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A B S T R A C T   

Genotype-by-Environment-by-Management (GxExM) interactions represent many unknowns for crop improve-
ment programs, which hampers the development of improved varieties, especially for highly variable environ-
ments like those limited by rainfall. While breeding programs have traditionally used statistical tools to deal with 
these interactions, process-based crop modeling has recently become an alternative and powerful approach. 
Overall, while statistical methods remain the most optimal solution to deal with GxExM interactions when many 
production datasets across time and space are available from multi-environment trials (MET), in silico methods 
like crop modeling can be used if such data is lacking, or if MET data don’t cover the entire target region. Yet, 
despite several reviews on the potential uses of process-based modeling tools to aid such issues, their practical 
use in helping breeding programs is still in its infancy. After exposing the pros and cons of process-based 
modeling, this paper presents the step-by-step process that would allow breeding programs to harness this 
tool to help guide their breeding decisions. We also argue that the issue of GxExM interactions should be tackled 
in a co-construction process, involving breeders, agronomists, extensionists, and modelers from the beginning, 
and this would bring crop models one step closer to being used to help make plant breeding decisions.   

1. Introduction 

Traditional varietal improvement has focused on high yield herita-
bility (Chenu, 2015), although it has not provided generic solutions to 
the issue of environment and management interactions. High herita-
bility increases selection accuracy and breeding efficiency, but herita-
bility declines when Genotype-by-Environment-by-Management 
(GxExM) interactions increase, which becomes a primary constraint for 
the selection of germplasm with consistent performance across envi-
ronments (Hammer et al., 2014). Understanding and quantifying the 
causes of such interactions is critical for breeding progress to develop 
GxM packages that maximize production in specific E’s (environments) 
(Chauhan and Rachaputi, 2014; George, 2014) and the most frequent E 
types from year to year (Hammer et al., 2014). The presence of GxExM 
interactions, if known, could even create opportunities for new 
prediction-based crop improvement strategies. However, there is often a 
major knowledge gap in most crop improvement programs (Cooper 
et al., 2020). Even though successful crop improvement in terms of crop 
productivity depends on the complementary mix of cultivar 

improvement (G) coupled with improved agronomy (M) (Cooper et al., 
2020, 2021a,b; Messina et al., 2020b; Fischer et al., 2014), the term crop 
improvement is often associated with genetic improvement alone 
(Kholová et al., 2020). A more holistic, systems-based approach is 
needed that includes all aspects of crop performance improvement. A 
focus on genetics alone undermines crop yield improvement potential 
(Van Bueren et al., 2018). However, this requires significant changes to 
the current crop improvement pipelines and necessitates the integration 
of new tools, ways of thinking, and principally, collaboration. 

Yield-based approaches that classify crop production regions have 
been used to reduce GxE interactions (Cooper and Woodruff, 1993) but 
often lack detailed soil and weather measurements to help us understand 
these interactions. Some approaches are based on environmental char-
acteristics that identify mega-environments, which are sometimes called 
adaptation zones or ecological zones (Van Eeuwijk et al., 2016). The 
International Maize and Wheat Improvement Center (CIMMYT) devel-
oped the concept of mega-environments (Rajaram et al., 1994) to target 
maize and wheat germplasm development using similarities in envi-
ronmental variables and cropping system requirements. Surprisingly, 
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Windhausen et al. (2012) showed that the maize mega-environment 
groupings did not explain as much of the GxE interactions for grain 
yield as did simple grouping into low (<3 t/ha) and high (>3 t/ha) yield 
sites. A comprehensive GxExM analysis permits a nuanced understand-
ing of the factors that lie behind regional differences in yield (Porter 
et al., 2010), and here a statistical approach to deal with GxExM inter-
action is simple, provided there is a large enough number of trials and 
sites. This is done regularly with multi-environment trials (METs). 
However, METs are generally restricted by the number and the location 
of trial sites and crop seasons, especially for minor crops (Chenu, 2015; 
Ramirez-Villegas et al., 2020; Witcombe et al., 1998), which eventually 
limits the spatio-temporal reach of the GxExM analysis (Kholová et al., 
2020). In contrast, an in-silico analysis using process-based crop simu-
lation models (CSM) can help overcome spatial and temporal limitations 
(Cooper et al., 2020; Heinemann et al., 2015; Ramirez-Villegas et al., 
2020), and allows testing in future environments or environments that 
are not covered by METs. Environment types are then based on specific 
site–year–management–genotype combinations rather than on locations 
(Chenu, 2015; Hammer et al., 2014), leading to improvements in the 
sustainability and productivity of diverse production systems (Messina 
et al., 2020). Various approaches have been developed and applied to 
classify crop production regions for breeding purposes within the 
concept of the target population of environments (TPE; Comstock, 

1977). A TPE is a set of key environmental conditions that are expected 
to occur within the breeding program’s target geography (Cooper et al., 
2016; Van Eeuwijk et al., 2016), e.g. different types of water-limited 
environments (Hammer et al., 2014; Kholová et al., 2013). Any 
research and breeding program that encounters strong GxE interactions 
must define target environment types (Cooper et al., 2021b). As a result, 
the TPE represents the range of soil, meteorological, and agronomic 
conditions in which the varieties of a breeding program will be grown 
(Bustos-Korts et al., 2019). 

