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Chapter 9 
Genomic Selection in Crop Improvement 

H. V. Veerendrakumar, Rutwik Barmukh, Priya Shah, 
Deekshitha Bomireddy, Harsha Vardhan Rayudu Jamedar, 
Manish Roorkiwal, Raguru Pandu Vasanthi, Rajeev K. Varshney, 
and Manish K. Pandey 

Abstract A boost in the crop improvement rate is essential for accomplishing 
a sustainable food supply and other demands of rapid population growth. Genomic 
selection (GS), a very promising breeding strategy used effectively in animal 
breeding, is now used in crop improvement. GS offers a reduced duration of 
breeding cycles by rapidly selecting better genotypes. Several empirical and simu-
lated research on GS and their implications on agricultural production enhancement
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have lately been published. We briefly discuss the GS methodology, its present 
position, the GS advantages over alternative methods of breeding, commonly used 
prediction models of GS, and factors interfering with the prediction accuracy of GS 
to provide a comprehensive grasp of the technology. In addition, the integration of 
speed breeding and other modern techniques for increasing the effectiveness and 
speed of GS are discussed.
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9.1 Introduction 

Plant breeding programme aims to develop genotypes improved for desirable traits 
to fulfil the requirements of key stakeholders. The breeder needs to explore a large 
genetic landscape to identify the superior genotypes and the material required to 
surpass the capacity of breeding programs (Chenu 2015). Plant breeding may be 
viewed as a number game in which breeding plans are meant to enhance the 
likelihood of identifying genotypes with acceptable combinations of traits with 
minimal resources (Brown et al. 2008). The assessment, which includes multiple 
phenotyping processes aimed to quantify the heritable genetic value of selection 
genotypes, is a critical component of the breeding scheme (Lynch and Walsh 1998). 

For a characteristic such as yield, a set of individuals identified for high heritable 
traits is often assessed in multi-environmental trials meant to resemble the target 
population of environments (TPE), where the product is predicted to perform (Chenu 
2015). Throughout most breeding programmes, such assessment processes need 
large amount of resources and span several years (Brown et al. 2008). Several 
approaches and technologies have arisen over the last three decades to overcome 
these constraints and boost the efficiency of breeding programmes, due largely to 
developments in the characterisation of DNA polymorphisms and computational 
capacity (Xu et al. 2020). Among them, methods that can identify the phenotypic 
performance by using molecular information (marker-assisted selection) (Cobb et al. 
2019) and GS (Meuwissen et al. 2001) are suitable tools that help modern breeding 
programmes to get maximum outcome from limited resources. In contrast to tradi-
tional marker-assisted selection (MAS), current genomic prediction algorithms 
account for both minor and major QTLs, capturing the large amount of genetic 
diversity in a trait. The GS original idea was initially proposed in the field of animal 
breeding by estimating the marker effects for two generations (Meuwissen et al. 
2001). Genotyping based on NGS has increased the genomic estimated breeding 
values (GEBVs) accuracy of prediction over other platforms developed in cereals 
and also in other crops. In this way, the dream of GS in crop plants has come true. To 
get the most benefits out of GS, these marker techniques should be used along with 
high-throughput phenotyping to get higher genetic gain from complex traits. 

GS is rapidly becoming the favourable strategy for accelerating breeding by 
utilising genetic markers. Prediction models for GS are built by regressing observed 
phenotypes in a training population (TP) on markers that are genotyped on same 
population (Meuwissen et al. 2001). Best individuals are found in future generations



by utilising these models, which are based purely on the genetic profile. For GS to be 
successful, genetic markers should be densely and widely dispersed across the 
genome, with a high probability that every quantitative trait locus (QTL) is really 
in linkage disequilibrium (LD) with at least one marker (de Resende and de Assis 
2010). As the marker number increases, so does the prediction ability of model 
(Meuwissen and Goddard 2010). As a result, a low-cost, high-density, adaptable, 
and precise genotyping platform is required for the implementation of GS effec-
tively. Many genome sequencing approaches in the earlier days have recorded a vast 
number of useful SNPs (single-nucleotide polymorphisms), and to reduce the 
subsequent challenging problem of high cost incurred characterising those, numer-
ous DNA chip-based SNP genotyping systems are advanced and have become an 
extremely renowned platform of genetic variation analysis across the genome 
(Maresso and Broeckel 2008). All of these systems rely largely upon annealing 
single or several oligonucleotides near a point close to the variable site known 
before, followed by detection of extension reaction of the attached nucleotide on a 
chip. DNA chip techniques, including Axiom Affymetrix and Illumina Infinium, 
provide large-scale, simpler SNP analysis for a large number of loci (Crossa et al. 
2013). The emergence of such platforms has laid the foundation for the development 
of GS as a suitable molecular breeding strategy in species having genotyping tool 
accessibility. 
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9.2 Basics of GS 

GS is applicable to minor gene governed traits, and its accuracy of prediction is more 
time efficient than the usual phenotypic selection (Spindel and Iwata 2018). The 
main advantage of genomic prediction is that it may be used in making decisions for 
the effective selection of breeding material at different levels (generations) of the 
breeding program. As a result, efficient genomic prediction integration necessitates 
more grip over the breeding strategy and its various factors. The breeding strategy is 
often in the breeder’s head, and converting this information into a systematic 
structure is an important aspect in thoroughly designing various methods (Cobb 
et al. 2019). Genomic prediction is indeed a continuous long-term commitment 
requiring breeding programme, and switching to an optimal GS breeding strategy 
is not always feasible. As a result, the breeding team and specialists must design a 
transition strategy that outlines precise ways to achieve the objectives (Bartholomé 
et al. 2021). 

Optimal GS strategies are seldom simply evolutions of existing breeding 
methods. In general, pedigree breeding is used in the majority of conventional 
breeding systems in self-pollinated plants (Guimarães 2009), but GS is very much 
suitable to recurrent selection methods relying on superior by superior crosses to 
improve complex traits. Due to the greater LD among QTL and markers, 
undetectable or lower population structure, and greater similarity among genotypes, 
a well-structured breeding programme with clearly defined elite germplasm and a



low population size (Ne 40) seems to be more likely to benefit from prediction using 
GS (Bartholomé et al. 2021). 
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Just like with traditional marker-assisted selection (MAS), the GS will be using 
genome-wide markers for estimating the breeding values of individual genotypes 
rather than individual markers. The genomically determined breeding values could 
then be used for effective trait selection. A plethora of algorithms have been 
developed to model GEBV. In consideration of both dimensions (columns) and 
instances, modelling GEBVs generates a massive genotype (rows). The right feature 
combinations can let you figure out which phenotype is being represented. Preparing 
a solid TP sample is seen to be a practical strategy for dealing with such complicated 
genetic data (Purbarani et al. 2017). GEBV is measured on a set of beneficial loci 
present in each BP’s genome, and it gives a direct assessment of each individual’s 
likelihood of having a better phenotype (i.e. higher breeding value). Newer parent 
choices are made using the GEBVs. This shortens the breeding cycle since there is 
no need to phenotype quantitative parameters like yield and its components in 
successive generations. The validation population (VP) is a third set of individuals 
that undergoes genotyping and phenotyping. The GEBVs are calculated for VP, and 
the correlation between it and the phenotype is used to assess the precision of GS 
model (Bassi et al. 2015). 

