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Selection criteria that co-optimize water use efficiency and yield are needed to promote 
plant productivity in increasingly challenging and variable drought scenarios, particularly 
dryland cereals in the semi-arid tropics. Optimizing water use efficiency and yield 
fundamentally involves transpiration dynamics, where restriction of maximum transpiration 
rate helps to avoid early crop failure, while maximizing grain filling. Transpiration restriction 
can be regulated by multiple mechanisms and involves cross-organ coordination. This 
coordination involves complex feedbacks and feedforwards over time scales ranging from 
minutes to weeks, and from spatial scales ranging from cell membrane to crop canopy. 
Aquaporins have direct effect but various compensation and coordination pathways 
involve phenology, relative root and shoot growth, shoot architecture, root length distribution 
profile, as well as other architectural and anatomical aspects of plant form and function. 
We propose gravimetric phenotyping as an integrative, cross-scale solution to understand 
the dynamic, interwoven, and context-dependent coordination of transpiration regulation. 
The most fruitful breeding strategy is likely to be that which maintains focus on the phene 
of interest, namely, daily and season level transpiration dynamics. This direct selection 
approach is more precise than yield-based selection but sufficiently integrative to capture 
attenuating and complementary factors.

Keywords: drought, cross-scale coordination, water acquisition and use, selection criteria, transpiration 
restriction, vapor pressure deficit

INTRODUCTION

Increasing temperature, aridity, and unpredictability of rainfall events motivates the development 
of dryland cereal crops that produce grain in severe and variable drought scenarios, but still 
have high yield potential in less stressful scenarios. In these agroecological zones, high temperature, 
and low relative humidity can combine to make extremely taxing vapor pressure deficit (VPD) 
conditions, meaning more water transpired per carbon gained. High VPD conditions are 
predicted to become more common and more severe (Grossiord et  al., 2020).
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Root system architectural and anatomical traits or phenes 
(phene is to phenome as gene is to genome, thus phenotype 
is composed of phenes) that optimize water acquisition per 
unit carbon invested (Lynch, 2007, 2019) and “right-size” plant 
water usage (Borrell et  al., 2014a; Lynch, 2018) are a positive 
step. Identifying and selecting for root trait plasticity may also 
be  a useful step (Topp, 2016; Schneider and Lynch, 2020). 
Similarly, the ratio of shoot to root area is of fundamental 
importance for plant water balance (Hsiao and Acevedo, 1974). 
However, optimized root to shoot growth can have limited 
utility when there is simply a limited amount of soil water available.

In these scenarios, a strategy based upon parsimonious water 
usage co-optimizes transpiration, carbon fixation, and yield by 
conserving soil water for the grain filling stage (Richards et al., 
2002; Zaman-Allah et  al., 2011; Vadez et  al., 2013a; Borrell 
et  al., 2014b; Vadez, 2014; Hammer et  al., 2020). Conserving 
soil water for grain filling can be  achieved by limiting leaf 
area, limiting transpiration rate, or accelerating senescence of 
older leaves (Borrell et  al., 2014a; George-Jaeggli et  al., 2017; 
Sinclair et  al., 2017). However, these adaptations may entail 
reduced yield potential under less stressful conditions (Gao 
et al., 2020a). Constraining daily transpiration rates from climbing 
above a certain threshold, when VPD is high (i.e., when the 
trade-offs between carbon fixation and water loss becomes too 
costly), is promising means to conserve water for the grain 
filling period, without reducing total leaf (Sinclair et  al., 2017).

Inducible limitation of maximum transpiration increases 
transpiration efficiency saves water over the course of a day 
and over the course of the season (Sinclair et  al., 2005, 2017). 
Modeling studies have shown the great benefit with little trade-off 
of high VPD induced transpiration restriction in soybean (Sinclair 
et al., 2010), maize (Messina et al., 2015), and sorghum (Sinclair 
and Muchow, 2001; Kholová et  al., 2014). However, there may 
be  trade-offs between leaf cooling and transpiration restriction 
under very high temperatures. Field studies indicate that 
transpiration restriction is related to greater yield for maize, 
sorghum, pearl millet, and wheat under severe terminal drought 
conditions (Sinclair et  al., 2017; Tharanya et  al., 2018a; Medina 
et  al., 2019). Selection for transpiration restriction phenotypes 
has been implemented in peanut, maize, and soybean breeding 
programs and cultivars have been generated exhibiting soil water 
conservation strategies (Shekoofa and Sinclair, 2018). Similar 
transpiration restriction strategies may conserve soil water and 
increase dryland production of other annual crops (Belko et  al., 
2012; Polania et  al., 2016). Understanding species and genotype 
level variation in transpiration restriction may help accelerate 
crop genetic improvement.

