
Sustainable Agriculture and Food Security
Series Editor: Rajeev K. Varshney

Frontier 
Technologies  
for Crop 
Improvement

Manish K. Pandey · Alison Bentley
Haile Desmae · Manish Roorkiwal
Rajeev K. Varshney  Editors



Chapter 8 
Forward Breeding for Efficient Selection 

Rajaguru Bohar, Susanne Dreisigacker, Hannele Lindqvist-Kreuze, 
Moctar Kante, Manish K. Pandey, Vinay Sharma, Sunil Chaudhari, 
and Rajeev K. Varshney 

Abstract Global food security is the numero uno priority in the current global 
situation, threatened by a number of challenges catalyzed by accelerated climate 
change and population growth. Crop improvement coupled with the modern plant 
breeding approaches, such as genomic-assisted breeding, is a proven solution to 
meet the food security. One of the key mandates in the modern plant breeding 
program is to combine the power of genomic selection into the breeding pipeline 
employing a low-cost genotyping solution. Several SNP marker-based platforms are 
now available depending on the objectives and field of application; despite the
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availability of different platforms, the public sectors face challenges in terms of 
funding and accessibility to the latest technology when compared to private sectors. 
Shared genotyping platform coupled with open breeding informatics involving 
different stakeholders with active support from donors will address several con-
straints faced by the public breeding program. Here, we summarize the available 
forward breeding genomic resources in the space of low-mid-density genotyping 
platform with special emphasis on shared services for four crop groups:
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1. Wheat (cereal) 
2. Potato (roots, tubers, and bananas (RTB crops)) 
3. Groundnut (grain legumes) 
4. Vigna species (legumes) 

Keywords Forward breeding · Genomics-assisted breeding · Marker-assisted 
selection · Single-nucleotide polymorphism · Genomic selection · Wheat · Potato · 
Groundnut · Vigna · Cowpea · Mung bean · Black gram 

8.1 Introduction 

Global food security is the numero uno priority in the current global situation, 
threatened by a number of challenges catalyzed by accelerated climate change and 
with the expected global population growth to bypass 9.75 billion figures, where 
more than 2.5 billion people reside in Africa by 2050 (FAOSTAT (2022)). Crop 
improvement coupled with the modern plant breeding approaches is one of the 
proven solutions to meet the food security along with number of other factors 
including, but not limited to exploiting the natural variations. Next-generation 
breeding, such as genomic-assisted breeding (GAB), employing molecular markers 
has a significant impact and is considered as a practical way forward to accelerate the 
crop improvement with specific focus to improved crop yield (Razzaq, Ali, et al. 
2021). Importance of GAB is evident from the commitment made by the Consulta-
tive Group on International Agricultural Research (CGIAR) with its 2030 Research 
and Innovation Strategy (Action Area 3) to support the breeding optimization 
pipelines and implementation of GAB approaches (CGIAR 2021). Methods of 
plant breeding was positively changed by the implementation of molecular marker 
technology especially after the boom of the genomic sequencing era that enhanced 
the pace of crop improvement. From the era of restriction fragment length poly-
morphisms (RFLPs) to simple sequence repeats (SSRs) to single-nucleotide poly-
morphisms (SNPs), the marker technology rapidly advanced, and currently, SNPs is 
considered as the most advanced and commonly used marker systems in plant 
breeding application (Bohar et al. 2020). One of the key mandates in the modern 
plant breeding program is to combine the power of genomic selection (GS) into the 
breeding pipeline. Low-cost genotyping solution, which is affordable and meaning-
ful, makes the practical application of GS integration. Many genotyping platforms 
are available, among which SNP genotyping method utilizing the high-throughput 
multiplexed approach is a predominantly used genotyping method, such as 
genotyping-by-sequencing (GBS). Though GBS is a preferred choice, it lacks



practical suitability, such as requirement of imputation to fill the missing data, and in 
turn requires a complex bioinformatics to suit the multiyear data interpretation. 
Diversity Arrays Technology’s DArTag (Diversity Arrays Technology, Bruce, 
Australia), Integrated DNA Technologies’ rhAmpSeq (Integrated DNA Technolo-
gies, Coralville, IA, USA), and Illumina’s AmpliSeq (Illumina, San Diego, CA, 
USA,) are some of the commercially available pooled and multiplexed sequencing 
technology targeting the specific SNPs. Though the available platforms demand a 
high up-front cost for designing, they have a comparative advantage with GBS in 
terms of repeatability, heterozygotes identification, and requirement of less bioin-
formatics support (Sneller et al. 2021). 

8 Forward Breeding for Efficient Selection 155

Several SNPs’ marker-based platforms are now available, depending on the 
objectives and field of application such as the following: high-density SNP 
genotyping platforms (HDSG) for discovery studies and linkage mapping; 
medium-density SNP genotyping platforms (MDSG) for GS and background stud-
ies; and low-density SNP genotyping platforms (LDSG), such as Kompetitive Allele 
Specific PCR (KASP), for forward breeding application through marker-assisted 
selection (MAS), marker-assisted backcrossing (MABC), and quality control 
(QC) analysis (Roorkiwal et al. 2020). Despite the availability of different platforms, 
the public sectors face challenges in terms of funding and accessibility to latest 
technology when compared to private sectors. To tackle such situation, Xu et al. 
suggested that there should be coordinated efforts by the scientific community, 
particularly in developing countries backed by big donors, such as Bill and Melinda 
Gates Foundation (BMGF). These efforts, especially in the field of modernization of 
plant breeding through establishment of public–private partnerships, will improve 
the international crop improvement system (Xu et al. 2017; Cobb et al. 2019). Shared 
genotyping platform coupled with open breeding informatics involving different 
stake holders with active support from donors, such as BMGF, will address several 
constraints faced by the public breeding program. CGIAR’s strategic approach in 
this direction includes the development of world-class shared genotyping service 
through High-Throughput Genotyping Project (HTPG) (http://cegsb.icrisat.org/ 
high-throughput-genotyping-project-htpg/), the Genomics Open-Source Breeding 
Informatics Initiative (GOBii) (http://gobiiproject.org/), and the Excellence in 
Breeding (EiB) (https://excellenceinbreeding.org/) platform led by the CGIAR insti-
tutes with the able funding of the BMGF (Bohar et al. 2020). HTPG facilitated 
low-cost and high-throughput genotyping for CGIAR and National Agricultural 
Research Systems (NARS) led by ICRISAT (2016–2020) and further transitioned 
to genotyping/sequencing tools and services module of EiB platform through service 
provider, Intertek AgriTech (http://www.intertek.com/agriculture/agritech/) (Bohar 
et al. 2020). 

