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Legumes are extremely valuable because of their high protein content and

several other nutritional components. The major challenge lies in maintaining

the quantity and quality of protein and other nutritional compounds in view of

climate change conditions. The global need for plant-based proteins has

increased the demand for seeds with a high protein content that includes

essential amino acids. Genome-wide association studies (GWAS) have evolved

as a standard approach in agricultural genetics for examining such intricate

characters. Recent development in machine learning methods shows promising

applications for dimensionality reduction, which is a major challenge in GWAS.

With the advancement in biotechnology, sequencing, and bioinformatics tools,

estimation of linkage disequilibrium (LD) based associations between a genome-

wide collection of single-nucleotide polymorphisms (SNPs) and desired

phenotypic traits has become accessible. The markers from GWAS could be

utilized for genomic selection (GS) to predict superior lines by calculating

genomic estimated breeding values (GEBVs). For prediction accuracy, an

assortment of statistical models could be utilized, such as ridge regression best

linear unbiased prediction (rrBLUP), genomic best linear unbiased predictor

(gBLUP), Bayesian, and random forest (RF). Both naturally diverse germplasm

panels and family-based breeding populations can be used for association

mapping based on the nature of the breeding system (inbred or outbred) in

the plant species. MAGIC, MCILs, RIAILs, NAM, and ROAM are being used for

association mapping in several crops. Several modifications of NAM, such as

doubled haploid NAM (DH-NAM), backcross NAM (BC-NAM), and advanced

backcross NAM (AB-NAM), have also been used in crops like rice, wheat,

maize, barley mustard, etc. for reliable marker-trait associations (MTAs),

phenotyping accuracy is equally important as genotyping. Highthroughput
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genotyping, phenomics, and computational techniques have advanced during

the past few years, making it possible to explore such enormous datasets. Each

population has unique virtues and flaws at the genomics and phenomics levels,

which will be covered in more detail in this review study. The current

investigation includes utilizing elite breeding lines as association mapping

population, optimizing the choice of GWAS selection, population size, and

hurdles in phenotyping, and statistical methods which will analyze competitive

traits in legume breeding.
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Introduction

The term legume originated from the Latin word “legumen”,

which denotes “seeds harvested in pods”. During the Neolithic

Revolution, which marked the beginning of human farming

methods, farmers were accompanied by legumes that belong to

the family Fabaceae. It is acknowledged that inadequate protein-

energy intake and micronutrient deficits are two of the primary

causes of undernutrition. Legumes play a minor but significant role

in our food system. They are the superior economical dietary

solutions due to their rich protein content (17%–30%) and

relevant nutritional richness compared to expensive food sources

containing animal-based protein and dairy products that may be

difficult to obtain in situations where there is food insecurity

(Marinangeli et al., 2017).

Compared with cereals, legumes provide a substantial quantity

of protein throughout the complete plant, notably in grains. The

incorporation of leguminous crops in cropping systems enabled an

enhancement in soil quality (Hasanuzzaman et al., 2020). Legumes’

ability to fix atmospheric nitrogen in symbiotic relationships with

soil bacteria such as Rhizobium and Brady rhizobium minimizes

the requirement for chemical fertilizers during crop growth and

contributes to a reduction in greenhouse gas emissions like nitrous

oxide (N2O) and carbon dioxide (CO2). In addition, they can help

to reduce the utilization of fossil-based energy inputs in the chain of

agriculture and food production by infusing high-quality organic

matter, facilitating nutrient circulation, and promoting water

retention in the soil (Stagnari et al., 2017). Legumes are rich in

nutraceuticals, such as vitamin B6, calcium, magnesium, sodium,

zinc, copper, and manganese. Thus, it is crucial to expand the

genetic background and foster the breeding of legume crops, which

will serve the needs of the growing human population under

changing climatic conditions. Therefore, it is essential to come up

with high-yielding cultivars that have enhanced resistance to

diseases, higher nitrogen fixation ability, and tolerance to abiotic

and biotic stresses, which can be achieved using biotechnological

and genomics-assisted breeding approaches.

Genome-wide association study (GWAS) is an effective

technique for determining the genes underlying a particular trait.

To accomplish this, it is ideal to assess the genomic regions where
02
genotypic and phenotypic variations are correlated with each other.

In comparison to standard biparental populations, GWAS offers

greater mapping precision for detecting interactions among

molecular markers and desirable characteristics in a variety of

crops (Liu et al., 2016; Cui et al., 2017). It has become a vital tool

in agricultural genetics due to its techniques that build upon the

mixed linear model (MLM) framework and deliver radically

improved computational speed and statistical power.

Furthermore, improvements can be applied in fields like omic-

wide association studies, which utilize GWAS techniques to analyze

relationships among desirable morphological traits and other kinds

of omics data that include transcriptomic or metabolomic. GWAS

requires structuring the population of diverse panels to estimate

genetic distinction and minimize the detection of spurious

connections (Sul et al., 2016). Breeders can develop new varieties

owing to recent innovations in NGS applications and technologies

that enable advanced tools to characterize genetic variation at a high

resolution (Gali et al., 2019). The ultimate objective of this review is

to quantify the genetic diversity, GWASs, and other related aspects

or techniques that could be used to break the plateau of yield in

legume crop production and can be utilized for further

crop improvement.
Mapping population in association
studies

Association mapping (AM), an alternative to QTL mapping, is

dependent on linkage disequilibrium (LD) and uses collections of

genotypes with known or unknown ancestry that have a significant

degree of genetic variation due to hundreds of recombination

cycles. The ultimate goal of association studies is to find a strong

correlation between a genome-wide DNA marker and an

interesting attribute that can be highly useful in marker-assisted

selection for crop development. GWAS and candidate gene (CG)–

based analysis are two important approaches to AM.

The creation of a mapping population that will be tested for the

marker–trait relationship is a prerequisite for the GWAS. Both

broad-based natural populations and narrow-based breeding

populations can be utilized as the mapping population for GWAS
frontiersin.org
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(Figure 1). The sort of mapping population needed for the success

of GWAS hangs significantly on the mode of pollination

(inbreeding or outbreeding) of the plant species. Both natural

diverse germplasm panels and family-based breeding populations

can be used for this. Among the breeding population, both

biparental and multiparental mapping populations such as

Multiparent Advanced Generation Inter-Cross ([MAGIC),

Multiline Cross Inbred Lines (MCILs), Recombinant Inbred

Advanced Intercross Lines (RIAILs), Nested Association Mapping

(NAM), and Random Open- parents Association Mapping

(ROAM) are being used for AM in several crop plants.

Populations such as doubled haploid NAM (DH-NAM),

backcross NAM (BC-NAM), and advanced backcross NAM (AB-

NAM) that are modifications of NAM have also been used in recent

times. The selection of the mapping population should be taken care

of enough to avoid the false-positive marker–trait association.