Two schools of thought address GxExM interactions, using either 
statistical methods or process-based modeling. Most statistical models 
used for GxE analysis are phenotypic response functions for each ge-
notype to environmental variables, which largely consist of data from 
MET (Malosetti et al., 2013). Environmental variables in MET are 
limited to soil and weather. Process-based crop simulation modeling 
helps disentangle GxExM interactions by classifying abiotic stress pat-
terns (frequency or intensity) within a geographical space (e.g. Battisti 
and Sentelhas, 2019; Chapman et al., 2000; Chenu et al., 2011; Cooper 
et al., 1997; Hajjarpoor et al., 2021, 2018; Heinemann et al., 2015; 
Kholová et al., 2013; Sciarresi et al., 2019; Wang et al., 2019). This offers 
the opportunity to balance risks and extend the growing season to their 
full potential. Recent reviews highlighted the potential of CSM in 
accelerating crop improvement program achievements in targeted areas 

Fig. 1. Genotype by environment (GxE) interaction and reaction norms: (a) clear differences between environments, no GxE interaction; (b) parallel reaction norms, 
differences between genotypes and environments, no GxE interaction; (c) non-parallel reaction norms, non-crossover GxE interaction; (d) non-parallel reaction 
norms, crossover GxE interaction 
Adapted from Bustos-Korts et al. (2019). 
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(e.g. Boote et al., 2021; Ramirez-Villegas et al., 2020; Reynolds et al., 
2018). However, their use in guiding the design of such programs is still 
in its infancy and some key questions remain unanswered: What are the 
advantages and drawbacks for statistical or modeling approaches to deal 
with GxExM? What is a simple step-by-step process to bring 
process-based modeling to the doorstep of crop improvement programs? 

This paper proposes a simple step-by-step approach to bring the 
model’s capacity to the doorstep of breeding programs, toward a better 
definition of target population of environment(s), within which the 
clustering of sub-unit(s) allow for the reduction of GxExM interactions. 
To that end, the specific objectives of this paper are two-fold: (i) it dis-
cusses the pros and cons of using a statistical or a process-based 
modeling approach to deal with GxExM interactions; (ii) building on 
our experience, we draw a road map for breeders to use a process-based 
modeling approach in cases where CSM fits best. More specifically for 
the second objective, we describe how to provide easy access to 
modeling tools to better select testing sites and breeding targets. We 
address the issue of a lack of data repositories (e.g. soil, weather, pro-
duction) and describe a co-construction process among the various 
disciplines involved in the crop improvement process, going beyond 
“breeders only” and including the role of crop modelers (Van Bueren 
et al., 2018). 

2. A challenge to solve: GxExM interaction interferes with 
genotype selection 

Most crop improvement strategies in developing countries aim to 
produce few “broad-adapted genotypes” with superior performance 
across a range of agroecologies, despite highly varying climatic char-
acteristics, such as water-stress scenarios, and are mostly built around 
improving yield potential (Ceccarelli, 1989; Ceccarelli et al., 2010, 
2007). This has been for many years the approach of the CGIAR with the 
concept of “mega-varieties”. The GxE interaction is a phenomenon that 
occurs when the relative phenotypic performance of a pair or a set of 
genotypes is significantly conditioned by the environment (Bustos-Korts 
et al., 2019). The phenotypic response of a genotype to the environment 
is described by a function known as the reaction norm (Fig. 1). When the 

reaction norm lines of evaluated genotypes in different environments 
are not parallel, there is a GxE interaction (Finlay and Wilkinson, 1963). 
This interaction is considered a challenge due to its implications for 
genotype selection. 

2.1. Statistical analysis or a process-based modeling approach to address 
the challenge of interaction 

There are two schools of thought to deal with GxExM interactions 
using process-based modeling or statistics. Here, we review scenarios in 
which one prevails over the other. The flowchart below shows how these 
schools of thought are connected (Fig. 2). 

Several statistical approaches have developed during the last de-
cades to analyze multi-environment trial (METs) data and GxE in-
teractions. An extensive overview of such approaches can be seen 
through the work of Malosetti et al. (2013), Van Eeuwijk et al. (2016), 
Bustos-Korts et al. (2019) and Brown et al. (2020) (Fig. 3). 

If trials span several seasons and multiple sites, statistical methods 
can group sites into TPEs (DeLacy et al., 1996; IRRI, 2006). However, in 
practical terms, even if MET datasets are abundant, testing environ-
ments may not represent the range of stress intensity or timing across the 
TPE. In this instance, selection would not optimally select genotypes 
needed for the TPE. The degree of mismatch between MET and TPE is 
expected to be high in highly variable (often abiotic) environments, and 
could mislead the genetic gain (Cooper et al., 1997, 1995; Qiao et al., 
2004). In addition, while climatic indices are used as model covariates in 
the evaluation of understanding general crop agroecologies (Brown 
et al., 2020; Van Etten et al., 2019), temporal variation due to 
inter-annual variation could be ignored in some climatic scenarios 
(Windhausen et al., 2012). Such limitations are now being addressed by 
including environment type frequencies (Battisti and Sentelhas, 2019; 
Chenu et al., 2011; Hammer et al., 2014). Envirotyping can measure 
how well the samples of environments realized in any MET represent the 
TPE in question (Cooper et al., 2020). 

Considerable advances are being made in improved TPE character-
ization, environment types, and frequencies of environment types, 
thanks to the coupling of CSM with long-term weather records in order 

Fig. 2. Two schools of thoughts for crop improvement programs (CiP) and how they are connected: Crop simulation model (CSM) and statistical approach using 
multi-environment trials (MET). 
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Fig. 3. Flowchart of step-by-step process-based modeling for breeders, which can result in the design of GxM packages in the target E. Input requires a team effort 
and close interaction with breeders. The action step is typically the work of crop modelers. The output steps revolve around collaboration and interaction with 
breeders. The toolbox is a set of existing methods. Homogenous production units (HPU); target population of environment (TPE); multi-environment trail (MET). 
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to generate seasonal sequences of stress that can be used to determine 
frequencies of stress environment types (Battisti and Sentelhas, 2019; 
Chapman et al., 2000; Chenu et al., 2011; Kholová et al., 2013; Seyoum 
et al., 2017). In combination with MET data, this type of information can 
use data from different trials according to how representative they are of 
the TPE (Chapman et al., 2000). 

