

Article

Sexual Compatibility Types in F₁ Progenies of Sclerospora graminicola, the Causal Agent of Pearl Millet Downy Mildew

Chandramani Raj 1,2 and Rajan Sharma 1,*

- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, Telangana, India; chandramani.raj@icar.gov.in
- ² ICAR-Indian Institute of Sugarcane Research, Raebareili Road, Lucknow 226002, Uttar Pradesh, India
- * Correspondence: r.sharma@cgiar.org

Abstract: *Sclerospora graminicola* is primarily heterothallic in nature with two distinct mating types $(G_1 \text{ and } G_2)$; however, homothallism does exist in the pathogen populations. In this study, a cross was made between two self-sterile isolates $(Sg\ 019, Mat-2, G_2 \times Sg\ 445-1, Mat-1, G_1)$ of *S. graminicola* and a total of 39 F_1 progenies were established. The study on sexual compatibility types in F_1 progenies was conducted by crossing each F_1 progeny with both the parents $(Sg\ 445-1, Mat-1, G_1;$ and $Sg\ 019, Mat-2, G_2)$. The results revealed the presence of four sexual compatibility types, *viz.* G_1, G_2, G_1G_2 and G_0 (neuter) in the progenies. The G_1G_2 progenies that produced oospores with both the parents were found as self-fertile (homothallic) and self-sterile (heterothallic) types. Similarly, self-fertile parental type G_1 and G_2 progenies were designated as secondary homothallic, whereas self-sterile parental type G_1 and G_2 progenies were of heterothallic type. The result of the present study revealed Mendelian segregation of mating type locus in *S. graminicola* which indicates that sexual reproduction plays an important role in the evolution of new genetic recombinants in the pathogen. The study also helps in understanding the genetic structure of *S. graminicola* populations and potential for possible evolution of new virulences in the pathogen.

Keywords: mating types; homothallism; heterothallism; secondary homothallism; neuter

Citation: Raj, C.; Sharma, R. Sexual Compatibility Types in F₁ Progenies of *Sclerospora graminicola*, the Causal Agent of Pearl Millet Downy Mildew. *J. Fungi* 2022, 8, 629. https:// doi.org/10.3390/jof8060629

Academic Editors: Thomas Jung and Bruno Scanu

Received: 19 March 2022 Accepted: 11 May 2022 Published: 13 June 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Pearl millet [*Pennisetum glaucum* (L) R. Br.] is a choice crop of more than 90 million people cultivated on approximately 27 million hectares in the arid and semi-arid tropics of the world [1]. In India, mainly the states of Rajasthan, Gujarat, Haryana, Maharashtra, Uttar Pradesh, Karnataka and Andhra Pradesh produce 8.74 million tons of pearl millet. The crop is cultivated on 7.20 million hectares of land with a productivity of 1214 kg ha⁻¹ [2]. Although average productivity of pearl millet in India has increased since the 1950s (305 kg ha⁻¹) [3], it has also witnessed the devastating crop losses of up to 80% at periodic intervals caused by the downy mildew (DM) pathogen, *Sclerospora graminicola* [(Sacc). Schroet] [4]. The corresponding changes in the population structure of the pathogen over a period of time have played a key role in the destruction of the crop. The reason behind the evolution of new pathotype/s has been attributed to extreme selection pressure from the host along with sexual reproduction in *S. graminicola* populations [5].

The oospores formation in S. graminicola has been reported either through heterothallism, in which two self-sterile isolates having distinct sexual compatibility types, G_1 and G_2 , fuse together [6,7], or through secondary homothallism in self-fertile isolates that contain the determinant of both compatibility types [8]. In general, one isolate produces functional antheridia and the other isolate forms oogonia during a reciprocal crossing between two self-sterile isolates and the evidence of relative sexuality within isolates determines the contribution of antheridia and oogonia by each parent [9]. However, the presence of

J. Fungi **2022**, 8, 629 2 of 9

multiple compatibility types has been reported in other oomycetes. Four compatibility types (A_1 , A_2 , A_1A_2 and neuter) have been observed in the F_1 progenies of the crosses derived from two distinct mating type isolates ($A_1 \times A_2$) of *Phytophthora* spp. [10,11]. The production of oospores in one mating type (G_2) of *S. graminicola* isolate without fusion with any mating type [6] and no formation of oospores in isolate Sg 110-2 with any one of the designated mating types (G_1 and G_2) [12] indicated the presence of multiple compatibility types in *S. graminicola* [6]. Therefore, this study was planned to investigate the occurrence of self-sterile, self-fertile and neuter (sterile) isolates in *S. graminicola* to ascertain the multiple sexual compatibility types within the pathogen.