The genetic gain expected per unit time from GS is 

ΔG= irσA=T 

i–intensity of selection, 
r–accuracy of selection, 
σA–the square root value of the additive variance, 
T–time required to complete one cycle of breeding (Falconer and Mackay 1996). 

Following the first study of Meuwissen et al., the researchers Bernardo and Yu 
first established the effect of GS on crop breeding (Bernardo and Yu 2007). The 
researchers utilised a computer-based simulation to show that the use of an entire set 
of genotyping markers produced better breeding value prediction accuracy than 
using only a couple of markers that were significantly associated with QTL. Years 
later, the first genomic-enabled predictions in the actual crop breeding conditions 
were demonstrated, indicating that strong genomic predictions may be obtained in a 
variety of corn and wheat data sets (De Los Campos et al. 2009). This study was the 
first to use pedigree and genetic relationship information to make wheat predictions, 
which researchers applied in different non-parametric and parametric statistical 
models. Following these initial discoveries, a significant number of scientific 
research into forecast accuracy in a different crop species have been conducted 
and published; some of them are mentioned in Table 9.1. 

Higher genetic advance per generation can be attained if the reduction in breeding 
cycle duration by GS compensates for the drop in selection accuracy, assuming 
equal selection intensities and genetic variation for both GS and phenotypic selection 
(PS). Considering assumptions about breeding cycle lengths, selection accuracies,
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and selection intensities, GS can outperform PS in terms of genetic advance per year 
(Schaeffer 2006; Shengqiang et al. 2009; Wong and Bernardo 2008). Furthermore, 
when evaluating traits with a long generation time, GS becomes easier or cheaper 
than PS, enabling more number of candidates to be characterised for a unit cost, 
boosting higher selection intensity. As a result, GS is currently utilised in all crops; 
some of the crops in which GS is used is mentioned in Table 9.1.
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9.3 Methodology of GS 

The main principle of GS is to estimate breeding values of genotypes under the test 
purely depending on genotypic data with the usage of statistical models designed on 
TP (Meuwissen et al. 2001). TP is a group of individuals having a lot of genotypic 
and the phenotypic data that can be used to get GS model parameters. Following 
that, using genotypic data, these GS methods are used to calculate breeding values 
called as GEBV of breeding population (BP) genotypes. A TP is a group of 
individuals who are linked and have known ancestors, such as half-sibs and closely 
related groups. The BP is composed of TP descendants or aristocratic lineages with 
strong ties to the TP. To forecast genetic values of a BP for various traits, allelic 
similarities with loci connected to the phenotype in the TP is employed. As a result, 
the amount of genetic resemblance between BP and TP in LD of markers with trait 
loci determines GS (Edwards et al. 2019). 

9.3.1 Designing Training Population (TP) 

The overall design of TP is crucial for the success of GS because it adds to higher 
accuracy of prediction in BP, allowing actual individuals to be selected in present 
breeding activities (Zhang et al. 2017). The TP should be made up of individuals 
from single biparental family or germplasm collection accessions. The BP makeup is 
the most important issue in TP creation; therefore, the BP must always be described 
first; then, the TP design should be done, which is focused on lowering phenotyping/ 
genotyping costs and improving the accuracy of candidate prediction. First of all, the 
size of TP, its composition, and its relation with BP will act as key elements 
to estimate the GS’s accuracy of prediction. One of the most challenging aspects 
to optimise is the selection of individuals to be included in the TP, yet it is critical to 
achieve excellent accuracy of prediction. Generally, the most accurate GS methods 
with a TP of high population size are all closely related to BP, and no population 
structure (Isidro et al. 2015). 

Crop breeders must make it a priority to design ad hoc TP for every BP, and the 
ideal TP will be made up of half-sibs or full-sibs of BP. Maintaining the similarity is 
crucial around the GS cycles. BP individuals may accrue some genetic variation, and 
gene frequencies may alter to the point that the TP deviates from BP with each round



of recombination and selection. As a result, the plant breeder must be well prepared 
to continuously update its TP every cycle (Heffner et al. 2010) or use closed 
recurrent selection strategies, such as crossing only half-sib or full-sibs. The first 
option has been extensively researched and is now in use due to the relative ease of 
execution; nevertheless, as stated previously, it has substantial downsides in selec-
tion accuracy. A hybrid strategy integrating these two alternatives was utilised to 
create the breeding schemes in the second and third rounds of recurrent GS to give 
better accuracies. Inter-mating full-sibs with half-sibs further ensures a quick pro-
gression towards inbreeding as well as the fixing of advantageous genes. Moreover, 
because the TP stays linked to the BP during closed recurrent selection cycles, 
multiple morphological scorings for such BP may be accumulated through time 
and space, boosting the accuracy of prediction (Heffner et al. 2010). The level of LD 
in TP and BP must be always similar, and it has been shown that more LD results in 
better predictions (Bassi et al. 2016). Insufficient marker density may lead to an 
unnatural exaggeration of LD, which, when paired with the near homozygosity of 
later filial generations (i.e. F6 and later), leads to a considerable reduction in 
the accuracy of prediction (Shengqiang et al. 2009). As a consequence, if BP and 
TP are not at all from same parents or have different levels of inbreeding, the density 
of marker should be raised to account for the larger effective size of the population 
and rate of recombination (Heffner et al. 2010). However, several TP designs can be 
feasible for particular breeding conditions, like the following: 
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1. TP and BP are segregants developed from same cross: genotypes from a bipa-
rental cross are chosen for both BP and TP. All genotypes (progenies) in a cross 
are genotyped, but only a portion of population is phenotyped to act as TP 
required for deciding a model for genomic prediction; this model is then used 
to forecast the genetic value of genotypes (BP), which are not phenotyped. 
Furthermore, the trained model may be utilised to forecast future rounds of 
selection in populations formed by the intercrossing the family’s chosen geno-
types (Combs and Bernardo 2013). This type of TP design was widely investi-
gated in several breeding programmes, including huge biparental families and 
doubled haploids. Numerous investigations on rice (Cui et al. 2020), wheat 
(Miedaner et al. 2013; Thavamanikumar et al. 2015), rye (Wang et al. 2014), 
and maize (Zhang et al. 2015) have been conducted. The benefit of within-family 
genomic predictions would be that a high accuracy of prediction may be obtained 
with a limited marker number as well as a small population. Because of the large 
LD found in segregating lines of early hybridisation cycle, improved precision is 
feasible here (Zhao et al. 2012). This is comparable to the utility of biparental 
populations QTL mapping. The demerits of this type of TP design include the 
high cost associated with genotyping a larger number of genotypes in highly 
segregating generations as well as phenotyping data from replicates and trials at 
multi-locations, as well as the non-fixation of trait-related alleles in populations, 
which may impact the identification of an effective GS model. 