PART 1: REGULATION OF 
TRANSPIRATION RESTRICTION BY 
PLANT HYDRAULICS

Plants connect the pedosphere, with relatively high water 
potential, to the atmosphere, with relatively low water potential. 
Water movement along this soil–plant–air continuum is driven 
by a water potential gradient, as described by Ohm’s law and 

the cohesion–tension theory (Tyree, 1997; Carminati and Javaux, 
2020). Plants use a network of specialized architectural, 
anatomical, morphological, and functional mechanisms to 
regulate the axial and radial flow of water (Steudle, 2000). 
Root radial water transport involves passage through the 
epidermis, cortex, endodermis, and xylem parenchyma via the 
symplastic (cell to cell) or apoplasticaly (through cell walls 
and intercellular spaces; McCully and Canny, 1988; Bramley 
et  al., 2007). Water ascends axially by tension and cohesion 
through root, stem, petiole, and leaf vein xylem vessels. Tension 
draws water from the leaf veins, across multiple sets of cell 
membranes, including the bundle sheath, mesophyll, or epidermal 
cells. Water vapor then diffuses through the cuticle, or in a 
highly controlled fashion through the stomatal cavity. The actors 
and processes involved in hydraulic regulation are presented 
using a non-structured, conceptual arrangement in Figure  1, 
which serves to guide the literature review. Supporting 
information is supplied in Table  1; Supplementary Table  1. 
Functionally structured perspectives of plant hydraulic regulation 
are provided in Figure  2; Supplementary Figure  1.

Root Conductance
Root-based regulation of transpiration can be divided into radial 
and axial conductance. Root axial water conductance is typically 
not considered the most rate limiting step, but genotypic differences 
do exist in xylem number and diameter, which determine axial 
conductance capacity, and can relate to transpiration dynamics 
and adaptation to drought stress (Prince et  al., 2017; Nogueira 
et  al., 2020; Strock et  al., 2020). Reduced seminal root xylem 
conductance capacity was the basis of developing wheat cultivars 
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FIGURE 1 | Non-hierarchical arrangement of actors and processes involved 
in plant water acquisition, water transport, and transpiration regulation across 
all levels of plant organization. Numbered lines between circled actors 
correspond to publications demonstrating indicated connection, listed in 
Table 1. The network is not intended to be exhaustively populated, but rather 
representative, and indicates a high degree of interconnectivity, yet with 
substantial lacunae among actors and processes that are logically related. It 
suggests that as we accumulate more data, we find more interactions and 
more complexity.
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adapted to the water-limited Australian context (Richards and 
Passioura, 1989). The utility of reduced root axial conductance 
capacity for late season soil water conservation in wheat has 
been further supported in recent work (Hendel et  al., 2021). 
There may also be  the possibility for longitudinal adjustments 

of xylem conduits (Meunier et  al., 2017), regulation at the root 
to shoot junction (Meunier et  al., 2018), as well as among the 
various attributes of protoxylem and metaxylem vessels, their 
pits (Xu et  al., 2020) or perforation plates (Gao et  al., 2020b). 
These may be  part of a suite of embolism response traits and 
do not preclude the possibility that embolism is itself a means 
of restricting transpiration (McCully, 1999), in which aquaporins 
play a key recovery role (Secchi et  al., 2017).

Root anatomical phenes related to radial water transport 
include distance between root tip and suberized zone, as well 
as completeness of suberization (Barberon et  al., 2016; Doblas 
et  al., 2017) and lignification (Foster and Miklavcic, 2017). 
Construction of Casparian bands, suberin lamellae, and 
lignification may respond dynamically to abiotic stress factors 
and be  deployed differentially on roots of different diameters 
and class (Tylová et  al., 2017). Variation in cortex cell file 
number, or cortex cell size may lead to a different proportion 
of cell-to-intercellular spaces, which are hypothesized to affect 
root hydraulics (Vadez, 2014), with some evidence in pearl 
millet (Kholová et  al., 2016). Genotypic variation in radial 
conductance pathways has been observed in chickpea (Sivasakthi 
et  al., 2017, 2020). Similar effects of anatomical differences in 
the root radial water transport pathway were observed in wheat 
and lupin, showing predominance of apoplast water transport 
in lupin, whereas wheat dependent mostly on Hg-sensitive 
aquaporin in the endodermis (Bramley et  al., 2007).

Root radial conductance is influenced by AQP at 
various membranes including; epidermis, outer cortex 
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FIGURE 2 | Hierarchically structured network diagram of phenes influencing plant water acquisition and transport, including the same actors and processes as in 
Figure 1. This projection of plant hydraulic regulation highlights the distal position of aquaporins in relation to tissue level conductance, the complementary role of 
relative shoot and root growth, and the nested structure of plant form and function. C is an abbreviation for carbon and N for number.

TABLE 1 | List of publications demonstrating links between nodes.

Edge Node 1 Node 2 Reference numbers

1 VPD Leaf conductance 1, 18
2 Soil water potential RSA 2, 3, 40
3 Root AQP Transpiration 4, 5, 6, 20, 22, 25, 26, 31, 32
4 Leaf AQP Transpiration 7, 18, 19, 21, 27, 28, 33
5 Soil water potential Root AQP 8, 9
6 Leaf growth Root conductance 10, 11, 22, 25, 31, 32
7 Leaf anatomy Leaf conductance 7, 13, 14, 30, 37, 41, 42
8 Root AQP Leaf AQP 8
9 Root AQP Root conductance 15, 16, 17, 23, 24, 25, 31, 32, 

34, 38, 39
10 Root conductance Leaf water potential 22
11 Root anatomy Root conductance 12, 16, 23, 24
12 Leaf conductance Leaf AQP 29, 33, 35, 36, 38
13 VPD Transpiration 43, 44, 45, 46, 47, 49, 50, 51, 