Because of the problematic inconsistent phenotyping scores of

segregating lines over the years and location, heterozygote

segregating individuals should not be included with the inbred

lines as one population when creating the AM panel. When

significant features like days to bloom and maturity are

influencing the target trait, extreme genotypes should be

eliminated from the AM panel for proper scoring of trait data

(Kulwal and Singh, 2021). Each population has unique virtues and

flaws, which will also be discussed further in the review study.
Natural population and elite
breeding lines as association
mapping population

Any naturally occurring panmictic population with a significant

history of recombination events can undergo AM. Utilizing

hundreds of recombination events makes it simple to do an LD
Frontiers in Plant Science 03
analysis of the target characteristic. These populations, however, are

not appropriate for QTL mapping. When a germplasm accession

collection represents the natural population, it may be a core

collection or a sample that is more resilient to environmental

changes. The population is excellent for assessing the QTLs for

rare alleles that can help develop elite breeding lines or highly

heritable domestic features. QTLs for some agronomically key

characteristics have been uncovered in germplasms of several

crops using GWAS, such as in 135 pea accessions (Gali et al.,

2019), 366 sesame accessions (Cui et al., 2017), and 119 accessions

in rice (Pawar et al., 2021).

The cultivars and lines created by a deliberate breeding program

are known as elite inbred lines. These lines are unbreakable and can

be maintained by numerous researchers in various places to identify

QTLs using an AM panel. For instance, two AM panels of maize

having 306 dent corn and 292 European flint corn inbred lines were

individually assessed using single-nucleotide polymorphism (SNP)

markers in the cold and control growth chamber conditions to

identify genes related to cold tolerance (Revilla et al., 2016). For

GWAS research in sorghum, AM panels of 377 tropical accessions

from various geographic and climatic zones, significant U.S.

breeding lines, and the wild species have been brought together to

be used as AM panels (Casa et al., 2008). GWASs in legumes mostly

include the natural populations and elite advanced breeding lines

(Table 1), whereas GWAS using artificial mapping populations is

more or less a recent phenomenon, and they are still underway.
Biparental mapping population and
association mapping

Recombinant inbred lines (RILs) and Near Isogenic Lines

(NILs) are the most used biparental population, usually used for

linkage mapping or Quantitative Trait Locus (QTL) or QTL
FIGURE 1

Types of mapping population used in GWAS studies along with their brief properties.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123631
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Susmitha et al. 10.3389/fpls.2023.1123631
TABLE 1 GWAS studies for various traits in different leguminous crops.

Crop Mapping
population

Traits QTLs/Marker trait
associations

References

Gram 132 varieties
and Advanced
Breeding Lines

(ABLs)

Yield traits 38 MTAs (marker
trait association)

Li et al. 2018

192 desi &
kabuli

accessions

Seed weight 8 MTAs Bajaj et al., 2016

182 diverse
genotypes

Phenological, physiological
and yield traits

14-34 MTAs in
different environment

condition

Jha et al. 2021

75 ABLs Fusarium wilt 3 MTAs Jha et al. 2021

165 chickpea
genotypes

resistance to Ascochyta rabiei 30 MTAs Farahani et al. 2022

280 accessions
Grain Nutrient and
Agronomic Traits

20 and 46 MTAs for
grain nutrient and
agronomic traits,

respectively

Srungarapu et al., 2022

Arhar Diverse
collection of 142
pigeonpea lines

Flowering related traits 22MTAs
Kumar et al. 2022

Pangenome
based on 89
accessions

9 agronomic traits 229 MTAs Zhao et al. 2020

Faba beans 481 elite
breeding lines

Agronomic Traits 30 MTAs Keller et al., 2020

Lentil 188 lines of the
USDA Lentil

Core Collection

Pea aphid 15 candidate genes Das et al. 2022

Pea 135 pea
accessions

Agronomic and Seed Quality
Traits

251 MTAs Gali et al., 2019

135 pea
accessions

Heat and Drought
Adaptive Traits

15 MTAs Tafesse et al. 2021

Mungbean 127 test
genotypes

Mungbean yellow mosaic
India virus resistance

15 MTAs Singh et al. 2020

95 cultivated
mung bean
genotypes

Seed Mineral content 43 MTAs Wu et al. 2020

Blackgram 100 diverse
genotypes

Agronomic traits 42 QTLs Singh et al. 2022

99 diverse
genotypes

Agronomic traits 83 MTAs Nkhata et al. 2021

Soybean Protein, Oil, unsaturated
fatty acid, oleic acid

SNP (Hwang et al., 2014; Zhang et al., 2019; Zhao et al., 2019; Liu et al., 2020)

Nematode resistance, Iron
deficiency and Canopy wilt,
brown stem rot, Diseases

resistance

SNP (Butenhoff, 2015; Vuong et al., 2015; Chang et al., 2016; Rincker et al.,
2016; Zhang et al., 2017a; Zhang et al., 2017b; Zatybekov et al., 2018; Do

et al., 2019; Ravelombola et al., 2019; Tran et al., 2019; Che et al., 2020; Lin
et al., 2020)

(Continued)
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mapping. Whereas the power of QTL identification is higher in

linkage mapping as compared to AM, the resolution has a reverse

relationship with both mapping schemes. The concept of joint

linkage AM (JLAM) was introduced to fully exploit the

capabilities of both mapping methods. JLAM uses either a

biparental population set or one or more multiparental AM

panels, or two sets of genotypes consisting of germplasm and

biparental mapping populations, which are genotyped utilizing

the same set of markers (Myles et al., 2009; Lu et al., 2010; Reif

et al., 2010 and Wurschum et al., 2012). Hence, JLAM is also
Frontiers in Plant Science 05
recognized as integrated mapping that identifies more significant

marker–trait associations and increases the power of AM. Using

JLAM (by combining germplasm accessions and full-sib F2

population of a bioenergy crop Shrub willow (Salix sp.) identified

several major QTLs along with QTL hotspots (Carlson et al., 2019).

Several studies using JLAM include QTL identification and CG

identification for drought tolerance in maize (Lu et al., 2010),

pleiotropic QTLs for silique length and seed weight in rapeseed

(Li et al., 2014), and the epistatic QTLs for agronomically important

characters in sugarbeet (Reif et al., 2010). Recent studies claim that
TABLE 1 Continued

Crop Mapping
population

Traits QTLs/Marker trait
associations

References

Salt tolerance, Flood
tolerance, Drought tolerance,

Water Use Efficiency

SNP (Dhanapal et al., 2015; Zeng et al., 2017; Chen et al., 2018; Khan et al.,
2018; Yu et al., 2019; Assefa et al., 2020)

Agronomic trait SNP (Wen et al., 2015; Zhang et al., 2015; Contreras-Soto et al., 2017; Yan et al.,
2017; Zhang et al., 2021; Zatybekov et al., 2017; Pan et al., 2018; Hu et al.,

2019a; Li et al., 2019; Kim et al., 2020)

Physiological traits SNP (Sui et al., 2020; Wang et al., 2020; Yang et al., 2020)

Groundnut 170 genotypes Quality traits SNP (Shaibu et al., 2019a)

125 ICRISAT
groundnut mini
core collection

Physiological traits SNP (Shaibu et al., 2019b; Shaibu et al., 2020)

158 peanut
accessions; 195

peanut
accessions

Agronomic traits SNP (Zhang et al., 2017c; Wang et al., 2019)

120 genotypes Disease resistance SNP (Zhang et al., 2019; Zhang et al., 2020)

249 peanut
accessions

Abiotic stress tolerance SNP (Zou et al., 2020)