2. Materials and Methods

2.1. Collection and Maintenance of Isolates

A total of 52 isolates of *S. graminicola* were collected from different pearl millet growing areas of India during 1992 to 2012 (Table 1). The single zoospore isolates of each collection were established [12] and were maintained separately either on their original host or on another susceptible host in the isolation polyacrylic chambers (60 cm \times 45 cm \times 45 cm) in the glasshouse at ICRISAT, India.

Table 1. Sources of *Sclerospora graminicola* isolates collected from different pearl millet growing states of India.

Identity	Location	State	Year	Maintenance Host
Sg 018	Patancheru	Telangana	1992	7042 S
Sg 019	Patancheru	Telangana	1992	7042 S
Sg 021	Ahmednagar	Maharashtra	1993	7042 S
Sg 048	Mysore	Karnataka	1994	852 B
Sg 139	Jodhpur	Rajasthan	1997	Nokha Local
Sg 150	Jalna	Maharashtra	1997	834 B
Sg 151	Durgapura	Rajasthan	1997	Nokha Local
Sg 153	Patancheru	Telangana	1997	843 B
Sg 200	Jamnagar	Gujarat	1998	ICMP 451
Sg 212	Durgapura	Rajasthan	1998	ICMP 451
Sg 298	IĂŖĪ	New Delhi	1999	W 504-1-1
Sg 334	Bhiwani	Haryana	2001	7042 S
Sg 384	Barmer	Rajasthan	2003	ICMP 451
Sg 409	Patancheru	Telangana	2004	PMB 11571-2
Sg 431	Patancheru	Telangana	2005	7042 S
Sg 445	Banaskantha	Gujarat	2005	Pioneer 7777
Sg 457	Sujnapur, Jaipur	Rajasthan	2006	ICMP 451
Sg 492	Iglas	Uttar Pradesh	2007	ICMP 451
Sg 510	Badaun	Uttar Pradesh	2008	7042 S
Sg 519	Rewari	Haryana	2009	7042 S
Sg 520	Bhiwani	Haryana	2009	7042 S
Sg 521	Rewari	Haryana	2009	7042 S
Sg 526	Jodhpur	Rajasthan	2009	7042 S
Sg 528	CAZRI, Jodhpur	Rajasthan	2009	7042 S
Sg 529	CAZRI, Jodhpur	Rajasthan	2009	7042 S
Sg 530	Karodi, Aurangabad	Maĥarashtra	2009	7042 S
Sg 531	Nashik	Maharashtra	2009	7042 S
Sg 532	Srirampur, Ahmednagar	Maharashtra	2009	7042 S
Sg 533	Newasa, Ahmednagar	Maharashtra	2009	7042 S
Sg 535	Gangapur, Aurangabad	Maharashtra	2009	7042 S
Sg 540	Jambal, Aurangabad	Maharashtra	2010	7042 S
Sg 541	Pimpalgaon, Aurangabad	Maharashtra	2010	7042 S
Sg 542	Aurangabad	Maharashtra	2010	7042 S
Sg 543	Aurangabad	Maharashtra	2010	7042 S
Sg 544	Aurangabad	Maharashtra	2010	7042 S
Sg 545	Aurangabad	Maharashtra	2010	7042 S

J. Fungi **2022**, 8, 629 3 of 9

Table 1. Cont.

Identity	Location	State	Year	Maintenance Host
Sg 546	Tanda, Aurangabad	Maharashtra	2010	7042 S
Sg 547	Jalna	Maharashtra	2010	7042 S
Sg 548	Dakkalgaon, Jalna	Maharashtra	2010	7042 S
Sg 549	Hathnur, Aurangabad	Maharashtra	2010	7042 S
Sg 550	Kannad, Aurangabad	Maharashtra	2010	7042 S
Sg 551	Chalisgaon, Jalgaon	Maharashtra	2010	7042 S
Sg 552	Sindhkheda, Dhule	Maharashtra	2010	7042 S
Sg 553	Dondaicha, Dhule	Maharashtra	2010	7042 S
Sg 554	Indave, Dhule	Maharashtra	2010	7042 S
Sg 555	NARP, Aurangabad	Maharashtra	2010	7042 S
Sg 556	Kothigaon, Banaskantha	Gujarat	2010	7042 S
Sg 557	Lodhnoor, Banaskantha	Gujarat	2010	7042 S
Sg 558	Gagana, Banaskantha	Gujarat	2010	7042 S
Sg 559	Jamdi, Banaskantha	Gujarat	2010	7042 S
Sg 560	SK Nagar, Banaskantha	Gujarat	2010	7042 S
Sg 561	IARI	New Delhi	2010	ICMP 451

2.2. Identification of Self-Sterile or Self-Fertile Isolates

To identify the homothallic or heterothallic isolates, the single zoospore isolates-infected plants were allowed to mature for formation of oospores in separate isolation chambers. Necrotic leaf pieces from 2-month-old seedlings infected with each isolate were collected in brown paper bags, cut into 1-centimeter-long pieces, dried under shade and stored at room temperature (25 \pm 2 °C) until further observation. The small leaf pieces were surface sterilized with NaOCl (2%) and washed thoroughly with sterilized distilled water. These leaf pieces were cleared by incubating them at 40 °C in NaOH (5%) for 12 to 16 h. Cleared leaf pieces were rinsed in distilled water and observed under a microscope using a $10\times$ objective for the presence of oospores. Isolates which did not show oospore formation were selected as self-sterile isolates for further studies.