2.2. Which way to go: statistical analysis or process-based modeling 

Clearly, both statistical and process-based modeling methods have 
limitations, mainly because they originated from different disciplines 
and were therefore designed to answer different questions - both have 
advantages and drawbacks. With ample MET datasets, a statistical 
approach has the advantage of being routinely implemented by most 
breeding programs. This would likely apply to widely grown crops 
receiving lots of funding support, such as “the big three”, i.e. maize, rice 
and wheat. Both statistical and process-based model approaches lack 
quality datasets for minor crops, including many legumes and crop that 
are grown in regions characterized by abiotic stresses, such as low 
precipitation. The two main drawbacks of the statistical approach are: 
(i) the fact that sites of the MET may not well represent the frequency of 
environments faced by the crops in its TPE, implying extra costs incurred 
by over-testing in certain environment types. This is especially the case 
where inter annual variability is large and for instance regions limited 
by water. MET networks also are often old and their relevance has not 
been updated (Hajjarpoor et al., 2021). Consequently, this approach 
offers little insight into the source of GxExM interactions; (ii) while the 
statistical approach has fewer ’start-up’ costs when MET data is avail-
able, one must acknowledge the high field trial running costs of existing 
plant breeding programs. Field trials will always be a necessity, for 
instance to test innovation, but there are currently many missed op-
portunities for data collection and CSM improvement in existing MET 
infrastructures (e.g. agronomic data is often missing from MET data-
sets). Here, the digitization of data collection, transfer and translation/ 
analysis can help improve efficiencies substantially from current sys-
tems the world over. The clear advantage of the process-based modeling 
approach is that it requires much less MET data. Provided there is an 
existing model for the chosen crop and that this model has already been 
positively evaluated for the TPE in question with a fairly limited and 
small amount of MET data, it would then become a prime choice for 
minor crops facing a lack of MET data. The main drawbacks of the 
process-based modeling approach are: (i) that different types of datasets 
(climate, soil, crop coefficients) are necessary to run models and they are 
sometimes hard to get. When available, the lack of streamlined organi-
zation between data collection and use means data wrangling tasks are 
not trivial. Enhanced collaboration and structure on this front could help 
increase efficiencies substantially; (ii) high-quality production data, i.e. 
highly detailed, is necessary to test model performance; (iii) drawbacks 
(i) and (ii) lead to model uncertainty; (iv) lastly, crop models are not 
always intuitive to use, which results in limited user adoption - breeding 
programs still need to harness their potential. 

Therefore, a ‘way to go’ is not statistical or process-based modeling, 
but a collaborative way forward seeking mutual benefit for the joint 
cause of crop selection accuracy and speed. Ultimately, CSM-specific 
data collection from current breeding MET can improve CSM, which 
in turn can help refine MET increasing breeding program efficiency. The 
two disciplines are clearly highly complementary. The following sub-
sections address a necessary process as well as step-by-step technical 
aspects that could help plant breeding fully harness the advantages of 
process-based modeling. 

3. Practical examples of using process-based modeling to deal 
with TPE 

Process-based crop simulation models can classify stress patterns 
based on their frequency or intensity within a geographic location 

(Sinclair et al., 2020). For instance, the post-rainy sorghum production 
environment in India was characterized and revealed five main types of 
water limitation that occurred at different times throughout the crop-
ping cycle. This led to varying levels of yield reduction (Kholová et al., 
2013), possibly requiring different breeding and/or agronomic packages 
across the TPE. Chauhan and Rachaputi (2014) demonstrated this for 
mung bean in Australia, using APSIM-generated output to identify 
distinct regions based on clustering water-stress index values and sea-
sonal yield variation at different locations. 

Model-defined regions can be used as selection environments for 
TPEs, linking GxM to the E for optimal yield under variable conditions. 
The TPE approach has been successfully used by wheat breeding pro-
grams in Australia (Chenu et al., 2011; Lobell et al., 2015) and applied to 
maize in Europe (Harrison et al., 2014). A similar TPE analysis was 
conducted for chickpea in India, in which six subregions were identified 
as homogenous production units (HPUs) (Hajjarpoor et al., 2018). They 
declared that within each HPU, similar system responses to genetic or 
management interventions would be expected. This study revealed, for 
example, that drought was not a problem in all units, contrary to com-
mon belief in chickpea production regions in India and might require 
specific breeding and agronomic recommendations. A similar approach 
was used for groundnut in India (Hajjarpoor et al., 2021), where sub-
dividing TPE to HPUs reduced yield variation. Consequently, limitations 
and recommendations specific to each HPU were provided. Harrison 
et al. (2014) is an excellent example of how the TPE approach can 
develop our understanding of crop traits needed under projected 
drought stress, including the effects of elevated CO2 on maize as a C4 
crop. Based on simulations and cluster analysis, the results revealed four 
dominant drought-stress seasonal patterns. The authors concluded that 
some common maize breeding targets in drought conditions, such as 
shifting phenology (maturity), better anthesis-silking synchrony and 
higher kernel number when subjected to one drought-stress pattern, 
may not necessarily have the same favourable effects as for other 
drought-stress patterns. Kaloki et al. (2019) presented an alternative 
approach that assessed the suitability of chickpea ideotypes in Australia. 
The study incorporated key traits and targeted specific environments, 
which were grouped into three major clusters using the soil water deficit 
method with varying water stress levels. A chickpea ideotype, designed 
to grow under water-limited conditions, outperformed commercial va-
rieties in silico, therefore providing chickpea breeders with a blueprint 
for crop improvement targets. There are many examples of where crop 
models have been convincingly used to offer guidance to breeders and 
agronomists in setting priorities for related interventions (Cooper et al., 
2014; Hammer et al., 2006; Messina et al., 2020a, 2015; Sinclair et al., 
2010). 