2. Population lines for TP and BP that include both related as well as unrelated 
individuals: Prediction models derived from mono biparental populations offer
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minimal practical use, except in a few breeding systems. Plant breeders might 
benefit more from TP schemes that integrate data both from related and unrelated 
groups. TP must be generated by combining progenies from multiple pedigrees 
and genetic lineages with varying degrees of relatedness, such as half-sibs, full-
sibs, and other people with related heritage. From a large number of studies, we 
came to know that, when TP is not related to BP, the precision of GS decreases 
significantly. In hybrid wheat, genomic accuracy of prediction for resistance to 
disease was substantially higher for sets that are related (0.65–0.92, compared to 
unrelated sets (0.06–0.43)) (Gowda et al. 2014). The findings also reveal that 
aggregating a large number of population to forecast a specific target family 
yields improved prediction accuracies if the TP families have one parent in 
common with the target population (BP). Families with one parent included, in 
addition to the family-specific TP, may aid to improve prediction accuracy when 
solely compared to the family-specific TP, especially for small-sized target 
families (Schulz-Streeck et al. 2012). Furthermore, it has been proposed that 
using high-density markers may increase the predictive performance in unrelated 
families via exchanging marker data among families (Hickey et al. 2014). The 
essential benefit of TP design is that it would be ideally suited to implementing 
GS in current breeding strategies, as it comprises both closely related and 
distantly related genotypes. In general, TPs made up of exclusively unrelated 
individuals to the BP have very poor to nil accuracy of prediction. 

3. Breeding and training genotypes are drawn out from a wide germplasm’s: GS 
predicts the variability of germplasm in addition to measuring the breeding value 
of individuals from the successful breeding approach. There are large collections 
of numerous accessions, making it difficult to choose few best genotypes through 
phenotyping all collections of gene bank. High-throughput genotyping methods 
have allowed the genotyping of large number of germplasm, enabling the breed-
ing value of germplasm accessions to be predicted (Jarquín et al. 2014). GS has 
been shown to be effective in harnessing germplasm potential in a variety of 
agricultural species, including sorghum (Fernandes et al. 2018), wheat 
(Daetwyler et al. 2014), soybean (Qin et al. 2019), sugar beet (Würschum et al. 
2013), and lentil (Haile et al. 2018). Even with low-density genotyping tech-
niques and a well-represented selection population in TP, it was revealed that GS 
could be used to efficiently unleash the potential of larger germplasms. In spring 
wheat, 1163 genotypes were phenotyped for resistance against Puccinia 
striiformis that causes stripe rust and then genotyped with a 9 K SNP array, and 
multiple genomic prediction techniques were tested. The results showed that 
increasing the marker density and TP size improved the accuracy of prediction. 
Whenever the size of TP was increased from 210 to 959, the accuracy of 
prediction increased from 0.50 to 0.63, by an average of 1% improvement for 
each 50 individuals added towards the size of TP. Beyond an SNP marker density 
of 1 per 3.2 cM, there was no further improvement in prediction accuracy 
observed. However, when subpopulations were created based on kinship and 
structure analysis, prediction accuracy increased. In one subpopulation, it ranged 
from 0.75 to 0.79, while in another, it was between 0.51 and 0.58. These
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variations in prediction accuracy were linked to the genetic relatedness among 
accessions within each subpopulation, highlighting the importance of genetic 
relationships between the TP and selection population for germplasm collection 
decisions (Muleta et al. 2017). Utilising GS, that TP structure may be used to 
discover promising accessions with higher GEBVs out of huge number of 
accessions. It is one of several alternative methods for utilising essential gene 
bank data, as phenotyping the entire collection is a time-consuming process due 
to a number of practical challenges. 

9.4 Statistical Tools and Models Adopted in GS 

Many approaches in GS have progressed in recent decades, such as general 
approaches and their extensions. General GS approaches rely on additive models, 
but their accuracies might differ due to differences in assumptions and algorithms in 
regard to complicated trait variations. These general approaches can be enhanced by 
integrating multiple variates or non-additive effects. 

9.4.1 Prediction Methods for Additive Genetic Effects 

To generate reliable GEBVs of individuals for selection, GS utilises correlations of a 
huge number of markers across the entire genome with phenotype. For whole 
genome regression, though, the marker number (k) is typically much greater than 
the number of observations (n). Degrees of freedom are inadequate to simulta-
neously assess the effects of all markers, which is enhanced by multicollinearity 
(Neves et al. 2012). This ordinary least squares approach will be invalid if k marker 
effects are evaluated simultaneously. For GS, several approaches, such as GBLUP, 
machine learning, and Bayes, are being used to overcome these difficulties. The 
GBLUP and Bayesian techniques consider marker effects to be random effects, and 
the fundamental model is (Meuwissen et al. 2001) 

y=Xβþ Zαþ ε 

where 

y–a vector of phenotypes, 
β–a vector of non-genetic fixed effects, for which a flat prior is often used, 
X–an incidence matrix for the fixed effects β. 
α–a vector of random regression coefficients of all the marker effects, 
Z–an n × k genotypic matrix for markers. 
ε–a vector of residuals.
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9.4.1.1 GS Based on a Single Trait 

In the literature, many single-trait GS (STGS) approaches are being suggested. We’ll 
go through some of the most common methods in this section. 

Linear Regression Model 

Our major goal in GS is designing a model to connect between genotypic and 
phenotypic variables in order to predict GEBVs and choose desirable individuals. 
Simple linear regression is the simplest model for analysing this relationship 

Yi = μþ P 

j= 1 
Xijβj þ ei 

where μ is an intercept, 

Xij is the genotype of the i
th individual i = 1to n of the jth marker j = 1 to p,  

βj is effect of marker, 
ei is i

th individual’s associated random residuals. 
This may be expressed as follows: 

Y=X βþ e‚ 

where 

Y is phenotypic character observation vector, 
X is a design matrix, 
β is a vector of marker effects that are unknown, and, 
e is a random residual. 

The advantage of employing a linear model is that it is a relatively basic model 
with straightforward inference because it is statistically sound. However, when the 
fundamental criteria of normality, linearity, explanatory variable independence, and 
p < n are met, this model performs effectively. 

Ridge Regression 

Multi-collinearity has been discovered among markers. As a result, the individual’s 
GEBV that is estimated becomes inaccurate (Hoerl and Kennard 1970). RR was 
determined to be a preferable option in this case. RR obtains a smaller variance 
estimation of b, but as a price to pay estimator, it becomes biased. One more benefit 
of RR is that it could be utilised in cases where p > n problem. Instead of reducing 
the sum of the squared residuals, just like in linear regression models, RR minimises 
(μ, β) = (Y-Xβ)’ (Y-Xβ)  +  λβ’ β, where k = 0 is a regularisation parameter that



controls the intensity of the penalty. The higher the value of k, the more shrinkage 
variables there are. In this scenario, the estimate of regression coefficients, or marker 
effects, could be provided by 
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β= X’ Xþ λI X’ Y 

Best Linear Unbiased Prediction 

Henderson for the first time presented the theory of mixed random effect model, and 
that has been widely utilised in conventional animal breeding programmes earlier 
(Henderson et al. 1959). In the situation of imbalanced data, BLUP is commonly 
utilised. Because of its versatility and adaptability, BLUP is used not just in animal 
breeding programs but also in crop improvement (Bernardo 1994). BLUP has the 
added benefit of being able to accommodate any family information. Hayes and 
Goddard were the first to use BLUP in GS (Meuwissen et al. 2001). The model is as 
follows: 

Y=Xβþ Zmþ e‚ 

where β is a p × 1 fixed effect vector that needs to be calculated and m is a random 
effect that is also a parameter of interest, that is, m ~ N (0, G) and e ~ N (0, R). BLUE 
is the fixed effect β estimator, whereas BLUP is the random effect m estimator. The 
main downside of BLUP is that it necessitates complicated statistical calculations, 
which demands enough computational resources. However, as computer power 
improves, this problem becomes limited. 