EiB has been coordinating and supporting the use of genotyping by NARS and 
has launched shared genotyping services, such as EiB-LDSG and EiB-MDSG, for 
the benefit of national, CGIAR, and other breeding programs. Currently, the EiB 
shared services is functional with all CGIAR centers and their partner programs in 
rice, wheat, maize, several millets, legumes, and several other crops, which are 
readily deployable in the breeding programs with continuous addition of new 
crops and marker resources. These services are targeted at CGIAR and NARS

http://cegsb.icrisat.org/high-throughput-genotyping-project-htpg/
http://cegsb.icrisat.org/high-throughput-genotyping-project-htpg/
http://gobiiproject.org/
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breeding institutions, aggregating demand across institutions to offer high-quality, 
low-cost genotyping with faster turnaround time of 10–15 business working days. 
Implementation of shared services is one among the six requests from the funder 
consortium Crops to End Hunger (CtEH), whose overall objective is to modernize 
CGIAR breeding programs and networks ensuring those programs deliver the 
highest possible rate of genetic gains in farmers’ field (Hunt et al. 2021). The 
EiB-LDSG service (formerly HTPG) based on KASP platform, which is cost-
effective up to 200 markers, is suited for applications including specific trait 
screening (foreground selection), QC, and MAS. The markers available for use in 
EiB-LDSG can be accessed at https://excellenceinbreeding.org/module3/kasp, 
which is continuously updated and improved (EiB-LDSG 2022). The EiB-MDSG 
service is a DArTAg genotyping method with a density of up to 4000 markers, 
primarily suited to GS applications, but can also be used for diversity studies, DNA 
fingerprinting, and MABC for background recovery analysis (EiB-MDSG 2022). 
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Success stories and publications incorporating the HTPG, EiB-LDSG, and/or 
EiB-MDSG are reported in several crops, such as groundnut (Parmar et al. 2021), 
potato (Kante et al. 2021; Sood et al. 2022), cassava (Le Thuy et al. 2021), sorghum 
(Mwamahonje et al. 2021), and banana (Garcia Oliveira et al. 2021). Here, we 
summarize the available forward breeding genomic resources in the space of low-
mid-density genotyping platform with special emphasis on the resources available 
with EiB genotyping shared services for four crop groups: (1) wheat (cereal), 
(2) potato (roots, tubers, and bananas (RTB crops)), (3) groundnut (grain legumes), 
and (4) Vigna species (legumes). 

8.2 Genomic Resources and Forward Breeding in Wheat 

Wheat is a key food staple that provides around 20% of protein and calories 
consumed worldwide. The demand for wheat is projected to continue to grow over 
the coming decades, particularly in the developing world to feed an increasing 
population and, with wheat being a preferred food, continuing to account for a 
substantial share of human energy needs in 2050 (Wageningen 2016). Current 
annual genetic gains for grain yield of about 1% are being realized in the CIMMYT 
Global Wheat Program (GWP) for a number of target populations of environments 
(Crespo-Herrera et al. 2017, 2018; Honsdorf et al. 2018; Gerard et al. 2020). Thus, 
higher-yielding, more productive varieties continue to be released in developing 
countries, resulting in enhanced productivity (Lantican et al. 2016). In addition to 
grain yield improvement together with yield stability, key breeding objectives of the 
program (similar to others) are resistance/tolerance to biotic and abiotic stresses, end 
use, and nutritional quality characteristics. In order to keep up with the pressing 
future demands of wheat production and to adapt to changing environmental factors, 
wheat breeders overall and at CIMMYT are constantly turning to new and emerging 
technologies and breeding strategies. For example, advanced genetics and genomics 
tools are progressively deployed and related operating processes optimized (Fig. 8.1) 
(Dreisigacker et al. 2016, 2021).

https://excellenceinbreeding.org/module3/kasp
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Fig. 8.1 Implementation of genetic and genomic tools in the CIMMYT Global Wheat Program 

Marker-assisted forward and backcross breeding are approaches that can be 
successfully deployed in crops, mainly when (i) a target trait is rather difficult to 
manage in the field because it is expensive or time-consuming to measure, has low 
penetrance, or has complex inheritance; (ii) trait selection depends on specific 
environments or host developmental stages; (iii) recessive alleles during 
backcrossing need to be maintained or for speeding up backcross breeding in 
general; and (iv) pyramiding multiple monogenic traits or several QTL for single 
traits is looked for (Miedaner and Korzun 2012). However, often the number of 
markers per trait with enough information content about their relevance and useful-
ness to a breeding program is low. To increase response to selection using marker-
assisted forward and backcross breeding in wheat, markers related to genes for 
disease resistance, end use, and nutritional quality are mainly used, because they 
show reasonable effect size. In the CIMMYT GWP, the targeted development of 
rust-resistant wheat germplasm is probably the most important example for which 
markers are adopted. The aim is to develop elite breeding lines that carry a combi-
nation of non-race-specific adult-plant resistance genes and race-specific genes, to 
avoid applying extremely high selection pressure on the pathogen that might endan-
ger the avirulence of individual genes in developing countries. Rust research in the 
GWP has mapped and officially designated several rust genes (reviewed by Lan and 
Basnet 2016). Multiple pleiotropic non-race-specific genes (including Lr34/Yr18/ 
Sr57/Pm38, Lr46/Yr29/Sr58/Pm39, and Sr2/Yr30/Lr27/Pm) are present in the 
CIMMYT wheat germplasm pool and build the basis of resistance against the 
three rusts (Singh et al. 2014). A larger number of race-specific stem and yellow 
rust resistance genes not present in CIMMYT germplasm have recently been 
introgressed into a set of elite genetic backgrounds via MABC to develop new 
parental lines (Table 8.1). In addition to rust, resistance to fusarium head blight 
(FHB) and Septoria tritici blotch are targets for forward breeding. For example, 
recombinant inbred lines that have the resistant Fhb1 and Sr2 alleles in coupled



phase linkage in the background of the cultivar HARTOG were crossed with 
CIMMYT bread wheat lines and selected with molecular markers for both genes 
in addition to the use of pseudo-black chaff (PBC) as a phenotypic marker for the 
selection of Sr2 (He et al. 2020). The Fhb1-resistant allele has previously been 
absent in CIMMYT germplasm as the gene is usually tightly linked in repulsion 
phase (the case where each homologous chromosome has one dominant and one 
recessive allele from the two genes) on chromosome 3BS and CIMMYT wheat 
breeding focused much time and energy on stem rust resistance. Durum wheat 
(Triticum turgidum subsp. durum) is also an important crop worldwide, while its 
production runs secondary to that of bread wheat. One aspect to consider is the 
relatively restricted food functionalities of durum wheat, primarily attributed to its 
kernel texture and gluten strength limitations (Morris et al. 2019). During the last 
few years, soft kernel durum was crossed with CIMMYT elite durum lines to 
produce soft kernel progeny with a high degree of genetic variance for milling and 
baking quality. Selection for the novel soft kernel types was routinely supported with 
associated KASP markers. 
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Table 8.1 List of rust resistance genes introgressed via MAS for parental development 

Trait Source Gene 

Pleiotropic adult-
plant resistance 

RL6077/AOC-YR Lr67/Yr46/Sr55/ 
Pm46 

SUJATA Lr67/Yr46/Sr55/ 
Pm46, YrSuj-7BL 

Stem rust resistance 
genes 

SWSR22T.B. Sr22 

KACHU/3/WHEAR//2*PRL/2*PASTOR Sr25 

SHORT SR26 TRANS./4/3*CHIBIA//PRLII/ 
CM65531/3/MISR 2/5/2*BAJ #1 

Sr26 

SR32 Sr32 

W3763-SR35 Sr35 

SR47 Sr47 

SR50 Sr50 

Stripe rust resis-
tance genes 

ALPOWA Yr39 

CHUAN NONG 19 Yr41 

BLANCA GRANDE 515 Yr5, Yr15 

SUMMIT 515 Yr5, Yr15 

YR51#5515–1 Yr51 

KOELZ W 11192:AE Yr52 

YR57#5474–6 Yr57 

IRAGI Yr59 

LALBMONO1*4/PVN Yr60 

Breeding in Mexico routinely utilizes two crop seasons per year that cuts the 
breeding time by about half but also allows selection for a range of traits at 
contrasting field sites that have distinct daylength and temperature regimes. MAS 
is deployed in both crop-seasons. In 2020, a field screenhouse and rapid-generation 
advance (RGA) greenhouse facility at the CIMMYT Toluca research station were