2.3. Selection of Highly Virulent Self-Sterile Isolate

The sporangial inocula of all the self-sterile heterothallic isolates were raised on seedlings of a highly susceptible genotype 7042 S in isolation chambers in the glasshouse. The sporangia from sporulating leaves were harvested in ice-cold distilled sterile water and spore concentration was adjusted to 1×10^6 mL $^{-1}$. Pot-grown seedlings of the pearl millet differential lines P 7-4, P 310-17, 700651, 7042 R, IP 18292, IP 18293 and 852 B and two known downy mildew (DM) susceptible lines—ICMP 451 and 7042 S—were spray-inoculated at coleoptile stage using an atomizer. The inoculated seedlings were incubated at 20 °C with >90% Relative Humidity (RH) for 20 h, and then transferred to greenhouse benches at 25 \pm 2 °C and >90% RH for disease development for the next 2 weeks. DM incidence was recorded 14 days after inoculation as percentage of infected plants. The isolates with \leq 10% disease incidence were considered avirulent and those with >50% disease incidence as virulent on the specific genotype.

2.4. Confirmations of Mating Type of Virulent Test Isolate (Sg 445-1)

The reference isolates Sg 018 (Mat-1, G_1) and Sg 019 (Mat-2, G_2) and test isolate Sg 445-1 (single zoospore selection from Sg 445) of S. graminicola were maintained separately on 7042 S. To detect the mating type of the test isolate, Sg 445-1 was crossed with both the reference mating type isolates (Sg 018 \times Sg 445-1; and Sg 019 \times Sg 445-1). Sporangial inoculum of each isolate (1×10^6 sporangia mL $^{-1}$) was prepared individually in ice-cold distilled sterile water. Sporangial suspensions of Sg 018 and Sg 445-1, and Sg 019 and Sg 445-1 were mixed in equal proportion (1:1) and spray inoculated on the highly susceptible pearl millet line 7042 S separately. The inoculated seedlings were incubated and transferred to isolation chambers. The infected seedlings were grown in the isolation chambers and allowed to mature. The necrotic tissues from these infected seedlings (>2 months old) were observed for oospore formation.

J. Fungi **2022**, 8, 629 4 of 9

2.5. Establishment of F_1 Progenies from Oospores Generated from Sg 019 \times Sg 445-1 Crosses

To generate progenies from F_1 oospores (Sg 019 \times Sg 445-1), infected leaf samples with oospores were dried in the shade, grinded and strained to make a fine powder. Oospores were checked again for their presence in the matured leaf powder. Sterilized potting mixture (soil, sand, and farmyard manure in a ratio of 3:2:2 by volume) was infested with oospore inoculum (20–25 g) and the pots (15 cm diameter) containing the infested mixture were sown with a susceptible genotype 7042 S (25 seeds per pot). Each pot was covered with a polythene bag and incubated at 40 °C for 3–4 days for rapid seed germination. Pots were transferred to isolation chambers in a glasshouse at 25 \pm 2 $^{\circ}$ C to avoid any cross contamination from other isolates. Pots were watered adequately every day and observed regularly for DM symptoms on the seedlings. When the first infected seedling in a pot was noticed, it was removed from the pot and was transplanted into another pot containing sterilized soil and shifted to an isolation chamber. Sporangia from each seedling were maintained separately on 7042 S as an individual F₁-progeny in isolation chambers at 25 ± 2 °C in the glasshouse. A total of 39 F₁ progenies were established to determine sexual compatibility types in S. graminicola. Since infected seedlings occurred infrequently and rarely, each infected seedling was assumed to have infection from a single oospore.

2.6. Identification of Sexual Compatibility Types and Self-Sterile/Fertile Nature of F₁ Progenies

To detect sexual compatibility types of F_1 progenies, all the 39 F_1 progenies derived from the cross Sg 019 \times Sg 445-1 were crossed with both the parents (Sg 445-1, Mat-1, G1; and Sg 019, Mat-2, G2) separately. Sporangial inoculum (1 \times 10⁶ sporangia mL $^{-1}$) of each of the F_1 progenies and both the parents was prepared separately in ice-cold distilled sterile water, mixed in equal proportion (1:1) and spray inoculated on the highly susceptible pearl millet line 7042 S separately. The inoculated seedlings were incubated, transferred to isolation chambers and the infected seedlings were allowed to mature for production of oospores. In addition, to identifying the self-sterile or self-fertile nature of F_1 progenies, the single-zoospore infected plants were allowed to mature in separate isolation chambers and observed for the presence of oospores.