4. Putting in place the process to use crop simulation to assist 
breeding 

4.1. Team assembly 

In 1981, Byth argued that a basic objective of crop improvement 
research was to improve the efficiency of MET. This, he believed, could 
be accomplished in two ways: (i) more effective exploitation of existing 
investment in MET through multidisciplinary involvement in their 
implementation, and (ii) objective reduction in their size (genotypes 
and/or environments) based on a better understanding of TPE adapta-
tion. Therefore, an active collaboration network amongst agricultural 
disciplines is necessary to add value to MET data and fully understand 
GxExM interactions. The challenges are no longer for plant breeders 
alone, but are highly relevant for a broader group of people who require 
multidisciplinary solutions. 

4.2. Model selection 

While there are different types of CSM, here we opted for 
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mechanistic or process-based models, as opposed to empirical models. 
Process-based models simulate biological processes and their responses 
to the environment, represented by equations in their algorithms (Boote 
et al., 2021; Tardieu et al., 2020). Of course, even process-based models 
become empirical at a certain level of complexity due to limited 
knowledge of biological processes (Soltani and Sinclair, 2012). The 
predictive capacity of process-based models depends on our under-
standing of system interactions, often dictated by the quality of available 
data (Kholová et al., 2020) - not all yield-reducing factors are currently 
considered (De Wit et al., 2019). One example is that many widely used 
crop models lack certain details, such as the effects of pests and diseases 
(Donatelli et al., 2017) or the fact that CSM must include the appropriate 
modules in order to simulate extreme events (Ababaei and Chenu, 2019; 
Chenu, 2015; Lobell et al., 2015). According to a review of Barlow et al. 
(2015) on wheat production, while frost damage is taken into account in 
a number of CSM, heat shock is rarely considered. As our cropping 
systems evolve to accommodate climatic changes but also societal de-
mands, so do the needs of process-based models and plant breeding. This 
highlights the importance of model choice in areas where extreme 
events are likely as well as the improvement of existing models and 
increased harmonization (e.g. insight and protocol exchange) and dis-
cussion within the CSM community itself (e.g. through initiatives such as 
AgMIP; Rosenzweig et al., 2013). 

In conclusion, process-based crop models are essential to undertake 
geospatial assessments, such as TPE, that account for the temporal and 
spatial variability necessary to resolve crop production challenges. 
Methods with clear documentation describing how to run robust 

Table 1 
Minimum and desirable data to be collected from breeding trials for process- 
based modeling.  

Data to 
collect 

Minimum Desirable 

Plot-wise 
data   

Dates Sowing   
Flowering (50%) Mention if 50% or 1st flower 

(or 1st pod for legumes)  
Physiological maturity  

Agronomy Density (final) - At least row 
spacing and hill spacing and 
number of plants per hill 

Density at 2–3 weeks after 
sowing   

Plot Heterogeneity (1–5: 
good-bad)   
Leaf area index (LAI)   
Leaf N concentration   
Phyllochron 

Harvest 100-seed weight Biomass/Stover yield 
(stems+leaves)  

Productive tiller count or 
Panicle count    
Grain yield  

Location / 
Field data   

Location Latitude Elevation  
Longitude  

Weather Rainfall Sunshine hours or Radiation  
Min Temperature   
Max Temperature  

Irrigation Date   
Quantity   
Type (furrow, sprinkler, etc.)  

Fertilization Date   
Quantity   
Type (DAP, urea, etc.)  

Soil Texture (sandy, clay, etc.) Initial moisture content 
(perceived)  

Type (Vertisol, Alfisol, Arenosol, 
etc.) 

Initial N content  

Depth Previous crop and cultivation 
period (e.g. Groundnut, Jun- 
Oct 2020)  

Table 2 
List of important crop parameters that are common among crops and crop 
models.  

Parameter How to estimate, where to look, and what to look for? 
Parameter-specific information 

Phenology phases Thermal time (TT) or biological days (BD) are required to 
predict critical phenological stages in all crop models. 
These can be estimated based on cardinal temperatures, 
average daily temperature, and day to the occurrence of 
individual phenological stages. Depending on the crop and 
the model, the phenological stages may differ. However, it 
is particularly important to record day to flowering and 
day to maturity (from sowing); these two records can be 
the basis to define TT or BD requirements for different 
phenological stages. 

Photoperiod (PP) 
reaction 

Some crops (or genotypes) are sensitive to PP in part of 
their cycle. With photoperiod-sensitive genotypes, some 
parameters need to be estimated. Often, critical 
photoperiods can be relatively constant among cultivars 
within a species. Models use a function that affects 
phenology phase occurrence. Photoperiod sensitivity 
slope (PPsen) is a parameter used in this function and it can 
be obtained from growth-chamber and/ or field 
experiments via iterative optimization methods (programs 
exist). Stages sensitive to PP can be found in literature or 
be obtained from experiments using reciprocal transfers 
between photoperiod treatments. 

Leaf area 
development 

All leaf area development variables can be obtained 
directly from experimental observations of the crops or 
indirectly via ceptometers. The phyllochron can be 
obtained by fitting a linear regression line to the main-stem 
leaf/ node number versus the temperature unit. The 
allometric relationship coefficients between plant leaf 
area and main-stem leaf number can be found by fitting a 
power equation to the respective data, i.e. plant leaf area 
versus main-stem leaf number. If different plant density 
data is available, their relationship to plant density can also 
be found. To do this, a power equation is fitted to the data 
of each plant density. The relationship between the 
obtained coefficients and plant density can then be found. 
In some models like EPIC and SWAT, a common 
exponential regression function describes LAI expansion as 
a function of normalized temperature units. In this case, the 
maximum expected LAI (LAIMX) value is an input that 
growing conditions and plant density may influence. The 
slope of an LAI plot versus leaf dry weight estimates a 
specific leaf area (SLA). As early-stage leaves are thin, 
data obtained at higher LAIs should be used to avoid an 
overestimation of SLA. 