Least Absolute Shrinkage and Selection Operator (LASSO) 

RR may utilise LASSO for GS to overcome the restrictions of linear regression. This 
is an RR variation that is generated by changing the penalty function in RR, i.e., 
assigning a linear penalty rather than quadratic penalty. As a result of this, the 
influence of certain least important markers is reduced, and the effects of the less 
important markers are set to zero, thereby solving the p > n problem. Tibshirani was 
the first to develop LASSO. It is written as 

β lassoð  Þ= argmin Y-X βð Þ’ Y-X βð Þ þ λβ
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Bayesian Methods 

In a Bayesian method, we must assume a prior distribution of such model’s param-
eters based on previous knowledge and experience. The previous distributions of 
such model variables are combined well with likelihood function to get the posterior 
distribution. The posterior distribution is used to get model parameter inferences. 
Hayes and Goddard (2001) applied the Bayesian technique for the first time in GS, 
utilising the previously mentioned linear regression model. The parameters of the 
model are computed using the prior and posterior distributions of the variables. 
Bayesian approaches include BayesA, BayesB, BayesCp, and BayesDp. The 
assumptions of such prior distribution of model parameters, model variance, and 
other factors differ across different approaches. 

BayesA implies that the variance of every marker site has the same prior, whereas 
BayesB considers that the location of all markers doesn’t contribute to overall 
genetic variation. In comparison to BayesA, the BayesB technique is more realistic 
for GS. Other Bayes variants have been created to address the shortcomings of 
BayesA and BayesB. BayesC assumes and utilises the same variance for all markers, 
whereas BayesD, a scaled parameter, is computed rather than given by the user. 
BayesCp and BayesDp are derived from BayesC and BayesD, respectively, with the 
probability p determined for low-effect SNPs. 

Support Vector Machine (SVM) 

The methods given in this chapter are parametric in nature. These approaches always 
need the data to be subjected to a number of assumptions. However, parametric 
model assumptions do not always hold. Parametric approaches perform poorly in 
such situations. In this scenario, nonparametric approaches may perform better. 
They believe that the response and predictors have an unknown connection. In 
GS, nonparametric approaches, such as neural network (NN), SVM, and RKHS 
(reproducing Kernel Hilbert space), have been employed (Budhlakoti et al. 2019). 
SVM is a machine learning approach. Supervised learning was the principle on 
which it was based. It creates a separating hyperplane with the goal of classifying 
data into distinct categories. It is based on the maximum separation hyperplane idea. 
The SVM approach is used extensively in support vector regression. 

9.4.1.2 Multi-Trait-Based GS 

The models outlined before are based on single attribute’s genetic information. 
However, we now have access to data on various traits. We lose lot of details related 
to association among many traits if we employ approaches based on single factors, 
since they fit the method by evaluating each attribute separately. Multivariate-based 
approaches have been developed to use this kind of info in the model. A number of 
multivariate regression-based methods have been developed. Multivariate methods



are indeed extensions of basic regression models, in which users regress two or more 
responses (q > 1) upon p predictors instead of one response onto p predictors. 
Consider a straightforward multivariate regression model. 

9 Genomic Selection in Crop Improvement 201

Y=Xβþ e 

Here, 

X is the marker’s n  × p matrix, 
Y is the n × q matrix, 
β is the dimensional vector p of coefficients of regression, and, 
e is the random residual. 

Multivariate Regression with Covariance Estimation 

By applying a LASSO-like penalty to β andΩ while accounting for correlated errors, 
this method minimises the parameter number that are to be estimated (Rothman et al. 
2010). Based on Ω = [ωj’j] and ∑jk |bjk|, the LASSO constraint (Tibshirani 1996) on  
the entries of b, two penalties are employed to construct a sparse estimator of b. The 
following is the form in which the function can be written 

β^,Ω^ð Þ= min β,Ω f β,Ωð Þ þ λ1 i≠ j 
jωj’jj λ2 p 

j= 1 

q 

k = 1
jbjkj 

where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters. 
We impose a related penalty for off-diagonal entries of the inverse error covari-

ance matrix O like in the case of LASSO because (1) it makes sure a solution to the 
issue of (q > n), i.e. more response than that of the total count of sample population, 
and (2) it reduces the amount of parameters in O and has been found to be effective 
whenever the number of response parameters is greater. 

Multivariate Mixed-Model-Based Approach 

This is simply a multivariate version of the univariate mixed model technique. 
Multivariate BLUP is another name for it. Because a mixed model incorporates 
random along with fixed variables, it employs the covariance structure for random 
effects in the multivariate situation. It employs the very same model as that of the 
mixed-model-based method, namely, BLUP, with the exception that Y is a response 
matrix rather than a vector.
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Conditional Gaussian Graphical Models 

cGGMs are multivariate linear regression models that have been reparametrised 
(Chiquet et al. 2016). It makes use of the predictor-response variable covariance 
structure. Using multivariate regression parameterisation, many statistical formula-
tions may be generated. Because partial covariance reflects crucial relationships 
among variables, these models are valuable. Multivariate penalised techniques, 
like univariate penalised methods, resemble regularisation. By applying penalty-
based approaches, the multivariate frame takes use of the sparsity within the pre-
dictors. Partial Gaussian graphical model is another name for it. 

9.5 Factors Influencing GS Predictions 

The use of GS in ordinary crop breeding programmes is dependent on the precision 
of prediction; hence, it is crucial to use cross-validation to check a trained model for 
high accuracy of prediction. A second genotyped and also phenotyped population, 
termed as the validation population (VP) or BP, is employed for this. Based on TP 
phenotypic data, marker effects throughout the particular genome are computed. To 
measure the model’s accuracy of prediction, comparison of GEBVs is calculated 
from VP with its true breeding values (TBV). A trained model of TP and VP 
genotypic data is used to construct the GEBV for VP. Correlation between TBV 
and calculated GEVBs based on VP’s phenotypic data is being used to assess the 
validity of the GS model. Cross-validation is commonly used in TP to train and 
design the optimal model of prediction that can be used to calculate BP’s GEBV 
(Pérez-Cabal et al. 2012). The Pearson product moment correlation among calcu-
lated TBVs and GEBVs is being used to determine predictive performance. GS 
accuracy is influenced by below mentioned variables:

• Genetic relatedness (Duangjit et al. 2016; Endelman et al. 2014).
• Efficient population size (Poland and Rife 2012; Zhao et al. 2012).
• Structure of population (Isidro et al. 2015).
• Genetic inheritance of the trait (Heffner et al. 2009; Ornella et al. 2012).
• DNA marker characteristic and density (Zhao et al. 2012).
• The distribution and level of LD between markers and genomic sequences 

correlated with the desired trait (Rajsic et al. 2016).
• Statistical models that are frequently used to calibrate any best-fitted model 

(Heslot et al. 2012).
• Gene effects (Akdemir 2013).
• Genotype environment interactions (Rajsic et al. 2016). 

