.360 kg∙ha-1∙decade-1,
p < 0.001). It is worth noting that recent total production in the Rabi
season surpasses Kharif’s total production (Fig. 5d). This is a

Fig. 3 Effectiveness of irrigation on MODIS LAI changes over different aridity levels. a Decadal LAI trends over irrigated (blue line) and unirrigated (red
line) croplands by different aridity levels, i.e., arid, semi-arid, dry sub-humid, and humid. Red bar represents the difference in LAI trends between irrigated
and unirrigated croplands. b Correlation coefficient estimates between LAI and precipitation at different irrigation practices and aridity levels. The
correlation coefficient is calculated by partial-correlation analysis with other climate variables (temperature and solar radiation).
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Fig. 4 Historical changes in yield, production, cropping area, and percent of irrigated area in India. a Observed co-variations between standardized
MODIS LAI and crop yield anomalies. Colored scatters stand for the year (2000–2018). b Changes and co-variation of crop production and yield. Colored
scatters stand for the year (1967-2018). c Same as b but for cropping area and production. d Same as b but for yield and percent of irrigated area.

Fig. 5 Enhanced Rabi season (dry season) crop yield and production through extensive irrigation practice. a Changes in total areas of Rabi (yellow bar)
and Kharif (blue bar) season cropping, and percent of Rabi season cropping area (red line) during the last six decades (1967−2018). b Relation between
percent of irrigated area and percent of Rabi season cropping area. Colored scatters stand for the year. c Changes in Rabi (red) and Kharif (blue) season
crop yields. d Changes in Rabi (red) and Kharif (blue) season total production.
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noticeable change because total grain production during the Rabi
season was only half of the Kharif season production in the 1960s.

Contrasting crop-specific changes in cropping areas and
irrigation practices are observed in India (Supplementary Table 3).
For instance, the cropping area of wheat (Rabi season crop) has
increased by 0.26 Mha∙decade-1, whereas the aerial extents of
nutrient cereals and jowar (Kharif season crop) have decreased by
–0.47 and –0.27 Mha∙decade-1, respectively. Though we see
diminished cropping areas in some crop types, a significant
increase in crop yield together with tight association with growing
irrigation practices is prevalent across all major crop types in
India (Supplementary Tables 3 and 4).

Earth system models under-represent irrigation-driven green-
ing in India. In addition to the first-order investigation, our
multivariate statistical analysis supports the primary role of irri-
gation in the historical increase of crop yield in India (Fig. 6a).
We find that 638.8 ± 203.2 kg∙ha-1 of the crop yield increase is
attributable to the growing irrigation practice, while CO2 fertili-
zation and fertilizer use are responsible for 198.6 ± 160.8 kg∙ha-1

and 162.6 ± 226.4 kg∙ha-1 increase, respectively. Maximum tem-
perature is identified as a negative stressor (–159.6 ± 56.1 kg∙ha-1),
suggesting that recent warming and extreme heat events could
result in a significant crop yield reduction25,26. The effectiveness
of irrigation on crop yield enhancement is higher in drier regions
compared to wetter environments confirming the MODIS-based
sensitivity analysis presented in Fig. 3 (Fig. 6b). This varying level
of irrigation effectiveness is also observable in a temperature
gradient, i.e., the expanded irrigation on hotter regions has pro-
moted greater yield increase compared to cooler regions.

We further analyze the simulation results from the dynamic
global vegetation models (DGVMs) that participated in the
project named "Trends and drivers of the regional-scale sources
and sinks of carbon dioxide" (TRENDY)27. Our examination
aims to assess how well the state-of-art land surface models
capture the observed dry season greening in India and how they
attribute the LAI changes to different underlying drivers, i.e., CO2

fertilization, climate change, and LCLUC (Fig. 6). This analysis
identifies three discernable differences between observations
(satellite and national statistics) and model simulations. First,
the irrigation-driven double cropping system (dual peaks, Fig. 2a)
is not properly reproduced by TRENDY DGVMs (Fig. 7a).
Second, the simulated annual LAI changes (mean ± std of models:

0.203 ± 0.145 m2 ∙m-2∙decade-1) in India during the MODIS era
(2000–2017) are two times smaller than the observed MODIS LAI
change (0.069 ± 0.021 m2 ∙m-2∙decade-1, p < 0.001) though inter-
model variations exist (Fig. 7b). The magnitude of the simulated
annual LAI changes during the longer-term period (1967–2017)
is even lower than that observed for the MODIS era, which is
inconsistent with the comparable degree of crop yield changes
observed in both periods. Note that the trends of crop yield
during the periods 1967–2017 and 2000–2017 are
293.5 ± 13.0 kg∙ha-1∙decade-1 and 340.0 ± 76.6 kg∙ha-1∙decade-1,
respectively. Third, factorial attribution analysis of the TRENDY
DGVM results identifies CO2 fertilization as the primary driver of
Indian greening whereas climate and LCLUC have marginal
impacts on the LAI changes. Though the TRENDY DGVMs
presented in Fig. 7b account for irrigation practice (see
Supplementary Fig. 4 for the TRENDY DGVMs without
considering irrigation as a land-use management), the models
identify the CO2 fertilization effect is a primary driver for the
simulated greening in India. The CO2 fertilization effect is more
prevalent in the long-term simulation result while climate and
LCLUC have mostly negative effects on the LAI change. Yet, our
results from MODIS and national agriculture statistics recognize
the significant role of land management (i.e., primarily irrigation)
in the observed greening and yield enhancement, while acknowl-
edging a non-negligible role of CO2 fertilization effect on crop
yield increase (Fig. 6a). Note that the total effect of irrigation on
the historical crop yield changes is 3.2 times larger than the one of
CO2 fertilization effect. These all collectively suggest that the
TRENDY DGVMs tend to underestimate LCLUC contribution
but overestimate CO2 fertilization effect on cropland greening in
India.

Discussion
The advantage of using time series of satellite records, compared
to coarser scale grain production statistics, is that they can show
details of spatial and temporal patterns of vegetation changes in
croplands (Figs. 1 and 2)16. The observed patterns of seasonally
resolved LAI change and its association with irrigation practices
confirm the importance of human land management in the
observed global greening phenomenon6. Particularly, the dry
(Rabi) season greening and crop yield enhancement in India are
significant. Earlier studies appreciated the importance of irriga-
tion in the observed changes in greenness in India, but they often

Fig. 6 Drivers of historical crop yield changes in India. a Total effect size of irrigation, fertilizer use, CO2, precipitation, radiation, and maximum
temperature on the observed changes in historical crop yield. b Interaction of irrigation and climate conditions on crop yield (left: precipitation, right:
maximum temperature). Note that we use the 1985−2017 period of the data for this analysis due to the shorter period of fertilizer use record.
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neglected the seasonally varying patterns of the changes6,19. This
overlooked aspect is one of the important findings in this study,
which suggests a continuous shift in India’s agriculture toward an
irrigation-driven dry season cropping system. Agricultural pro-
duction is governed by many economic, technological, and
environmental factors. Thus, determining the precise contribu-
tion of each factor is generally extremely difficult and beyond the
scope of this study. There are several other factors that could also
be involved in the observed greening and increasing grain pro-
duction that have not been considered in this study. For instance,
fertilizer use, and mechanization could also be playing a sig-
nificant role in the recent greening in India28. Nonetheless,
without discounting the other contributing factors, this study
clearly suggests a strong contribution of irrigation to the crop
yield enhancement and greening trend in India by providing
consistent evidence from independent multi-scale datasets.

This study clearly suggests that human land management
activities have been important drivers for landscape greening and
crop yield enhancement. However, the TRENDY DGVMs identify
CO2 fertilization as a primary driver of increasing LAI over India
and find climate and LCLUC as marginal or even negative con-
tributors (Fig. 7b). This result from the TRENDY factorial simu-
lations is well in accordance with the relevant previous studies,
including TRENDY, Multi-scale Synthesis and Terrestrial Model
Intercomparison Project (MsTMIP), Coupled Model Inter-
comparison Project Phase 5 (CMIP5), Coupled Model Inter-
comparison Project Phase 6 (CMIP6)8–10,29, but counter to our
findings. According to the national statistics, Indian crop yield has
increased by 327 % compared to the initial measure in the 1960s
with changing atmospheric CO2 levels from 322.2 ppm to 408.7
ppm (+86.5 ppm) during the last five decades. Previous studies
have reported that CO2 fertilization effect on crop yield per 100
ppm CO2 increase can range from 1 to 17% by regions and from 0
to 33 % by crop types30,31. Also, long-term free‐air CO2 enrichment
(FACE) experiments have shown that elevation of CO2 by ca. 200
ppm causes a ca. 18% increase (ca. 9% per 100 ppm) in yield under
non‐stress conditions32. Given survey-based statistics and pre-
viously reported CO2 fertilization effect estimates, the CO2 fertili-
zation effect alone may not explain such significant upward trends
in Indian crop yield during the last five decades. Our statistical