Biomass 
accumulation 

Different methods and parameters are used to predict daily 
dry matter production depending on the selected model, 
however, most parameters are constant or can be found in 
the literature. For example, some models like ORYZA2000, 
CROPGRO and HybridMaize, which simulate gross 
photosynthesis and respiration separately, may need extra 
parameters. At the same time, most CSMs use temperature- 
adjusted radiation use efficiency (RUE) to convert 
photosynthetically active intercepted radiation into dry 
matter (van Wart et al., 2013). To estimate RUE 
experimentally, dry matter production by a crop canopy 
needs to be measured in conjunction with simultaneous 
measurements of PAR interception by the canopy. RUE can 
be constant among genotypes of a species and can be found 
in literature like Soltani and Sinclair (2012). Another 
parameter that is used in the model estimation of biomass 
production is the extinction coefficient (KPAR). Plant 
and canopy characteristics are combined into a single 
composite property, KPAR, which can be obtained 
experimentally from PAR interception and crop LAI 
measurements. 

Yield Formation Three parameters are common in crop models to estimate 
final yield, including rate of harvest index (HI) increase, 
maximum expected HI and fraction of remobilizable dry 
mass. Among them, maximum HI is a priority to be 
estimated and can be obtained directly from experimental 
crop observations. The rate of HI increase can also be 
estimated based on the ratio of grain to total shoot dry 
matter increase as a measure of reproductive efficiency.  
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experiments for parametrization and model evaluation are necessary 
(Kholová et al., 2020; Silva and Giller, 2021; Sinclair et al., 2020). 
Models with a smaller number of parameters are likely to be more 
transparent and easier to use (Sinclair et al., 2020). 

4.3. Data collection and limitation 

Generally, little information is collected from MET besides crop 
performance data, to understand the conditions experienced by the crop. 
This highlights part of the knowledge gap in understanding data re-
quirements across disciplines. For instance, climate data is often not 
collected as part of MET, even in water-limited environments where 
rainfall and irrigation (water supply) would be critical to collect. Soil 
properties (e.g. soil depth, water holding capacity (WHC), nutrients and 
texture), are seldom collected. The evaluation of crop models for a single 
location or spatially explicit models covering large expanses of land 
requires such data, including climate and soil data as well as detailed 
agronomic information (Hyman et al., 2017). Other than environmental 
data, measurements advised by stakeholders from other disciplines can 
enrich the quality of MET data. In traditional phenotyping, most re-
sources are spent on MET to measure yield only (Brown et al., 2020). 
Secondary phenotypes that could be used as genotype-specific covari-
ables in yield prediction models are still being investigated (Van Eeuwijk 
et al., 2019). Among these, plant phenology data, in particular flowering 
and maturity time are of prime importance (Soltani and Sinclair, 2012), 
and care should be taken that methods often vary among disciplines, e.g. 
the definition of stem height. Therefore, discussion is required between 
breeders and other disciplines to ensure additional data is collected from 

MET (see Table 1 for minimum and desirable data for modeling 
purposes). 

4.4. Data sharing and limitations 

As in other scientific domains, plant scientists worldwide generate 
data of various types (e.g. quantitative, qualitative, text, computed 
values), in diverse formats, and in ever-increasing abundance (Leonelli 
et al., 2017). Although data availability and access to climate and soil 
data have expanded over the last decade (Hyman et al., 2013), trial and 
production data are still rarely shared for reuse (Brown et al., 2020). 
With the variability and uncertainty of field research, promoting open 
access MET data via repositories and publishers could be key (Brown 
et al., 2020; Leonelli et al., 2017; Williams, 2012). Data standardization 
in terms of syntax, semantics, and structure is required to ensure data-
sets are efficiently usable. An initial effort to link trial data to CSM was 
developed by researchers of the Agricultural Model Intercomparison 
Project (AgMIP; Rosenzweig et al., 2013). Below, we make imple-
mentation suggestions and provide links to some of the discussed data 
repositories. 

5. A step-by-step process-based modeling approach for breeders 

Here we aim to illustrate the systematic characterization process for 
the development of TPEs using a process-based model. 

5.1. Interact with breeders, get input data, run modeling simulations 

5.1.1. Define the target area 
The analysis should cover, preferably, at least 80% of the current 

growing area of the target crop within a given TPE (Hajjarpoor et al., 
2018, 2021). Ideally, recent time-series production data is used, often 
provided by Ministries of Agriculture, agriculture organizations, or in-
stitutes that offer web-based tools like the District Level Database (DLD). 
Satellite imagery data is another source of data that can be used to define 
target regions. It is important to consider regions where there is an 
increasing trend in the area under cultivation for a specific crop, as these 
regions may be included in future TPEs. Remote sensing data, censuses, 
surveys and local expert interviews, as well as combinations of them, can 
be used to analyze crop geography over time (Hyman et al., 2013). In the 
absence of data, TPEs can be geographically defined, e.g. within country 
or state boundaries, without referring to specific cropping areas. 

5.1.2. Get genotype parameters 
Genotype parameters are coefficients that are part of mathematical 

equations that represent essential biological/ plant production func-
tions, and are the basis of model functioning. Much of this is readily 
available in the literature (e.g. Hajjarpoor et al., 2021) or borrowed from 
similar mechanistic models (e.g. Hajjarpoor et al., 2018). If the value of 
a parameter has been determined in published research, this data is a 
good starting point (Soltani and Sinclair, 2012). If not available, pa-
rameters must be estimated using standardized protocols and translated 
into model coefficients. In practice, many of these parameters are fixed, 

TableA1 
Few example of the climate databases for modeling purposes in daily basis and with all parameters available including temperature, precipitation and radiation.  