An investigation of corn doubled haploid lines found that when full-sibs were 
replaced with half-sibs, accuracy of prediction dropped by 42% (Riedelsheimer et al. 
2013). To increase accuracy of genomic prediction, BP and TP must be close enough 
to exchange long-range haplotypes (Lorenz and Smith 2015). The size of TP is also a



significant component in achieving improved prediction accuracy. More genotypic 
and phenotypic data might be accessible for precise assessment of the genetic 
components impacting the characteristics’ expression, which would enhance the 
accuracy of genetic effect estimation (T. Guo et al. 2013), especially for low 
inherited characteristics (Lian et al. 2014). Since GS intends to eliminate the 
necessity of phenotyping as well as the costs associated with it, determining the 
ideal TP size to produce relevant accuracy of prediction is critical when using it in a 
breeding programme. Raising TP size, boosted accuracy of prediction for many 
characters, these prediction accuracies plateaued around 700 lines (Cericola et al. 
2017). Likewise, many studies with respect to the effect of size of TP on genomic 
predictions have been published (Liu et al. 2018). 
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Based on one consensus finding, the optimal TP size required for improved 
prediction accuracy ranged from less than one hundred full-sibs or thousands of 
half-sibs of a BP to hundreds of unrelated individuals. As a consequence, enhancing 
relatedness of TP by incorporating populations that are strongly related could be 
preferred to increasing size of TP through including distantly associated groups 
(Brandariz and Bernardo 2019). However, in long-term GS, the usage of strongly 
related individuals may cause the response of selection to be delayed (Moeinizade 
et al. 2019). As a result, the TP-BP interaction must be carefully considered in order 
to achieve better genetic gains and effective GS implementation in breeding opera-
tions. Another major element controlling prediction accuracy in GS investigations is 
trait heritability. The typical GS model’s prediction accuracy has a positive relation-
ship with heritability (Hayes et al. 2009). Previous research has shown that as trait 
heritability rises, accuracy of prediction improves. For example, under wet and 
water-stressed situations in maize, heritability of grain yield, a complex trait, was 
significantly less than less complex characteristics like days to anthesis and height of 
the plant. 

Furthermore, for each of the three attributes, heritability mean values during 
watered situations were greater than those under water-constrained situations in 
the investigated populations. In watered situations, heritability mean values for 
plant height, anthesis date, and grain yield were 0.59, 0.55, and 0.38, respectively, 
in comparison with 0.37, 0.47, and 0.27 in stressed conditions (Zhang et al. 2017). In 
peanut, though, it has recently been established that there’s no correlation between 
heredity and trait accuracy of prediction in genomic investigations (Pandey et al. 
2020). Among eleven agronomic traits included for the GS research, plant height had 
the maximum heritability (92.3%), while the main branches/plant had the lowest 
(78.7%). However, employing four GS models (Pandey et al. 2020), the accuracies 
of prediction of these two characteristics were 0.56 and 0.64, respectively, indicating 
that there is no link between the heritability of a characteristic and its accuracy of 
prediction. GS for sucrose solvent retention (heritability: 0.45) and flour amount of 
protein (heritability: 0.56) in wheat found that the accuracy of prediction for the two 
traits was 0.74 and 0.64, respectively. As a result, GS might be a useful technique for 
accelerating genetic gains, especially for traits with low heritability. 

Another essential factor that influences the accuracy of prediction is density of 
markers that varies with the type of population, trait of interest, and plant species. A



few markers are needed for biparental populations and self-pollinated crops, and 
more markers are needed for crops that undergo cross-pollinated and also for natural 
populations (Juliana et al. 2019; Liu et al. 2018). In theory, genome-wide high-
density markers assure nearly perfect LD among at least one marker with each QTL, 
leading to greater accuracy of prediction, but in fact, once the optimum density 
(markers) is reached, there is no further genetic gain in accuracy of prediction 
significantly (Wang et al. 2018). To obtain same levels of accuracy of prediction, 
GS in such a bi-parental population uses few markers (hundreds) in comparison with 
vast number of markers in a multiple family population (Crossa et al. 2014; Technow 
et al. 2012). In a research on quality of grain in bi-parental populations of wheat, GS 
accuracy of prediction plateaued at a lower density of markers (Hoffstetter et al. 
2016), and a similar trend was reported in predicting the performance of rice hybrids 
(Wang et al. 2017). According to study, validated functional markers might poten-
tially be utilised as fixed effects in the model to increase accuracy of prediction 
(Xu et al. 2020). 
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Furthermore, factual investigations have demonstrated that the statistical models 
used have an impact on the accuracy of GS prediction (Daetwyler et al. 2010; 
Resende et al. 2012). In comparison to the GS models, which examine the genetic 
relationship matrices among individuals of BP and TP, simpler models with the 
hypothesis that no link exists across genotypes result in lower estimates of genetic 
variation (Cericola et al. 2017). RR-BLUP, BayesA, GBLUP, RKHS, Bayesian 
LASSO, BayesC, and BayesB were used to examine the genomic prediction of six 
maize variables (yield per plant, 100-kernel weight, plant height, ear height, ear 
diameter, and ear length). For complex characteristics with lower heritability, 
additive-dominance and RKHS models demonstrated improved accuracy of predic-
tion (Liu et al. 2018). Accurate phenotyping of TP for model construction could also 
improve the accuracy of prediction (Voss-Fels et al. 2019). As a result, precise 
phenotyping is critical for training the prediction model while implementing GS, 
since the risk of GEI is higher in plants than in cattle (Jonas and De Koning 2013). 

The cost-benefit ratio of generating a new variety in crop improvement 
programmes is determined by factors like phenotyping and genotyping expenses, 
which are determined by the nature and heritability of traits, as well as the size of the 
TP and BP. The GS method was found to be advantageous for variables with less 
than 0.1% heritability when the size of TP was >400 and the effective chromosomal 
segments (Me) was >100 (Rajsic et al. 2016). GS also offers economic benefits for 
characteristics with heritability less than 0.25 and effective chromosomal segments 
less than 100, as far as phenotypic expenses per genotype remain less than the 
expenditures for genotyping. For example, the break-even cost ratio for resistance to 
common beans bacterial blight (heritability = 0.24) was significantly lower than that 
of maize tryptophan and lysine content (heritability = 0.96) that showed the 
heritability consistency. As a result, if phenotyping is less expensive or not complex, 
traditional selection may be highly cost-efficient for breeding tryptophan and lysine 
concentration in maize. Furthermore, when assessing total performance, GS was 
determined to be financially efficient (Rajsic et al. 2016). Same patterns in cost



efficiency of GS were seen in other investigations (Heffner et al. 2010; Wong and 
Bernardo 2008). 
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When utilising GS in breeding, the heritability of characteristics and the size of 
TP must be considered. One of the current obstacles to the effectiveness of GS is the 
massive price of genotyping. Breeders’ interest is in using GS on fixed materials of 
later generations, such as preliminary yield trials, although the genetic gain is not as 
significant as with PS. As a result, breeders have been slow to include GS into 
ordinary varietal development efforts, particularly in research that is government-
funded. When we include unrelated families in the TPs, the expense rises even more. 
A large-sized population of ~20,000 requires nearly 10,000 markers to achieve a 
higher prediction accuracy of 0.7 (Hickey et al. 2014). Yet, GS’s financial efficiency 
can be improved if genotyping expenses continue to decline and predictions made in 
one generation are utilised to influence decisions in the following generations (Rajsic 
et al. 2016). 