constructed. Donor parents derived from the previous parental development pipe-
lines are now used and crossed with selected elite lines for rapid introgression, 
pyramiding, and trait augmentation through RGA. The scaling-up marker-assisted 
forward and backcross breeding in the public sector has long been hampered by high 
genotyping costs and insufficient data management support. And still, the cost of 
genotyping for several high-throughput SNP platforms is inversely proportional to 
sample quantity, which in the case of smaller public sector organizations that have 
low individual demand partly impedes the routine deployment of molecular markers. 
In 2016, the HTPG project supported by the BMGF developed a shared industrial-
scale service of low-density SNP genotyping serving the CGIAR and partner 
breeding programs. A low-cost, fast turnaround service (EiB-LDSG) was 
established by EIB platform. EiB-LDSG is routinely used in the CIMMYT GWP. 
Information on the wheat markers that are routinely applied is also available at 
https://excellenceinbreeding.org/module3/kasp. 
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8.3 Genomic Resources and Forward Breeding in Potato 

To come up with a satisfactory variety, potato breeders must concentrate their efforts 
on selecting for a multitude of traits besides yield. Depending on the breeding 
program, goals as many as 12 traits have been proposed (Bonierbale et al. 2019). 
Although stacking of multiple genes is complicated in highly heterozygous tetra-
ploid potato, it is possible to make progress through a dedicated MAS procedure 
(Bradshaw 2017; Stefańczyk et al. 2020; Rakosy-Tican et al. 2020). Furthermore, 
MAS facilitates the traits-based selection without heavy phenotypic evaluation at 
early stages, as compared to conventional breeding methods. In International Potato 
Center (CIP), the main breeding targets were for decades centered on disease 
resistance and climate resilience to achieve varieties that are productive under 
stressful conditions. The main diseases of potato in the breeding target areas of 
CIP are late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de 
Bary, potato virus Y (PVY), potato virus X (PVX), and potato leaf roll virus 
(PLRV). Molecular markers have been identified to trace the presence of many 
genes that provide control to these diseases (Nie et al. 2016; Fulladolsa et al. 2015; 
Ottoman et al. 2009; Whitworth et al. 2009; Tiwari et al. 2013), and significant time 
and cost savings can be achieved by using them instead of traditional phenotyping. 
We had calculated that the use of MAS for Rladg gene that provides resistance to 
PLRV (Mihovilovich et al. 2014; Velásquez et al. 2007) can save up to 88% of the 
costs as compared to phenotypic assays (RTB. 2019). This is particularly valuable 
for traits such as PLRV resistance that is extremely difficult to measure because the 
virus is phloem limited and thus infection assays require the use of vector insects or 
grafting to indicator plants (Mihovilovich et al. 2014). The Rladg assay that was 
developed at CIP is a gel-based SCAR marker (Mihovilovich et al. 2014) that is well 
suited for the screening of a relatively small number of samples. However, this 
screening method is not ideal for screening in the early breeding stages when

https://excellenceinbreeding.org/module3/kasp


thousands of clones would be evaluated. Furthermore, a breeding program is usually 
interested in screening for more than one single trait, and therefore, screening for 
multiple markers in a single assay is more efficient. KASP offers an excellent cost-
efficient option for breeding programs to develop custom sets of low-density 
markers for purposes, such as QC or MAS (Semagn et al. 2014; Caruana et al. 
2021). Therefore, at CIP we started to convert some of the most important trait 
markers for our breeding program into KASP markers. The first trait markers 
converted and validated are two markers for PVY resistance and two for LB 
resistance (Kante et al. 2021). The PVY markers were designed for the Ryadg 
gene that is the main source of PVY resistance in CIP breeding populations 
(de Herrera et al. 2018). Based on high assay power and low error rate, the new 
markers work very efficiently in CIP breeding program (Kante et al. 2021). The LB 
markers were discovered in GWAS studies using CIP breeding germplasm and 
located in or near the QTL in chromosome 9 that has been shown to contain R8 
resistance gene (Lindqvist-Kreuze et al. 2014, 2021; Jiang et al. 2018). These 
markers have a variable performance, depending on the germplasm they are applied 
to, but have consistently good performance in the populations targeting LB as a main 
trait (Kante et al. 2021; M. Gastelo, pers. Comm). These markers are available at 
https://excellenceinbreeding.org/module3/kasp through EiB-LDSG. Other markers 
well worth pursuing as a KASP assay for disease resistance traits in CIP germplasm 
include at least gene Rx for PVX resistance and Rladg for PLRV resistance. 
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Another useful application for KASP markers is identity verification with the help 
of a set of QC markers. QC marker sets have been reported for maize, rice, and sweet 
potato (Gemenet et al. 2020a; Ndjiondjop et al. 2018; Semagn et al. 2012). 
Mislabeled genotypes at any stage of the breeding process are problematic and 
should be avoided as they waste time and resources and negatively affect genetic 
gains (Gemenet et al. 2020a). We selected a set of SNP markers from the SolCAP 
Infinium array that had discriminatory power to differentiate CIP breeding germ-
plasm. Using the tetraploid calls, it was possible to discriminate full and half sibs 
with as few as 20 SNP markers (Kante et al. 2021). Several cases of mislabeling were 
discovered when this set of markers was applied to test the identity of clones across 
different stages (Kante et al. 2021). Although the KASP assay for a relatively low 
number of markers is cost-efficient, there is a need to carefully define the best 
approach for routine use of these markers in the breeding program. At the very 
least, the CIP breeding program will strive to verify the identity of the progenitors in 
the crossing block and the advanced clones that are shared with partners for variety 
evaluation. 

The rate of progress in genetic gains by recurrent selection in potato is largely 
limited by the number of vegetative generations needed to complete all phenotyping 
(Bradshaw 2017). GS and genomic estimations of breeding values are a powerful 
tool that can shorten the breeding cycle of potato and lead to increased genetic gains 
for several traits (Ortiz 2020). Most studies published in potato GS up to date have 
utilized hybridization-based Illumina SNP SolCAP array (Stich and Van Inghelandt 
2018; Enciso-Rodriguez et al. 2018; Endelman et al. 2018) or GBS (Sverrisdóttir 
et al. 2017; Caruana et al. 2019; Byrne et al. 2020). SolCAP array is a relatively

