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Abstract Global food demand is expected to increase between 55 and 70% by 
2050. Plant breeders and geneticists are constantly under pressure to develop high-
yielding climate-resilient varieties using novel approaches. The quest for simplifying 
complex traits and efforts for developing high-yielding varieties during the twenty-
first century led to a paradigm shift from phenotypic-based selection to genome-
based breeding. On one hand, the development and utilization of diverse genetic
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resources, and advances in genomics on the other hand provided a kick start for the 
understanding the genetics of economically important complex traits at a faster pace. 
Further, the next-generation sequencing revolutionized our understanding of the 
genome architecture. As a result, there has been an increasing demand for statistical 
and bioinformatics tools to analyse and manage the enormous amount of data 
generated from sequencing of genomes, transcriptomes, proteome and metabolomes. 
In this chapter, we review the intervention of bioinformatics and computational tools 
for deploying the tremendous wealth of data for plant genetics and breeding 
research.
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3.1 Introduction 

Climate change and increasing population growth at an alarming rate poses the 
biggest challenges to food and nutritional security across the globe. By 2050, the 
global population is predicted to increase by 55 to 70%, as a result the proportion of 
people at risk of hunger may increase to around 8% (van Dijk et al. 2021a). With 
diminishing resources and limited arable land, sustainable production to cater the 
food and nutritional demands has been a daunting task. Plant breeders and geneti-
cists are constantly under pressure to develop improved crop varieties that are 
climate-resilient and high-yielding to meet the food and nutritional demands. Low 
genetic diversity, prolonged breeding cycles, and limited access to high-quality 
seeds for cultivation have been serious obstacles to achieve greater genetic advance-
ments (Varshney et al. 2020). Although conventional breeding programs contributed 
to the development of improved varieties, to achieve “zero hunger,” the Sustainable 
Developmental Goal 2 adopted by United Nations Organization advocated the 
integration of modern breeding approaches in agriculture (Varshney et al. 2018). 

Ever since the rediscovery of Mendelian laws, there has been a paradigm shift in 
understanding the phenotype-based trait genetics to the use of molecular markers, 
genomics, genomes and sequence-based trait dissection (Varshney et al. 2019; Thudi 
et al. 2023). During the last two decades, genomics and NGS (next-generation 
sequencing) technologies have not only revolutionized our understanding of
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molecular basis of economically important traits, but also increased the rate of 
adoption of modern breeding approaches to develop climate-resilient crop varieties 
(Thudi et al. 2020; Varshney et al. 2021a). To date, draft genomes of more than 1000 
plants representing 788 species are available in public domain (Sun et al. 2021). Not 
only draft genomes, gold standard reference genomes to platinum standard reference 
genomes are available in crops like rice (Zhou et al. 2020) and also in cetacean 
species (Morin et al. 2020). Efforts are also underway to sequence all the known 
eukaryotic species through “The Earth BioGenome Project” that provides insights 
into the biology of life (Lewin et al. 2018). Apart from draft genomes, several 
germplasm lines including wild species accessions have been sequenced in several 
crops including pearl millet (Varshney et al. 2017a), chickpea (Thudi et al. 2016; 
Varshney et al. 2021b), pigeon pea (Varshney et al. 2017b), rice (Wang et al. 2018; 
Stein et al. 2018). Development of pangenomes and super-pangenomes are under-
way in many crop species (Khan et al. 2020). With the rapid availability of biological 
data in public domain, rate-limiting factor in genomics research has shifted from 
sequencing to computer analysis (Kathiresan et al. 2017). The statistical, bioinfor-
matics tools and algorithms developed earlier are becoming obsolete and computa-
tional tools and algorithms that handle “BIG data” are gaining importance (Edwards 
et al. 2009; Batley and Edwards 2016).
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In this chapter, we review the NGS data analysis and available databases that are 
developed to store and retrieve biological information produced from different omics 
approaches. In addition, we also discuss the computational tools and approaches that 
enable development of pangenome, identification of haplotypes and editing 
genomes. Besides highlighting the challenges, we also highlight the scope of 
improving the bioinformatics approaches for effective use in crop improvement. 

3.2 Understanding Genetic Diversity and Trait Mapping 

Genetic diversity plays a major role for gaining greater insights and simplifying 
complex traits. Prior to advent of molecular markers, the phenotypic plasticity in a 
crop species was assessed using simple experimental analyses and programmes like 
XLstat or SPSS (Addinsoft 2021; IBM Corp Ibm 2017). In addition, statistical 
packages like INDOSTAT is being used to analyse variance, D2 statistics, canonical 
roots, path analysis etc. (Khetan and Ameerpet 2015). The statistical tool for 
agricultural research (STAR) has modules for randomization and layout of crop 
research experimental designs, data management, and fundamental statistical anal-
ysis, including descriptive statistics, hypothesis testing, and ANOVA of designed 
experiments (Gulles et al. 2014). The stability of a crop over different locations and 
years is one of the crucial prospects in plant breeding. Software like GGE biplot, 
GEA-R, STABILITYSOFT, and AMMISOFT are used to analyse Genotype × 
Environment (G × E) interaction studies (Yan 2001; Pacheco et al. 2015; Pour-
Aboughadareh et al. 2019; Gauch and Moran 2019). Stability and performance are 
examined simultaneously using these tools, allowing for a comprehensive



understanding of the crop's behavior across different environments and conditions. 
(Table 3.1). 
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Table 3.1 List of commonly used software packages for plant breeding 

Software/program Key features References 

XLstat, SPSS These are used for simple experi-
mental analyses 

Addinsoft (2021); IBM Corp 
Ibm (2017) 

R and INDOSTAT Used for analysis of variance, covari-
ance matrices with ANOVA and 
ANCOVAS, D2 statistics with 
Mahalanobis, stability model analy-
sis, Diallel analysis, Heterosis, line × 
tester analysis, path analysis, joint 
scaling test (Cavilli), North Carolina 
design 1, North Carolina design 
3, augmented design, double cross 
analysis, triple cross analysis and tri-
ple test cross 

Ledesma (2008); Team 
(2013); Khetan and Ameerpet 
2015 

GGE biplot, GEA-R, 
STABILITYSOFT, 
and AMMISOFT 

Analyses genotype × environment 
analysis for stability analysis 

Yan (2001); Pacheco et al. 
(2015); Pour-Aboughadareh 
et al. (2019); Gauch and 
Moran (2019) 

Mapmaker-QTL It can perform only simple interval 
mapping 

Lincoln et al. (1993) 

QTL cartographer Offers options for carrying out the 
majority of the documented QTL 
mapping methods 

Basten et al. (2002) 

Win-QTL 
cartographer 

It maps quantitative trait loci (QTL) in 
cross populations from inbred lines 

Wang (2005) 

PLABQTL Its primary goal is to identify and 
describe QTL in populations resulting 
from a biparental cross by selfing or 
the creation of doubled haploids. A 
rapid multiple regression approach 
achieves simple and composite inter-
val mapping 

Utz and Melchinger (1996) 

MapQTL It analyses composite interval map-
ping, interval mapping, nonparamet-
ric mapping, automatic cofactor 
selection, and permutation test for 
interval mapping 

Van Ooijen and Maliepaard 
(1999) 

STRUCTURE Used for determining population 
structure 

Pritchard et al. (2000) 