analysis also supports that the increase of atmospheric CO2 con-
centration has positive effects on the historical crop yield
enhancement but is not a primary driver as the models simulate
(Fig. 6a). Such a large discrepancy between the model simulation
and empirical investigations implies that the current DGVMs may
have limited capability to realistically reflect processes of land use
and management, and thus correctly attribute the LAI changes to
the underlying drivers33,34. Another explanation of the discrepancy
we find from the comparison between the simulated and MODIS
LAIs is a potential issue in human-management forcing data. Our
complementary analysis shows that Land-Use Harmonization
(LUH) Version 2 which was used for LCLUC forcing in the
TRENDY gives 18.6 ± 2.0 % less irrigated croplands in India
(Supplementary Fig. 7). We also find that the change rate of percent
of irrigated area inferred from LUH and the national statistics quite
differs. The rate of change in the last two decades (2000–2018) from
the national statistics is about 3.4 ± 0.7 %·decade-1 but LUH-based
change rate (1.5 ± 0.6 %·decade-1) is half of the actual changes in
India though its changing rate (2.9 ± 0.1 %·decade-1) in earlier
period (1967–1999) is greater than the survey-based statistics
(2.3 ± 0.3 %·decade-1). These limitations may explain why we see
different LAI seasonality and greening patterns in the Rabi and
Kharif seasons from the MODIS and the DGVMs (Fig. 7).

This finding holds significant implications for interpreting the
large-scale leaf area increase and its consequences for Earth’s car-
bon, water, and energy cycles. For instance, the enhanced seasonal
amplitude of atmospheric CO2 concentration during the last dec-
ades has been proposed to be a result of vegetation growth sti-
mulated by higher concentrations of CO2, as well as by changing
climate35,36. However, these mechanisms have proven insufficient
in explaining the full range and magnitude of the observed increase
in seasonal CO2 amplitude. An alternative hypothesis is that the
intensification of agriculture through human land management
primarily contributes to the seasonal changes in CO2 exchange
between the biosphere and the atmosphere37,38. Extensive greening
across global croplands further underscores the significance of our
findings6,13,14, thereby providing additional evidence in support of
the alternative hypothesis. Another important implication of our
findings relates to strategic planning for mitigating climate
change39,40 and ensuring food security41. Our results suggest that

Fig. 7 Comparison between satellite-derived and simulated seasonal LAI variation and long-term trends. a Seasonal LAI variation of MODIS (red) and
TRENDY simulations (S3) (ensemble mean of all Dynamic Global Vegetation Models (DGVM): green, ensemble mean of all DGVMs accounting irrigation
as land-use management (namely CLM5.0, LPJ-GUESS, and SURFEX): blue, individual models: light gray). b Annual (green) and seasonal (Rabi: red, Kharif:
blue) leaf area index (LAI) trends derived from satellite observation (MODIS, circle) and simulated DGVMs (All, boxplot). Note that only DGVMs
incorporating an irrigation component are included in this plot (see Supplementary Fig. S4 for the DGVMs without incorporating irrigation as a land
management practice). The trends inferred from the DGVMs are attributed respectively to rising CO2, climate change, and land cover/use change (LCLUC)
from factorial simulations. Two sets of LAI trend attribution results are presented for the periods of MODIS (2000−2017) and national statistics
(1967−2017) records. Note that only DGVMs accounting for irrigation are considered in this comparison. The box stretches from the 25th percentile to the
75th percentile of all DGVMs. The median and mean values are shown as the solid and dot lines, respectively. Only cropland is considered in this
comparison.
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the expected response of vegetation to rising atmospheric CO2