3. Results

3.1. Selection of Self-Sterile Heterothallic Isolates

The 60-day-old, infected leaves of 52 single-zoosporic isolates of *S. graminicola* were checked for presence of oospores. No oospores were detected in 33 isolates, whereas oospores were formed by the remaining 19 isolates (Table 2). Isolates without oospores formation were designated as self-sterile or heterothallic while those producing oospores were designated as self-fertile or homothallic. Thus, a total of 33 heterothallic isolates were selected and the 19 homothallic isolates were excluded from the further studies.

3.2. Selection of Highly Virulent Self-Sterile Isolate

All the 33 self-sterile heterothallic isolates including reference mating type isolates Sg 018 (Mat-1/ G_1) and Sg 019 (Mat-2/ G_2) were screened on seven host differentials (P 7-4, P 310-17, 700651, 7042 R, IP 18292, IP 18293 and 852 B) and the two known DM susceptible lines (ICMP 451 and 7042 S). The screening identified Sg 445-1 as the most virulent isolate and Sg 018 and Sg 019, the two reference mating type isolates, as avirulent on specific genotypes; hence, they were selected for the crossing and generation of F_1 progenies (Table 3).

3.3. Confirmations of Mating Type of Virulent Test Isolate (Sg 445-1)

The cross between virulent test isolate Sg 445-1 with both the reference mating types Sg 018, Mat-1, G_1 and Sg 019 Mat-2, G_2 isolates (Sg 018 \times Sg 445-1 and Sg 019 \times Sg 445-1) yielded oospore production in the cross Sg 019 \times Sg 445-1, whereas no oospore formations were recorded in Sg 018 \times Sg 445-1. This indicated Mat-1/ G_1 mating type of Sg 445-1.

J. Fungi **2022**, 8, 629 5 of 9

Thus, two parents Sg 019 (avirulent) and Sg 445-1 (virulent) of different mating types were selected for crossing and generation of 39 F_1 progenies.

Table 2.	Observation	on oospore	formation	in 52 s	selfed Scle	rospora g	raminicola iso	lates.

		Oospore F	ormation		Isolate	Oospore F	ormation
S.No.	Isolate No.	No Oospore	Oospores	S.N.	No.	No Oospore	Oospores
1	Sg 018			28	Sg 532		
2	Sg.019			29	Sg 533		
3	Sg 021		\checkmark	30	Sg.535		
4	Sg 048	$\sqrt{}$		31	Sg 540		
5	Sg 139			32	Sg 541	·	$\sqrt{}$
6	Sg 150			33	Sg 542		•
7	Sg 151			34	Sg 543		
8	Sg 153	•	$\sqrt{}$	35	Sg 544		
9	Sg 200	$\sqrt{}$	·	36	Sg 545	·	$\sqrt{}$
10	Sg 212			37	Sg 546		
11	Sg 298	$\sqrt{}$		38	Sg 547	$\sqrt{}$	•
12	Sg 334	•	$\sqrt{}$	39	Sg 548	·	$\sqrt{}$
13	Sg 384	$\sqrt{}$	•	40	Sg 549	$\sqrt{}$	•
14	Sg 409	·	$\sqrt{}$	41	Sg 550	·	$\sqrt{}$
15	Sg 431	$\sqrt{}$	•	42	Sg 551		
16	Sg 445			43	Sg 552	$\sqrt{}$	•
17	Sg 457	$\sqrt{}$		44	Sg 553	V	
18	Sg 492	$\sqrt{}$		45	Sg 554	V	
19	Sg 510	•	\checkmark	46	Sg 555		
20	Sg 519			47	Sg 556		
21	Sg.520			48	Sg 557		
22	Sg 521			49	Sg 558	·	$\sqrt{}$
23	Sg 526	$\sqrt{}$	·	50	Sg 559		$\sqrt{}$
24	Sg 528	· √		51	Sg 560		$\sqrt{}$
25	Sg 529	· √		52	Sg 561		$\sqrt{}$
26	Sg 530	$\sqrt{}$			3		•
27	Sg 531	·	\checkmark				

Table 3. Differential reaction of the isolates selected for developing F_1 progenies.