TASSEL It is used for evaluation of trait asso-
ciations, evolutionary patterns, LD 
statistics, GLM, MLM, CMLM, P3D: 
Genomic selection; graphical inter-
phase, PCA, and kinship analysis 

Bradbury et al. (2007); Gupta 
et al. (2015) 

With the availability of molecular markers, efforts were made to map the genomic 
regions or genes responsible for the complex traits using both linkage mapping or 
QTL mapping and linkage disequilibrium-based mapping or association



analysis. The most common software packages used for maapping genomic refions 
are Mapmaker-QTL, QTL Cartographer, Win-QTL Cartographer, PLABQTL, 
MapQTL are command-line software (Lincoln et al. 1993; Basten et al. 2002; 
Wang 2005; Utz and Melchinger 1996; Van Ooijen and Maliepaard 1999; Bradbury 
et al. 2007; Gupta et al. 2015. Mapmaker-QTL can only perform simple interval 
mapping (Lincoln et al. 1993). The most versatile QTL mapping software is QTL 
Cartographer. A range of software tools, including the widely used STRUCTURE, 
are available for determining population structure (Pritchard et al. 2000). Using this 
software, you can choose the number of subpopulations by using all marker data or a 
subset of unlinked markers from the marker collection. Alternatively, using the 
given marker data, principal component analysis (PCA) can be performed and the 
first few components used as variables to adjust for population structure. Association 
analysis can be done with TASSEL. Even without forming a core, one can test a 
population for its suitability as an association panel. Then it can be directly used for 
TASSEL analysis. However, some prerequisite analysis is required, like population 
structure, kinship analysis, and principal component analysis (PCA) (Bradbury et al. 
2007). It uses marker data to calculate kinship, which helps to address family 
relatedness and population structure (Table 3.1) (Gupta et al. 2015). 
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3.3 Identification and Understanding Key Genes Using 
Multi-Omics Approaches 

Interpretation of molecular complexity and variability at several levels, such as 
genome, transcriptome, proteome and metabolome, is necessary for comprehensive 
understanding of organism’s entire metabolism. The data from various levels are 
together referred to as “multi-omics” data. Multi-omics data obtained from various 
approaches provide insights into the flow of biological information at various levels, 
can aid in figuring out the biological state of interests underlying mechanisms. 

In the last decade, technological advancement in DNA sequencing (Le Nguyen 
et al. 2019), transcriptomics analysis via RNA-seq (Mashaki et al. 2018), SWATH-
based proteomics (Zhu et al. 2020) and metabolomics via UPLC-MS and GC-MS 
(Balcke et al. 2012) has made a significant contribution in biological data. The first 
omics field to emerge is genomics that deals with study of complete genomes. 
Genomic studies like QTL/association mapping has been used to detect genomic 
regions associated with agronomically important traits (Varshney et al. 2014, 2021b; 
Bhatta et al. 2019; Thudi et al. 2021; Yoshida et al. 2022) and provide basic 
framework for other omics approaches. Additionally, differentially expressed 
genes under several biotic and abiotic stresses were identified using transcriptomics 
studies in several crop plants (Nayak et al. 2017; Channale et al. 2021; Chen et al. 
2022; Pal et al. 2022). Gene expression atlas provides insights into the subsets of 
genes expressed during different growth stages for pigeon pea (Pazhamala et al. 
2017), chickpea (Kudapa et al. 2018), groundnut (Sinha et al. 2020). The 
spatial transcriptomics method developed by Giacomello et al. (2017) enables



high-throughput and spatially resolved transcriptomics in plant tissues using a 
combination of histological imaging and RNA sequencing. Functional analysis of 
translated regions of the genome is understood using proteomics, while 
metabolomics serves as a diagnostic tool for assessing the plant performance 
under different stimuli (Villate et al. 2021). A number of repositories were developed 
to organise data generated from different experiments and sequencing studies. The 
repositories include DNA, RNA and protein sequence databases, as well as special-
ized databases for specific information (Lai et al. 2012; Thudi et al. 2020). Based on 
different types of omics data, databases can be classified into four classes: (1) geno-
mics databases contain nucleotide sequence or genomic sequence, 
(2) transcriptomics databases include functional RNA sequences, (3) proteomics 
databases contain information related to amino acid sequence and protein structure, 
and (4) metabolomics databases contain information about metabolites and meta-
bolic pathways (Table 3.2, Fig. 3.1a). 
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Table 3.2 Summary of widely used databases in plant genetics and breeding research 

Databases Key features Link 

AtMAD Provide high-quality multi-omics 
data of Arabidopsis thaliana 

http://www.megabionet.org/atmad 

GoMapMan Gene functional annotations in 
the plant sciences 

http://www.gomapman.org/ 

HapRice SNP-haplotype database for rice http://qtaro.abr.affrc.go.jp/index.html 

NPACT Plant-derived natural compounds 
exhibiting anticancerous activity 

https://webs.iiitd.edu.in/raghava/npact/faq. 
html 

PGDD Database for gene and genome 
duplication in plants 

http://chibba.agtec.uga.edu/duplication/ 

PGDJ DNA marker and linkage 
database 

http://pgdbj.jp/plantdb/plantdb.html 

Phytozome Plant comparative genomics https://phytozome-next.jgi.doe.gov/ 

PIECE Plant intron exon comparison 
and evolution database 

https://data.nal.usda.gov/dataset/piece-plant-
intron-exon-comparison-and-evolution-
database 