52
14 VPD Root conductance 44, 48
15 Root conductance Transpiration 44, 48
16 VPD Leaf growth 49, 53
17 Soil water potential Transpiration 52, 54, 55, 56

Edge numbers correspond to links between nodes in Figure 1. References and 
reference numbers presented in Supplementary Table 1.
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(Ranathunge et  al., 2004), endodermis, and Casparian strip 
(Grondin et  al., 2016). AQP expression in rice shoots and 
roots suggests AQP mediated root conductance was most 
limiting to mid-day transpiration (Nada and Abogadallah, 2014). 
A pearl millet aquaporin gene transferred to tobacco conferred 
greater drought, heat, and higher water use efficiency (Reddy 
et  al., 2022). Knockout and overexpression mutants showed a 
specific AQP isoform in maize roots was an important regulator 
of root hydraulic conductance, with effects on plant growth 
(Ding et  al., 2020). The same study suggested non-uniform 
patterns of radial conductance, implying aquaporin function 
must integrate with root anatomy.

Leaf Conductance
Leaf conductance is an aggregate phene, sensu (York et  al., 
2013), integrating leaf vein anatomy, stomatal density size, and 
aperture, as well as xylem parenchyma, bundle sheath, and 
mesophyll cell number, size, and density, in addition to AQP 
function (Sack and Holbrook, 2006). This presents a variety 
of regulatory opportunities operating at different scales, involving 
different actors and signaling pathways. Outside xylem 
conductance, meaning conductance on the path between xylem 
and sites of evaporation (Scoffoni et  al., 2017; Corso et  al., 
2020) contributes to transpiration restriction (Sinclair et  al., 
2008). Guard cell conductance is involved in transpiration 
regulation in response to VPD (Sinclair et al., 2008). Regulation 
of conductance by bundle sheath cells, likely attributable to 
AQP, was demonstrated using applied ABA and mercury (Shatil-
Cohen et  al., 2011). Subsequent work used microRNA AQP 
silencing to demonstrate a role of AQP at the bundle sheath 
to mesophyll transition (Sade et  al., 2014, 2015). Knockout 
mutants were used to demonstrate that light-dependent activity 
of a single AQP isoform in leaf veins is a major regulator of 
leaf conductance (Prado et  al., 2013).

Anatomy, and its interaction with membrane level 
conductance, may play a role in regulating transpiration dynamics. 
Within the leaf, two-thirds of outside xylem hydraulic 
conductance was attributed to vapor transport, which is strongly 
influenced by distance between veins, distance between vein 
terminus and stomata, as well as spongy mesophyll anatomy 
(Sack and Frole, 2006; Sack and Holbrook, 2006; Brodribb 
et  al., 2007; Sack and Scoffoni, 2013; Buckley et  al., 2015). 
One study noted various leaf anatomic factors involved in 
transpiration efficiency and observed distinct association of 
anatomy and aquaporin function at different drought intensities 
(Henry et  al., 2019). Transpiration restriction phenotypes were 
associated with modified epidermal cell size and stomatal density 
in response to VPD in cotton (Devi and Reddy, 2018). Leaf 
petiole conductance, and by implication, all of xylem axial 
conductance could be involved in hydraulic regulation (Postaire 
et  al., 2010). The integration of these water transport factors 
into a complex series has potential regulatory ability in addition 
to the regulation of individual components (Zwieniecki et  al., 
2007). Indeed, canopy development, leaf anatomy, root growth, 
and water uptake have been related to the stay-green phenotype 
(Borrell et  al., 2014a), which has transpiration restriction as 
an underlying phenotype. We  conclude that focus is needed 

on the interactions among steps of the water transport pathway, 
as well as interactions with anatomy, irradiance, leaf water 
status, and growth to fully understand the regulation of leaf 
hydraulics (Prado and Maurel, 2013).

Cross-Organ Environmental Responses
Highly dynamic root and leaf expression of multiple AQP was 
related to maintenance of water use efficiency over the course 
of a day in sorghum but not in maize (Hasan et  al., 2017). 
Maize, sorghum, and pearl millet may deploy transpiration 
restriction strategies along a spectrum of reduced leaf area 
expansion rate or restricted transpiration rate (Sinclair et  al., 
2017; Choudhary et  al., 2020). These species may also vary in 
their transpiration restriction across different soils (Vadez et  al., 
2021). At high VPD maize restricted maximum transpiration 
rate, and transpiration rate became more sensitive to soil drying, 
while pearl millet and sorghum relied mainly on reduced leaf 
expansion as a means to reduce transpiration (Choudhary et al., 
2020). Genotypic variation also exists for the ability to restrict 
transpiration rate in response to environmental cues, such as 
high VPD or highly negative soil matric potential (Choudhary 
and Sinclair, 2014; Sinclair et  al., 2017; Medina et  al., 2019). 
Measurements of leaf and whole plant hydraulic conductance 
in 12 maize genotypes suggest coordination between root and 
shoot conductance effectively regulated transpiration in response 
to high VPD (Sunita et  al., 2014). However, work using 20 
sorghum genotypes found genotypic variation in both leaf and 
root conductance and suggested a shoot-based causal mechanism 
of limited maximum transpiration rate (Choudhary and Sinclair, 
2014). Growth chamber, glass house, and field experiments on 
sorghum linked genetic variation for response of maximum, 
transpiration rate under increasing VDP to water saving, but 
observed significantly different results between experiments 
(Karthika et al., 2019). In sum, the data suggest there are different 
transpiration restriction strategies and mechanisms with substantial 
species and genotypic level variation, some of which is 
environmentally dependent.