D d d	Mating	Percent Disease Incidence on Host Differential Lines								
Pathotype	Type	700651	7042 R	7042 S	852 B	ICMP451	IP18292	IP18293	P310-17	P7-4
Sg 018	Mat-1	4	47	97	0	94	0	4	0	8
Sg 019	<i>Mat-2</i>	0	38	95	0	91	0	0	0	3
Sg 445	?	53	75	100	100	100	80	46	63	86

3.4. Identification of Sexual Compatibility Types and Self-Sterile/Fertile Nature of F1 Progenies

A total of 39 F_1 progenies were derived from the cross of Sg 019 Mat-2, $G_2 \times Sg$ 445-1 Mat-1, G_1 . In contrast to the distinct mating types of the parents (G_1 and G_2), progenies were of four compatibility types viz. G_1 , G_2 , G_1G_2 and G_0 (neuter) (Table 4). Of 39 F_1 progenies, four belonged to G_1 , 13 to G_2 , 21 G_1G_2 and one to neuter categories (Tables 4 and 5). Further, the self-fertile or self-sterile nature of all the 39 F_1 progenies was evaluated on the basis of production of oospores. Among 21 G_1G_2 progenies, 19 supported self-production of oospores while 2 were free of any oospores in the matured leaves. Out of four G_1 progenies, oospores were observed in three progenies and one was recorded as a non-oospore producer when selfed. Of the 13 G_2 progenies, 7 supported self-production of oospores whereas no oospore formation was observed in the matured leaves infected with the remaining 6 F_1 progenies.

J. Fungi **2022**, 8, 629 6 of 9

Table 4. Determination of sexual compatibility types of F_1 progenies based on oospores formation with Sg 445, *Mat*-1 (G_1) and Sg 019, *Mat*-2 (G_2).

Daniel attan	Oospore Formation with		Mating Type	Self-Fertile/	D 1
Population	Sg 445-1 (G ₁)	Sg 019 (G ₂)	of Population	Sterile	Remarks
P ₁	N	Y	G ₁	N	Heterothallic
P_5	Y	N	G_2	N	Heterothallic
P_6	Y	Y	$\overline{G_1G_2}$	Y	Homothallic
P_7	Y	N	G_2	N	Heterothallic
P_8	Y	N	$\overline{G_2}$	N	Heterothallic
P_{10}	N	Y	$\overline{G_1}$	Y	Secondary homothallic
P ₁₁	Y	Y	G_1G_2	Y	Homothallic
P ₁₂	Y	N	G_2	Y	Secondary homothallic
P ₁₄	Y	Y	$G_1\overline{G}_2$	Y	Homothallic
P ₁₈	Y	Y	G_1G_2	Y	Homothallic
P ₁₉	Y	N	G_2	N	Heterothallic
P_{20}^{19}	N	Y	G_1	Y	Secondary homothallic
P ₂₁	Y	N	G_2	N	Heterothallic
P ₂₂	Y	N	G_2	Y	Secondary homothallic
P ₂₃	Y	N	G_2	N	Heterothallic
P ₂₄	Y	Y	G_1G_2	Y	Homothallic
P ₂₅	Y	Y	G_1G_2	N	Heterothallic
P ₂₆	Y	Y	G_1G_2	Y	Homothallic
P ₂₇	Y	Y	G_1G_2	Y	Homothallic
P ₂₈	Y	N	G_2	Y	Secondary homothallic
P ₂₉	Y	Y	G_1G_2	N	Heterothallic
P ₃₀	N	N	Neutral	N	Neuter
P ₃₁	Y	Y	G_1G_2	Y	Homothallic
P ₃₂	Y	N	G_2	Y	Secondary homothallic
P ₃₃	Y	N	G_2	Y	Secondary homothallic
P ₃₄	Y	Y	G_1G_2	Y	Homothallic
P ₃₅	Y	Y	G_1G_2	Y	Homothallic
P ₃₆	Y	Y	G_1G_2	Y	Homothallic
P ₃₇	Y	N	G_2	Y	Secondary homothallic
P ₃₈	Y	Y	G_1G_2	Y	Homothallic
P ₃₉	N	Y	G_1	Y	Secondary homothallic
P_{40}	Y	Y	G_1G_2	Y	Homothallic
P_{41}	Y	N	G_1G_2	Y	Secondary homothallic
P ₄₂	Y	Y	G_1G_2	Y	Homothallic
P ₄₃	Y	Y	G_1G_2 G_1G_2	Y	Homothallic
P ₄₄	Ϋ́	Y	G_1G_2 G_1G_2	Y	Homothallic
P ₄₅	Y	Y	G_1G_2 G_1G_2	Y	Homothallic
P ₄₆	Y	Y	G_1G_2 G_1G_2	Y	Homothallic
P ₄₇	Y	Y	G_1G_2 G_1G_2	Y	Homothallic

N = no oospore, Y = oospores formed.