Plant rDNA Plant rDNA database https://www.plantrdnadatabase.com/ 

PlantGDB Plant genome browsers https://www.plantgdb.org/prj/ 
GenomeBrowser/ 

PlantRNA Database for tRNAs of photo-
synthetic eukaryotes 

http://seve.ibmp.unistra.fr/plantrna/ 

PlnTFDB Plant transcription factor 
prediction 

http://planttfdb.gao-lab.org/ 

PLUTO Contains information on plant 
varieties 

http://www.upov.int/pluto/en/ 

PMRD Plant microRNA database http://bioinformatics.cau.edu.cn/PMRD/ 

PTGBase Plant tandem duplicated genes 
database 

http://ocri-genomics.org/PTGBase/ 

SALAD Comparison of proteome data 
among the species 

https://salad.dna.affrc.go.jp/salad/en/

http://www.megabionet.org/atmad
http://www.gomapman.org/
http://qtaro.abr.affrc.go.jp/index.html
https://webs.iiitd.edu.in/raghava/npact/faq.html
https://webs.iiitd.edu.in/raghava/npact/faq.html
http://chibba.agtec.uga.edu/duplication/
http://pgdbj.jp/plantdb/plantdb.html
https://phytozome-next.jgi.doe.gov/
https://data.nal.usda.gov/dataset/piece-plant-intron-exon-comparison-and-evolution-database
https://data.nal.usda.gov/dataset/piece-plant-intron-exon-comparison-and-evolution-database
https://data.nal.usda.gov/dataset/piece-plant-intron-exon-comparison-and-evolution-database
https://www.plantrdnadatabase.com/
https://www.plantgdb.org/prj/GenomeBrowser/
https://www.plantgdb.org/prj/GenomeBrowser/
http://seve.ibmp.unistra.fr/plantrna/
http://planttfdb.gao-lab.org/
http://www.upov.int/pluto/en/
http://bioinformatics.cau.edu.cn/PMRD/
http://ocri-genomics.org/PTGBase/
https://salad.dna.affrc.go.jp/salad/en/
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Databases include PlnTFDB (planttfdb.gao-lab.org/) for plant transcription fac-
tor, widely used for expression analysis or functional genomics. This database 
allows user to get sequence information of known plant transcription factors. 
Phytozome (phytozome-next.jgi.doe.gov/) database provides access to the selected 
plant genome sequences and improved platform for comparative analysis of 
genomes. Breeders have access to useful tools like molecular markers that can 
speed crop improvement program. In case of chickpea, “CicArVarDB” database 
provides information of single nucleotide polymorphisms (SNP) and insertion/ 
deletion (Indel) variations which can be utilized for advanced genetics research 
(Doddamani et al. 2015). Additionally, AgBioData consortium (Harper et al. 
2018) works together across different agricultural-related databases to identify 
approaches for integrating and standardizing database operations. This collaborative 
effort aims to develop database products that exhibit more interoperability. The 
major challenge is to manage and translate the sequence information for the crop 
improvement. 

3.4 Evolution of Sequencing Technologies and Tools 

About 25 years after discovering the double helical structure of DNA, the first-
generation sequencing technologies like Sanger sequencing and Maxam and Gilbert 
sequencing were available for sequencing both smaller and large genomes. Never-
theless, a plethora of sequencing technologies have evolved during last 15 years and 
there is an increased data output, read lengths, efficiencies, and applications. Second-
generation sequencing technologies had improvement in sequencing throughput, 
required time and read length with low cost. Short-read sequencing technologies 
(up to 600 bp) have been widely used in genomics research as it supports wide range 
of statistical analysis using cost-effective pipelines (Heather and Chain 2016). 
However, sequencing of short reads created complications in reconstruction of larger 
fragment or original molecules due to the presence of homopolymers. Long-read 
sequencing (up to 10 kb) is a highly accurate approach that can be used to sequence 
traditionally challenging genomes and facilitate de novo assembly, also help in the 
transcript isoform identification and structural variant identifications. It helps to 
construct better pangenome than short-read sequencing. In case of rice, third-
generation sequencing with long reads were used to construct pangenome using 
105 accessions and found 604 Mb novel sequences which was not present in 
reference genome (Zhang et al. 2022). Specialised analytical tools that consider 
the properties of long-read data are needed, but the speed at which these tools are 
being developed can be daunting. Currently, more than 350 long-read analysis tools 
are available that are generally utilized in Nanopore and SMART sequencing 
platform (Amarasinghe et al. 2020). For choosing appropriate tool, there is a publicly 
available database named as “long-read-tools.org,” which has a collection of long-
read analysis tools and allows us to choose appropriate tools for analysis 
(Amarasinghe et al. 2021). In order to analyse and interpret the NGS data, there is

http://planttfdb.gao-lab.org/
http://phytozome-next.jgi.doe.gov
http://long-read-tools.org


a need of highly qualified and competent bioinformaticians. For accurate down-
stream analysis of sequencing data, appropriate analysis tools are essential and it 
involves conversion of raw signal data to sequence data. 
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Sequencing data analysis includes raw read quality control, sequence alignment, 
variant calling, genome assembly, genome annotation and other advanced analysis. 
Numerous bioinformatics tools have been developed and used in sequence analysis 
(Table 3.3). It is essential to evaluate the raw sequence data to ensure the quality for 
any subsequent analysis. It can give a broad overview of read counts and lengths, 
coverage reads, contaminating sequences and sequence duplication level. In the first 
stage, adapter sequences and low-quality sequences are separated from whole 
genome sequencing data through a quality assessment process. FastQC is the well-
known bioinformatics tool for calculating quality control of sequencing reads 
(Andrews 2010). More recently, fastp tool is also utilized in quality control, base 
correction and filtering of sequencing reads. The fastp tool is two to five times faster 
than previous approach (Chen et al. 2018) and ensures the read quality as well as 
adapter trimming. 

The second step is to align the sequences with reference genome, that is, read/ 
sequence alignment. In the case of non-availability of reference genome, de novo 
genome assembly method is used to generate the contigs by aligning the overlapping 
regions together. This step is the most crucial and important in the entire workflow. 
The sequence reads are precisely and quickly aligned to the appropriate places of the 
reference genome using a variety of tools and algorithms. Many tools have been 
developed for sequence alignment; the popular aligners include BWA (Li and 
Durbin 2009), Bowtie2 (Langmead and Salzberg 2012), CUSHAW3 (Liu et al. 
2014), MOSAIK (Lee et al. 2014), and Novoalign (http://novocraft.com/). MOSAIK 
is the mapping tool currently available that can align reads produced by all the major 
sequencing technologies. Minimap2 is a flexible pairwise nucleotide sequence 
aligner and mapper. It can be used with short reads, assembly contigs, long noisy 
genomic and RNA-seq reads (Li 2018). The lra tool requires less time and memory 
for alignment as compared to Minimap2 (Ren and Chaisson, 2021). The recently 
developed kngMap (k-mer neighbourhood graph-based mapper) tool is specifically 
designed to align long noisy reads to a reference genome (Wei et al. 2022). 

The third step is variant calling. The variations in the output sequences compared 
to the reference sequence are called as variants. The presence of SNPs, INDEL, 
presence/absence variations (PAVs), copy number variations and haplotypes blocks 
are detected using variant calling tools. Tools used for variant calling includes SAM 
tools (Li et al. 2009), Genome Analysis Tool Kit Haplotype Caller (GATK-HC) 
(McKenna et al. 2010), Freebayes (Garrison and Marth 2012), SNPSVM (O’Fallon 
et al. 2013), varScan (Koboldt et al. 2013), DeepVariant (Poplin et al. 2018), Torrent 
Variant Caller (TVC) (Life Technologies, Rockville, MD), etc. Numerous auto-
mated workflows have been developed to streamline the variant calling process. 
These workflows integrate various aligners and variant calling tools with other 
upstream and downstream tools to provide an end-to-end solution (Kanzi et al. 
2020). Tools available like ToTem and Appreci8 (Tom et al. 2018; Sandmann 
et al. 2018) are completely automated variant calling pipelines. ToTem is becoming

http://novocraft.com/
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Table 3.3 Bioinformatics tools used for NGS data analysis 

Approach Tool Key feature Link 

Quality 
check 

FastQC Quality control checks on raw sequence 
data coming from high-throughput 
sequencing pipelines 

https://www.bioinfor 
matics.babraham.ac. 
uk/projects/fastqc/ 

fastp It can perform quality control, adapter 
trimming, quality filtering 

https://github.com/ 
OpenGene/fastp 

Sequence 
alignment 

BWA Mapping low-divergent sequences 
against a large reference genome 

http://bio-bwa. 
sourceforge.net/ 

Bowtie2 Bowtie2 is an ultrafast and memory 
efficient tool for aligning sequencing 
reads 

http://bowtie-bio. 
sourceforge.net/ 
bowtie2/index.shtml 

CUSHAW3 Mapping with high computational 
efficiency 

http://cushaw3. 
sourceforge.net/ 
homepage.htm#latest 

kngMap Align long reads to a reference 
sequence 

https://github.com/ 
zhang134/kngMap 

MOSAIK Mapping second- and third-generation 
sequencing reads 

https://github.com/ 
wanpinglee/MOSAIK 

Novoalign Mapping of short reads onto a reference 
genome from different NGS platforms 

http://www.novocraft. 
com/products/ 
novoalign/ 

SOAP3-dp SOAP3 is the first short-read alignment 
tool that leverages the multiprocessors 
in a graphic processing unit (GPU) to 
achieve a drastic improvement in speed. 
SOAP3 is the first short-read alignment 
tool that leverages 
The multiprocessors in a graphic 
processing unit (GPU) to achieve a 
drastic improvement in speed. 
SOAP3 is the first short-read alignment 
tool that leverages the multiprocessors 
in a graphic processing unit (GPU) to 
achieve a drastic improvement in speed. 
Consider alignment with Indels in 
addition to mismatches. 