Chickpea Agronomic traits SNP (Bajaj et al., 2015a; Bajaj et al., 2016; Kujur et al., 2015a; Upadhyaya et al.,
2015; Upadhyaya et al., 2017; Basu et al., 2018; Orsak et al., 2019; Fayaz

et al., 2022; Srungarapu et al., 2022)

Abiotic stress tolerance SNP (Thudi et al., 2014; Li et al., 2018; Kohli et al., 2020; Ahmed et al., 2021;
Kalve et al., 2022)

Physiological traits SNP (Basu et al., 2019)

Quality traits (Upadhyaya et al., 2016a; Upadhyaya et al., 2016b; Parida et al., 2017;
Samineni et al., 2022)

Biotic stress resistance (Li et al., 2017; Agarwal et al., 2019; Agarwal et al., 2022; Farahani et al.,
2022; Raman et al., 2022)

Beans Agronomic traits/ Quality SNP (Warsame et al., 2019; Rasool et al., 2022)

Abiotic stress SNP (Ali et al., 2016; Li et al., 2017; Hu et al., 2019b; Breria et al., 2020; Abou-
Khater et al., 2022; Maalouf et al., 2022; Sallam et al., 2022)

Biotic stress SNP (Faridi et al., 2021)

Lentils Agronomic traits SNP, SSR (Kumar et al., 2018a; Kumar et al., 2018b; Singh et al., 2019; Karthika et al.,
2021; Neupane et al., 2022)

Quality traits, Seed quality SNP (Khazaei et al., 2017; Khazaei et al., 2018; Johnson et al., 2021; Hang, 2022;
Puspitasari et al., 2022)

Biotic stress SNP (Banoo et al., 2020; Gela et al., 2021)

Abiotic stress SSR (Singh et al., 2017; Kumar et al., 2019; Ma et al., 2020)
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regulating population structure and addressing rare alleles can be

accomplished through cofactors and a demographic effect

accounting for JLAM, which enhances the predictive power of the

methods (Wurschum et al., 2012).
Multiparent mapping population
for GWAS

The multiparent populations include several founder parents,

which reflect wider genetic diversity. Hence, in AM studies, the use

of multiparent mapping populations helps limit the demerit of

recombination frequency in biparental populations. Multiparent

mapping populations provides tools to control population structure

and balance allele frequencies. The historical and artificial

recombinational events of the multiparent mapping populations

such as NAM and MAGIC populations and their derivatives

increase the efficiency of QTL identification in AM. Because of

the controlled crosses, NAM population has higher power because

of maximized population structure and minimal familial

relatedness and accumulated frequency of rare alleles. The

population facilitates cost-effective GWAS and allows the

perpetual sharing of the NAM panel with global researchers.

To generate sets of RILs, NAM populations can be developed

using reliable mating strategies such as diallel mating, NCD-II

(North Carolina design II), eight-way cross, and single/double

round robin. NAM population was first developed in maize using

RILs developed from a diverse set of parents. Twenty-five diverse

families in maize were used to develop 5,000 RILs that were

evaluated for southern leaf blight disease resistance (Kump et al.,

2011), and the wide diversity helped in the identification of 32 QTLs

for the trait. A NAM population was developed using 23 different

inbreds of barley in a twofold round-robin design to identify QTLs

and CGs for grain morphology (Shrestha et al., 2022). NAM

population has been established in both autogamous and

allogamous species such as barley, rice, wheat, sorghum, and

maize (Maurer et al., 2015; Bajgain et al., 2016). Several

modifications of NAM, such as DH-NAM, BC-NAM, and AB-

NAM, have also been used in recent times. An AB-NAM of barley

consists of 796 BC2F4:6 lines, which were derived from 25 wild

barley accessions by backcrossing to the cultivar Rasmusson (Nice

et al., 2016). Using 384 SNPmarkers, the AB-NAM population with

minimal undesirable and unadapted characteristics of the wild

barley parents was genotyped and encountered 10 QTLs for grain

protein content (Nice et al., 2016).

A MAGIC population is created by a group of RILs from a

complex cross or a group of crosses with numerous parents.

Multiple rounds of recombination occur as these populations

mature, improving the accuracy of desirable recombination and

desirable alleles, thereby increasing the resolution of QTL mapping.

With the aid of single seed descent (SSD), highly homozygous lines

will be developed to establish the MAGIC population. To develop

MAGIC populations for wheat and rice that can be deployed for

QTL mapping, indica and japonica lines have been adopted. Seven

cycles of SSD selfing resulted in 305 F8 lines in cowpea (Vigna
Frontiers in Plant Science 06
unguiculata) (Huynh et al., 2018). In the MAGIC indica rice

population, 400 lines from S2 bulk were chosen on the basis of

agronomic attributes and evaluated in mega-environment trials to

select elite lines (Bandillo et al., 2013).
New high-throughput genotyping
technologies for plants

The molecular markers are being progressively used to expedite

breeding efforts in the post-genome sequencing era. Modern plant

breeding is shifting from classical breeding to molecular breeding,

where various genotyping technologies are being used for the

discovery of molecular markers. In the last decade, a huge

number of molecular markers were used for structural analysis of

large germplasm populations to understand the diversity and use in

GWAS. The whole-genome sequencing for most of leguminous

crops has already been completed. Chromosome-level genomes are

completed for most of the leguminous crops (Varshney et al., 2013).

In the pre-genome sequencing era, the simple sequence repeat

(SSR) markers were very powerful and potentially used for

GWAS analysis. SSRs are tandem repeats highly polymorphic,

abundant, co-dominant, and distributed throughout the genome.

However, SSR markers are very laborious and time-consuming

when compared with modern genotyping platforms such as double-

digest restriction site–associated DNA sequencing (ddRAD-Seq) or

specific locus amplified fragment sequencing (SLAF-Seq), whole-

genome resequencing (WGRS), genotyping-by-sequencing (GBS),

SNP-chip arrays, diversity array technology (DArT) array

technology. With Illumina, gigabases of DNA sequencing data

may be generated in a short period and cost-effectively in the

NGS era (Bentley et al., 2008), Roche (Rothberg and Leamon, 2008),

and AB-SOLiD (Pandey et al., 2008).

Molecular markers have become crucial components in

molecular breeding over the past 2 years (Nadeem et al., 2018;

Horst and Wenzel, 2007; Eathington et al., 2007). Molecular

breeding has gained popularity and has been accepted by plant

scientists because of its rapid and precise results for germplasm

classification, back cross-breeding, and marker-assisted selection

(Kumar et al., 2011; Nair and Pandey, 2021). A plethora of studies

has been done using molecular markers (Kujur et al., 2015a; Wu

et al., 2010; Song et al., 2013; Deokar et al., 2014; Shao et al., 2022).

Different types of markers have been used for genotyping of legume,

which includes rapid amplified polymorphic DNA (RAPD) (Doldi

et al., 1997; Thompson et al., 1998; Iruela et al., 2002; Talebi et al.,

2008), amplified fragment length polymorphism (AFLP) (Nguyen

et al., 2004; Singh et al., 2008; Ude et al., 2002), inter-SSR (ISSR)

(Yadav et al., 2014; Bhagyawant and Srivastava 2008; Iruela et al.,

2002; Souframanien and Gopalakrishna, 2004), and SSR (Saxena

et al., 2010; Choudhary et al., 2012; Zavinon et al., 2020).