PART 2: TRANSPIRATION RESTRICTION 
CAN INVOLVE MULTIPLE SIGNALS, 
HYSTERESIS, AND PHENOTYPIC 
INTEGRATION

Transpiration is a dynamic process, involving coordination of 
structural and functional aspects across organizational scales 
in both roots and shoots. Therefore, identifying transpiration 
restriction mechanisms can be  very complex (Figure  2; 
Supplementary Figure 1). Outcomes of studies on transpiration 
restriction are influenced by plant size (Sadok and Sinclair, 
2010), time interval studied (Tardieu and Parent, 2017), timing 
of water stress (Shekoofa and Sinclair, 2018), stage of water 
stress (Pou et  al., 2013), severity of stress (Lovisolo et  al., 
2010), temperature (Yang et  al., 2012), and breeding history 
(Vadez et  al., 2011). Transpiration restriction can also 
be influenced by employing an isohydric or anisohydric strategy 
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(Vandeleur et  al., 2009), and generally if plants are “water 
savers” or “water spenders.”

A water spender, or profligate water use strategy, is associated 
with large leaf area and/or unrestricted transpiration in 
response to high VPD. A water saver, or conservative water 
use strategy, would reduce leaf area and/or restrict transpiration 
at high VPD. Isohydric behavior entails sensitive stomatal 
control that maintains relatively constant leaf water potential, 
even when soil water is limited or VPD is high. An anisohyric 
strategy would tolerate a drop in leaf water potential (Grossiord 
et  al., 2020). Genotypes with a water saver strategy may 
rely more on the apoplastic pathway, whereas water spenders 
may rely more on the symplastic pathway, but pathway 
utilization can also depend on growth rate (Grondin et  al., 
2020; Sivasakthi et  al., 2020).

Practices, such as deficit irrigation (Chaves et  al., 2010) 
and cropping system (Sadras et  al., 1989), can influence if a 
plant employs an isohydric or anisohydric strategy. However, 
these are just two points on a spectrum and strategy can vary 
by genotype and over time within a single plant (Knipfer et al., 
2020). This flexibility along the iso- to anisohydric continuum 
has been characterized using the hydroscape concept, defined 
as the area between predawn and mid-day plant water potential 
regression lines, which captures processes across the soil–plant–
atmosphere pathway (Meinzer et al., 2016; Javaux and Carminati, 
2021). We  conclude that a more robust, yet accurate, selection 
for transpiration restriction involves the cross-scale dynamic 
coordination of a spatially and temporally complex set of 
interacting phenes and processes.

Multiple Types of Signals Can Influence 
Membrane Conductance
Coordination of root and shoot AQP expression, localization, 
and function makes use of multiple signals, such as ABA, 
xylem pH (Davies et  al., 2002), and xylem pressure potential 
itself (Chaumont and Tyerman, 2014; Vandeleur et  al., 2014) 
and may require the integration of multiple signals (Comstock, 
2002). Multiple lines of research suggest the importance of a 
hydraulic signal but differ as to if that signal originates from 
root or shoot (Fuchs and Livingston, 1996; Yao et  al., 2001; 
Vandeleur et  al., 2014). Soil hydraulic conductivity, referring 
to the hydraulic connection between roots and the soil, has 
recently been identified as an important signal and regulator 
of plant hydraulics, transpiration, and stomatal response to 
drought (Carminati and Javaux, 2020; Hayat et  al., 2020; Cai 
et  al., 2021). The rapidity of transpiration response to VPD 
suggests hydraulic rather than biochemical signals are the 
immediate mechanisms (Kholová et al., 2010b). However, there 
is evidence that hydraulic and biochemical signals interact, 
perhaps over longer time scales (Christmann et  al., 2013).

Similarly, partial root drying studies suggest root originating 
signals that do not involve AQP transcription (Li et  al., 2008). 
For example, ABA and xylem pH can influence transpiration 
(Davies et  al., 2002). The role of ABA as both a local and 
long-distance signal of soil water limitation has been identified 
in several species (Dodd, 2005; Wang et  al., 2019), although 

a role for cytokinin has also been suggested (Kudoyarova et al., 
2007). Other work suggests ABA signaling operates in conjunction 
with hydraulic signals, which in turn affects hydraulic 
conductance of bundle sheath cells (Sade et  al., 2014) and 
may promote root growth, all while being sensitive to stress 
severity (Miao et  al., 2021). Other research suggesting both 
root and shoot need to be  in communication (Castro et  al., 
2019) are consistent with the multiple signal hypotheses. ABA 
accumulation in the root has been linked to increased root 
hydraulic conductivity (Sharipova et  al., 2016). However, 
enhanced root ABA production was linked to reduced leaf 
conductance under non-limiting conditions, and greater 
transpiration restriction under high VPD (Thompson et al., 2007).