https://excellenceinbreeding.org/module3/kasp


expensive assay keeping in mind that not all markers are applicable across different 
breeding populations (Slater et al. 2014). GBS can be more affordable particularly if 
sequencing depth is kept at a moderate level, but it is computationally intensive 
(Gemenet et al. 2020b). However, if one wishes to utilize the allele dosage infor-
mation in the GS model, it is advisable to consider sequencing depth of 60–80x so 
that the different heterozygous states can be called reliably in autotetraploid potato 
(Uitdewilligen et al. 2013). 
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Targeted sequencing with selected SNP across the genome is therefore an attrac-
tive option to reduce the number of markers to a more manageable level allowing for 
a sufficient sequencing depth (Slater et al. 2014). DArTag is a targeted Diversity 
Arrays Technology (DArT, http://www.diversityarrays.com), genotyping method 
where a single oligonucleotide is used to capture selected SNPs or indels. Further 
advantage of this system is that the sequencing of the fragments allows for identi-
fication of other polymorphisms beyond the originally targeted SNP/indel and thus a 
capture of additional haplotypes. Tetraploid calls can be obtained from the raw read 
counts, even for samples with low read depth (<15). As part of the EiB-MDSG 
efforts, we developed such a reduced, but representative set of markers using 
previously available data points from the SolCAP SNP (Hamilton et al. 2011; 
Felcher et al. 2012) and SolSTW SNP (Uitdewilligen et al. 2013; Vos et al. 2015) 
genotyping efforts with CIP and Jeff Endelman’s Lab at the University of Wisconsin 
potato germplasm. The marker selection and primer design yielded a set of 2503 
markers, with a number of markers per chromosome ranging between 177 and 272. 
In a standard DArTag assay, these markers have a mean median read depth of 
164, which allows for successful dosage calling in tetraploid potato. Like the 
KASP marker set, the DArTag marker set is in public domain and available for all 
interested breeding programs through EiB-MDSG. The mid-density DArTag marker 
set will allow a cost-effective genotyping of the breeding material for genomic 
prediction. Further, the inclusion of two trait markers for Ryadg and Rysto into the 
panel will allow a characterization of the breeding material without necessarily 
increasing the genotyping costs. Inclusion of more trait markers is and will allow a 
one-time genotyping of clones through the breeding cycle, for trait characterization 
and genomic prediction. CIP clones from intermediate trials DArTag genotyping for 
GS can be done from tuber and/or leaf samples, assuring therefore a rapid availabil-
ity of molecular data of the prediction population. 

8.4 Genomic Resources and Forward Breeding 
in Groundnut 

Groundnut or peanut (Arachis hypogaea L.) is an important food and oil crop, 
cultivated across the tropics and subtropics regions. Globally, it is cultivated on an 
estimated 29.6 million hectares of area, producing 48.86 million tons (FAOSTAT 
2022; http://www.fao.org/faostat/en/#data/QC). Moreover, half of groundnut crop

http://www.diversityarrays.com
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produce is used to extract oil, with the remaining eaten raw or processed. Groundnut 
is often referred to as the “poor man’s almond” owing to its high nutritional content, 
like oil, protein, fiber, polyphenols, antioxidants, vitamins, and minerals. Gibbons 
began breeding work in groundnut around 1976. Groundnut breeding’s major goal is 
to develop cultivars having high-yielding, early maturity, adaptability to specific 
conditions and production systems, resilience or endurance to environmental chal-
lenges, disease and insect resistance, and improved nutritional quality. Efforts to 
enhance groundnut breeding via genomics have been very successful, over the 
previous decades. Availability of genomic resources, such as extensive whole-
genome assemblies and transcriptome assemblies, high-density saturated genetic 
maps, and, most interestingly, linked markers with traits of interest, has eased routine 
breeding programs (Pandey et al. 2020). Modern-day advanced breeding strategies, 
such as GS, speed breeding, or RGA, are projected to boost groundnut genetic gains 
(Parmar et al. 2021). Here, we commence by highlighting recent advances in 
groundnut genomics, with an emphasis on next-generation technologies. 
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8.4.1 Genomic Resources in Modern Era 

Recent groundnut genomic advancements have enabled the emergence of a diverse 
array of advanced genomic methods and technologies for crop improvement. The 
groundnut researchers have succeeded in terms of leveraging genetic resources, 
notably during the past decade (Fig. 8.2). A wide range of genomic resources, 
including reference genomes assemblies, genome-wide genetic markers, expression 
atlas, genotyping platforms (low, mid, and high density), QC panels, and diagnostic 
markers, have facilitated the translational genomics in groundnut research. 

8.4.2 Reference Genomes Assemblies 

A reference genome provides a standardized, important basis for genomic and 
genetic research. Utilizing advanced sequencing technologies, a well-assembled 
and annotated genome has been developed, which facilitates the understanding of 
complex genome structure, aids gene discovery, and helps in the exploiting genetic 
resources for faster crop improvement (Pandey et al. 2020). In 2016, IPGI through 
Peanut Genome Consortium (PGC) completed the sequencing of two diploid ances-
tors (A. duranensis V14167 and A. ipaensis K30076) of cultivated groundnut 
(Bertioli et al. 2016) in order to solve the complexity associated with assembling 
chromosomal pseudomolecules. Meanwhile, the Diploid Progenitor Peanut 
A-Genome Sequencing Consortium (DPPAGSC) sequenced both diploid progenitor 
species, A. duranensis (Chen et al. 2016) and A. ipaensis (Lu et al. 2018). Further-
more, with the advent of next-generation sequencing (NGS) technology, it aided 
research in further improving, refining, and developing high-quality reference



genome assemblies for the cultivated tetraploid groundnut. In 2018, the genome 
assembly for the allotetraploid wild groundnut A. monticola was made publicly 
available (Yin et al. 2018). A major breakthrough among groundnut researchers 
took place with the availability of two reference genomes for subsp. fastigiata (Chen 
et al. 2019; Zhuang et al. 2019) and one for subsp. hypogaea (Bertioli et al. 2019). 
These reference genome assemblies revealed new knowledge on groundnut genes 
that have been impacted by domestication and breeding, highlighting breeding 
possibilities for future. 
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Fig. 8.2 A road map of significant developments in the field of groundnut genomics 

8.4.3 Whole-Genome Resequencing and Genome-Wide 
Markers 

Adoption of NGS approaches enabled the discovery and deployment of a diverse 
array of molecular markers in groundnut. Both diploid genomes (A. duranensis and 
A. ipaensis) were mined for markers, resulting in the discovery of 135,529 and 
199,957 SSRs, respectively (Zhao et al. 2017). Additional comparative diploid 
genome study between A. duranensis and A. ipansis detected 515,223 InDels, i.e., 
269,973 insertions and 245,250 deletions (Vishwakarma et al. 2017). Furthermore, 
high-coverage WGRS data for 41 distinct genotypes have been generated, resulting 
in the finding of 98,375 SNPs in the A-subgenome and 65,407 SNPs in the 
B-subgenome (Pandey et al. 2017a; Clevenger et al. 2017). Notably, 58,233 high-
quality informative SNPs were employed to develop high-density genotyping plat-
form, “Axiom_Arachis” Array (Pandey et al. 2017a). Nowadays, it is commonly



utilized in groundnut molecular breeding routine activities for mapping traits of 
interest and detection of associated genomic regions. Additionally, 300 diverse 
accessions of the ICRISAT groundnut reference set have been sequenced in order 
to explore genome-wide structural changes, diversity, and marker trait association 
studies (see Varshney et al. 2019). Similar initiatives are ongoing in the USA and 
China for diverse groundnut sets. Likewise, significant use of WGRS data has 
resulted in the discovery of unique alleles, signature sequences, and related markers. 
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8.4.4 Gene Expression Atlas 

NGS not only advances genome sequencing and novel genome assembly develop-
ment, but it also enhances genome annotation advancement via the RNA sequencing 
(RNA-seq) strategy. A groundnut subsp. hypogaea gene expression atlas was 
generated (Clevenger et al. 2017). This investigation generated gene expression 
data from 22 groundnut tissues and reported 8816 putative homeologous genes, 
over 9000 alternative splicing events, and over 6000 non-coding RNA. Similarly, 
the second groundnut transcriptome map has been generated using RNA-seq of 
39 samples from various tissues and environments. This map represents 91.73% of 
all annotated genes (Zhuang et al. 2019). Subsequently, a gene atlas for subsp. 
fastigiata has been employed by utilizing the same subspecies tetraploid genome 
(Sinha et al. 2020). Furthermore, genome annotation expansion facilitates the inte-
gration of proteome and metabolome atlases. These findings will help us to better 
understand genomes that have more RNA genes than protein-coding ones. Crop trait 
development and expression will be better understood if the genome, metabolome, 
and epigenome are all studied in greater depth. 