However, continuous improvement of next-generation

sequencing (NGS) technologies in recent years has made it cost-

effective and accessible for any crop, including legumes (Poland

et al., 2012). Reference genome sequencing has been completed in

some legume crops like soybean, pigeon pea, groundnut, cowpea,
frontiersin.org
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chickpea, and common bean (Afzal et al., 2022; Salgotra and

Stewart, 2022). The currently available NGS technologies

sequence each molecular or base pair of the DNA of any

organism and make it feasible for us to identify the number of

SNP markers with high precision and in a very short period (Liew

et al., 2004). Although SNPs are biallelic and their polymorphism

information is much lower compared to SSRs, they cover a

significantly large part of the genome, which makes them markers

to go for GWASs. In the last decade, a plethora of genotyping

studies were carried out using SNPs in chickpea (Kujur et al., 2015b;

Gaur et al., 2012; Hiremath et al., 2012; Deokar et al., 2014), pigeon

pea (Raju et al., 2010; Singh et al., 2016; Arora et al., 2017),

groundnut (Varshney, 2016; Pandey et al., 2017; Abady et al.,

2021), soybean (Wu et al., 2010; Song et al., 2013; Shao et al.,

2022), and other legume crops (Bohra et al., 2021; Shilpa and

Lohithaswa, 2021).
PCR-based genotyping methods

Amplification of DNA segments with PCR leads to the

development of multiple genotyping methods. If the primers in

a PCR reaction include the variation of interest, then it is called as

allele-specific PCR. Allele-specific markers are generally used

during foreground selection during marker assisted selection.

PCR-Restriction Fragment Length Polymorphism (RFLP) is

another method of PCR-based genotyping (Saiki et al., 1985),

where the genomic region of interest is PCR-amplified using the

markers and then digested with restriction enzymes specifically

recognize a DNA sequence, so that the digested product can

produce alleles of different size, which can distinguish among

the individuals. Microsatellites or short tandem repeat

polymorphisms are ideal markers for PCR-based genotyping as

the length of the amplified DNA fragment varies based on repeats

of microsatellites in the genome (Weber and May, 1989). Before

NGS technologies, a variety of DNA-based markers have been

developed and used for genotyping, for instance, RAPD, SSRs

(Hong et al., 2021), ISSRs, and AFLP. Among them, SSRs were

most widely used in genotyping and genetic mapping studies.

PCR-based genotyping methods are cheaper as compared to NGS

technologies. However, the PCR-based genotyping methods are

laborious and not highly efficient as NGS-based genotyping. The

NGS-based genotyping includes restriction digestion of DNA and

sequencing of libraries.
Double-digest restriction site–
associated DNA

Although the SSRs are a potent marker system because of high

reproducibility, co-dominance, and polymorphism, it is time,

therefore, to generate the thousands of genome-wide SNP

markers, restriction-sites associated with DNA sequencing

(RADSeq) for large populations to study population genetics and

genetic dissection of complex traits (Davey and Blaxter, 2011).

However, in RADSeq, ~30%–50% of data were discarded because of
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repeated variable sites. The more reliable technique of double-digest

restriction site–associated DNA sequencing (ddRAD-Seq) was

developed to boost the efficiency (Peterson et al., 2012). The

ddRAD-seq simultaneously uses two restriction enzymes to

decrease the genome entanglement and library preparation cost

by five-folds and can capture the genomic regions in hundreds of

thousands for enhanced representation of the genome. It was

successfully used in genetic mapping studies in peanut to map the

QTLs for late leaf resistance and plant type–related traits (Zhou

et al., 2014; Zhou et al., 2016). The ddRAD-seq was further

advanced to reduce the repetitive DNA sequences, and the

optimized version of ddRAD-Seq was developed called SLAF-Seq.

The steps in SLAF-Seq are the same as in ddRAD-Seq. The DNA

fragments are optimized for even distribution and to reduce the

repetitive sequences. However, both technologies do not cover the

whole genome (Sun et al., 2013).
Genotyping-by-sequencing

GBS is a robust genotyping technology used for SNP discovery

for a multitude of applications (Elshire et al., 2011). It is a variation

of ddRAD-seq, first discovered in maize and barley used for

genotyping recombinant inbred line populations. In GBS,

methylation-sensitive restriction enzymes play a vital role in DNA

digestion that lessens the genome complexity while constructing the

sequence libraries. The genomic areas that are difficult to access to

contemporary sequencing techniques can be captured by GBS. The

GBS was efficiently used in groundnut for trait mapping (Jadhav

et al., 2021) and diversity analysis (Khera et al., 2013). Pandey and

co-workers (2014) performed GWAS analysis using SSR and GBS-

based SNP genotyping data to identify the SNPs associated with

aflatoxin contamination and agronomic traits in groundnut. GBS

was used for genotyping cultivated and wild accessions of chickpea

to discover 82,489 SNPs used for diversity, population structure,

and LD analysis (Bajaj et al., 2015a; Kujur et al., 2015a). A total of

3,187 SNPs were used to reveal the genetic cluster associated with

black-seeded genotypes of chickpea. GBS was also used for

genotyping biparental populations in trait mapping studies to

identify the QTLs for sterility mosaic disease (Saxena et al.,

2017a), fusarium wilt (Saxena et al., 2017b), and fertility

restoration (Saxena et al., 2018) in pigeon pea. In chickpea,

drought tolerance–related “QTL-hotspot” was discovered with 743

SNP loci (Jaganathan et al., 2015), and 3,228 SNP loci were used for

mapping and identification of CGs of seed traits (Verma et al.,

2015). The multiplex sequencing strategy by using adapter

sequences makes GBS very inexpensive. However, it produces

more missing calls, and imputations are highly recommended

during quality analysis. However, GBS is also incomplete, as its

sequencing covers only a limited genome (~2.5%). GBS has replaced

the previous genotyping markers, i.e., RAPD, ISSR, and SSRs, as it

requires less time and labor and is highly cost-effective. GBS

technology has been done in legumes like chickpea and soybean

(Shingote et al., 2022; Torkamaneh et al., 2021; Iquira et al., 2015;

Bajaj et al., 2016; Sudheesh et al., 2021; Kujur et al., 2015b; Verma

et al., 2015).
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Diversity array technology

The polymorphic DNA segments called DArT markers in a

genome are recognized through differential hybridization on a

diversity genotyping array (Jaccoud et al., 2001). DArT is a very

cost-effective whole-genome DNA fingerprinting tool for a variety

of genetic analyses. It is a high-throughput sequence–independent

technology that combines restricted-based hybridization and PCR.

It is a very efficient marker system that can discover thousands of

polymorphic sites in a very short time in any crop species. DArT is

very popular in terms of high genome coverage, speed,

reproducibility, and reliability (Aitken et al., 2014). Furthermore,

polymorphic fragment calling does not require the reference

genome. The DArT technology can be effectively used for

genomic selection (GS) (Varshney et al., 2017) and marker-

assisted selection (Stojaowski et al., 2011). However, the DArT

markers are redundant due to clones with common sequences.

Therefore, the presence of redundancy and markers with low

frequencies (~41%) may affect the statistical analysis that is

needed to filter out. DArT procedure includes generating a

diversity panel followed by genotyping using a diversity panel.