http://soap.genomics. 
org.cn/ 

MAQ Builds assembly by mapping short 
reads to reference sequences 

http://maq.sourceforge. 
net/ 

Minimap2 It is accurate and efficient for long noisy 
genomic and RNA sequences 

https://github.com/lh3/ 
minimap2 

Variant 
calling 

GATK Set of bioinformatics tools for analysing 
high-throughput sequencing and variant 
call format data 

https://software. 
broadinstitute.org/gatk/ 

Freebayes It is a haplotype-based variant detector 
and is a great tool for calling variants 
from a population 

https://github.com/ekg/ 
freebayes 

DeepVariant It is an analysis pipeline that uses a deep 
neural network to call genetic variants 

https://github.com/goo 
gle/deepvariant 

Platypus It is a haplotype-based variant caller 

(continued)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://cushaw3.sourceforge.net/homepage.htm#latest
http://cushaw3.sourceforge.net/homepage.htm#latest
http://cushaw3.sourceforge.net/homepage.htm#latest
https://github.com/zhang134/kngMap
https://github.com/zhang134/kngMap
https://github.com/wanpinglee/MOSAIK
https://github.com/wanpinglee/MOSAIK
http://www.novocraft.com/products/novoalign/
http://www.novocraft.com/products/novoalign/
http://www.novocraft.com/products/novoalign/
http://soap.genomics.org.cn/
http://soap.genomics.org.cn/
http://maq.sourceforge.net/
http://maq.sourceforge.net/
https://github.com/lh3/minimap2
https://github.com/lh3/minimap2
https://software.broadinstitute.org/gatk/
https://software.broadinstitute.org/gatk/
https://github.com/ekg/freebayes
https://github.com/ekg/freebayes
https://github.com/google/deepvariant
https://github.com/google/deepvariant


a popular tool because it has automated pipeline optimization and efficient analysis 
management. Appreci8 gives an accurate variant calling as it uses eight different 
tools to perform the same task that filters and combines the outputs for appropriate 
calling. Final step is data visualization; there are various tools available for visual-
ization depending on the experiments and the research objectives. One of the popular 
choices of visualization tool for reference genomes is integrated genome viewer 
(Thorvaldsdottir et al. 2012). VISTA is also visualization tool which can be used for 
comparing difference between two genomic sequences. To aid the biologists with no 
or little knowledge of using perl/python languages, desktop solutions for a wide 
range of genomic analysis needs, including transcriptomics, variant calling, 
epigenomics, metagenomics, comparative genomics, are available like Qiagen 
CLC Genomics Workbench, geWorkbench, Partek Genomics Suite, JMP Genomics, 
DNA Baser-NextGen Sequence Workbench, etc.
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Table 3.3 (continued)

Approach Tool Key feature Link 

http://www.well.ox.ac. 
uk/platypus 

VarScan An open source tool for variant detec-
tion that is compatible with several 
short-read aligners 

http://dkoboldt.github. 
io/varscan/ 

ToTem Primary role is to automatically gener-
ate, execute and benchmark different 
variant calling pipeline settings 

https://totem.software/ 

Appreci8 That combines and filters the variant 
calling results of eight different tools 

https://hub.docker. 
com/r/wwuimi/ 
appreci8/ 

Data 
visualization 

IGV It is a high-performance visualization 
tool for interactive exploration of large, 
integrated genomic datasets 

https://igv.org/ 

VISTA Based on global alignment strategies 
and a curve-based visualization tech-
nique and it also used for comparative 
analysis 

https://genome.lbl.gov/ 
vista/index.shtml 

R software Gosling: It is a grammar for scalable 
and interactive genomics data 
visualizations 

http://gosling-lang.org/ 

During NGS analysis, numerous intermediate analysis and result files are gener-
ated that require large storage. It is difficult to interpret these complicated NGS data 
files in terms of converting data into knowledge for important traits, especially for 
aggregated vast volumes of variants or heterogeneous sequencing data require a 
high-performance computational resource. The NGS data after analysis could be 
effectively interpreted using machine learning-based techniques.

http://www.well.ox.ac.uk/platypus
http://www.well.ox.ac.uk/platypus
http://dkoboldt.github.io/varscan/
http://dkoboldt.github.io/varscan/
https://totem.software/
https://hub.docker.com/r/wwuimi/appreci8/
https://hub.docker.com/r/wwuimi/appreci8/
https://hub.docker.com/r/wwuimi/appreci8/
https://igv.org/
https://genome.lbl.gov/vista/index.shtml
https://genome.lbl.gov/vista/index.shtml
http://gosling-lang.org/
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3.5 Approaches for Development of Genome 
and Pangenome Assemblies 

The wild relatives have a large genetic diversity and ability to survive under various 
biotic and abiotic stresses. Crop domestication and evolution have significantly 
decreased the genetic diversity in cultivated species, which has led to the loss of 
key loci that govern crucial traits. The traditional crop improvement approaches 
include selection of superior traits from either cultivated varieties or the wild 
relatives and utilizing them in the breeding programs (Dempewolf et al. 2017). 
During the process of selection, the crops became more susceptible to different 
stresses due to impact of climate change and evolution of pathogens and pests. To 
address these limitations, it is necessary to utilize crop wild relatives, which are 
known to have genes for several biotic/abiotic stress tolerance traits that have been 
lost during domestication or breeding procedures. As a result of advancement in 
sequencing technologies, reference genome sequences for a number of crops have 
been accessible, serving as the foundation for efforts to boost crop improvement 
programme (Varshney et al. 2017a, 2017b). In addition to cultivated crop genome, 
de novo assembled genomes of a number of wild relatives have also been made 
available. In addition, the idea of pangenomes is being adopted more widely due to 
the growing recognition that a single reference genome cannot capture the diversity 
contained within a species. 