One unique neuter (G_0) progeny was recorded as a non-oospore former, which was neither self-fertile nor produced oospore by crossing with any of the two parents. The F_1 progenies which produced oospore by crossing with both the parents were designated as G_1G_2 . Both self-sterile and self-fertile progenies were observed among G_1G_2 s. In S. graminicola, it is reported that oospore formation is very low when isolates are selfed, whereas the number of oospores formed is quite high when the isolates of different mating types are crossed [6,12]. Similar observations were made in the present study. In the case of selfed G_1G_2 F_1s , about 10 oospores were observed per leaf piece (1 cm^2) , whereas $\sim 100-300$ oospores were found when they were crossed with either of the parents. Thus, the 19 self-fertile (G_1G_2) progenies, which showed production of oospores were designated as homothallic, while two self-sterile (G_1G_2) progenies were designated as heterothallic type (Table 5). Similarly, the self-fertile parental type G_1 and G_2 proge-

J. Fungi **2022**, 8, 629 7 of 9

nies were denoted as secondary homothallic whereas self-sterile parental type G_1 and G_2 progenies were of heterothallic type.

Table 5. Summary of determination of sexual compatibility types of F_1 populations based on oospore formation with Sg 445, $Mat-1(G_1)$ and Sg 019, $Mat-2(G_2)$.

No. of Dunasias	C.16 E. at 1.	Oospore Formation		Competibility Types	n 1	
No. of Progenies	Self-Fertile	Sg 445-1	Sg 019	- Compatibility Types	Remarks	
19	Y	Y	Y	G ₁ G ₂	Homothallic	
2	N	Y	Y	$G_1 G_2$	Heterothallic	
3	Y	N	Y	\overline{G}_1	Secondary homothallic	
1	N	N	Y	G_1	Heterothallic	
6	N	Y	N	G_2	Heterothallic	
7	Y	Y	N	$\overline{G_2}$	Secondary homothallic	
1	N	N	N	$\overline{G_0}$	Neuter	

N = no oospore, Y = oospores formed.

4. Discussion

The oospore formation in plant pathogenic oomycetes depends on the presence of two sexual compatibility types or their determinants [13–17]. In *S. graminicola*, two types of mating/compatibility types, *viz*. G_1 and G_2 , have been proposed earlier [6,7,12] which are responsible for sexual reproduction between two self-sterile isolates, and within self-fertile isolates. Since sexual reproduction is dependent upon both compatibility types, it is speculated that the self-fertile isolates contain both compatibility types in the same seedling. The earlier studies [6,7,12] also reported self-fertile isolates and placed these isolates in G_2 mating types tentatively and suggested that determination of sexual compatibility type in *S. graminicola* is likely to be complex and the nomenclature of G_1/G_2 compatibility types may not necessarily imply their distribution in a population. In addition, the neuter (sterile) type of *S. graminicola* isolate (Sg 110-2) was also observed [12], which failed to produce oospores with any of the parent isolates and was also placed under G_1/G_2 compatibility types.

Since vegetative structures of oomycetes exist in diploidy level, the mating type alleles have been reported to be controlled by a single mating type locus in *Phytophthora* spp. [11,18,19] due to equal numbers of A_1 or A_2 types in the progenies. However, skewed numbers of one or the other mating types have also been reported [10,20–22]. Although normal Mendelian segregation of alleles expects four different combinations of alleles for a given locus in the progenies of heterozygous parents, inheritance of mating type alleles of a single locus has been explained in three different ways to explicate the almost equal ratios of A_1 and A_2 progenies in *Phytophthora* spp. [11,18,20].

In the first model, one mating type is represented by heterozygous (A/a) condition and the other in homozygous (a/a) condition at the mating type locus [20] which can yield only two types of sexual compatibility types in the offspring. However, inconsistent ratios in the progenies of heterozygous (A/a) and homozygous (a/a) parents have been reported in contrast to this model [15,22,23]. The second model suggests the presence of balanced lethal loci due to survival of only two genotypes A_1 (M_1/M_n) and A_2 (M_2/M_n) instead of the four different genotypes $(M_1/M_n, M_2/M_n, M_1/M_2)$ or M_nM_n in the progenies of A_1 (M_1/M_n) and A_2 (M_2/M_n) mating type parents in *Phytophthora infestans* [18]. The third model, a hybrid of the earlier two, explains the existence of ambiguous A₁-A₂ genotype in P. parasitica, which was consistent with the first model in which the A_1 mating type was represented by heterozygous (M_A/M_a) and A_2 in homozygous (M_a/M_a) conditions for the alleles at the mating-type locus [11]. In contrary to all three models, the present study revealed four different compatibility types (4G₁, 13G₂, 21G₁G₂ and one G₀, neuter) in 39 F₁ progenies from the cross of two distinct self-sterile heterothallic parents (Sg 445-1 Mat-1, $G_1 \times Sg$ 019 Mat-2, G_2) that indicated normal Mendelian segregation of mating types (Table 6) in S. graminicola. In the earlier studies [6,12], four different compatibility J. Fungi **2022**, *8*, 629