Moreover, having an open-source GS breeding network, wherein high-
throughput systems and infrastructure—including high-throughput phenotyping 
(HTP), high-throughput genotyping (HTG), and effective models for prediction— 
are built and allowed to share among scientific organisations and private industries, 
will lead to significant savings and facilitate the most GS applications in crop 
improvement programmes. 

9.6 Part Strategy of GS 

9.6.1 Two-Part Strategy 

The aims of developing inbred lines are (i) new inbred’s identification and 
(ii) parent’s identification for subsequent breeding cycles. Traditional breeding 
programmes would be reorganised into two different components under this 
two-part strategy: a product development (PD) component to produce as well as 
evaluate inbred lines and a population improvement (PI) component to boost the 
number of favourable alleles via rapid recurrent genomic selection. Most breeding 
strategies that produce inbred lines involve crossing to generate new germplasm and 
thereafter selfing to derive new inbred lines (Bernardo 2014). Instead, doubled 
haploid technique can be utilised to generate inbred lines quickly (Forster et al. 
2007). These newly obtained inbred lines are then phenotyped for one or even more 
cycles prior to the final selection in order to achieve one or both of the previously 
mentioned goals of product development and germplasm enhancement. Within this 
context, genomic selection may be used to find promising lines earlier, lowering 
cycle time and boosting genetic gain per generation (Heffner et al. 2009). The 
practice of using inbred lines as parents might be avoided totally with the introduc-
tion of GS (Heffner et al. 2009). Strategies based on this concept have been detailed 
for crops that are simple to cross (Bernardo 2009; Bernardo and Yu 2007) as well as 
for those which are difficult to cross due to the self-pollination behaviour (Bernardo



2010). The two-part technique is an extension of previous methods and attempts to 
optimise the capacity of genomic selection over an entire breeding programme 
(Gaynor et al. 2017). The population improvement component of the two-part 
strategy employs fast recurrent selection via GS. The idea is to shorten the breeding 
cycle time in order to enhance genetic gains per year. Each phase of population 
improvement starts with a large number of genetically different plants. These plants 
are genotyped, and the finest ones are involved in intercrossing to generate a new 
generation. The procedure is repeated. Thus, in two-part strategy, population 
improvement is just a recurrent genomic selection scheme. To assure a consistent 
supply of enhanced germplasm, a part of the seed generated in few or all cycles is 
passed towards the product development component. The product development 
aspect of the two-part approach is primarily dedicated on producing inbreds to 
release as inbred varieties or hybrid parents. This component’s structure is similar 
to existing breeding programmes and may thus be designed flexibly to fit current or 
newer breeding program. This design flexibility in the product development aspect 
also enables different ways to implement at GS. The fundamental distinction 
between the two-part strategy’s product development aspect and conventional 
breeding programmes is that lines are not selected for subsequent breeding cycles, 
as this is managed by population improvement component. Furthermore, certain 
phenotyped plants must be genotyped as part of the product development compo-
nent. This is required for revising the GS training population utilised in population 
improvement component aspect as well as for using GS in product development 
component. The product development component aspect of the two-part approach 
leads population improvement component by facilitating the development and 
revision of the training set. The two-part breeding method produced the largest 
genetic gain, and all genomic selection techniques generated genetic gain greater 
than conventional breeding. 
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9.6.2 Multi-Part Strategy 

The multi-part approach is an expansion of the two-part strategy, in which exotic 
germplasm is brought into the PI component via pre-breeding bridges. The 
pre-breeding bridges take up the role of breaking the linkage between favourable 
and unfavourable alleles to lower the performance gap between elite germplasm and 
exPVP. Introgression into the PI component began a year after the last bridge was 
established. Individuals from the previous year’s final breeding cycle were randomly 
separated into males and females. Individuals from the exPVP breeding programmes 
or a prior bridge were introduced into the female population when germplasm 
exchange occurred. Germplasm was pushed back from the PI component to improve 
pre-breeding performance, with the goal of decreasing the performance gap between 
exPVP and elite germplasm. Individuals that had been excluded from the PI com-
ponent were returned into the male population. The number of crossings made 
between males and females for every bridging cycle was maximised. GS was used



to pick the best individuals for the following breeding cycle. When germplasm 
exchange occurred, outstanding individuals were advanced to the next stage of the 
breeding programme. After all bridges were constructed, the PI component was 
introduced. Each cycle of the PI component began with a large number of lines under 
the genotyping constraints. These individuals were evenly and randomly divided 
into males and females. When no germplasm exchange occurred, 50 males and 
50 females were chosen. When germplasm exchange occurred, 50 females and 
50 males were chosen, minus the number of males to be introgressed. The results 
of the multi-part strategy imply that it has the ability to improve quantitative 
(polygenic) traits while also giving a tool for avoiding suboptimal convergence of 
long-term genetic gain (Breider et al. 2022). 
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9.7 Advantage of GS over Other Breeding Methods 
Using MAS 

In the last century, classical plant breeding together with agronomic practices has 
developed several high-yielding nutrient responsive varieties and achieved notable 
gains in terms of production and productivity. However, with diversified food 
consumption patterns and to address demands of the ever-increasing population, 
there is a need for increase in crop improvement (Krishnappa et al. 2021). Food and 
nutritional security in verge of the rapid population growth can be attained by 
increased yield potential and reduced crop yield gaps. For major food crops, 
0.8–1.2% of the current crop improvement rate is short of 2.4% required for meeting 
food demands of the 10 billion population predicted over the next 30 years (Hickey 
et al. 2019; Ray et al. 2013). Globally, plant scientists are striving hard to achieve 
this required genetic improvement rate by developing high yielding, more nutritious, 
biotic, and abiotic resistant crops, peculiarly during the degrading land and water 
resources due to the scenario climate change. This indeed is a challenging task to the 
plant scientists to develop climate smart crops. 

Most of the agriculturally important grain yield, stress adaptive and plant growth 
traits are controlled by quantitative and genes with minor effects leading to higher 
epistatic interactions (Mackay 2003). Conventional breeding methods are less pre-
cise and reliable for multi-genic, low heritable traits as they are highly influenced by 
environmental cues and G × E interactions, which make their improvement difficult. 
Besides, these methods require large land and maintenance of large breeding 
populations, which are often laborious, time-consuming, and cost-prohibitive. It 
also requires hybridisation of genetically distinct parents and continuous PS over 
successive generations, which indeed require 5–12 years for a variety development. 
This necessitated the development of efficient and rapid selection methods to address 
the restrictions of traditional breeding methods, as shown in Fig. 9.1. 