Database Resolution Time frame Source type References / Source URL 

POWER 0.50◦ 1981-Present Satellite data https://power.larc.nasa.gov/ 
ERA5 0.25◦ 1979-Present Reanalysis (Hersbach et al., 2020) 

https://doi.org/10.24381/cds.adbb2d47 
WFDEI 0.50◦ 1979–2016 Bias corrected reanalysis (Weedon et al., 2014) 

https://rda.ucar.edu/datasets/ds314.2/ 
Princeton 0.25◦ 1948–2016 Bias corrected reanalysis (Sheffield et al., 2006) 

http://hydrology.princeton.edu/data/pgf/v3/ 
AgMERRA 0.25◦ 1980–2010 Reanalysis with in situ and remotely-sensed observational datasets (Ruane et al., 2015) 

https://doi.org/10.1016/j.agrformet.2014.09.016  

TableA2 
Few example of the available soil database for modeling purposes.  

Database Resolution URL / References 

HC27 n/a https://doi.org/10.7910/DVN/ 
90WJ9W 

WISE n/a https://www.isric.org/explore/ 
wise-databases 

ISRIC 1 km/ 
250 m 

https://doi.org/10.5194/soil- 
7–217–2021 

FAO soil maps (DSMW) 1:5 m http://www.fao.org/land- 
water/land/land-governance/ 
land-resources-planning- 
toolbox/category/details/en/c/ 
1026564/ 

SoilGrids1km 1 km https://soilgrids.org/ 
AfSYS-GYGA rooting depth 1 km https://www.isric.org/ 

documents/document-type/ 
isric-report-201502-root-zone- 
plant-available-water-holding- 
capacity-sub 

Global maps of soil hydraulic 
properties 

1 km https://www.futurewater.eu/ 
2015/07/soil-hydraulic- 
properties 

Global High-Resolution Soil 
Profile Database for Crop 
Modelling Applications 

10 km https://doi.org/10.7910/DVN/ 
1PEEY0  
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so the genetic variability is represented by a few tens of parameters 
(Tardieu et al., 2020). Models that require a step of “calibration” to 
better fit the model prediction to the observations are considered un-
suitable and genotype parameters from these should be avoided. 

Getting genotype parameters, if not available, requires field experi-
ments with crops grown without nutrient limitations or biotic adver-
sities, together with weather, soil, and management data. Discussion 
with breeders is important at that stage to ensure genotype parameters 
are generated for genotypes that they try to improve, popular cultivars 
for instance. Records of different phenology stages, time series of 
aboveground biomass, leaf area index over time, and grain yield are 
required at a minimum for parametrization. From this, phenology pre-
diction, leaf area development, biomass accumulation, harvest index 
and yield formation parameters can be estimated (Table 2). 

5.1.3. Get environmental data 
In plant breeding studies, the first driver of yield variability is the 

environment (Chenu, 2015), including the climate and the soil. Such 
data should be obtained for the TPE in question. Many agricultural areas 
have scarce and poor quality climate data and high soil variability 
(Brown et al., 2020; Hyman et al., 2013). Recent progress has been made 
in creating global or continent-specific databases of observed and 
generated datasets. Many of these databases are freely available online 
and could support high-resolution simulations (Appendix I and II with 
web links included). Estimates of crop yield responses to climate vari-
ability and change are also subject to the choice of weather data (Parkes 
et al., 2019). The use of synthetic data sources should be done with 
caution, and their relevance should always be checked against observed 
data where possible (Dias and Sentelhas, 2021; Hajjarpoor et al., 2021, 
2018). This is particularly important in regions with high topographic 
variability. Generating a virtual plant, CSM can serve as a quality indi-
cator for such data, whereby an investigator can compare the different 
outputs of the model when running it with different sources of measured 
(MWD) and gridded weather data (GWD) (see Hajjarpoor et al., 2018; 
Mourtzinis et al., 2017). For a given weather or crop parameter, the 
correlation coefficient (r), the absolute mean error (ME), root mean 
square error (RMSE) and normalized RMSE (RMSEn%), as well as the 
coefficient of determination (r2) according to linear regression, are 
common measures used to assess agreement and biases between GWD 
and MWD. 

Soil data is somewhat more complex to acquire because of the large 
spatial variation (Hyman et al., 2013). However, some soil databases 
like HC27 of IFPRI (Koo and Dimes, 2013) have simplified soil profiles 
based on three criteria of soil texture, root depth, and organic carbon, to 
which crop models are the most responsive. The HC27 generic soil map 
is the result of the collaboration between FAO, IIASA, ISRIC, ISSCAS and 
JRC, which categorizes soils into 27 profiles (see Appendix 2 for web 
links). Nehbandani et al. (2020) used a simple CSM to assess the quality 
of the HC27 soil information, comparing the output of the model using 
observed soil information. The comparison provided statistically similar 
results to observed soil data, concluding that HC27 can be used to 
simulate potential yield and water-related factors. If gridded or generic 
soil data is not available or accurate enough for a region, information on 
common soil types and effective rooting depths for the target crop 
should be gathered through surveys and consultations with local 
experts. 