Pangenome is the collection of genes or DNA sequence in a species to provide 
useful sources for functional genomics, evolutionary studies that can be used for 
crop improvement. Pangenomic studies have been conducted in various model and 
crop plants including Arabidopsis, stiff brome, wheat, cabbage, tomato, soybean, 
rice, rapeseed, barley, chickpea and sorghum (Hurgobin et al. 2018; Gao et al. 2019; 
Jayakodi et al. 2020; Barchi et al. 2021; Ruperao et al. 2021; Varshney et al. 2021b; 
Jha et al. 2022) (Table 3.4). Genome assembly is the process of arranging nucleo-
tides in the proper order. Sequence read lengths are currently far shorter than most of 
genomes or even most of the genes; therefore, it is important to assemble reads and 
construct genome or pangenome. In plants or other eukaryotic organisms, genes are 
found in the same physical place on the chromosome, but the frequency of copies 
and repeating sequences can vary, making assembly more difficult. Pangenomes 
have been constructed via de novo, iterative, and graph-based assembly techniques. 
The de novo assembly is straightforward and simplest approach for development of 
pangenome. This approach includes assembly using overlapping regions and does 
not require reference genome. It requires high depth sequencing of all the targeted 
accessions, then creates unique de novo assemblies for each accession. The com-
parison of the resulting individual assemblies identifies conserved and variable 
genomic regions across the genomes. Advancement in long-read sequencing tech-
nologies and complementary strategies like creation of Hi-C and BioNano maps 
make it possible to obtain high-quality plant genomes at the chromosomal level 
(Miga 2020). Comparative analysis is used to identify all types of variations and 
characterized genes found in core and dispensable regions (Mahmoud et al. 2019).



(continued)
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Table 3.4 Summary of important tools in various plant genetics and genomics approaches 

Approach Tool Key feature Link 

Pangenome EUPAN Large-scale eukaryotic 
pangenome analyses and detec-
tion of gene PAVs at a rela-
tively low sequencing depth 

https://cgm.sjtu. 
edu.cn/eupan/ 
index.html 

GET_HOMOLOGUES-
EST 

Highly customized and auto-
mated pipeline especially 
designed for people with 
non-bioinformatics background 

https://github.com/ 
eead-csic-compbio/ 
get_homologues/ 
releases 

PAN2HGENE Computational tool that allows 
identification of gene products 
missing from the original 
genome sequence 

https://sourceforge. 
net/projects/pan2 
hgene-software/ 

Panakeia Providing a detailed view of the 
pangenome structure which can 
efficiently be utilised for dis-
covery, or further in-depth 
analysis 

https://github.com/ 
BioSina/Panakeia 

Pantools A versatile tool for mapping the 
metagenomic and genomic 
reads in both prokaryotes and 
eukaryotes 

https://git.wur.nl/ 
bioinformatics/ 
pantools 

PanViz An interactive visualization tool 
to compare the individual 
genomes to the pangenome 

https://github.com/ 
thomasp85/PanViz/ 
blob/master/pack 
age.json 

PATO It performs common tasks of 
pangenome analysis and also 
integrates all the necessary 
functions for the complete 
analysis with high speed 

https://github.com/ 
irycisBioinfo/ 
PATO 

PGAP Perform pangenome profiling, 
gene cluster analysis, species 
evolution analysis, gene 
enrichment, and genetic varia-
tion analysis 

https://sourceforge. 
net/projects/pgap/ 

PGAP-X Analyse pangenome profile 
curve, gene distribution analy-
sis, genomic region variations, 
and comparative analysis of 
genome structure 

http://pgapx. 
ybzhao.com/ 

ppsPCP Detect presence/absence varia-
tions and assembled compre-
hensive pangenome 

http://cbi.hzau.edu. 
cn/ppsPCP/ 

RPAN Rich source for rice genomic 
research and breeding 

https://cgm.sjtu. 
edu.cn/3kricedb/ 

Haplotype Falcon phase Groups long-read contigs into 
two separate haplotypes based 
on hi-C data 

https://github.com/ 
phasegenomics/ 
FALCON-Phase

https://cgm.sjtu.edu.cn/eupan/index.html
https://cgm.sjtu.edu.cn/eupan/index.html
https://cgm.sjtu.edu.cn/eupan/index.html
https://github.com/eead-csic-compbio/get_homologues/releases
https://github.com/eead-csic-compbio/get_homologues/releases
https://github.com/eead-csic-compbio/get_homologues/releases
https://github.com/eead-csic-compbio/get_homologues/releases
https://sourceforge.net/projects/pan2hgene-software/
https://sourceforge.net/projects/pan2hgene-software/
https://sourceforge.net/projects/pan2hgene-software/
https://github.com/BioSina/Panakeia
https://github.com/BioSina/Panakeia
https://git.wur.nl/bioinformatics/pantools
https://git.wur.nl/bioinformatics/pantools
https://git.wur.nl/bioinformatics/pantools
https://github.com/thomasp85/PanViz/blob/master/package.json
https://github.com/thomasp85/PanViz/blob/master/package.json
https://github.com/thomasp85/PanViz/blob/master/package.json
https://github.com/thomasp85/PanViz/blob/master/package.json
https://github.com/irycisBioinfo/PATO
https://github.com/irycisBioinfo/PATO
https://github.com/irycisBioinfo/PATO
https://sourceforge.net/projects/pgap/
https://sourceforge.net/projects/pgap/
http://pgapx.ybzhao.com/
http://pgapx.ybzhao.com/
http://cbi.hzau.edu.cn/ppsPCP/
http://cbi.hzau.edu.cn/ppsPCP/
https://cgm.sjtu.edu.cn/3kricedb/
https://cgm.sjtu.edu.cn/3kricedb/
https://github.com/phasegenomics/FALCON-Phase
https://github.com/phasegenomics/FALCON-Phase
https://github.com/phasegenomics/FALCON-Phase
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Table 3.4 (continued)

Approach Tool Key feature Link 

Hap10 Novel algorithm for haplotype 
assembly of polyploid genomes 
using linked reads 

https://sourceforge. 
net/projects/sdhap/ 

HapCut2 Robust and accurate haplotype 
assembly for diverse sequenc-
ing technologies 

https://github.com/ 
vibansal/HapCUT2 

HaploConduct Package designed for recon-
struction of individual 
haplotypes 

https://github.com/ 
HaploConduct/ 
HaploConduct 

HaplotypeTools Analysing hybrid or recombi-
nant diploid or polyploid 
genomes and identifying 
parental ancestry for 
sub-genomic regions 

https://github.com/ 
rhysf/ 
HaplotypeTools 

HAPLOVIEW Analysis and visualization of 
LD and haplotype maps 

https://www. 
broadinstitute.org/ 
haploview/ 
haploview 

HAPPE Facilitates informative displays 
wherein data in plots are easy to 
read and access 

https://github.com/ 
fengcong3/HAPPE 

HapTree Provide polyploid haplotype 
assembly tool based on a sta-
tistical framework. 