In summary, particular signaling mechanisms have 
demonstratable involvement in communicating and responding 
to particular environmental conditions in particular experimental 
systems. Studies on membrane or organ level conductance 
usually involve transgenic, pharmacological, stem girdling, or 
de-topping approaches that have distinct limitations. These 
types of studies may fail to account for compensatory mechanisms 
at other organs and scales, like the opposite effects of ABA 
on leaf and root conductance described above (Thompson 
et al., 2007; Sharipova et al., 2016). Furthermore, there appears 
to be  little consistency in signals identified as mechanisms of 
transpiration regulation across experimental systems. This 
suggests a high degree of environmental dependency and implies 
that the actors, forces, and signals identified may not 
be commensurate with an unperturbed system. For these reasons 
reductionist experimental systems are ill-suited to deciphering 
the complexity of the whole system (Tardieu and Parent, 2017) 
and a broader perspective is warranted.

Hysteresis Influences Plant Responses
Hysteresis, in the context of a water acquisition and use, involves 
how the plant’s environment and history affects signal and 
response mechanisms. Hysteresis can thus describe a type of 
cross-scale legacy effect, involving previous architectural, 
anatomical, and cellular responses. Hysteresis also implies 
functional factors, such as stomatal aperture, water use strategy, 
and isohydricity, and if water is being absorbed into the root 
via symplastic or apoplastic pathways, which can make use 
of different AQP (Javot et al., 2003). Shifting between isohydric 
vs. anisohydric strategies (Sade et  al., 2012) may depend upon 
a combination of soil moisture, VPD, and hormonal cues 
(Rogiers et  al., 2012) interacting in a tissue-specific and dose-
dependent manner (Rosales et al., 2019). The shift in strategies 
likely involves modified AQP expression (Sade et  al., 2009), 
different root radial transport pathways (Tharanya et al., 2018b), 
as well as different signaling pathways in different scenarios 
(Aroca et al., 2012; Moshelion et al., 2015; Rosales et al., 2019). 
For example, Pou et al. (2013) found that the apoplastic pathway 
was more important during water stress. Furthermore, dynamic 
transpiration regulation, and its regulation by aquaporins, can 
depend upon N availability (Cramer et  al., 2009; Di Pietro 
et  al., 2013; Ding et  al., 2018) and its degree and duration 
of deprivation (Dodd et  al., 2003).
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The existence of multiple overlapping regulation pathways 
is further shown with research in grapevine, suggesting not 
only that there is variation in water use strategy by cultivar, 
which has impact on WUE, and is dependent on type and 
severity of stress (Lovisolo et  al., 2010), but also that the 
same cultivar can employ different strategies based on 
legacy effects (Chaves et  al., 2010). Transpiration response 
to VPD may involve different mechanisms under different 
environmental scenarios (Pou et al., 2013; Sunita et al., 2014; 
Henry et  al., 2019). A study comparing maize, sorghum, 
and pearl millet growth under contrasting VPD conditions, 
and then exposed to high VPD, showed species level variation 
in transpiration dynamics and leaf area, contingent upon 
growing conditions (Choudhary et  al., 2020). Work in pearl 
millet found diurnal variation and VPD treatment dependency 
on AQP expression patterns among VPD sensitive and 
insensitive genotypes (Reddy et  al., 2017). The impact of 
AQP overexpression in two rice cultivars on growth, 
transpiration patterns, and ultimately water use efficiency, 
was contingent upon root to shoot ratio and the expression 
of other aquaporins (Nada and Abogadallah, 2020). AQP 
downregulation can be  balanced by increases in root size, 
bundle sheath cell osmotic permeability, and other mechanism 
(Kaldenhoff et  al., 1998; Martre et  al., 2002; Siefritz et  al., 
2002; Vandeleur et  al., 2014). These examples demonstrate 
the existence of dynamic cross-scale compensation and a 
high degree of interconnectivity in transpiration regulation.

In terms of environmental interactions, temperature influences 
transient transpiration response to VPD (Seversike et al., 2013) 
and soil drying influences root morphology and transpiration 
response in soybean (Seversike et al., 2014). Genetic differences 
in root architecture and variation in root growth response to 
environmental factors may interact with transpiration regulation 
and have different impacts on transpiration, canopy temperature, 
and yield in different environments (Henry et  al., 2011). Fully 
describing a signal—response pathway may require multiple 
theories, similar to how explanations of nutrient regulation of 
plant growth differ in accord with the limiting nutrient (Rubio 
et  al., 2003). Indeed, it has been proposed that ABA signals 
originating from either root or shoot overlap with and mediate 
hydraulic signals to influence stomatal conductance and leaf 
hydraulic conductance (Pantin et  al., 2013). The high level of 
interactivity among signals and environmental dependence 
suggests multiple signals operate in an integrated fashion to 
influence the emergent transpiration response phenotype. In 
summary, the legacy of previous physiological responses dictates 
available responses to the next set of conditions and needs to 
be  taken into account when examining transient responses.