types were also noticed in S. graminicola though all the progenies were accommodated in G_1/G_2 compatibility types either due to skewed distribution of mating types or lack of nomenclature in S. graminicola. The discussed three models were found inadequate to explain the usual segregation in S. graminicola and unequal ratio of $G_1:G_2$ along with ambiguous G_1G_2 sexual compatibility types. Therefore, an alternative scheme for mating-type determination was considered and the segregation could be speculated due to presence of mating type alleles in heterozygous state in both parents $[G_1g_1 \ (Mat-1) \ for \ G_1$ and $G_2g_2 \ (Mat-2) \ for \ G_2]$ at the same locus. In Phytophthora, isolates forming oospores only with the A_1 or A_2 testers are designated as A_2 and A_1 , respectively, whereas the isolates which can form oospores with both A_1 and A_2 testers are designated as A_1A_2 and those that fail to form oospores are designated as A_0 (sterile or neuter) [24] which supports the results of this study.

Table 6. Mendelian segregation of sexual compatibility types in two distinct self-sterile heterothallic parents (Sg 445-1, Mat-1, $G_1 \times Sg$ 019, Mat-2, G_2) of Sclerospora graminicola.

G_1g_1 (Mat-1) \times G_2g_2 (Mat-2)						
Û	\Rightarrow	G_2	g 2			
	G ₁	G ₁ G ₂ (Mat-1/Mat-2)	G ₁ g ₂ (<i>Mat-</i> 1)			
	g 1	G ₂ g ₁ (<i>Mat-</i> 2)	g ₁ g ₂ (G ₀ , Neuter)			

The mating system plays an important role in the evolution of plant pathogens during strong selection pressure from the resistant host or chemical control measures or harsh environmental conditions [25,26]. In oomycetes, the predominant co-existence of two mating types (G_1 and G_2 or A_1 and A_2) [6,7,11,12,18,19] and generation of multiple compatibility types (A_1 , A_2 , A_1A_2 and neuter) in the F_1 progenies upon sexual reproduction between two distinct mating types ($A_1 \times A_2$) [10,11] might provide advantage to pathogens during unfavorable conditions. *Sclerospora graminicola* has a high outcrossing capacity which renders the pathogen to evolve into new pathotype/s upon selection pressure and helps in adaptation to different ecosystems [12]. Therefore, effective management of downy mildew pathogen in pearl millet would be targeted towards understanding the change in population structure, particularly virulence pattern, and its utilization in resistance-breeding programs for the development of resistant cultivars.

Author Contributions: Conceptualization, R.S.; methodology, R.S. and C.R.; formal analysis, C.R.; investigation, C.R.; resources, R.S.; writing—original draft preparation, C.R.; writing—review and editing, R.S.; supervision, R.S.; project administration, R.S.; funding acquisition, R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Department of Biotechnology, Government of India, and the CGIAR Research Program on Grain Legumes and Dryland Cereals (CRP-GLDC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available at http://dataverse.icrisat.org/privateurl.xhtml?token=f0c65f21-6a85-4b3f-901d-1f03703d6311, accessed on 18 March 2022.

Acknowledgments: We thank P. Jaganmohan Rao for his help in establishing single zoospore isolates and greenhouse screenings.

Conflicts of Interest: The authors declare no conflict of interest.

J. Fungi **2022**, *8*, 629

References

1. Gupta, S.K.; Patil, K.S.; Rathore, A.; Yadav, D.V.; Sharma, L.D.; Mungra, K.D.; Patil, H.T.; Kumar, R.; Chaudhary, V.; Das, R.R.; et al. Identification of heterotic groups in South-Asian-bred hybrid parents of pearl millet. *Theor. Appl. Genet.* **2020**, *133*, 873–888. [CrossRef] [PubMed]