levels may be smaller than previously thought, indicating that the
carbon sequestration capacity of terrestrial ecosystems could be less
significant than earlier estimates. This has critical implications for
our current climate change mitigation strategy, which is built upon
prior understanding. Furthermore, the potential costs associated
with ensuring food security could be higher than previously
anticipated. This is because the reduced crop yield enhancement
from CO2 fertilization implies the need for significant additional
land management to sustain the continuous increase in crop yield
and production. These collectively underscore the previously
overlooked role of human land use and management in global
vegetation changes and highlight its potential implications across
various Earth systems, including the human system.

Human land use and management has emerged as an impor-
tant process in the earth system modeling framework as not only
it has decisive impacts on the Earth system but also it can be a
tool to mitigate global climate change7. However, as reported in
this study, land management (here irrigation) has not been well
incorporated into the land surface models34. A few of the
TRENDY DGVMs used in this study (namely CLM5.0, LPJ-
GUESS, and SURFEX) incorporate an irrigation practice as a
process of land management (Supplementary Table 2), however,
the observed irrigation-driven dry season greening is not repro-
duced by these models (Supplementary Fig. 3). Progress has been
slow in incorporating land use and management processes into
the earth system modeling frameworks, often limited by technical
and data availability challenges34. For instance, information on
soil management, crop varieties, crop rotations, and actual irri-
gation amounts and schemes is presently either not available or
only incompletely so. It is also challenging to acknowledge and
address errors in various processes, such as gross primary pro-
duction, respiration, allocation of photosynthate, soil dynamics,
and crop stress response, which can compensate for each other in
the formation of yield and leaf area. These challenges suggest
further model development and improvement, thereby urging a
continuous and closer collaboration among the modeling, Earth
observation, and land system science communities to better
represent land use and management in LSMs.

Continuous irrigation practice and yield enhancement have
raised an important concern regarding its sustainability because the
observed irrigation-induced greening can have discernable impacts
on India’s groundwater42,43. India is the world’s largest consumer
of groundwater and groundwater provides ~60% of the nation’s
irrigation supply. Recent studies have found that the intensified
irrigation in India depletes groundwater44. Current trends in
groundwater depletion in India are becoming a threat to food
security because it leads to a decrease of cropping intensity by 20%
nationwide and by 68% in groundwater-depleted regions42. The
projected worsening of water resources in India suggests that the
observed dry season cropping/greening will become increasingly
susceptible to interannual rainfall variability, potentially leading to
its diminishment. It thus becomes more uncertain to what extent
and how long the observed Indian greening lasts under current
groundwater depletion rates and changing climate. Similar situa-
tions may arise in other observed greening hotspots over the global
breadbaskets as emerging studies point to challenges in water
management in these regions45,46. This suggests that continuous
monitoring of cropland greenness (or yield) is essential for sus-
tainable water resource management and ensuring national and
global food security.

Methods
MODIS LAI. The latest version (Collection 6, C6) of NASA Terra
and Aqua MODIS LAI products (MOD15A2H and MYD15A2H)

is used in this study47,48. These LAI datasets (2000–2018) are
provided as 8-day composites with a 500-m sinusoidal projection.
The datasets are refined by rigorous checking of the quality fags
of the LAI products and of the simultaneous vegetation index
products, following the previously described methods49. This
filtering provides the highest quality MODIS LAI observations
that minimize any residual contamination from clouds, aerosols,
snow, and shadow 6. The two LAI datasets (that is, four 8-day
composites) are then combined into a 16-day composite by taking
the mean of all valid LAIs (temporal average). The quality of C6
MODIS LAI datasets has been comprehensively evaluated against
ground-based measurements of LAI and through inter-
comparisons with other satellite LAI products50,51. These data-
sets represent the latest and highest-quality LAI products that are
currently available. This study uses the time series of 19-year
MODIS LAI data averaged over the Rabi (November–May),
Kharif (June–October), and annual time period.