Phenotypes Integrate Across Scales
The integration of water acquisition, transport, and daily and 
season level water use dynamics, along with phenology, 
influence the effectiveness of the plant water use strategy in 
a given environment. Temporal dynamics in water availability 
and use introduces the need for cross-scale coordination 
of processes, such as plastic root growth (Topp, 2016; 
Schneider and Lynch, 2020), involving both architectural 

(Schneider et  al., 2020b) and anatomical (Schneider et  al., 
2020a) adjustments. Spatio-temporal variation in hydraulic 
conductance among different root classes and ages highlights 
an additional layer of variation (Schneider et  al., 2020c). 
Root architecture, xylem characteristics, and stomatal 
conductance integrate as a coordinated network in maize to 
enhance performance (Gleason et  al., 2019). Integrated root 
architectural, xylem conductance capacity and maturity group 
phenotypes have been related to performance and water use 
strategies in Phaseolus (Strock et  al., 2020) and in Zea mays 
(York and Lynch, 2015; Klein et al., 2020). Integrated phenotypes 
involving root architecture, root hydraulic conductance capacity, 
and phenology have been hypothesized to exist in grain 
legumes (Burridge et  al., 2020) and observed at the gene 
pool and race level in common bean (Jochua et  al., 2020).

There are likely multiple mechanisms for transpiration 
optimization that are composed of distinct integrated phenotypes 
involving architectural, anatomical, cellular, and even soil and 
canopy elements integrating with growth, phenology, and 
transpiration patterns. For instance, decades of research on 
the slow wilting phenomenon in soybean have uncovered 
multiple mechanisms (Kunert and Vorster, 2020) including 
reduced stomatal conductance (Tanaka et al., 2010), contrasting 
leaf morphology (Hudak and Patterson, 1995), a larger, more 
fibrous root system (Pantalone et  al., 1996) and by unknown 
mechanism(s) (Bagherzadi et  al., 2017). A recent paper (Ye 
et al., 2020) used different soybean germplasm than a previous 
study and identified transpiration restriction mechanisms distinct 
from the previously identified silver sensitive mechanism (Sadok 
and Sinclair, 2010). These findings support early work suggesting 
multiple water conservation mechanisms in soybean (Charlson 
et al., 2009) and again suggest phenotypes integrate to coordinate 
transpiration, growth, and soil water use.

Integrated transpiration regulation phenotypes involving 
conductance, transpiration, canopy size, and phenology have 
also been observed in sorghum, wheat, chickpea, and pearl 
millet. A study of four stay-green QTL in sorghum found the 
four QTL regulated canopy size but also affected leaf anatomy, 
root growth, and water uptake (Borrell et al., 2014a). Contrasting 
integrated phenotypes, involving root axial and transmembrane 
conductance, could be  involved in wheat drought tolerance 
strategies (Schoppach and Sadok, 2012; Schoppach et al., 2014). 
In chickpea, early vigor, as gauged by canopy size, was related 
to transpiration restriction and preferential use of the root 
apoplastic pathway (Sivasakthi et  al., 2020). Similarly, greater 
propensity to restrict transpiration via root conductance was 
associated with larger canopy size in pearl millet (Kholová 
et  al., 2010b; Tharanya et  al., 2018b) and chickpea (Zaman-
Allah et al., 2011) suggesting transpiration regulation mechanisms 
specific for large or small canopy size.

Root hairs provide another example for how phenotypic 
integration connects to the issue of coordination between root 
and leaf conductance. In addition to xylem embolisms, hydraulic 
disruptions between root and soil (Newman, 1969; Draye et al., 
2010; Carminati and Javaux, 2020; Hayat et  al., 2020) may 
be  another type of hydraulic signal, which is theoretically 
impacted by heterogenous soil conductivity and particle size 
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(von Jeetze et  al., 2020). Recent evidence demonstrates that 
roots signal this localized hydraulic resistance, which in turn 
triggers stomatal closure before leaf conductivity reduces 
(Rodriguez-Dominguez and Brodribb, 2020). Apart from 
potentially being involved in this signaling, root hairs may 
help maintain rhizosphere to bulk soil connectivity (Segal et al., 
2008; Draye et  al., 2010; Lobet et  al., 2014; Carminati et  al., 
2017). Root hair length and density may thus integrate with 
root length distribution profile and daily transpiration dynamics 
to promote increased season level transpiration (Tardieu and 
Parent, 2017).

PART 3: TOWARD EFFECTIVE 
INTEGRATIVE PHENOTYPING

There seems to be consensus in the literature that the primary 
short-term mechanisms for fine-tuning transpiration to 
environment and plant needs involve aquaporins. Aquaporins 
regulate conductance at the membrane level in both root 
and leaf (Hachez et  al., 2006a, 2008, 2012; Wang et  al., 
2019). For that reason, selection for particular AQP isoforms 
or AQP expression levels are tempting targets for engineering 
transpiration efficiency, even while intricacies of AQP function 
are acknowledged (Hachez et  al., 2006b; Afzal et  al., 2016; 
Zargar et  al., 2017). One of the challenges is that there is 
no consensus on a correlation between AQP abundance and 
tissue level conductivity (Aroca et  al., 2012). The challenges 
these intricacies pose for genetic improvement are further 
indicated by how different research programs, using different 
experimental designs and species, have contrastingly attributed 
hydraulic regulation almost exclusively to the root (Rodriguez-
Dominguez and Brodribb, 2020) or the shoot (Sinclair et  al., 
2008; Figure  1; Table  1). Delving into the many studies on 
aquaporins makes clear only that there is extensive interaction, 
compensation, and redundancy among aquaporins within 
and across scales, across organs, as well as architectural and 
anatomical effects. We  therefore conclude that AQP are 
currently ill-suited to be  used as a selection criterion for 
the genetic improvement of transpiration responses to 
environmental conditions.