The first-ever genetic map of any legume crop was designed using

DArT technology by Yang and coworkers (2011) in pigeon pea. A

biparental population (F2) was screened using 554 DArT markers.

Olukolu et al. (2012) used the DArT marker technology for genetic

diversity assessment of 124 accessions of groundnut representing 25

countries of Africa. Roorkiwal et al. (2014) used the DArT markets

to diversify the 10 Cicer species, including 94 genotypes. Aldemir

and coworkers (2017) used an advanced version of DArT

technology, i .e . , DArt sequencing (DArTseq), for the

identification of QTL for iron content in lentil seeds. DArTseq is

also a hybridization-based technology but combines with NGS and

provides a much simpler form of sequencing than DArT (Courtois

et al., 2013; Aldemir et al., 2017). Ates (2019) estimated the genetic

diversity of 94 lentil landraces with DArt-based 19,383 SNPs.
SNP arrays

NGS technologies discovered an ample number of SNP markers

because the demand for high-throughput genotyping has increased.

The hybridization-based microarray or SNP arrays are very popular

in genetic mapping, diversity analysis, and population genomics

(You et al., 2018). SNP array or DNA microarray are highly

polymorphic and use designed probes hybridized with fragmented

DNA, which determines the alleles of all the SNP positions for

hybridized DNA samples (LaFramboise, 2009). On the basis of the

density, the SNP arrays can be divided into high-density (>50K),

mid-density 5–10K), and low-density (>5K) SNP arrays. High-

density SNP arrays can be used for high-density genetic mapping,

GWAS, and population genomics studies. Mid-density assays can

be used in GS because a few thousand SNPs are enough based on

the genome size of the individual. However, the low-density SNP

arrays can be used for foreground and background selection during

marker-assisted selection and several breeding purposes. For
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instance, the quality control panel of rice is a low-density SNP

array (25 SNPs), highly used for F1 confirmation, hybrid purity

testing, and DNA fingerprinting in rice (Ndjiondjop et al., 2018).

SNP arrays have been efficiently developed in several crops for

genotyping, such as maize (600K SNP array) (Unterseer et al.,

2014), apple (480K SNP array) (Bianco et al., 2016), and rice (700K

SNP array) (McCouch et al., 2016). In leguminous crops such as

peanut, the SNP Arachis array with 58K SNPs (Pandey et al., 2017)

was very successful for genetic mapping (Pandey et al., 2020) and

association analysis (Gangurde et al., 2020) for several traits. In

pigeon pea, 56K Axiom Cajanus SNP Array and chickpea 11K

Axiom Cicer SNP Array were developed (Roorkiwal et al., 2018).

However, they are fixed and may not capture all recombination or

diversity in an association panel, which are the limitations of SNP

arrays. For instance, for genotyping a multi-parent population such

as MAGIC or NAM, the whole-genome resequencing–based

genotyping is helpful to capture maximum recombination regions.
Whole-genome resequencing

Advanced NGS technologies reduced per-sample sequencing

cost, and WGRS-based genotyping was used for many populations

to identify the presence of absence variations for genome-wide

association analysis. WGRS can be carried out at high depth or low

depth based on the objective of the study. For instance, in the case of

genetic mapping, 0.5–1.0X coverage is sufficient; however, for

GWAS, 10–15X coverage can be used. Several NGS platforms can

be used for generating WGRS data, such as Illumina Hi-seq (read

length of 150–250 bp), PacBio (10–25Kb), and NanoPore (read size

of 500 bp to 2.3 Mb). Large LD blocks (several hundred kilo–base

pairs) in plants, specially self-pollinating. Large LD blocks include

several CGs. Therefore, with dense genotyping, we can have SNP

variants in each of the CGs in the block and individual CGs can be

identified using GWAS carried out on WGRS genotyping data. A

gene for salinity tolerance Glyma03g32900, using sequencing data

on 106 soybean diversity panels and the SNP-based KASP markers,

was developed to improve salinity tolerance in soybean (Patil et al.,

2016). Recently, 2,980 chickpea accessions are sequenced to

discover 3.94 million SNPs, phenotyping data on 16 traits was

used for GWAS analysis and identified 205 SNPs associated with 11

traits, and the associated SNPs were in the genomic regions of 79

CGs playing a role in controlling key traits like seed weight

(Varshney et al., 2021).
Alleviating the phenotyping
bottleneck

In the era of different omics like genomics, transcriptomics, and

proteomics with the help of NGS technologies, genotyping of large

germplasm at multiple locations has become feasible for plant

scientists. Thus, phenotyping these large germplasms/populations

with higher accuracy have become difficult. Thus, high-throughput

genotyping technologies have shifted the bottleneck of plant science
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from genotyping to phenotyping (Mir et al., 2019). Thus, it has

become the need for time to develop high-throughput phenotyping

(HTP) approaches (Mir et al., 2019). Several advanced artificial

intelligence–based HTP platforms have been developed for crops

like rice, maize, and Arabidopsis (Yang et al., 2020). Still, a lot of

improvement is required in HTP, which can record multiple

phenotypic traits in less time and manpower, which can be

associated with large genotypic data of large populations (Mir

et al., 2019). The major limitation in phenotyping is recording the

multiple traits (agronomic traits, physiological traits, and stress-

related scoring) data of large populations at multiple locations in

several replications (Furbank and Tester, 2011). There are a lot of

chances for error in phenotypic data when recorded manually, and

less accuracy leads to false significant associations with molecular

markers and wrong interpretation of alleles and genes. HTP is a

non-destructive data recording method that allows the plant

scientist to increase the size of the experiment by the number of

genotypes or replication, or locations (Awlia et al., 2016).

PHENOPSIS was one of the first automated imaging and

weighing systems developed in Arabidopsis to estimate its

response to water deficiency (Granier et al., 2006). However, it

has its limitations. HTP platforms are of two types, i.e., HTP

platforms for greenhouse or laboratory experiments and open

field experiments (Shafiekhani et al., 2017). Although, HTP

technologies have been used successfully for genetic dissection of

agronomic traits in major field crops like rice, maize, wheat, barley,

and brassica (Zhang et al., 2017a; Shi et al., 2013; Yang et al., 2014;

Muraya et al., 2017; Topp et al., 2013; Tanabata et al., 2012). The use

of these HTP platforms in legume crops is yet to be evaluated at the

large fields, population, and multiple location levels (Zhang et al.,

2021). A handful of studies has been conducted on legumes such as

pea, soybean, and chickpea using a HTP approach for biotic and

abiotic stress (Zhang et al., 2012; Friedli et al., 2016; Humplıḱ et al.,

2015). Zhang et al. (2021) used the quadcopter unmanned aircraft

vehicle multispectral imaging data to predict the yield of chickpea

and dry pea with a multivariate regression model. Humplıḱ et al.