http://cb.csail.mit. 
edu/cb/haptree/ 

Hifiasm Fast haplotype-resolved de 
novo assembler for PacBio HiFi 
reads 

https://github.com/ 
chhylp123/hifiasm 

SDip Graph-based approach to 
haplotype-aware assembly 

https://github.com/ 
shilpagarg/sdip 

WhatsHap Reconstruct the haplotypes and 
then write out the input VCF 
augmented with phasing 
information 

https://whatshap. 
readthedocs.io/en/ 
latest/ 

k-mer BFCounter Program for counting k-mers in 
DNA sequence data 

http://pritch.bsd. 
uchicago.edu/ 
bfcounter.html 

iMOKA Utilized fast and accurate fea-
ture reduction step 

https://github.com/ 
RitchieLabIGH/ 
iMOKA 

KAT Multi-purpose software toolkit 
for reference-free quality con-
trol (QC) of WGS reads and de 
novo genome assemblies 

https://github.com/ 
TGAC/KAT 

KITSUNE Identifying optimal k-mer 
length for alignment free 
phylogenomic analysis 

https://github.com/ 
natapol/kitsune 

KmerGO Identify group-specific 
sequences using k-mers 

(continued)

https://sourceforge.net/projects/sdhap/
https://sourceforge.net/projects/sdhap/
https://github.com/vibansal/HapCUT2
https://github.com/vibansal/HapCUT2
https://github.com/HaploConduct/HaploConduct
https://github.com/HaploConduct/HaploConduct
https://github.com/HaploConduct/HaploConduct
https://github.com/rhysf/HaplotypeTools
https://github.com/rhysf/HaplotypeTools
https://github.com/rhysf/HaplotypeTools
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
https://github.com/fengcong3/HAPPE
https://github.com/fengcong3/HAPPE
http://cb.csail.mit.edu/cb/haptree/
http://cb.csail.mit.edu/cb/haptree/
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https://whatshap.readthedocs.io/en/latest/
https://whatshap.readthedocs.io/en/latest/
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http://pritch.bsd.uchicago.edu/bfcounter.html
http://pritch.bsd.uchicago.edu/bfcounter.html
http://pritch.bsd.uchicago.edu/bfcounter.html
https://github.com/RitchieLabIGH/iMOKA
https://github.com/RitchieLabIGH/iMOKA
https://github.com/RitchieLabIGH/iMOKA
https://github.com/TGAC/KAT
https://github.com/TGAC/KAT
https://github.com/natapol/kitsune
https://github.com/natapol/kitsune
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Table 3.4 (continued)

Approach Tool Key feature Link 

https://github.com/ 
ChnMasterOG/ 
KmerGO 

Genome 
editing 

CHOPCHOP Web-based tool to select target 
sites for CRISPR/Cas9- or 
TALEN-directed mutagenesis 

https://chopchop. 
cbu.uib.no/ 

CLD Suitable for the design of 
libraries using modified 
CRISPR enzymes and targeting 
non-coding regions 

https://github.com/ 
boutroslab/cld 

CRISPETa Design optimal pairs of 
sgRNAs for deletion of desired 
genomic regions 

http://crispeta.crg. 
eu/ 

CRISPOR Finds guide RNAs in an input 
sequence and ranks them 
according to different scores 

http://crispor.tefor. 
net/ 

CRISPR-FOCUS Web-based platform to search 
and prioritize sgRNAs for 
CRISPR screen experiments 

http://cistrome.org/ 
crispr-focus/ 

CROPSR Highly effective and efficient to 
design gRNA in crop plants 

https://github.com/ 
H2muller/CROPSR 

E-CRISP Computational tool to design 
and evaluate guide RNAs for 
use with CRISPR/Cas9 

http://www.e-crisp. 
org/E-CRISP/ 

Several bioinformatics tools have been developed for assembling the prokaryotic 
pangenome and having the ability to handle less complex genomic content (Khan 
et al. 2020). For constructing eukaryotic pangenomes, some tools have been devel-
oped (Table 3.4) that include EUPAN (Hu et al. 2017), GET_HOMOLOGUES 
(Contreras-Moreira and Vinuesa 2013), PanTools (Sheikhizadeh et al. 2016), etc. 
One of the first attempts to examine eukaryotic pangenomes was EUPAN, which 
supported genome assembly, identification of core and dispensable gene databases 
using read coverage, and gene annotation of the pan-genomic dataset. 
GET_HOMOLOGUES can be used in eukaryotic pangenome development and it 
is written in Perl and R language platform. Additionally, Panconda tool (Warren 
et al. 2017) is used to compare whole genome multiple sequence and representing 
relations between sequence as graph and it is the initial step for the de Bruijn graph 
which can be used for pangenome construction. PanTools is also used to construct 
and visualize pangenome, the representation of pangenome depending on the de 
Bruijn graphs. PAN2HGENE (Silva de Oliveira et al. 2021) recently developed 
computational tools for pangenome analysis, which can do automated comparison 
analysis for both full and draft genomes and identifies gene that are missing from the 
original genome sequence.

https://github.com/ChnMasterOG/KmerGO
https://github.com/ChnMasterOG/KmerGO
https://github.com/ChnMasterOG/KmerGO
https://chopchop.cbu.uib.no/
https://chopchop.cbu.uib.no/
https://github.com/boutroslab/cld
https://github.com/boutroslab/cld
http://crispeta.crg.eu/
http://crispeta.crg.eu/
http://crispor.tefor.net/
http://crispor.tefor.net/
http://cistrome.org/crispr-focus/
http://cistrome.org/crispr-focus/
https://github.com/H2muller/CROPSR
https://github.com/H2muller/CROPSR
http://www.e-crisp.org/E-CRISP/
http://www.e-crisp.org/E-CRISP/
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3.6 Bioinformatics Tools Used in K-Mer Analysis 

The importance of supporting sequencing technologies has been highlighted by our 
growing understanding of biological information and its implications for the vast 
volume of DNA data. Counting k-mers is an essential component for many bioin-
formatics techniques, such as nucleotides assembly, metagenomic sequencing and 
sequencing error correction (Melsted and Pritchard 2011). A k-mer is unique 
sub-sequence of nucleotide sequence. The distribution of statistically significant k-
mers in a genomes and other regulatory subregions has been described in a number 
of recent studies (Hashim and Abdullah 2015; Cserhati et al. 2018). It has also been 
also employed in comparative studies (Cserhati et al. 2019), and major advantages of 
alignment-free approaches based on k-mer are their speed and ability to remove 
biases. Most of the association mapping studies has been done using SNPs. How-
ever, this approach has some limitations (Rahman et al. 2018). A k-mer-based 
analysis is alternative method to address some limitations of SNP-based analysis. 

At its most basic, k-mer count analysis simply considers two parameters: the 
length of the k-mer and whether the orientation of the DNA strand is known. k is 
normally selected to be at least 20 and frequently falls between 20 and 31. Too small 
k will give redundant count information because the probability that a k-mer is 
unique to a genome is reduced. However, as k increases the probability that a k-
mer contains an error increases. There are a number of bioinformatics tools devel-
oped to analyse the k-mer and further utilization of k-mers. BFCounter is a program 
that is used for counting k-mers in DNA sequence data (Melsted and Pritchard 2011) 
(Table 3.4). KAT (k-mer Analysis Toolkit) is a multipurpose tool for reference-free 
quality control and de novo assembly (Mapleson et al. 2017). iMOKA (interactive 
multi-objective k-mer analysis) is bioinformatical tool/software that enables com-
prehensive analysis of large collections of sequencing data based on k-mer. It uses 
efficient and effective steps that combines Naive Bayes classifier augmented by an 
adaptive entropy as well as graph-based filter to reduce search time (Lorenzi et al. 
2020). KmerGO software is utilized to identify group-specific nucleotide sequences 
between two different groups. Furthermore, it is also used to check association 
between nucleotide sequence and quantitative traits (Wang et al. 2020). KITSUNE 
is a tool to identify the empirically optimal k-mer length for phylogenetic analysis 
and provides alternative alignment tool for comparative studies (Pornputtapong et al. 
2020). 