8.4.5 Rapid and Cost-Effective Genotyping Assays 

The current crop genomics scenario has been transformed by NGS technologies, 
which give a multitude of sequence information with significant increases in cover-
age, speed, and expense. Such advances have permitted the design of low- to high-
throughput genotyping platforms. SNPs are regarded the ideal marker due to 
genome-wide uniform distribution and cost-effectiveness. For the present, efficient 
and cost-effective genotyping platforms are being developed in groundnut geno-
mics, which will be used according to the study’s objective. For example: (a) High-
density genotyping platform (“Axiom_Arachis” 58 K SNP arrays) has been devel-
oped and utilized in several studies, marker trait analysis, dense genetic map 
construction, and QTL analysis. (b) A mid-density assay (2500–5000 SNPs) has 
been successfully deployed in genetic mapping; QTL analysis (Bomireddy et al. 
2022) is suggested for performing GS, genetic diversity assessment, and background 
selection; using Agri-seq 5 K assay, genotyping of about 3000 lines has been done so



far in order to optimize genomic prediction in groundnut breeding. Similar DArT-
seq assay with 2500 SNPs has been developed and ready for deployment through 
EiB-MDSG. And (c) low-density assay (10–100 SNPs) can be effectively utilized 
for QC assessment and purity testing of founder parents, hybridity confirmation, and 
early generation selection through EiB-LDSG. Panel of highly informative 20 SNPs 
has successfully tested for quality check among founder parents of IC-Asia, 
IC-WCA, IC-ESA, ICAR-DGR, and UAS-Dharwad breeding (Unpublished). So 
far, QC panel has effectively used in hybridity testing of more than 700 F1 plants 
(IC-Asia, ICAR-DGR, and UAS-Dharwad) and for determination of homozygosity 
among advanced breeding lines. 
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All the abovementioned genotyping assays are successfully deployed in routine 
breeding activities. In future, such genotyping platforms will become more widely 
used in breeding programs around the world and pave a new era of genomics in 
molecular breeding. 

8.4.6 Sequencing-Based Trait Mapping 

New inventions in sequencing and high-throughput genotyping have accelerated 
trait discovery studies significantly while also enabling candidate gene identification 
at a fast pace. The substantial decrease in the cost of sequencing and the increased 
advent of high reference genomes in groundnut have facilitated sequence-based trait 
mapping more feasible and time-effective, over the past 2–3 years. In fact, right now, 
sequencing-based mapping is now accomplished out by either sequencing the entire 
populations or pooling samples exhibiting extreme phenotypes of the desired trait 
(Varshney et al. 2019). Inside this aspect, the low-to high-density sequencing 
methodologies are being employed to develop high-density genetic maps and 
improve trait mapping precision in groundnut. Recently, the GBS method is 
employed to develop high-density maps, to perform QTL mapping and detection 
of candidate genes (Pandey et al. 2017c; Han et al. 2018; Dodia et al. 2019). By 
using SLAF-seq technology, two high-density maps (with 2266 and 2808 SNP loci) 
have been constructed, for QTL mapping of quality and growth habit traits (Hu et al. 
2018; Li et al. 2019), respectively. Similar approach has been successfully deployed 
to develop dense map (with 7184 SNPs), which facilitates to narrow down the 
co-localized regions associated with seed size traits, resulting in the detection of 
trait-linked candidate genes. Additionally, same genetic map has been used for testa 
color trait mapping (Zhuang et al. 2019). Association mapping of 158 groundnut 
diverse accessions with 17,338 polymorphic SNPs has allowed to identify marker 
trait association for agronomic traits (Zhang et al. 2017). To obtain large number of 
polymorphic SNPs, the WGRS approach has been deployed in RIL population 
(Tifrunner GT-C20), which enabled the generation of high-density genetic maps 
(8869 to 11,106 SNP loci), fine mapping of genomic region, and candidate gene 
discovery for ELS, LLS, and TSWV resistance (Agarwal et al. 2018, 2019). How-
ever, both WGRS and GBS platforms have been extensively deployed for mapping



traits and identification of QTLs in groundnut, but each has its own shortcomings. 
Recent methods for trait mapping (QTL-seq, Indel-seq, Seq-BSA, MutMap, and 
BSR-seq) generally rely on high- and low-bulk sample pooled sequencing, which 
exhibits extreme phenotypes related to the trait of interest under investigation. 
Among all, the “QTL-Seq” approach has been effective in identifying genomic 
regions and candidate genes in groundnut (Pandey et al. 2017b; Clevenger et al. 
2018; Luo et al. 2019; Zhuang et al. 2019; Kumar et al. 2020; Zhao et al. 2020). Such 
research efforts have been facilitating the development of diagnostic markers and 
will help in pyramiding of QTLs associated with traits of interest in groundnut 
breeding. 
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8.4.7 Genomics-Assisted Breeding to Accelerate Groundnut 
Breeding 

The groundnut researcher has taken several initiatives over the past decade to 
provide efficient genetic resources for crop improvement. Groundnut achieved the 
status of crop with the plentiful of genomic resources, which enable identification of 
genes and associated markers used in GAB. Based on the available genomic 
resources, diagnostic markers for high-oleic acid and resistance to nematode, rust, 
and LLS have been effectively generated in groundnut. The three GAB procedures, 
notably MAS or MABC, marker-assisted recurrent selection (MARS), and GS, have 
proven the most effective in groundnut. The development of a nematode-resistant 
variety, NemaTAM, was the first successful use of MAS (Simpson et al. 2003). 
Later, by pyramiding the nematode resistance and high-oleic trait, employing 
molecular markers linked with these traits, a high-oleic “Tifguard High O/L cultivar” 
has been developed (Chu et al. 2011). Following that, favorable alleles (ahFAD2A 
and ahFAD2B) for oleic acid content from the donor parent SunOleic 95R were 
transferred to ICGV 06110, ICGV 06142, and ICGV 06420 using MAS (Pasupuleti 
et al. 2016). Similarly, utilizing the MABC approach, high-oleate lines have been 
developed in ICGV 05141 (Bera et al. 2018), GPBD 4 (Ndeve et al. 2019), and 
ICGV 06100 (Bera et al. 2018). In another study, high-oleate lines have been 
developed through MABC utilizing favorable alleles from parents (KN176, DF12, 
and KX016) (Huang et al. 2019). Likewise, work has been done in developing 
cultivars resistant to foliar diseases (rust and LLS) together on high-oleic back-
ground (Janila et al. 2016; Bera et al. 2018; Shasidhar et al. 2020). There have certain 
attempts to combine high-oleic acid with foliar disease resistance in GPBD 4, G 
2–52, TMV 2, and JL 24, in addition to ICGV 06189 variety (Bhat et al. 2022). 
Among the molecular breeding lines developed through marker-assisted 
backcrossing for high oleic acid (Janila et al. 2016), two Virginia bunch high oleic 
varieties namely Girnar 4 (ICGV 15083) and Girnar 5 (ICGV 15090) and two 
Spanish bunch high oleic varieties namely GG 39 (ICGV 16697) and GG 
40 (ICGV 16688) are released for cultivation in India. More recently, two elite