5.1.4. Get management data 
Process-based models require information on agricultural manage-

ment practices, such as sowing windows, plant density, irrigation and 
fertilizer use, as well as weed management. The detail of the manage-
ment information depends on the model. For example, not all are 
designed to simulate weed competition and management. Such man-
agement information can be obtained through close consultation with 
local agronomists and breeders, or found on global databases, platforms, 
or scientific literature. Various platforms have been developed to 

support global-scale assessments, such as the FAO crop calendar tool for 
130 crops or a global data set of monthly irrigated and rainfed growing 
areas for 26 irrigated and rainfed crops (MIRCA2000, Portmann et al., 
2010), although management data other than sowing date is not pro-
vided. While Sacks et al. (2010) also provide assembled datasets of 
global crop planting and harvesting dates for 19 major crops, other 
platforms like the GYGA data sheet are used to collect local crop man-
agement data. Specification is needed for dominant water regimes (i.e. 
rainfed, partially- or fully-irrigated) and the percentage of water avail-
ability, which can be found in FAO AQUASTAT, official country-level 
irrigation data collected by national agricultural research centers 
(NARC) (e.g. area under irrigation). Recommended rates of fertilizer can 
also be obtained through NARC, seed companies, agriculture ministries 
or variety management recommendations by breeders (e.g. Table 1). To 
reiterate, close interaction with breeding groups is critical here, as they 
are often in direct contact with the various local agencies. 

5.1.5. Evaluate the model 
It is necessary to rigorously evaluate the model predictions (pheno-

logical stage, grain yield, aboveground dry matter, crop evapotranspi-
ration) against quality observations from different trials under various 
management practices across environments (Sinclair et al., 2020; van 
Ittersum et al., 2013). Statistical approaches can be used to quantify 
such comparisons (e.g. Seidel et al., 2018). Of course, an important 
feature of robustness is not simply an acceptable prediction of final yield 
but a realistic representation of the temporal dynamics of the crop 
growth stages (Soltani and Sinclair, 2012). Another important aspect is 
the sensitivity of the crop model, i.e. its capacity to reliably predict crop 
performance across a range of conditions. For instance, water was found 
to be a main factor affecting groundnut yield throughout India. This led 
to a fairly large range of observed yields, which the model was able to 
sensibly predict (see Fig. 2 in Hajjarpoor et al., 2021). However, when it 
comes to extreme events like frost or heat shocks, more accurate eval-
uation is needed (Vadez et al., 2016). Most models have a similar trend 
in simulated crop yields as temperatures increase, but not all of them 
take direct heat stress effects into account, which could lead to further 
yield variation (Eitzinger et al., 2013). Not all CSM have been tested for 
all possible stresses or combined stresses, far from it. 

The quality of the observed data, on the other hand, determines the 
relevance of model outcomes (Kholová et al., 2020; Wing and De Cian, 
2014), and the statistical assessment of robustness evaluations help 
document the expected reliability of model assessment results (Sinclair 
et al., 2020). When properly designed, used and tested, crop models 
provide a unique framework to capture impacts within untested envi-
ronments, such as projected climates. 

5.1.6. Generate model runs across a target area 
Once the model has been validated, crop model simulations must be 

run for a specific number of seasons to provide an accurate estimate of 
growth and development parameters as well as yield at a given location. 
For valid estimations of yield potential (irrigated) or water-limited yield 
potential (rainfed) and their variability, 10–30 years of daily weather 
data are required - the more the better when year-to-year variability in 
water availability is high. Under less variable conditions, such as irri-
gated or favorable rainfed environments, the required number of years is 
lower than in unfavorable environments. Soltani and Hoogenboom 
(2003) found that statistical characteristics similar to observed data 
required at least 15 years of simulated weather data. However, based on 
several studies, Sinclair et al. (2020) stated that up to 30 seasons may be 
required to capture the full impact of weather variability in simulation 
results at each location. 

5.2. Analyze the output 

5.2.1. Measure the yield gaps 
The yield gap is the difference (the gap) between yield currently 
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achieved on farms and the yield that can be achieved by using the best 
agronomic practices on-station (in vivo) or simulated (in silico) (Lobell 
et al., 2009; van Ittersum et al., 2013). The yield gap analysis is a 
technique to navigate and understand crop production system limits, 
and to explore strategies to improve yield. For that, multi-year pro-
duction data in a fairly disaggregated way (e.g. district) is necessary 
across the TPE. Various sources of gathering production data are 
covered in section 4.1.1. Here, 10–30 years of production data is usually 
required depending on the system in question and environment. Key is 
that it must be sufficient to account for district-to-district and 
year-to-year variability in actual yield due to weather, especially in 
water-limited environments (Grassini et al., 2015), while avoiding bias 
due to the previous technological trends (van Ittersum et al., 2013). 
Global Yield Gap Atlas also provides a protocol for estimating average 
actual yields and yield gaps when long-term data is lacking (GYGA 
protocol). 

5.2.2. Delimit environmental types and major abiotic stresses patterns 
The types and frequency of major abiotic stresses such as heat, cold, 

drought, and waterlogging can be obtained from model output. By 
contrast, pest and disease sub-models have not been well established 
(Donatelli et al., 2017; Ramirez-Villegas et al., 2020; Reynolds et al., 
2018), and their use in defining environmental types remains qualita-
tive. Drought is the most common stress in the semi-arid tropics, and 
environmental types (level and point in time) can be classified using a 
water supply/demand ratio (see Kholová et al., 2013; Seyoum et al., 
2017) or the simulated water deficit index (see Battisti and Sentelhas, 
2019; Hajjarpoor et al., 2021). Lobell et al. (2015) highlighted the im-
pacts of shifting drought and heat stress for sorghum and wheat in 
northern Australia and emphasized the need to work on multiple-stress 
resilience. Further examples can be seen globally (Moeletsi et al., 2011; 
Nelson et al., 2021b). These indices are then clustered towards grouping 
scenarios. Locations, genotypes, and management all influence the fre-
quency of these patterns. 

In terms of identifying areas for specific genotype development, the 
duration of temperature extremes, the cumulative effects of multiple 
abiotic stresses, such as heat and frost events, and the interactions with 
other limiting factors like drought are critical (Ababaei and Chenu, 
2019; Chenu, 2015). Therefore, agronomic output from the model, the 
types and frequency of major abiotic stresses combined with observed 
geo-biophysical indicators and estimates of yield potentials and gaps, 
are indicators that can be added to cluster analyses, enriching the 
characterization of main clusters in the target region. Prior to doing so, 
as a number of these indicators can be strongly correlated to one another 
- clustering among them would over-represent some variables (Hajjar-
poor et al., 2021) - correlation analysis is recommended to select only 
non-correlated indicators for the cluster analysis. 