Indian agriculture statistics. Spatially aggregated historical
annual and seasonal (Rabi and Kharif season) food grain pro-
duction, yield, cropping area, and irrigation statistics are extracted
from the Ministry of Agriculture, Government of India52. The
data from 1967 to 2018 is used in this study. Food grain pro-
duction refers to the total production of rice, wheat, corn, coarse
grains (sorghum and millet), and pulses (beans, dried peas, and
lentils). Crop-specific data for major crops (rice, wheat, pulses,
maize, jowar, bajra, and nutrient cereal) is also prepared to
investigate how individual crop’s yield, cropping area, total pro-
duction, and irrigation statistics have changed differently during
the last five decades.

Cropland fraction, irrigation, and crop type map. We define the
geographic distribution of croplands based on both MODIS Land
Cover product (MCD12Q1) and International Institute for
Applied Systems Analysis (IIASA) cropland fraction data53. In
this study, we only keep pixels that satisfy two following condi-
tions as croplands: (a) MCD12Q1 equals 12 (Croplands) or 14
(Cropland/Natural Vegetation Mosaics), (b) IIASA cropland
fraction > 50 %. We also define the irrigated and unirrigated (i.e.,
rainfed) croplands in India by overlaying the global irrigated and
rainfed cropland area maps18. We further introduce seasonally
resolved crop type maps to understand to what extent the sea-
sonally varying degree of changes in Indian cropland is associated
with different crop types54. These crop-type maps were developed
using MODIS 250 m surface reflectances (and derived spectral
indices) and quantitative spectral matching techniques, resulting
in mapped accuracies ranging from 72% to 97%. The crop types
derived from remote sensing explained variability in national
statistics ranging from 63% to 98%.

Aridity and climate data. Aridity is usually expressed as a gen-
eralized function of precipitation, temperature, and reference
evapotranspiration. It is considered an indicator of quantified
precipitation availability over atmospheric water demand. The
aridity index used in this study was calculated as a ratio between
mean annual precipitation and reference evapotranspiration55.
The precipitation data was obtained from the high-resolution
WorldClim2 data while the reference evapotranspiration was
modeled using the FAO Penman-Monteith method. In this study,
we employed the UNEP aridity classification scheme: arid (<0.2),
semi-arid (0.2–0.5), dry sub-humid (0.5–0.65), and humid
(>0.65). For assessing relations between MODIS LAI and climate
data, we obtained monthly temperature, precipitation, and
radiation data from CRU TS (Climatic Research Unit gridded
Time Series) Version 4.04 data56.
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TRENDY DGVM LAI. DGVMs simulate key physical and bio-
logical processes of the land system in interaction with the atmo-
sphere. DGVMs provide a deeper insight into the mechanisms
controlling terrestrial energy, hydrological, and carbon cycles, as
well as the drivers of phenomena ranging from short-term
anomalies to long-term changes57. DGVM simulations under
constant environmental conditions have been performed within
the project TRENDY (Trends and drivers of the regional-scale
sources and sinks of carbon dioxide)27. In this study, we use 10
TRENDY v7 DGVMs including CABLE-POP58, CLM5.059,
JSBACH60, JULES61, LPJ-GUESS62, LPX-Bern63, ORCHIDEE64,
SDGVM65, SURFEX66, and VISIT67 (Supplementary Table 1). A
set of three experiments driven by either constant or varying cli-
mate data and other inputs such as atmospheric CO2 and LCLUC
forcing were designed in the TRENDY project to differentiate the
role of CO2, Climate, and LCLUC (Supplementary Table 2). The
TRENDY v7 models were forced by gridded climate data (either
monthly CRU or 6-hourly CRU-JRA55), atmospheric CO2 con-
centrations based on ice core measurements (pre-1958), and sta-
tionary observations from the National Oceanic and Atmospheric
Administration (NOAA) (post-1958), and Land-use Harmoniza-
tion (LUH) Version 2 data68. The TRENDYmodels provided three
types of simulations: (a) one that considers the variability in
atmospheric CO2 (S1), (b) one that considers the variability in CO2

and climate (S2), and (c) one that considers the variability in CO2,
climate, and historical LCLUC (S3). We aggregate the DGVM
simulated monthly LAIs to the Rabi (November–May), Kharif
(June–October), and annual LAI time series.