varieties, GPBD 4 and G-252, have been improved for oleic acid content using 
MABC (Jadhav et al. 2021). Now, development of groundnut backcross lines has 
been made more precise and efficient using the available genetic resources for LLS 
and rust resistance (Pandey et al. 2020). The first effort has been made by utilizing 
SSR markers to enhance resistance for rust in three susceptible varieties, ICGV 
91114, JL 24, and TAG 24 (Varshney et al. 2014). Using two to three backcrosses 
and selfing, 200 backcross lines were selected. From these, 81 lines were examined 
in the field and found to be more resistant to rust. As contrast to susceptible parents, 
these lines produced far more pod yield (56–96%) in affected environments 
(Pasupuleti et al. 2016). With GPBD 4 as the donor, various attempts have been 
made to develop LLS- and rust-resistant backcross lines in JL 24 (Yeri and Bhat 
2016) and TMV 2 (Kolekar et al. 2017; Ramakrishnan et al. 2020). Two foliar 
disease resistance varieties namely Improved JL 24 (DBG 3) and Super TMV 
2 (DBG 4) using donor source GPBD 4 (Bhat et al. 2022) were developed using 
marker-assisted selection and released for cultivation in Karnataka state of India. The 
most of lines are being tested in multiple locations or on large-scale farms in order to 
facilitate varietal development (Bhat et al. 2022). 
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8.5 Genomic Resources and Forward Breeding in Vigna 
Species 

The genus Vigna with around nine domesticated crops, viz., mung bean (Vigna 
radiata (L.) R. Wilczek var. radiata), black gram, (V. mungo (L.) Hepper), cowpea 
(V. unguiculata (L.) Walp), moth bean (V. aconitifolia (Jacq.) Marechal), azuki bean 
(V. angularis (Willd.) Ohwi & H. Ohashi), rice bean (V. umbellata (Thunb.) Ohwi & 
H. Ohashi), creole bean (V. reflexo-pilosa), tuber cowpea (V. vexillata (L.) A. Rich), 
and bambara groundnut (V. subterranean (L.) Verdc.), is one of the important genera 
contributing toward food and nutritional security across the world (Takahashi and 
Tomooka 2020). Except for mung bean, cowpea, and black gram, the other species 
have limited progress on development of genomic resources and use of forward 
breeding approaches for crop improvement. The forward breeding approaches have 
been successfully proven efficient in enhancing selection accuracies and intensity for 
complex traits in many crops, thus helping breeders in selecting individuals with the 
most desirable traits of the product profile. The initial efforts used isoenzymes, 
random amplified polymorphic DNA (RAPD), and RFLP markers and later shifted 
to microsatellite markers derived from various Vigna species for the construction of 
genetic maps and to find QTLs associated with the traits of interests. The recent 
advancement in whole-genome sequence has strongly improved the access to 
molecular markers for these crops. Several thousands of SNP markers have been 
produced by GBS and WGRS, which are being used to assess the diversity at the 
genomic level and for developing new genomic resources including diagnostic 
markers and tools for deployment in breeding programs. The genomic resources



available in cowpea (Muñoz-Amatriaín et al. 2017; Boukar et al. 2019), mung bean 
(Kim et al. 2015), and black gram (Bisht and Singh 2013) are discussed in detail in 
earlier studies. The important genomic resources that are useful for the genetic 
improvement of important Vigna crops through forward breeding approaches are 
summarized below. 
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8.5.1 Cowpea 

Cowpea (Vigna unguiculata), 2n = 22 with a genome size of 620 MB, is one of the 
largely grown Vigna species in the dry agroecologies of the tropics in Latin America, 
Africa, and South Asia. The cultivated cowpea belonging to the cultivar group 
Unguiculata is divided into five cultivar groups, namely, unguiculata, sesquipedalis 
(yard-long-bean), textilis, biflora, and melanophthalmus (Padulosi and Ng 1997). 
Initial efforts for use of molecular markers for the cowpea improvement used RFLP 
(Fatokun et al. 1993), RAPD (Kaga et al. 1996; Simon et al. 2007), inter-simple 
sequence repeat (ISSR) (Ajibade et al. 2000), amplified fragment length polymor-
phisms (AFLPs) (Fang et al. 2007), and SSR (Gupta and Gopalakrishna 2010; 
Ogunkanmi et al. 2008) to characterize accessions belonging to the four subgenera 
of the genus Vigna and to study genetic diversity within cultivated as well as wild 
relatives of cowpea accessions. The world collection of landraces and African 
ancestral wild cowpea were characterized at molecular level with >1200 SNP 
markers. The study identified two major gene pools in cultivated cowpea in Africa, 
each with landraces mostly distributed in Western Africa (GP1) and Eastern Africa 
(GP2) (Huynh et al. 2013). GBS was used to discover more SNPs in cowpea that 
could be used to study genetic diversity, population structure, and phylogenetic 
relationships (Xiong et al. 2016). 

Four QTLs on Vu01 with 24 to 95% PV associated with root-galling and egg 
masses per root system were reported most effective against resistance to root-knot 
nematode caused by M. javanica (Ndeve et al. 2019). The trait-specific SRR markers 
associated with different traits, such as seed size, pod fiber thickness, seed weight 
(Andargie et al. 2011), pod length (Kongjaimun et al. 2012), days to flower 
(Andargie et al. 2013), pod number per plant (Xuet al. 2013), and pod tenderness 
(Kongjaimun et al. 2012), were identified in different studies. Similarly, useful SNP 
markers were reported for cowpea bacterial blight (Agbicodo et al. 2010), foliar 
thrips (Lucas et al. 2012), leaf senescence (Xu et al. 2013), heat tolerance (Lucas 
et al. 2013a), seed size (Lucas et al. 2013b), aphid infestation (Huynh et al. 2015), 
and fusarium wilt (Pottorff et al. 2012) that could be deployed in the breeding 
programs. The microsatellite marker SSR1 was successfully used to transfer striga 
resistance gene from the breeding line IT93K-693-2 into three farmers’ preferred 
varieties, viz., IT90K-372-1-2, KVx30–309-6G, and TN5–78 through MABC 
(Salifou et al. 2016). The resistance to three striga races SG1, SG3, and SG5 from 
IT97K-499-35 into an elite farmer preferred cowpea cultivar Borno Brown was 
successfully introgressed using three markers SSR-1, 61RM-2 and C42–26