(2015) used the automatic red blue green image analyzing software

in pea to estimate the shoot biomass and photosynthetic activity for

cold tolerance. Friedli et al. (2016) used the yerrestrial 3D laser

scanning system in soybean for canopy-related traits.
Advanced methods and tools
for GWAS

GWAS has continuously expanded in the last few decades due

to advancements in sequencing technologies and the collective

effort of the research community. In addition, HTP technologies

have allowed us to measure many plant traits that are now

frequently analyzed through GWAS tools. Recent years have seen

GWAS methods solving issues of computation complexity or

enhancing statistical power. It is utilized to detect new

associations with traits of interest and to replicate loci detected by

other different approaches. A diverse set of researchers is involved

in rare-variant detection, statistical model optimization, synthetic

associations, and using GWAS findings to better our knowledge of
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disease etiology. These methods can detect genetic variants

associated with biochemical or agronomic and molecular

phenotypes. In the future, this will enhance the utility of GWAS

methods and their implications for plant science.
Naïve methods

In the GWAS, linear or logistic regression models are used to

test for associations. The linear model is used for continuous traits

such as plant height, whereas logistic regression models are used for

binary traits indicating that the disease is present or absent. In

addition, some covariates are included to account for confounding

effects from demographic factors. However, naïve approaches often

suffer from inflated false-positive rates that might be induced due to

genetic relatedness among study participants (Oetjens et al., 2016).

In GWAS, usually, diverse populations are selected, which often

have related individuals, making subpopulations within the

population. This might lead to spurious associations between

SNPs that are more common in each subpopulation and

phenotypes of interest if the phenotype has a higher prevalence in

that subpopulation.
Mixed linear model methods

The MLM frameworks used in GWAS have drastically decreased

the false-positive rates in comparison with conventional naïve

approaches. Among these, the fast GWA tool is an ultra-efficient

tool for MLM-based GWAS analysis of biobank-scale data (Jiang

et al., 2019). MLM approaches resolve the issue of genetic relatedness

among individuals following correction at two levels. These refer to

population structure and kinship (Yu et al., 2006). At the first level,

the population structure is inferred using genotype data with

STRUCTURE tool (Pritchard et al., 2000) or through principal

component analysis (Price et al., 2006). The kinship matrix is used

at the second level to estimate inter-individual relatedness using the

genotype data (Yu et al., 2006). In recent years, many methods have

been developed to efficiently solve MLM equations. For instance, a

recently available method referred to as EMMA (efficient mixed-

model association) provided superior computational speed by

eliminating the duplicate matrix operations at each iteration while

estimating the likelihood function (Kang et al., 2008). MLM-based

methods become computationally intensive for large numbers of

samples. The FaST-LMM solves this issue but requires that the

number of SNPs be less than the number of samples to derive

kinship. The SUPER (Settlement of MLM Under Progressively

Exclusive Relationship) method has been developed to extract a

subset of SNPs and use them in FaST-LMM to increase the

statistical power. Moreover, the compress MLM (CMLM) and

enriched CMLM (ECMLM) methods are available for kinship

optimization. The modified MLM method called multiple-locus

linear mixed model (MLMM) incorporates multiple markers

simultaneously as covariates in a stepwise MLM to partially remove

the confounding between testing markers and kinship. Furthermore,

a new method referred to as fixed and random model circulating
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probability unification (FarmCPU) completely removes the

confounding by dividing MLMM into a fixed-effect model and a

random-effect model and using them iteratively. The FarmCPU can

analyze the dataset with half million individuals and half million

markers within 3 days. However, the random-effect model is

computationally intensive in FarmCPU. The new method called

Bayesian information and linkage disequilibrium iteratively nested

keyway (BLINK) replaces the random-effect model with the fixed-

effect model by using Bayesian information criteria. This method also

replaces the bin method used in FarmCPU with LD information to

eliminate the requirement that quantitative trait nucleotides be

uniformly distributed throughout the genome. These all methods

are summarized in Table 2.
Machine learning methods

Recent years have seen tremendous growth in the machine

learning methods targeted for GWAS. The approaches used by

these methods include classification, regression, ensemble-based

learning, and neural networks.
Regression

Logistic regression coupled with the least absolute shrinkage and

selection operator (LASSO) regularization approach is a famous

method for GWAS. The penalized logistic regression method was

used for the classification of patients with Crohn’s disease using

genotyping data at the genome-wide level. The LASSO and ridge

regression are among the most frequently utilized penalized regression

algorithms (Tibshirani et al., 1996; Hoerl et al., 1970). Recently, a faster

and more powerful algorithm was developed by binning the closely
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occurring SNPs based on LD (An et al., 2020). In addition, the SNPs

and phenotypes were mapped using LASSO regression in this method.

This method was found to provide a reduced type 1 error rate in

comparison with regular MLM and LASSO. To discover variations

closely associated with the duloxetine response, some researchers used

the standard genome-wide logistic regression (Maciukiewicz et al.,

2018). In addition, they extracted the top predictors using LASSO

regression. In another study, a preconditioned random forest

regression was used to predict late genitourinary toxicity after

radiotherapy. This preconditioning involved usage of logistic

regression for making a continuous surrogate outcome from the

original binary outcomes, which were followed by random forest

regression where the surrogate outcome is utilized as a target for

prediction. In this study, five-fold cross-validation was conducted for

testing the model stability against existing baseline models (Lee et al.,

2018). The major drawback of regression approaches is the failure to

find higher-order non-linear SNP interactions involved in susceptibility

to diseases. The process developed by Zhang and coworkers (2012)

utilizes prior information from proteomics and biological pathways for

SNP groups. To find the top predictive SNP groups, they used linear

regression standardized by group sparse constraint. In the end, group

LASSO was used for the regularized linear regression (Yuan et al.,

2005). Thus, this approach overcomes the limitations of the regular

MLM used in GWAS.
Classification

Support vector machine (SVM)–based classification methods

such as COMBI have been developed for unknown phenotype

prediction for a given unseen genotype (Mieth et al., 2016). In

this approach, the SNPs having larger SVM weight are chosen, and

the remaining SNPs are removed. Next, a chi-squared test is
TABLE 2 Advanced methods and tools for GWAS.

S.No. Method Description Reference

1. MLM At the first level, the population structure is inferred using genotype data with STRUCTURE tool or through principal
component analysis. The kinship matrix is used at the second level to estimate inter-individual relatedness using the genotype
data.

Jiang et al.,
2019

2. CMLM Clusters the individuals into groups and fits the genetic values of groups as random effects in the model that improves statistical
power compared to regular MLM methods.

Zhang et al.,
2010

3. ECMLM Calculate kinship using several different algorithms and then choose the best combination b/w kinship algorithms and grouping
algorithms.

Li et al.,
2014

4. FaST-
LMM

An algorithm for genome-wide association studies (GWAS) that scales linearly with cohort size in both run time and memory
use. This method requires that the number of SNPs be less than the number of samples to derive kinship.

Lippert
et al., 2011

5. SUPER Uses the associated genetic markers referred as pseudo quantitative trait nucleotides instead of all the markers, to derive kinship. Wang et al.,
2014

6. MLMM Include multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing
markers and kinship.

Segura et al.,
2012

7. FarmCPU Uses a bin method under the assumption that quantitative trait nucleotides are evenly distributed throughout the genome.
Completely eliminates the confounding by dividing MLMM into a fixed effect model and a random effect model and using them
iteratively.

Liu et al.,
2016

8. BLINK Replaces the random effect model with the fixed effect model by using Bayesian information criteria. Uses linkage disequilibrium
information to eliminate the requirement that quantitative trait nucleotides be uniformly distributed throughout the genome.