- 2. Chelpuri, D.; Sharma, R.; Durga, K.K.; Katiyar, P.; Mahendrakar, M.D.; Singh, R.B.; Yadav, R.S.; Gupta, R.; Srivastava, R.K. Mapping quantitative trait loci (QTLs) associated with resistance to major pathotype-isolates of pearl millet downy mildew pathogen. *Eur. J. Plant Pathol.* **2019**, 154, 983–994. [CrossRef]
- 3. Yadav, O.P.; Rai, K.N. Genetic improvement of pearl millet in India. Agric. Res. 2013, 2, 275–292. [CrossRef]
- 4. Sharma, R.; Upadhyaya, H.D.; Sharma, S.; Gate, V.L.; Raj, C. New sources of resistance to multiple pathotypes of *Sclerospora graminicola* in the pearl millet mini core germplasm collection. *Crop Sci.* **2015**, *55*, 1619–1628. [CrossRef]
- 5. Pushpavathi, B.; Thakur, R.P.; Rao, K.C. Inheritance of avirulence in *Sclerospora graminicola*, the pearl millet downy mildew pathogen. *Plant Pathol.* **2006**, *5*, 54–59. [CrossRef]
- 6. Michelmore, R.W.; Pawar, M.N.; Williams, R.J. Heterothallism in *Sclerospora graminicola*. *Phytopathology* **1982**, 72, 1368–1372. [CrossRef]
- 7. Idris, M.O.; Ball, S.L. Inter-and intracontinental sexual compatibility in *Sclerospora graminicola*. *Plant Pathol.* **1984**, 33, 219–223. [CrossRef]
- 8. Michelmore, R.W.; Ingram, D.S. Secondary homothallism in Bremia lactucae. Trans. Brit. Mycol. Soc. 1982, 78, 1–9. [CrossRef]
- 9. Galindo, A.; Gallegly, M.E. The nature of sexuality in *Phytophthora infestans*. *Phytopathology* 1960, 50, 123–128.
- 10. Khaki, I.A.; Shaw, D.S. The inheritance of drug resistance and compatibility type in *Phytophthora drechsleri*. *Genet*. *Res.* **1974**, 23, 75–86. [CrossRef]
- 11. Fabritius, A.L.; Judelson, H.S. Mating-type loci segregate aberrantly in *Phytophthora infestans* but normally in *Phytophthora parasitica*: Implications for models of mating-type determination. *Curr. Genet.* **1997**, *32*, 60–65. [CrossRef] [PubMed]
- 12. Pushpavathi, B.; Thakur, R.P.; Rao, K.C. Fertility and mating type frequency in Indian isolates of *Sclerospora graminicola*, the downy mildew pathogen of pearl millet. *Plant Dis.* **2006**, *90*, 211–214. [CrossRef] [PubMed]
- 13. Bishop, H. A study of sexuality in Sapromyces reinschii. Mycologia 1940, 32, 505–529. [CrossRef]
- 14. Papa, K.E.; Campbell, W.A.; Hendrix, F.F., Jr. Sexuality in *Pythium sylvaticum*: Heterothallism. *Mycologia* **1967**, *59*, 589–595. [CrossRef]
- 15. Gallegly, M.E. Genetics of pathogenicity of *Phytophthora infestans*. Annu. Rev. Phytopathol. 1968, 6, 375–396. [CrossRef]
- 16. Michelmore, R.W.; Sansome, E.R. Cytological studies of heterothallism and secondary homothallism in *Bremia lactucae*. *Trans. Brit. Mycol. Soc.* **1982**, *79*, 291–297. [CrossRef]
- 17. Brasier, C.M. Evolutionary biology of Phytophthora. Part I. Genetic system, sexuality and the generation of variation. *Annu. Rev. Phytopathol.* **1992**, *30*, 153–171. [CrossRef]
- 18. Judelson, H.S.; Spielman, L.J.; Shattock, R.C. Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, *Phytophthora infestans. Genetics* **1995**, *141*, 503–512. [CrossRef]
- 19. Judelson, H.S. Genetic and physical variability at the mating type locus of the oomycete, *Phytophthora infestans*. *Genetics* **1996**, 144, 1005–1013. [CrossRef]
- 20. Gallegly, M.E. Genetics of Phytophthora. Phytopathology 1970, 60, 1135–1141. [CrossRef]
- 21. Timmer, L.W.; Castro, J.; Erwin, D.C.; Belser, W.L.; Zentmyer, G.A. Genetic evidence for zygotic meiosis in *Phytophthora capsici*. *Am. J. Bot.* **1970**, *57*, 1211–1218. [CrossRef]
- 22. Shattock, R.C.; Tooley, P.W.; Fry, W.E. Genetics of *Phytophthora infestans*: Characterization of single-oospore cultures from A1 isolates induced to self by intraspecific stimulation. *Phytopathology* **1986**, *76*, 407–410. [CrossRef]
- 23. Spielman, L.J.; Sweigard, J.A.; Shattock, R.C.; Fry, W.E. The genetics of *Phytophthora infestans*: Segregation of allozyme markers in F₂ and backcross progeny and the inheritance of virulence against potato resistance genes R2 and R4 in F₁ progeny. *Exp. Mycol.* **1990**, *14*, 57–69. [CrossRef]
- 24. Ho, H.H. The Taxonomy and Biology of Phytophthora and Pythium. J Bacteriol Mycol Open Access 2018, 6, 174. [CrossRef]
- 25. Francis, D.M.; Clair, D.A.S. Population genetics of *Pythium ultimum*. *Phytopathology* **1997**, 87, 454–461. [CrossRef]
- 26. Billiard, S.; López-Villavicencio, M.; Hood, M.E.; Giraud, T. Sex, outcrossing and mating types: Unsolved questions in fungi and beyond. *J. Evol. Biol.* **2012**, 25, 1020–1038. [CrossRef]