(Omoigui et al. 2017). Around 28 introgression lines selected in the BC1F2:4 
generation with large seed size, brown seed coat color carrying marker alleles 
were evaluated in the field for resistance to striga resistance. The SSR-1 was 
identified as best for screening genotypes for striga resistance. A rare haplotype 
associated with large seeds at the Css-1 locus was successfully stacked from an 
African buff seed-type cultivar IT82E-18 (18.5 g/100 seeds) into a blackeye seed-
type cultivar CB27 (22 g/100 seed) (Lucas et al. 2015). The foreground and 
background selections using genome-wide SNPs identified introgression lines with 
very large seed size (28–35 g/100 seeds) and desirable seed quality traits. For 
bacterial blight, one major QTL on linkage group (LG) Vu09 (qtlblb-1) accounting 
for 30.58% phenotypic variation (PV) and two QTLs, i.e., qtlblb-2 and qtlblb-3 on 
LG Vu04 with 10.77% and 10.63%, PV, respectively, were reported (Dinesh et al. 
2016). The major QTL on Vu09 was successfully introgressed from cultivar V-16 
into the bacterial leaf blight susceptible variety C-152 through marker-assisted 
backcrossing (MABC) (Dinesh et al. 2016). 
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A set of informative SNP panel, i.e., Cowpea iSelect Consortium Array with 
51,128 SNPs, was developed to facilitate researchers with useful genomic resources 
(Muñoz-Amatriaín et al. 2017). The array was further used to develop a mid-density 
marker platform for cowpea with 2602 SNP markers distributed evenly throughout 
11 chromosomes. The SNPs for the mid-density panel were selected based on iSelect 
data from 2714 diverse cultivated cowpea accessions with more weightage on 
184 most commonly used accessions in African breeding programs while selecting 
these SNPs. This mid-density array is quite suitable for marker-assisted breeding, 
genomic-based predictions, QTL studies, molecular diversity analyses, and germ-
plasm management applications. KASP fluorescence-based methodology offers 
rapid and cost-effective genotyping useful for target trait screening, QC, and MAS 
in the breeding programs across several crops. The KASP assay-based SNP markers 
were developed and being used in cowpea for screening against resistance to aphid 
infestation (Huynh et al. 2015) and bacterial blight (Agbicodo et al. 2010) 
(Table 8.2). The SNP-based foreground and background selections with KASP 
genotyping platform were successfully used to combine drought tolerance along 
with nematode and striga resistance into Moussa local, a cowpea variety from 
Burkina Faso, using MABC (Batieno et al. 2016). Six promising families were 
identified based on MAS and preliminary field testing for yield under well-watered 
and water-stress, and striga resistance field trials demonstrated the high efficiency of 
using SNP markers for foreground and background selections to combine target 
traits (Batieno et al. 2016). Around 17 KASP-based SNP markers were used to 
determine parental diversity and to confirm hybridity of cowpea crosses (Ongom 
et al. 2021). These QC markers differentiated 222 cowpea parental genotypes with 
mean efficiency of 37.9% and a range of 3.4–82.8%, revealing unique fingerprints of 
the parents. These markers demonstrated an effective application of KASP-based 
SNP assay in fingerprinting, confirmation of hybridity, and early detection of true F1 
plants (Ongom et al. 2021).
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Table 8.2 Diagnostic trait-specific and QC SNP markers available for KASP genotyping platform 
useful for forward breeding in cowpea and mung bean 

Target 
trait 

SNP/ 
Indel 

Favorable 
allele 

Alternate 
allele 

Cowpea 
Aphid 
resistance 

snpVU0031 2 25,345,278– 
25,345,401 

A/G A G Huynh 
et al. 
(2015)snpVU0032 2 25,479,793-

25,480,105 
A/G A G 

snpVU0024 5 3,748,293– 
3,748,425 

A/T A T 

snpVU0025 5 4,562,162– 
4,562,294 

C/G C G 

Bacterial 
blight 

snpVU0041 3 992,603– 
993,420 

C/T C T Agbicodo 
et al. 
(2010) 

Quality 
control 
and 
hybridity 
test 

snpVU0007 1 36,773,526– 
36,773,649 

T/C Ongom 
et al. 
(2021)snpVU0011 2 22,941,996– 

22,942,128 
T/C 

snpVU0018 4 16,415,787– 
16,415,919 

A/G 

snpVU0019 4 24,230,438– 
24,230,570 

T/G 

snpVU0001 5 399,824– 
399,956 

C/G 

snpVU0002 5 43,326,556– 
43,327,417 

A/G 

snpVU0009 6 30,511,313– 
30,511,445 

A/C 

snpVU0010 6 34,246,871– 
34,247,003 

T/G 

snpVU0003 7 4,914,544– 
491,665 

T/C 

snpVU0004 7 39,680,298– 
39,680,430 

T/C 

snpVU0008 8 34,271,840– 
34,271,972 

A/G 

snpVU0012 9 29,111,205– 
29,111,337 

A/C 

snpVU0013 9 37,010,557– 
37,010,817 

A/T 

snpVU0016 10 37,900,312– 
37,900,440 

A/G 

snpVU0017 10 967,432– 
967,564 

C/G 

snpVU0014 11 34,083,600– 
34,083,732 

A/G
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Table 8.2 (continued)

Target 
trait 

SNP/ 
Indel 

Favorable 
allele 

Alternate 
allele 

snpVU0015 11 12,936,036– 
12,936,168 

T/C 

Mung beana 

Bruchid 
resistance 

snpVR00001 5 5,178,332 G/A G A Schafleitn 
er et al. 
(2016) 

snpVR00002 5 5,179,402 T/C T C 

snpVR00003 5 5,454,538 T/C T C 

snpVR00004 5 5,622,070 G/A G A 

snpVR00005 5 5,662,479 G/A G A 

snpVR00006 5 5,730,691 G/A G A 

snpVR00007 5 5,953,917 A/T A T 

snpVR00008 5 5,974,663 C/T C T 

snpVR00009 3 10,431,528 T/A T A 

snpVR00010 4 15,255,162 T/G T G 
a SNPs for bruchid resistance in mung bean are being validated for their selection efficiency in the 
KASP platform 

8.5.2 Mung Bean 

Mung bean (Vigna radiata (L.) R. Wilczek var. radiata), an Asiatic Vigna species 
also known as green gram or moong, is grown in around 7.3 m ha worldwide with an 
average yield of 721 kg/ha (Nair and Schreinemachers 2020). It is one of the 
important food and cash crops in the rice-based farming systems of South and 
Southeast Asia with India and Myanmar together accounting for 60% of global 
produce of 5.3 m t. Other large producers are China, Indonesia, Thailand, Kenya, 
and Tanzania. The mung bean yellow mosaic disease (MYMD) and bruchid infes-
tation are major biotic stresses initially focused to develop genomic resources for 
forward breeding approaches. The RAPD marker OPP 07895 was identified to be 
linked with MYMD resistance using bulk segregant analysis (Dharajiya and 
Ravindrababu 2019). Two QTLs, i.e., qMYMIV2 and qMYMIV7, with 
31.42–37.60% and 29.07–47.36% PV, respectively, were reportedly linked to 
MYMD resistance (Alam et al. 2014). Four SSR markers, viz., CEDG275, 
CEDG006, CEDG041, and VES0503, linked to these QTLs could be useful for 
MAS. Other markers VrD1, CEDG228, CEDG044, and STSbr1 (Singh et al. 
2017a, b) and CEDG293, DMB-SSR008, and DMB-SSR059 (Singh et al. 2020) 
were also reportedly linked with MYMD. Five QTLs with PV that ranged from 
10.11 to 20.04% for MYMD resistance were detected on an interspecific recombi-
nant inbred line (RIL) population of mung bean and rice bean. Of these, QTL 
qMYMV4–1 on LG4 was identified in the same marker interval across years 
(Mathivathana et al. 2019). The inter-simple sequence repeat, I85420, and ISSR-
anchored resistance gene analog markers I42PL-229 and I42PL-222 were success-
fully used for MAS of powdery mildew (PM) resistance in mung bean. Of these,