Huang et al.,
2019
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performed, and SNPs that exhibit a p-value below the significant

criterion are taken into consideration for intensive study. The SVM

method separates labeled data points into two groups with a large

difference between them. Some authors proposed using SVM for

genetic risk prediction (Mittag et al., 2012). This method has been

used for genome-wide risk profiling for diseases such as type 1

diabetes and Parkinson’s disease. In this algorithm, model training

is performed using SNP data, which is followed by binary

classification of the test dataset. Another researcher used the K-

nearest neighbor learning algorithm for the classification of

individuals into breast cancer positive and negative groups using

their SNPs (Hajiloo et al., 2013). They used a leave-one-out cross

validation strategy and external holdout methods for evaluating the

performance of their classification algorithm.
Ensemble learning methods

These methods comprise an ensemble of decision trees. For

example, random forest is an example of the ensemble learning

algorithm. A bootstrapped subsample of the initial training dataset

is used to create each decision tree in this instance. Some authors

used gradient-boosting and random forest approaches to identify

potent SNPs (Dorani et al., 2018). Nguyen et al. (2015) used a

random forest method for selecting informative SNPs. They used a

two-stage quality-based approach in model learning for the

selection of informative SNPs. This method seems quite useful for

the high-dimensional GWAS data. They also used five-fold cross-

validation for assessing the potential of the model on different

GWAS datasets. In addition, gradient boosting of decision trees was

used for GWAS datasets. Others proposed using the XGBoost

model for SNP selection (Behravan et al., 2018). This model

could be used as an alternative to polygenic risk scoring. In

addition, SVM classifier is used at the backend for SNP

classification. Using principal component analysis and logistic

regression, Oh et al. (2017) suggested a preconditioned random

forest regression that converts a binary variable into a continuous

variable. Later, Lee and a group of researchers (2020) used this

preconditioned model for predicting the risk of breast cancer.
Neural network-based methods

Liu et al. (2019) developed a convoluted neural network (CNN)

model for phenotype prediction using the SNP dataset. Moreover,

they applied a saliency map for the first time to choose significant

SNPs from training model. They also compared them with

statistical methods such as best linear unbiased prediction and

Bayesian ridge regression (BRR). In this study, association analysis

was performed for quantitative traits of soybean and SNP datasets.

Some authors found that increasing the hidden neuron’s number

does not affect the performance of the classification model for the

case-control settings (Romagnoni et al., 2019). In a different study,

authors compared the deep mixed model constituted of CNN and

long and short-term memory with standard univariate testing and

MLM (Wang et al., 2019).
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Transcriptome-wide association
study methods

Transcriptome-wide association study (TWAS) methods perform

association analysis for gene expression variations and quantitative

traits. TWAS is an approach based on genes with the ability to expand

GWAS for a better understanding of functional relationships in

complex traits. These methods are alternatives to variant-based

association methods representing a subgroup of multi-marker

association or locus-based methods. The locus-based methods have

been so popular due to the larger apprehension and acceptability of the

polygenic framework of the complex traits. In principle, locus-based

approaches rely on multiple genetic variants to estimate the

contribution of a gene or loci. TWAS uses GWAS results and

transcriptome-level information to perform association testing at the

gene level (Pividori et al., 2020). The ability to separate and assess the

analytical procedures in TWAS simultaneously, provides several

opportunities for the development of effective statistical models for

the study of gene disease connections.
PheWAS methods

PheWAS methods perform unique associations in addition to

utilizing known genotype–phenotype associations acquired through

GWAS. These established relationships might serve as “positive

controls” for additional high-throughput analysis. PheWAS

methods suffer from high false-positive rates due to thousands of

genotype–phenotype associations being tested in such studies

(Bastarache et al., 2022). In addition, sample sizes usually also vary

across studies impacting the statistical power and the replication

among studies. PLATO tool is used to identify associations in

PheWAS (Hall et al., 2017). DNAnexus is another tool for genomic

analysis that was hosted on Amazon Web Services. This provides a

distributed cluster of computers on the cloud allowing much lesser

computation time for such studies. With the assistance of the

DNAnexus app for PLATO, scatter-process-gather can be used on

the platform to train regression models concurrently. This scatter-

gather approach initiated multiple AWS virtual machines to

simultaneously fit the regression models. Deep-PheWAS is another

platform for PheWAS that intertwines quantitative phenotypes from

primary care data, disease progression, longitudinal trajectories of

quantitative measures, and drug response phenotypes with the

composite phenotypes generated from clinically curated data

(Packer et al., 2023). Moreover, several tools are available on this

platform for efficiently analyzing the association with genetic data

under different genetic models.
GWAS-assisted genomic selection

GS has been utilized as a practical genomic approach for

upgrading complex traits in various crops (Thudi et al., 2016;

Sandhu et al., 2022). In segregating populations, GS allows

identifying lines with higher genomic estimated breeding value
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(GEBV) using genome-wide marker data. A training population

(TP) is used to estimate GEBV, which consists of elite breeding lines

and is evaluated for multi-seasons and locations for the target

phenotype. Then, a candidate population (CP) is developed by

selecting parents based on the GEBVs. GS utilizes all the available

genome-wide marker data irrespective of any significant effects. The

GS prediction accuracies depend on several factors, including the

genome size, ploidy level, interactions between gene and QTL,

sample number, relatedness, number and distribution of markers,

and model (Yadav et al., 2020). Several statistical methods are used

for GS, including Ridge regression best linear unbiased prediction

(rrBLUP) and genomic best linear unbiased predictor (gBLUP);

both hypothesize a normal distribution of the SNP effects, whereas

Bayesian methods like BayesA, BayesB, BayesC, and BayesR allow

different variance distributions considering marker effect sizes

(Heslot et al., 2012; de Los Campos et al., 2013). On the other

hand, kernel approaches help predict non-additive models along

with complex multi-environment/trait data (Gianola and van

Kaam, 2008; Bandeira E Sousa et al., 2017).

Zhang and coworkers (2016) showed a GWAS-assisted GS with

309 soybean lines and 31,405 SNPs for seed weight using the rrBLUP

approach. They showed GS prediction accuracies of 0.75–0.87,

outperforming marker-assisted selection with prediction accuracies

of 0.62–0.75. Ravelombola et al. (2020) performed a GS approach for

soybean cyst nematode tolerance with biomass reduction using 234

soybean accessions in the greenhouse. They used five methods to

compute GEBVs, including gBLUP (Zhang et al., 2007), random

forest (RF) (Ogutu et al., 2011), rrBLUP (Meuwissen et al., 2001),

SVMs (Maenhout et al., 2007), and Bayesian LASSO (Legarra et al.,

2011). They found that the prediction accuracies were dependent on

the model used, the marker set, and the size of TP. However, the

accuracy of GS was higher than the SNPs from GWAS for all

selection models and TP sizes.

In alfalfa, Li et al. (2015) used clonal ramets from 185 to 190

individuals for GS of biomass yield across three locations and

recorded prediction accuracies of 0.43 to 0.66 for each location.

Another study used 322 individual genotypes from 75 genetically

diverse alfalfa populations. They tested three Bayesian models

(BayesA, BayesB, and BayesC) for 25 agronomic traits, including

forage quality traits, dry matter, and fall dormancy (Jia et al., 2018).