Identification of robust selection criteria, with good heritability, 
becomes complicated when phenotypes are complex, cross-
scale, as well as legacy and environmentally dependent. Inducible 
transpiration restriction is one such multi-scale phenotype. It 
requires the coordination of plant water acquisition, transport, 
growth, and transpiration and is regulated by multiple actors 
and pathways. These actors and pathways can vary according 
to type, severity, and timing of stress, and in relation to plant 
size, phenology, and hysteresis. Viewing the dynamic coordination 
of plant transpiration and growth from this perspective highlights 
three potential approaches to accelerate crop genetic 
improvement. Firstly, multi-scale modeling and machine learning 
could be  used to predict outcomes and limit the number of 
phenotypic combinations to test empirically. Secondly, there 
is a potentially indicative phene. Thirdly, we propose an integrative 
direct selection strategy.

Multi-Scale Models
Understanding how modifications of transpiration and growth 
feedback and feedforward with tissue hydraulic conductance, 
stomatal conductance, shoot, and root architecture, hormones, 
and aquaporins is critical for identifying selection criteria for 
inducible transpiration restriction phenotypes (Tardieu and 
Parent, 2017). Multiple recent calls for integrating multi-scale 
computation models with crops simulations emphasize the need 
to integrate across spatial and temporal scales (Chew et  al., 
2017; Marshall-Colon et  al., 2017; Benes et  al., 2020; Peng 
et al., 2020), across disciplines (Hammer, 2020) and even beyond 
the plant and into the rhizosphere and soil (Lobet et al., 2014).

Organizing soil, plant, and canopy simulation models in 
nested networks, linked in multiple ways mirrors the function 
of the inducible transpiration restriction phenotype. Developing 
and benchmarking multi-scale models offers the potential to 
apply machine learning to data generated by said models. While 
truly multi-scale models are only just emerging (Ajmera et  al., 
2022), and benchmarking has much progress to make (Schnepf 
et  al., 2020), machine learning could conceivably help identify 
latent features and highlight selection targets. Models may help 
decipher how modifying a particular phene integrates with 
other phenes and effects the emergent phenotype of yield, in 
a given environment. A yield-risk approach (Hammer et  al., 
2020) could then be  applied to evaluate the influence of the 
timing, sensitivity, and degree of changes in transpiration. 
Emergent phenotypes related to transpiration optimization could 
then be directly selected for using traditional breeding techniques.

Xylem Conductance Capacity May Indicate 
Transpiration Strategy
Elementary plant phenes may indicate broader strategies, similarly 
to how selection for genes that lie at the hubs of gene networks 
likely modulate more complex phenotypes than genes at the 
outer spokes of a network (Dietz et  al., 2010). Root axial 
conductance capacity, as estimated by xylem vessel number 
and diameter using the Hagen–Poiseuille equation, is an example 
(Tyree et al., 1994). Xylem conductance capacity can be estimated 
using laser ablation tomography and has been linked to 
performance (Nogueira et  al., 2020; Schneider et  al., 2020a; 
Strock et  al., 2020; Hendel et  al., 2021). Potentially further 
facilitating selection, is the observation that xylem conductance 
phenotypes of young plants were related to mature plant 
phenotype (Falk et  al., 2020). It should be  noted here that 
the targeted phenotype, that is, xylem conductance, would 
be  an estimate, which could overestimate the actual value. 
Root anatomical modifications, such as suberization and lignin 
deposition, are also identifiable using laser ablation tomography 
(Strock et  al., 2019) and lignification may have added benefits 
related to soil resistivity as well as pathogen and root pest 
resistance (Schneider et  al., 2021). AQP may integrate with 
xylem parenchyma traits to refill xylem embolisms (Secchi 
et al., 2017), which laser ablation tomography could help address 
by quantifying parenchyma number, size, and positioning.

Xylem conductance capacity could indicate water use strategy 
for two reasons. Firstly, under-utilizing a high conductance 
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capacity xylem phenotype would unnecessarily increase the 
risk of cavitation. Empirical and modeling evidence suggests 
that plants operate near the upper threshold of xylem imposed 
limits on hydraulic conductance (Sperry et  al., 1998). 
Conceptually this makes sense, to avoid cavitation risk and 
to not waste the construction and maintenance costs of xylem 
and parenchyma. Secondly, elevated transpiration rates could 
not occur with a low xylem conductance phenotype, precluding 
the possibility for high transpiration, photosynthesis, and growth 
rates. Selection for reduced xylem conductance capacity estimated 
using root anatomical cross sections may thus be  an easy way 
to select for reduced transpiration rate. Alternatively, a high 
conductance capacity phenotype may indicate a risk-taking 
approach involving highly dynamic transpiration regulation 
imposed at the cell membrane scale.