I42PL229 was used for negative selection, where I85420 and I42PL-222 were used 
for positive selection with around 94% selection accuracies when confirmed resis-
tance using detached leaf assay (Chathiranrat et al. 2018). Diagnostic derived 
cleaved amplified polymorphic sequences (dCAPS1, 2, and 3) and cleaved amplified 
polymorphic sequences (CAPS) markers (CAPS1, 2, 3, 4, 6, 8, 9, 11, 12, 13, and 14) 
were reported for resistance to bruchid infestation on LG3, LG4, and LG5 with 
selection efficiency of over 93% (Schafleitner et al. 2016). Among these, 10 prom-
ising markers information used to design SNP markers and their KASP assay to 
deploy in the breeding program (Table 8.2). These markers are being validated for 
their selection efficiency using a diverse set of genotypes. The genomic regions 
qZn-4-3 and qFe-4-1 on LG4 between flanking markers PVBR82-BM210 and 
qZn-11-2 and qFe-11-1 on LG11 between flanking markers BM141-BM184 were 
reported for Zn or Fe concentration (Singh et al. 2017a, b). Around 43 SNPs were 
found to be highly associated with seven seed mineral concentrations traits, includ-
ing Fe and Zn through genome-wide association study. A total of six genomic 
regions, one with Fe (five associated SNPs) and five with Zn (7 associated SNPs), 
were found to be associated with PV ranging from 13 to 22% (Wu et al. 2020). 
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8.5.3 Black Gram 

Black gram is a highly nutritious grain legume crop, mainly grown in the South and 
Southeast Asian countries, including Afghanistan, Bangladesh, India, Myanmar, 
Pakistan, Sri Lanka, and Thailand, with India contributing over 70% of global 
black gram production (Kaewwongwal et al. 2015). The efforts of development 
linkage map in black gram during the initial years used RFLP and AFLP markers 
(Chaitieng et al. 2006; Gupta et al. 2008). The efforts were also made to identify and 
deploy SSR markers available in other crops, such as cowpea (Gupta and 
Gopalakrishna 2010), mung bean, adzuki bean (Gupta and Gopalakrishna 2009), 
and common bean (Souframanien and Reddy 2015). The discovery of NGS tech-
nologies such as Illumina paired-end sequencing resulted in 17.2 million paired-end 
reads, and 48,291 transcript contigs (TCS) were used for gene discovery and 
development of 1840 SSRs that could be used for developing linkage maps and 
linked molecular markers for target traits (Souframanien and Reddy 2015). In black 
gram, the efforts on identification of QTLs and molecular markers are limited to 
MYMD (Souframanien and Gopalakrishna 2006; Maiti et al. 2011; Gupta and 
Gopalakrishna 2013) and bruchid infestation (Souframanien et al. 2010; Somta 
et al. 2019). An ISSR marker, ISSR8111357, linked to the MYMD resistance gene 
with a 6.8 cM distance identified, was sequenced to design a sequence characterized 
amplified region (SCAR) primer to deploy for MAS (Souframanien and 
Gopalakrishna 2006). The SSR marker CEDG180 linked to MYMD resistance 
was also reported (Gupta and Gopalakrishna 2013). Two major QTLs governing 
resistance to MYMD disease in black gram reported on LG2 and LG10 with 20.90 
and 24.90% PVE, respectively (Vadivel et al. 2021). The validation of these QTLs in



two other mapping populations identified as qmymv10_60 of LG10 with better 
selection efficiency could be useful for the MAS/MABC in black gram. Two loci, 
YR4 and CYR1, were identified associated with resistance to Mung bean Yellow 
Mosaic India Virus (MYMIV) in mung bean, of these CYR1 also co-segregated with 
MYMIV-resistant F2, F3 progenies of black gram (Maiti et al. 2011). 
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Two QTLs, viz., Cmrae1.1 and Cmrae1.2, were reported for bruchid adult 
emergence on LG3 and LG4, respectively (Souframanien et al. 2010). However, 
six QTLs were identified, with two QTLs (Cmrdp1.1 and Cmrdp1.2) on LG 1, three 
QTLs (Cmrdp1.3, Cmrdp1.4, and Cmrdp1.5) on LG 2, and one QTL (Cmrdp1.6) on 
LG 10, capturing 8.4 to 16.4% phenotypic variation for developmental period 
(Souframanien et al. 2010). The draft genome of black gram was sequenced using 
hybrid genome assembly with Illumina reads and third-generation Oxford Nanopore 
sequencing technology (Souframanien et al. 2021). It opens tremendous opportuni-
ties for the development of marker resources, along with the discovery of QTLs/ 
genes and molecular markers for desirable traits. The genome analysis identified 
42,115 genes with a mean coding sequence length of 1131 bp, of which around 
80.6% are annotated. Besides, a total of 166,014 SSRs, including 65,180 compound 
SSRs, were also identified (Jegadeesan et al. 2021). The genome sequence of black 
gram is expected to provide greater insights and facilitate the identification of genes 
and QTLs linked to economically important traits for accelerating the genetic gain in 
black gram. The QTL qCm_PDS2.1 for percent damaged seeds and qVmunBr6.1 
(24.32–28.76% PV) and qVmunBr6.2 (15.26–17.37%) for bruchid infestation sever-
ity progress mapped on LG 6 in mung bean. Two QTLs, i.e., qVmunBr6.1 and 
qVmunBr6.2, that are new loci for C. maculatus resistance in Vigna species will be 
useful for widening the genetic base of bruchid resistance in black gram (Somta et al. 
2019). The SSR markers CEDG030 and CEDG248 were successfully used for 
hybridity test and ingression of MYMD resistance from rice bean to black gram 
(Sehrawat et al. 2016). Another successful example of the introgression of QTLs for 
MYMD resistance on LG2 and LG10 from resistant donor Mash 1008 into the 
popular black gram variety MDU 1 uses the MABC approach. Nine advanced 
backcross lines were identified with significant superior performances over recurrent 
parent MDU1 for yield and MYMD resistance (Subramaniyan et al. 2021). 

8.6 Future Prospects 

Despite the availability of several SNP markers, the public sectors face several 
challenges compared to private sectors when it comes to accessibility of these 
platform for implementation. Shared genotyping platform are expected to address 
several constraints faced by the public breeding program and will enable the 
implementation of genotyping tools into routine breeding operation. Availability 
of several LDSG-based trait and QC markers for forward breeding especially for QC 
and MAS and the MDSG-based medium density SNP panel will be useful for 
diversity studies, DNA fingerprinting, and MABC for background recovery analysis



and GS applications in wheat, potato, and groundnut crops. The Vigna species crops 
were previously considered to be an orphan crop due to the limited availability of 
genomic resources compared to other legume and cereal crops. However, the recent 
progress on draft genome sequencing of mung bean (Kang et al. 2014), cowpea 
(Lonardi et al. 2019), black gram (Jegadeesan et al. 2021), and azuki bean (Kang 
et al. 2015) would help in accelerating the development of genomic resources and 
varietal improvement through forward breeding in Vigna crops. Collecting and 
resequencing Vigna species from different geographical areas would help 
researchers investigate allelic variation in beneficial traits that can be mined from 
wild relatives. These new resources would also open the door to genomic research in 
other Vigna species. More focus should be given to bring the identified markers on a 
cost-effective genotyping platform, i.e., KASP for their deployment in the breeding 
program. Utilization of 100-150 SNPs using DArTag panels for QC in potato and 
sweet potato (polyploids in general) would help streamline the QC implementation 
in a cost-effective manner. The enhanced precision and selection intensities for 
different complex target traits using diagnostic cost-effective molecular markers 
would accelerate the rate of genetic gains in crops and help breeders in developing 
the market preferred varieties. 
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