They reported prediction accuracies of 0.0021 to 0.6485 with no

significant differences in the three Bayesian models.

In chickpeas, Roorkiwal et al. (2016) used 320 breeding lines

and six different models, including rrBLUP, RF, Bayesian LASSO,

BayesB, Kinship GAUSS, and Bayes Cp for four traits, i.e., seed

yield, 100 seed weight, days to maturity, and days to 50% flowering.

They reported prediction accuracies ranging between 0.138 (seed

yield) to 0.192 (100 seed weight).

Li et al. (2018) showed low prediction accuracies using rrBLUP,

Bayesian LASSO, and BRR for grain yield/ha, seed number per

plant, 100 seed weight, and early vigor score in chickpea, which can

be attributed to the small size of TP.

In common bean, cooking time (CKT), seed weight, and water

absorption capacity were evaluated using 922 lines consisting of

four populations (a Mesoamerican 8-parental MAGIC population,

a biparental RIL, an Andean, and a Mesoamerican breeding line
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(MIP) panel (Diaz et al., 2020). Six models based on additive effects

(BRR, BayesA, BayesB, BayesC, Bayesian Lasso, and gBLUP) and a

Bayesian reproducing kernel Hilbert spaces regression (RKHS)

models based on both additive and non-additive effects were

used. They reported prediction accuracies for CKT ranging from

MIP (0.22) to MAGIC population (0.55). A recent study showed

prediction abilities ranging between 0.6 and 0.8 were shown in

common bean for four agronomic traits under several

environmental stresses (Keller et al., 2020)

In peanut or groundnut, 281 Kersting’s groundnut lines were

used for GWAS-assisted GSs for several traits, including seed traits,

100 seed weight, leaf length, days to 50% flowering, and days to

maturity using 493 SNPs and rrBLUP model (Akohoue et al., 2020).

They recorded prediction accuracies ranging from 0.42 to 0.79 for

100 seed weight, seed length and width, days to maturity, and days

to 50% flowering. A low prediction accuracy of 0.11–0.20 was

reported for traits including plant architecture traits such as

height and diameter, petiole length, leaf width, number of seeds,

grain yield, number of pods per plant, and number of seeds per pod.

Recently, genomic resources have been made available in some

minor legume crops (Varshney et al., 2019; Bohra et al., 2020). In

peas, the predictive abilities based on Bayesian LASSO model were

0.28, 0.30, 0.64, and 0.65 for lodging susceptibility, yield, seed weight,

and onset of flowering, respectively (Annicchiarico et al., 2019).

Several GS methods were used for predicting GEBVs in legume

crops (Figure 2), but the progress still needs to catch up compared

to grain crops, including wheat, rice, and maize. However, the GS

approach proved helpful and could be applied in the early stages of

legume breeding programs to identify promising progenies and

parents based on the predicted breeding values.
Applications in plant breeding

Since the last decade, GWAS has been successfully used in major

legume crops to dissect or identify the genetic bases for various

agronomic traits (Bajaj et al., 2015b; Kujur et al., 2015a; Wen et al.,

2015; Zhang et al., 2015), quality traits (Hwang et al., 2014; Upadhyaya

et al., 2015; Shaibu et al., 2019a), biotic (Butenhoff, 2015; Zhang et al.,

2019; Banoo et al., 2020; Zhang et al., 2020; Faridi et al., 2021), and

abiotic stress (Thudi et al., 2002; Thudi et al., 2014; Dhanapal et al.,

2015; Assefa et al., 2020; Kohli et al., 2020). A plethora of GWASs have

been conducted using different types of markers (SSR, SNPs, etc.) in

some of the major legumes like soybean (Butenhoff, 2015; Zhang et al.,

2015; Zhang et al., 2019; Assefa et al., 2020), chickpea (Kujur et al.,

2015b; Upadhyaya et al., 2017; Kohli et al., 2020), groundnut (Zhang

et al., 2017c; Shaibu et al., 2019a;Wang et al., 2019), andminor legume

crops (Ali et al., 2016; Faridi et al., 2021). Brief details of GWASs

conducted in legume crops are given in Table 1.

Revolutionization and rapid development in genomic techniques

in the recent past have accelerated molecular studies not only in model

crops but also in other crops like legumes (Varshney et al., 2005).

Sequencing and availability of reference genomes have also made it

feasible for the researchers to identify the alleles/QTL association with

the desired trait in any germplasm. Although the GWAS approach can

be used in any crop with extensive phenotyping and genotyping, it has
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been used in major legume crops like soybean, chickpea, and

groundnut (Mousavi-Derazmahalleh et al., 2019). These major

legume crops’ research community has sufficient funding for high-

throughput genotyping and phenotyping. As these crops cover a

significantly larger area across the globe, significantly diverse and

classified germplasms are available for these crops (Mousavi-

Derazmahalleh et al., 2019). However, GWAS has its limitations like

false-positive association and exclusion of a significant association. All

the limitations can be overcome by accurate phenotyping, large

enough diverse germplasm, multilocation trials for phenotyping, and

accuracy in genotyping. The use of the best suitable model, method,

and bioinformatic tools also determines the accuracy of GWAS. The

development of model tools for legume crops can trigger the GWAS in

major and minor legume crops.
Conclusion and future perspectives

Legumes are an essential component of human nutrition and play

a vital role in sustainable agriculture due to their protein-rich content,

soil quality improvement, and reduced environmental impact. With

the increasing global population and changing climatic conditions,

there is a pressing need to develop high-yielding, disease-resistant

legume cultivars that can meet the nutritional needs of the growing

population. Improvement in the nutritional and production quality of

legume crops with the use of conventional breeding methods is not at

the required rate. Whole-genome sequencing is available only for a few

major crops. As per the availability, low (RFLP) to high-throughput

(SNP)markers have been used in various crops for AM,QTLmapping,

or GWAS. NGS has become feasible in the model and even in non-

model crops with improved efficiency and affordable sequencing

methods. GWAS has been used in major legume crops to identify
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the genomic region linked with desired characteristics of the plant. It is

yet to be exploited in minor legumes with sufficient germplasm/

population. The availability of reference genomes and rapid

development in genomic techniques has made it feasible for

researchers to identify the alleles/QTL association with the desired

trait in any germplasm. The use of suitable models, methods, and

bioinformatic tools determines the accuracy of GWAS. The

development of model tools for legume crops can trigger GWAS in

major and minor legume crops. Authentication or precision of

identified marker–trait association is required for their utilization in

plant breeding programs or MAS/BAC programs. Using NGS and

other high-throughput techniques for sequencing will make it possible

to develop a genomic-assisted crop improvement program in legumes.

Rapid development can be gained concerning agronomic traits, biotic/

abiotic stress tolerance, and after-use quality improvement. Legume

yield potential is meager compared to other major crops; this yield

plateau can be broken in legumes for climate change problems using

GWAS with multi-location phenotyping. The integration of these new

and improved technologies with traditional breeding methods will help

to accelerate the development of new legume cultivars with improved

yield and nutritional qualities.
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Mieth, B., Kloft, M., Rodrıǵuez, J. A., Sonnenburg, Sören, Vobruba, R., Morcillo-
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