Analytical approaches. We evaluated each LAI time series (Rabi,
Kharif, and annual LAI) for the presence of a monotonic trend
using a rank-based Mann–Kendall trend test69 and determined
the slope of each time series using a non-parametric Theil–Sen
slope estimator70 as implemented using the zyp package71 in R.
This approach for robust trend assessment accounts for potential
temporal autocorrelation and has been used in prior studies that
evaluated changes in target variables including remote sensing
and climate variables 6. We classified pixels (or aggregated time
series) with a positive LAI trend (p < 0.1) as greening or a negative
LAI trend (p < 0.1) as browning.

The role of irrigation in modulating leaf area changes is
evaluated using irrigated and unirrigated area maps18. We also
further categorize croplands based on aridity levels (arid, semi-
arid, dry sub-humid, and humid) to investigate the role of
irrigation in the satellite-observed greening across varying aridity
levels. We compare trend estimates between different irrigation
practices and/or aridity conditions. In this study, we further apply
a partial-correlation analysis to evaluate the responsiveness of
MODIS LAI to precipitation variability after statistically control-
ling for the covarying effects of MODIS LAI and climatic
variables (temperature and solar radiation). These climatic
variables are all derived from the CRU TS4.04 datasets.

We quantify trends in total production, yield, cropping area,
and irrigation statistics of both food grain and major crop types
(rice, wheat, pulse, maize, jowar, Bajra, and nutrient cereal) in
India, and evaluate relations between each variable using Pearson
correlation coefficient. In this analysis, we further split the
statistics into two time periods (Earlier 20 years: 1967–1986, Later
20 years: 1999–2018) to investigate how the trends and
correlations evolve in the earlier and later periods.

We also use multivariate regression analysis to quantify the
effect size of irrigation, fertilizer, atmospheric CO2 concentration,
and climate (temperature, precipitation, and radiation) on
historical crop yield changes. Time series of the dependent and
independent variables are prepared for this analysis. Given the

limited availability of historical fertilizer use records, we only use
the data from 1985 to 2017 for this analysis. To further investigate
interactions between irrigation practice and climate factors, we
include interaction terms, i.e., irrigation × precipitation (ppt) and
irrigation × maximum temperature (tmax). Our general model of
crop yield, which includes 5 covariates and 2 interaction terms, is:

Yield � Irrigationþ Fertilizerþ CO2 þ ppt

þ tmaxþ radþ Irrigation: pptþ Irrigation: tmax

To quantify the individual contribution of CO2, climate, and
land cover/use changes (LCLUC) to changes in LAI, we follow a
factorial simulation approach using three different simulations of
DGVMs in TRENDY27,72. The effect of CO2 on the LAI change is
represented by a trend of S1 (CO2 only) results; the S2
(CO2+Climate) results show a trend that is the sum of CO2

and climate effects, and the S3 (CO2+ Climate+ LCLUC)
simulations include trends from time-varying CO2, climate,
and land use/cover change. For simplicity, the effect of “climate”
as used in this paper includes the synergy of CO2 and climate,
and similarly the effect of “LCLUC” also includes the synergy
terms. Therefore, the effects of CO2, climate, and LCLUC are
then quantified as the trend for S1, the trend of S2 minus the S1
trend, and the trend of S3 minus the S2 trend, respectively. All
trends are evaluated by the non-parametric Theil–Sen slope
estimator70.

Data availability
MODIS LAI (MOD15A2H & MYD15A2H) and LC (MCD12Q1) data datasets are
available from the NASA Earth Observing System Data and Information System (https://
earthdata.nasa.gov/). Agriculture statistics is available at https://agricoop.gov.in/en/
Agricultural_Statistics_at_a_Glance. Cropland irrigation and crop type maps are
available at https://doi.pangaea.de/10.1594/PANGAEA.884744 and http://maps.icrisat.
org/. TRENDY DGVM data is available at https://blogs.exeter.ac.uk/trendy/.
WorldClim2 and CRU data are available at https://www.worldclim.com/version2 and
https://crudata.uea.ac.uk/cru/data/hrg/, respectively.

Code availability
The code developed for the processing and analysis of data and to generate figures and
tables in this analysis is available from the corresponding author upon reasonable
request.
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