Direct Selection for Transpiration 
Restriction
Direct phenotypic selection of inducible transpiration restriction 
in the target environment using realistic systems, such as 
gravimetric phenotyping, overcomes the potentially confounding 
cross-scale interactions and compensatory mechanisms to 
which organ level or controlled environment studies are 
sensitive. This type of direct phenotypic selection targets the 
emergent, or integrated phenotype, rather than lower-level 
component phenes, and acknowledges that feedbacks and 
compensation among component processes can obscure plant 
level processes and the ultimate target, yield (Vadez et  al., 
2013a; Kholová et  al., 2016).

Phenotyping transpiration dynamics in a field-based lysimeter 
system, with realistic VPD and progressive soil drying captures 
the aggregate phenotype of interest as well as component phenes 
(Vadez et  al., 2015; Kar et  al., 2020, 2021). While field-based 
lysimeters have significant construction and operating costs, 
they have demonstrated utility for both trait-based and QTL-based 
selection (Kholová et al., 2012; Karthika et al., 2019). Heritability 
values for metrics describing transpiration dynamics range from 
moderate to high (Aparna et  al., 2015; Sivasakthi et  al., 2018; 
Tharanya et  al., 2018a). This type of system uses lysimeters 
of large enough depth and total volume that permits additional 
root exploration, but with density similar to farmer’s conditions. 
It facilitates direct phenotypic selection of transpiration 
restriction, particular transpiration strategies and transpiration 
efficiency without eliminating dynamic and interacting 
environmental and plant factors (Kholová et  al., 2012; Vadez 
et  al., 2013b; Tharanya et  al., 2018a,b). Weekly weighings are 
adequate to identify genotypes that employ early season water 
conservation and enable late season transpiration and grain 
filling (Vadez et  al., 2013a; Tharanya et  al., 2018a). However, 
weekly weights do not necessarily permit distinguishing if the 
mechanisms of water saving arises from leaf area dynamics, 
daily transpiration dynamics, or weekly transpiration dynamics.

Significant insight on daily dynamics, and in particular 
transpiration restriction in response to daily VPD (Ryan et  al., 
2016), can be  gleaned from three (Kholová et  al., 2012) or even 
one daily measurement (Choudhary et al., 2020). A similar system 

enables minute level resolution transpiration measurements and 
permits selection for amplitude of daily transpiration restriction 
(Vadez et  al., 2015; Sivasakthi et  al., 2018). Studying daily 
transpiration dynamics under variable VPD, as well as under 
progressive soil drying (Karthika et al., 2019), may reveal multiple 
useful transpiration patterns (Kholová et al., 2016). Non-destructive 
shoot imaging enables quantification of leaf area dynamics. Root 
systems of smaller plants can be  washed and measured to reveal 
differences in root system size and root to shoot ratio. Combined 
utilization of these lysimeter systems capture hourly, daily, and 
season level interactions between soil water acquisition and use. 
These systems can quantify feedbacks among root investment, 
leaf area development, phenology, and density. By imposing 
realistic environmental conditions and enabling complex feedbacks 
to impact performance, gravimetric phenotyping offers the chance 
to identify superior integrated phenotypes and accelerate 
genetic improvement.

Next Challenges
Of primary importance for selecting for resilience to current 
and future climates is addressing the utility of favorable 
transpiration dynamics in progressive soil drying scenarios. 
Enhanced resilience to terminal drought likely involves multi-
scale coordination of water acquisition and use. Feedbacks 
among environment and phenes including axial root and leaf 
growth dynamics, tiller initiation, and transpiration dynamics 
quickly become complex and result in many trait combinations. 
The question of tillering, which relates to canopy density, leads 
to another very interesting set of questions involving if increasing 
planting density may reduce soil evaporation and create a 
favorable in-canopy micro-climate that improves the water loss 
to carbon gain ratio. In short, the challenge is to develop the 
conceptual frameworks, phenotyping platforms, and models 
that integrate across scales and capture overarching meta-
mechanisms, such as inducible transpiration restriction, in order 
to identify important and selectable phenes.

CONCLUSION

Our ultimate goal is the identification of robust selection criteria 
for water acquisition and use optimization, likely including 
inducible transpiration restriction. These selection criteria should 
optimize yield in increasingly variable high-temperature and 
drought-prone environments. A review of the literature suggests 
that transpiration restriction can lead to an optimized 
transpiration phenotype through multiple mechanisms and that 
multiple coordination pathways may be involved. Pharmacological 
or gene editing tools, when used in isolation, are poorly 
positioned to detect dynamic, hysteretic, multi-element, and 
multi-scale coordination associated with overlapping transpiration 
regulation pathways. Directly phenotyping for transpiration 
restriction in response to high VPD or limited soil water has 
demonstrated its utility for QTL and trait-based selection. 
Efforts to increase drought tolerance via the optimization of 
water acquisition and transpiration should focus on daily and 
season level transpiration dynamics at the whole plant level. 
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This direct selection approach is likely to identify key integrated 
phenotypes and coordination mechanisms that have immediate 
utility for a breeding pipeline.
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