3.7 Artificial Intelligence 

Artificial intelligence (AI) is the simulation of human intelligence processes by 
computer systems and it holds marvellous promise for better utilization of the 
available dataset to appropriate prediction and better understanding of genetic 
complexity (Fig. 3.1a, b). The three cognitive skills that make up AI encoding are



learning (acquiring data and then developing algorithms to transform it into usable 
information), reasoning (selecting the appropriate algorithm to arrive at a desired 
result), and self-correction (constantly adjusting designed algorithms to ensure that 
they deliver the most accurate results) (Gharaei et al. 2019). Breeders have access to 
an ever-growing suite of high-throughput sensors and imaging techniques for a wide 
range of traits and situations in the field. In addition, novel genomic assays are 
constantly being developed that can reveal missing heritability (Harfouche et al. 
2019). Nowadays, a major challenge in the advancement of technologies is the 
management and utilization of big data. The utilization of data with AI technologies 
can accelerate the breeding program to increase productivity and development of 
climate-resilient crop by phenotyping, efficient and effective diagnosis of disease 
and precise selection of individual for breeding (Fig. 3.1c). AI can also help breeders 
to quickly determine which plants grow the quickest in a specific climate, which 
genes support plant growth and adaptation, produce the best gene combination for a 
given location and choosing traits that increase yield and fend off the effects of a 
changing climate. 
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One of the important elements in AI is machine learning (ML), which helps to use 
data more efficiently and that uses statistical and mathematical approaches for 
appropriate predictions (Ayed and Hanana 2021). The ML has ability of ML 
to distinguish between various types of genomic regions, for instance, distinguishing 
active genes and pseudogenes, using feature like DNA methylation (Sartor et al. 
2019). Additionally, ML was utilised to foresee the locations of DNA crossover 
(Demirci et al. 2018). Single-cell RNA sequencing is fascinating the new area in 
which ML is essential (Speranza et al. 2021; van Dijk et al. 2021b). This method 
makes it possible to examine cellular development and responses to environmental 
stimuli in diverse tissues. Digital plant phenotyping has been an active study area to 
accelerate plant science studies. Different imaging systems can be used to study the 
various macroscopic levels, for example, real-time stomata phenotyping using 
microscopic observation (Toda et al. 2021). Numerous sensors have been employed 
to accurate phenotyping, and it includes spectral sensor, lidar/laser sensor, fluores-
cence sensor, ultrasonic sensor and thermography (Qiu et al. 2018). 

AI systems currently in use neural networks (NNs) and extreme gradient boosting 
(XGboost), both of which are popular machine learning models employed for a 
variety of tasks including regression and classification (Chen and Guestrin 2016). 
Deep learning techniques are based on neural networks, sometimes referred to as 
artificial/ simulated neural networks, which are a subset of machine learning. 
Leveraging AI in agriculture shows impressive results in image-based disease 
identification using deep learning model. It uses publicly available image datasets 
for disease identification (Mohanty et al. 2016). However, the supervised branch of 
machine learning includes the tree-based method known as XGboost. In maize, 
different models were used to predict yield using AI and found better results using 
XGBoost (Nyeki et al. 2019). These AI systems internal working and decision-
making procedures are mysterious. It is possible to see the results, but it is not clear 
why a particular choice was picked. As a result, the introduction of new explainable 
AI algorithms that not only have a prediction model but also gives the appropriate



reasons for choice is needed. It is the first stage in the development of next-
generation AI (Harfouche et al. 2019). 

52 Y. D. Naik et al.

3.8 Identification of Superior Haplotype for Crop 
Improvement 

Second-generation molecular markers have been successfully used in plant breeding 
for development of improved varieties and also utilised in genome mapping, but 
gives low resolution of QTLs (Zargar et al. 2015). Advancement in the NGS 
technologies provide sequence-based markers (SNPs) having wide coverage with 
high density (Gouda et al. 2021), and have wide applications in plant breeding. 
These markers help to increase the resolution of genome mapping and the accuracy 
of genomic selection (Yadav et al. 2019). However, identified SNPs have some 
limitations which includes bi-allelic nature, difficult to identify rare alleles, less 
polymorphic, linkage drag problem and giving false positive results (Voss-Fels 
and Snowdon 2016; Bhat et al. 2021). In this context, the haplotype-based 
approaches are a successful strategy to get over SNPs limitations and boost the 
resolution of genomic regions (Qian et al. 2017). Haplotype is combination of 
nucleotide or markers that inherit together from polymorphic sites in the same or 
different chromosome having strong linkage disequilibrium between them (Bhat 
et al. 2021). Number of studies have demonstrated that a haplotype-based associa-
tion study can find variants that would not be detected by a typical SNP-based 
investigation (Zakharov et al. 2013). Additionally, a recent study also identified 
several important genes, that can be utilized as important molecular markers for the 
purpose of genetic manipulation to design and develop robust and resistant crop 
cultivars (Pal et al. 2022). 

The detection of haplotypes and their use in genetic investigations is significantly 
impacted by the availability of high-throughput sequencing technologies. Second-
generation sequencing technologies generate 150 base pairs short reads. Therefore, 
the haplotypes identification is difficult and requires powerful statistical tools 
(Delaneau et al. 2019). On the other hand, third-generation sequencing technologies, 
such as Oxford Nanopore and Pacific Biosciences, generates long reads from which 
the haplotypes can be constructed directly (Maestri et al. 2020). The haplotype 
mining can be used to dissect complex traits by using approaches like haplotype-
based breeding, haplotype-GWAS, haplotype-assisted genomic selection 
(Table 3.4). 

Haplotype identification, characterization and visualization are important for 
utilization of haplotype for crop improvement. Many tools have been developed to 
estimate and visualize haplotypes. Haplotype identification/estimation also called as 
“phasing,” is a process of estimation or construction of the haplotype sequences from 
genotypic data and it is utilized for understanding sequence-specific variation. 
Haplotype-based GWAS analysis is complicated as compared to SNP-based analysis



to identify the associations, because it involves three major steps: phasing/haplotype 
estimation, block determination and statistical analysis. Estimation of haplotypes 
required pooled information of all individuals present in sample. Number of 
unrelated individuals is an important factor that can influence the estimation of 
haplotypes, and more individuals can give better results. However, related individ-
uals can be phased by considering haplotypes shared by members of families which 
are descended from one another (Browning and Browning 2011). Numerous phasing 
techniques that enable the construction of haplotypes from long-read sequencing 
data have recently been established, such as reference-based phasing, de novo 
genome assembly and strain-resolved metagenome assembly (Garg 2021; Bhat 
et al. 2021). Choice of appropriate phasing, block determination algorithms and 
their interaction are important factors that can influence accuracy of phasing the 
haplotype blocks (Bkhetan et al. 2019). Various haplotype analysis approach com-
bined with different computational tools such as DESMAN, Falcon phase, HapCut2, 
HapTree, Hifiasm, MetaMaps, POLYTE, SDip, and WhatsHap are extensively 
reviewed by Garg (2021). The combination of different analysis approaches and 
computational tools with long-reads sequencing technologies has allowed us to fully 
utilise the potential of these sequencing methodologies for haplotype construction. 
SNPViz v2.0 (Zeng et al. 2020) is a web-based tool that enhances the identification 
of large-scale haplotype blocks. HaplotypeTools (Farrer 2021) is tool to phase 
variant, based on detecting the reads overlapping ≥ 2 heterozygous positions and 
then extent of the reads; it is also a powerful tool for analysing hybrid and polyploid 
genomic regions. Recently, python coded tool HAPPE (Feng et al. 2022) was 
developed to construct and visualize the haplotypes easily (Table 3.4). Additionally, 
Practical Haplotype Graph is a powerful tool for storage, retrieval and imputation of 
haplotypes that can be used for genomic studies (Bradbury et al. 2022). 
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3.9 Genome Editing 