Extensive use of DNA markers over the last two decades has enabled the usage of 
MAS in crop improvement programmes as it requires minimum phenotypic infor-
mation for the indirect selection of traits of interest (Collard and Mackill 2008). In 
MAS, plants with desirable alleles are selected by using the markers related to the



desired trait, which makes it efficient only for the traits governed by few major effect 
QTLs. For the complex traits regulated by several minor QTLs, this approach is 
inferior to the traditional phenotypic selection as the effect of QTL estimation is 
biased through linkage or association mapping (Zhao et al. 2014). Initially, marker-
assisted backcross breeding (MABB) was used for introgressing one or few genes 
(from donor) with large genetic effect into the background of adapted cultivars 
(recipient) with the main aim of recovering the genome content of the recipient. 
Later on, as emphasis was made only on foreground selection, marker-assisted 
recurrent selection (MARS) turned out as an alternative strategy for integrating 
multiple favourable alleles within the same population from different sources (Rai 
et al. 2018). MAS and MARS are being used for stacking multiple genes (gene 
pyramiding) into widely adapted cultivars to correct the drawbacks associated with it 
or for introgressing novel genes (Rana et al. 2019). As of today, the success of gene 
pyramiding has been shown mainly for major effect genes and is found inefficient for 
complex agronomic traits governed by multiple genes with minor (very few) effects. 
These strategies are also constrained mainly because of the usage of low-marker 
density systems. But, advancement in genome sequencing technologies has made 
GS a powerful selection tool to tackle these complex traits. In GS, an individual’s 
genetic worth is estimated based on the information from a vast set of markers 
distributed across the genome instead of a few markers as in MAS. By integrating 
phenotypic and genotypic data of TP, GS develops a prediction model to derive 
GEBVs of all the base population individuals that substantially increases the selec-
tion efficiency (Poland and Rife 2012). Thus, GEBVs help in selecting the better 
performing individuals that can be used either as parents in hybridisation 
programmes or for generation advancement. Based on realistic assumptions of 
selection intensities, selection accuracies, and generation time, GS has a comparative 
advantage over conventional PS and MAS in enhancing the genetic gain per year
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Fig. 9.1 Depicts comparison of breeding cycle length for conventional breeding versus modern 
strategies that exploit GS, shuttle breeding, double haploids, and speed breeding



(Crossa et al. 2017; Heffner et al. 2010). Furthermore, GS is cheaper and easier to 
evaluate difficult traits like insect resistance, where more individuals can be assessed 
in a given time and cost (Bhat et al. 2016). Hence, GS enables faster development of 
crop varieties than PS with increased genetic gains, selection intensity, efficiency, 
and reduced duration, hence saving resources and time (Desta and Ortiz 2014).
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Major consideration for applying GS in crop plants is its cost-benefit ratio. Next-
generation sequencing (NGS) technologies have provided accessibility to cost-
effective, high-throughput genome-wide markers for model and non-model crops, 
which made implementation of GS successful mainly in large breeding populations 
(Poland and Rife 2012). In many crop species, GEBV estimates through NGS-based 
genotyping are more accurate than other established genotyping platforms. GS is 
efficient in capturing many additive and small effect loci, which might not be 
covered by MAS (Heffner et al. 2009). Deploying genome-wide dense markers, 
GS increases the precision of detecting the markers in LD with desired QTLs of 
interest (Bekele et al. 2014). Upgradation in high-throughput phenotyping tech-
niques and continuous downswing in sequencing cost will enable GS in accelerating 
the genetic gains from complex traits required for crop improvement in the near 
future. 

9.8 Limitations of GS 

Despite all the positive sides of GS, there are some constraints in situations where the 
GS is not so good at performance. Let us know the things where this GS performs 
poorly. 

1. To assess the efficiency of genetic prediction, accuracy alone will not be suffi-
cient. Almost the majority of the studies assessed genetic selection using predic-
tion accuracy. Even though accuracy is a crucial factor in establishing prediction 
model efficacy, it never shows which are all the individuals selected in good faith 
by using various methodologies. The realised selection differential is arguably a 
superior criterion for comparing different genomic prediction systems, since 
breeders examine numerous traits together to advance material, making trait 
evaluation individually less relevant. Finally, it was correctly pointed out that the 
phenotype is the final predictor of the genuine breeding value and, like a GEBV, 
does have an error variance (Bassi et al. 2016). 

2. The accuracy of within-family prediction is not fully considered. There has been 
no comprehensive investigation of prediction accuracy of within-family utilising 
numerous biparental families or parental information as the training set. Indeed, 
with the exception of research involving a single biparental household, findings 
on within-family accuracy are sparse. This is also evident in the hybrid literature, 
where most studies concentrate on predicting particular hybrid combinations 
instead of assessing general combining ability in a group of new males or 
females. This is an essential consideration when adopting genomic prediction



210 H. V. Veerendrakumar et al.

because improved within-family accuracy may help to accelerate genetic 
advancement while optimising the fraction of inbreeding within the population. 
Differences among crosses are well predicted since the model accounts for both 
within and between family variables (Edwards et al. 2019). 

9.9 Speed GS High-Throughput Genotyping 

In order to meet the growing demand for food, it is required to double the crop 
production by 2050. Continuous advancement in genotyping and phenotyping 
technology offers great potential for enhancing genetic gain in crop plants (Phillips 
2010) and improves the efficiency of breeders. In GS, to train a prediction model, the 
phenotypes are utilised. Through high-throughput phenotyping, a large number of 
lines can be phenotypes more rapidly and accurately, and the precise selection of the 
best progeny can be made. Similarly, advancement in the high-throughput 
genotyping have led to the generation of valuable genomic information in a fasten 
and cost-effective way that has eased the development and study of the large 
mapping population (McMullen et al. 2009). 

Speed breeding in completely contained, controlled environment like growth 
chambers can speed up the development of superior varieties, such as phenotyping 
mature plant features, mutant research, and transformation. Additional illumination 
in a greenhouse leads to faster generation advancement through single seed descent 
(SSD) and adaptability to plant growth activities at a larger scale. Speed breeding 
significantly reduces generation time and speeds up the crop breeding process. 
Durum wheat, Spring wheat, barley, pea, and chickpea could now produce nearly 
up to six generations per year, especially in comparison to 2–3 under regular 
glasshouse situations, and rapeseed (Brassica napus) could now produce nearly 
four generations per year (Watson et al. 2018) (Fig. 9.1). 

Selection by breeding (SB) helps to resolve difficulties related to the double 
haploid (DH) technique, like poor germination percentage, reduced vigour, and 
deformed development (Ferrie 2006). Recombinant inbred lines (RILs) formed 
during numerous generations of autogamy may be preferred to DH for genetic 
mapping purposes because of the many meiotic events that take place all through 
repetitive fertilisation as well as the associated increased recombination frequency. 
Likewise, SSD can create and assess segregating generations quickly under SB 
circumstances (Sinha et al. 2021), saving a lot of time over the conventional pedigree 
breeding approach (Jähne et al. 2020). SB methodologies may be used in many crops 
and integrated with other current techniques of crop breeding like high-throughput 
genotyping, genome editing, and GS to accelerate crop development. In orphan 
crops, SB approaches might be utilised to cut down the breeding cycles and to hasten 
research. High-throughput phenotyping is one of the major advances in agricultural 
research in the twenty-first century that has the ability to overcome long-standing 
barriers to crop improvement advancement. Carrying out high-throughput 
phenotyping under SB circumstances opens new possibilities for discovering and



incorporating favourable features while conserving resources (Al-Tamimi et al. 
2016). Because of their precision and convenience of use, high-throughput 
phenotyping platforms (HTPPs) have sparked a lot of interest (Furbank and Tester 
2011). The HTPPs feature completely automated facilities in greenhouses with 
regulated environmental conditions, as well as remote sensing technology that 
allows for exact assessment of crop growth and performance. Recently, efforts 
have been made to develop low-cost HTPP approaches to widen its adoption in 
breeding programs. Under SB circumstances that include increased planting density, 
temperature control, and prolonged photoperiod, targeting proxy variables like 
seminal root number and angle of seedlings permitted quick selection for superior 
root architecture of mature plants (Richard et al. 2015). SB has been used to assess 
different stages of plant breeding operations. In spring wheat, GS was paired with SB 
to maximise genetic gain for complex traits (Voss-Fels et al. 2019). SB was 
employed for certain trait phenotyping of carried in TP of wheat, as well as the 
development and phenotyping of selection candidates. Indirect selection in SB 
settings with targeted populations was found to predict plant height and blooming 
time with accuracy comparable to direct field selection. In comparison to field 
phenotyping directly, SB allows for a genetic gain at a higher rate (Watson et al. 
2018). 
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Similarly, imaging technology allowed for the acquisition of field plot photos at a 
rate of 7400 plots per hour based on wheat colour features (Walter et al. 2019). When 
compared to terrestrial sensing, the technology using automated aerial vehicles 
demonstrated a substantial correlation with enhanced grain output. For phenotyping 
plant characteristics, several sensing methods have been identified, including prox-
imal (remote) sensing and imaging, laboratory studies of samples, and near-infrared 
reflectance spectroscopy (NIRS) analysis with the harvestable portion of the crop. 
The approach chosen is determined by the kind of trait as well as the period of 
evaluation. Remote sensing techniques could be used to conduct in situ screening for 
a broad range of breeding objectives, such as yield potential, tolerance to abiotic and 
biotic limiting circumstances, and even quality-related traits. Several different sorts 
of properties, ranging from green biomass to photosynthetic transpirative gas 
exchange, quality features, and even grain production prediction, may be measured 
using remote sensing techniques in diverse environmental conditions (Weber et al. 
2012). 

NIRS is generally utilised in breeding for a wide range of feed and food quality 
parameters. In fact, NIRS could be used to evaluate for drought tolerance, nutrient 
efficiency, and other breeding/gene discovery objectives. Because of the employ-
ment of proximal sensing with VIS-NIR and far-infrared light in imaging formats, 
the measurement process has been upscaled: for example, from analysing a single 
plot towards dissecting an entire trial made up of several plots, providing the picture 
has an adequate resolution (pixels). Additionally, the aerial HTPPs have enabled to 
take measurements of all plots simultaneously in the trial, and this has made the 
phenotyping process to overcome the largest limitation, time, and allows rapid 
characterisation of several plots within a short duration. The use of these approaches 
in the GS would provide an overall understanding of the role of genetic factors in
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determining crop performance, the stages where SB can be efficiently applied in GS 
are mentioned in Fig. 9.2.
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The high-throughput genotyping platforms (HTGP) and high-throughput 
phenotyping platforms (HTPP) allow effective GS and enhance the success rate of 
breeding programs (Cobb et al. 2019). The ease in availability of high-throughput 
genotyping platforms, such as high-density, mid-density, and low-density platforms, 
has increased the precision and accelerated the genetic gain in crops with large and 
complex genetic makeup. To estimate GEBVs of (BP), phenotyping and genotyping 
are very critical for the identification of the appropriate gene and GS model to be 
utilised. Hence, the combination of these high-throughput technologies with appro-
priate genetic diversity and analytical tools, along with databases, would lead to the 
new variety development having better yield, quality, and resistance to stresses. 

Over the last decade, the dependence on phenotypic selection has gradually 
shifted to a greater reliance upon genotypic-based approaches for plant selection, 
enabled feasible in part by NGS-based sequencing platforms (Bhat et al. 2020; 
Pandey et al. 2016). The advancements in the HTPP and HTGP have been successful 
in enhancing the accuracy of genomic prediction and mapping of genes. Platforms 
such as AgriSeq, DartTag, and RiCa are widely used in the GS. The HTGP 
technology has improved genome-wide genotyping throughput, cost-effectiveness, 
and speed (Getachew et al. 2020). Before the advent of NGS-based marker 
genotyping, the generation of markers was costly and time-consuming, especially 
for the GS, which was limited by the number of markers that could be tested 
economically (Bhat et al. 2016). As a result, to forecast the presence or absence of 
agriculturally beneficial characteristics, only markers in crucial genomic regions 
were used (Varshney et al. 2014). The HTGP has enabled cost and time effective 
genotyping with precise identification of the desirable genotypes. Hence, it enables 
the development of markers, which further caters the GS. 

9.10 Conclusion 

Plant breeders can use GS to forecast genomic-estimated breeding values of indi-
viduals by employing markers that span the whole genome. However, the best way 
to implement GS is still up for dispute. Predictions within the breeding cycle in the 
breeding programme can provide high selection accuracies, but selections across the 
breeding cycle might suffer from a poor association between the training and test 
populations, making predictions less accurate. More research on predicting distantly 
related individuals is required. Due to the lack of precision in prediction ahead of 
several breeding cycles, lower accuracies can be predicted when GS is paired with 
the usage of untested parents. The best answer for using GS in plant breeding 
initiatives can be a mix of diverse approaches. Pedigree information might be used 
in GS to improve forecast accuracy and provide breeding values for non-genotyped 
lines. The characteristics and relationships of individuals influence the size of the TP 
and marker set, which should be examined separately before implementing GS in a



breeding programme. GS is commonly used to estimate individual additive genetic 
value while ignoring non-additive genetic variation, which reflects the performing 
power of a line as a parent. Future research will look at the assessment of total 
genetic value, which would be ideal for variety marketing. We can conclude that 
within generation, GS is now an attractive and realistic alternative, with expenditures 
in genotyping being recovered through improved selection decisions, reduced 
phenotyping, and a reduction in the number of candidates retained in the breeding 
programme. Because forecast accuracies in such systems may be poor, cross-
breeding cycle GS, and in particular the use of untested parents, has to be examined 
further. We also come to the conclusion that plant breeders may benefit more from 
employing pedigree data, as well as combined pedigree-genomic data than they 
really do now. 
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