CRISPR/Cas9 is the potent genetic modification technique that is a great example of 
genome editing technologies. This technology is proved to be extremely effective 
tool not only in the field of basic science but also in the plant breeding. The 
development of genome editing technologies (ZFN, TALEN, CRISPR/Cas9, etc.) 
drawn a lot of attention, because they eliminate the restrictions of traditional 
breeding approaches (Matres et al. 2021). These methods enable precise and effec-
tive targeted genome modifications, greatly shortening the time needed to obtain 
plants with desired traits for the development of new crop varieties. 
Sequence-specific nucleases and small guide RNA are the key components of 
CRISPR-based gene editing approach to generate precise modification. The 
CRISPR/Cas system is still evolving, but there are two significant obstacles: 
off-target effects and on-target efficiency (Xu et al. 2015; Zhang et al. 2015; Liu 
et al. 2020). To overcome these issues, optimizing small guide RNA by effective 
computer methods assist in silico gRNA design that plays an important role (Doench



et al. 2016; Hassan et al. 2021). One of the key factors affecting gRNA effectiveness 
is the nucleotide content of a target sequence. The PAM (Protospacer Adjacent 
Motif) sequence and its nearby nucleotide is significantly important for the better 
efficiency (Liu et al. 2020). Guanines are favoured at first and second nucleotide 
position before the PAM sequence while thymines are not preferred within four 
nucleotides upstream/downstream of PAM sequence. Furthermore, sequences 
upstream of PAMs have no discernible influence, although sequences downstream 
can affect gRNA efficiency (Doench et al. 2014). At cleavage site, cytosine is 
preferred and GC content at downstream of the PAM sequence that increases high 
efficiency to gRNA. Numerous efficiency prediction models are available built using 
this important information. Various tools have been developed based on these 
models to design gRNA either by alignment-based, hypothesis-driven and/or 
learning-based models (Konstantakos et al. 2022). Hypothesis-driven and learning 
model-based tools perform better than alignment-based models. Several tools have 
been developed to predict gRNA with high target efficiency includes E-CRISP, 
CHOPCHOP, CRISPR-FOCUS, PROTOSPACER, CLD, CRISPOR, and 
CRISPETa (Table 3.4). WheatCRISPR is a web-based bioinformatics tool which 
is generally used for constructing target-specific gRNA in wheat (Cram et al. 2019). 
Additionally, CROPSR is the first open source bioinformatics tool to help design 
genome-wide guide RNA for CRISPR-based genome editing with high speed that 
reduces the challenges of complex crop genome (Paul et al. 2022). 
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3.10 Major Challenges in Bioinformatics 

NGS technologies have made genomic revolution by generating enormous amount 
of data quickly and affordably. The use of bioinformatics in life science research is 
becoming more and more essential at the moment. Data analysis is frequently the 
main bottleneck because of the exponential growth in amount and complexity of life 
science data over the past two decades. Handling, analysing, and storing information 
has become a new barrier for biologists. Efficient data processing is necessary and 
there are many algorithms available for these specific tasks. To increase efficiency 
and accuracy, it needs combination of tools and enough resources for smooth 
operation. Another challenge for the biologists is to learn the languages like python, 
Perl or R for efficient handling of the data and lack of training in the field by the 
expert bioinformatician who knows biological problems and associated complexi-
ties. Genome assembly has gained more and more attention as advance sequencing 
technology are developed. Despite the abundance of genome assembly tools avail-
able, de novo genome assembly using next-generation reads still faces four signif-
icant obstacles: sequencing errors, sequencing bias, topological complexity of 
repetitive regions and huge computational resource consumption (Liao et al. 
2019). The accuracy of results can have a big impact on downstream analysis of 
sequencing data. False positives and inaccurate findings may result from the errors 
during data processing. On the other side, poorly chosen approaches or tools may



produce false negatives, which would result in the loss of genuine variants. There-
fore, finding a suitable balance between accuracy of results and sensitivity is thus 
another big problem for data analysis. The application of ML in plant research is also 
an important issue. Traditionally, statistical techniques have been used to predict 
genotype-phenotype relationships. These techniques have been very effective and 
successful throughout the past century. Decision-making for researchers and practi-
tioners typically involves the use of confidence measures and model interpretation. 
Further, data-driven flexibility of ML offers a range of advantages over stringent 
statistical approaches that make it a powerful tool for solving complex problems and 
extracting valuable insights from diverse and dynamic datasets. 
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3.11 Future Prospective and Conclusions 

Bioinformatics has been emerging and cross-cutting different fields of agricultural 
sciences for enhancing our understanding of the complex mechanism underlying 
different traits in different crop plants in crop improvement (Fig. 3.2). A paradigm 
shift in the field of life sciences has been brought by NGS and has transformed 
genomics research. In addition to being crucial for fundamental genomic and 
molecular biology research, bioinformatics also has a significant influence on 
many fields of agricultural and medical sciences. Suitable computational tools and 
the right resources are essential for identifying biological information that adds value 
and offers novel insights into biological systems. The rise in omics-based research 
needs education in the relevant technologies and bioinformatics in order to correctly 
translate experimental and computational efforts. AI-based solutions are help to 
increase efficiency and regulate a number of factors, including crop yield, soil 
profile, crop irrigation, weeding, and crop monitoring (Bhardwaj et al. 2022). The 
possibility of using AI in agriculture will increase as the field of AI matures and more 
trained algorithms are added. Recently, the development of genetic algorithm-based 
Internet of precision agricultural things (IopaT) and becoming famous in rural areas 
to solve the real-time problems. Genetic algorithmic system is developed to predict 
water requirement (Roy and De 2020). This kind of system will also help in 
decision-making in agriculture, like crop patterns and water management at partic-
ular place (Xu et al. 2022a). Future applications of AI/ML in plant research include 
predicting which regions of the genome should be modified to produce a particular 
phenotype and providing the best possible local growing conditions by monitoring 
crop performance in vivo in the greenhouse or on the field. We are still very early in 
the genomics era, and undoubtedly, a long way from accomplishing the ambitious 
objective. In fact, efforts are still required for in-depth and appropriate analyses of 
genome, transcriptome, and metagenome data to identify link between organization 
and functionality. Moreover, chemical genomics approaches aid in the comprehen-
sion of overcoming stress conditions and improving crop yield and productivity 
(Pa et al. 2022; Adhinarayanreddy et al. 2022). Utilizing integrated multi-omics data, 
big data technology, and artificial intelligence proposed the new term called
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integrated genomic-enviromic prediction (Xu et al. 2022b), as an extension of 
genomic prediction will provide accelerating breeding programs. With the use of 
big data, AI and robust bioinformatical analysis, plant breeding in the future will 
become increasingly smart. The establishment of integrative plant breeding plat-
forms and open-source breeding initiatives can help translate smart breeding efforts 
into genetic gains.
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