5.2.3. Cluster and define homogenous production units (HPUs) ~ TPE 
All non-correlated indicators collected or generated during the pre-

vious steps are used as input for the principal component analysis (PCA) 
and clustering (Chauhan and Rachaputi, 2014; Hajjarpoor et al., 2021, 
2018). Principal components (PCs) are linear transformations of original 
data into uncorrelated variables. Subsequently, a set number of com-
ponents that explain most of the variability in the dataset are used for 
the cluster analysis. Geospatial settings with similar characteristics are 
mathematically put into groups. Settings could be classed as similar 
based on an area the model is run for, be that at a district or grid level. 
Individual clusters should have a high level of internal homogeneity 
(within clusters) and exterior heterogeneity (between clusters) (Priya-
darshan, 2019). Cluster analysis usually provides many clusters, 
although R packages like NbClust (Pašiaková et al., 2013) can determine 
a cluster number range that most reliably represent variation in the 
dataset. This is the stage at which a qualitative interaction with plant 
breeders is necessary to confront the output of the cluster analysis with 
their understanding and experience of the variation within the TPE. It is 

from such qualitative assessments and the cluster number range from 
the NbClust output that the final number of clusters is optimized as a mix 
of statistical indices (NbClust) and qualitative interactions (e.g. expert 
interviews) (Hajjarpoor et al., 2021). The results can be visualized using 
Geographic Information System software like ArcMap. The same GxExM 
interactions and production limitations are expected in homogenous 
production units (HPU) developed by this step-by-step analysis. 

5.2.4. Justification of numbers and location optimization for MET 
Grouping by HPU can reduce GxExM interactions and help refine 

breeding targets. In contrast to the conventional strategy of "testing 
everything everywhere", the HPU insight helps avoid testing genotypes 
in less relevant sites and the selection of genotypes in abnormal years, 
which do not sufficiently represent the most frequent environmental 
scenarios occurring at a particular HPU (Kholová et al., 2020). 

A modeling study on groundnut production in India showed how the 
number and location of testing sites could be optimized according to the 
homogeneity and heterogeneity of a given area (Hajjarpoor et al., 2021). 
The study concluded that year-to-year variation at a particular site 
should be balanced with spatio-temporal variation among sites to find 
the optimum number and location of sites within an identified HPU. The 
study also estimated exploitable production gaps where larger ones 
justify more testing sites. Geolocating trial sites allows for the enrich-
ment of datasets with existing environmental data from different re-
positories (Brown et al., 2020). The correct design and analysis of METs 
to reliably represent the reference cultivar populations and TPEs is 
fundamental to the design of CSM-based prediction methods for plant 
breeding (Cooper et al., 2020), where a "which-wins-where" pattern 
across environments can be simulated among crops and cultivars. While 
“which-wins-where” is important for breeding programs, the inclusion 
of CSM can help inform us “why” “which-wins-where”. In return, 
existing MET - when complimented with additional data collection to 
suit CSM use - can help enhance CSM development, evaluation, and 
robustness. 

5.2.5. Design GxM interventions within E 
The same simulation setup that is used to establish HPUs may now be 

utilized to find GxExM interventions that have a high chance of 
improving crop production in the system. Essentially, coefficient of 
variation (CV %) of actual and potential yield uses an estimate of the 
GxM interactions within and among grouped units in comparison to the 
whole region. Boxplots are common to visualize the distributions of 
different parameters within each HPU and the entire area. The HPU 
approach establishes precise geographic regions. Within these regions, 
specific GxM combinations can be designed by crop improvement pro-
grams to boost productivity. Battisti and Sentelhas (2019) is an example 
how water-deficit patterns can define crop management and breeding 
strategies by zones. The authors divided Brazil into ten soybean-growing 
zones based on attainable yield and water-deficit patterns, claiming this 
to help in the development of better strategies to improve soybean yield 
in the regions studied. Hajjarpoor et al., (2018, 2021) provide excellent 
examples of GxM package design within HPUs, which were obtained 
through clustering geo-biophysical indicators. Nelson et al. (2021a) also 
demonstrate how process-based models can aid the design of 
climate-smart production systems such as intercropping with a focus on 
soil-water use and planting density. Such models allow us to test specific 
plant types with specific management options in multiple locations and 
can therefore be used as decision-making tools to quantitatively specify 
agronomic and breeding objectives. 

6. Conclusion 

Crop improvement programs need to find more efficient ways to deal 
with GxExM interactions, especially in highly variable environments. 
The ‘way to go’ is not statistical or process-based modeling, but a 
collaborative way forward for the joint cause of crop performance 
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improvement. To achieve this, plant breeding research and related 
research disciplines should form multidisciplinary teams that can 
improve our understanding of GxExM interactions, and then help 
breeding decisions. Regardless of the approach, data requirements are 
high and therefore require multidisciplinary collaboration. While sta-
tistical methods demand a large amount of MET data, process-based 
models require high-quality, detailed data on soil, weather, crop pro-
duction, and genotype parameters. Which one to choose depends on 
data availability. This paper proposes a simple step-by-step approach to 
bring the capacity of process-based models to the doorstep of breeding 
programs, towards a better definition of target population of environ-
ment, within which the clustering of subunits allow for the reduction of 
GxExM interactions. 
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Appendix I. . Climate data 

See appendix TableA1,TableA2. 
A major limitation in attempting relevant simulations across a wide 

geographical area is assembling a weather database of sufficient 
geographical resolution (Mourtzinis et al., 2017; Van Wart et al., 2015). 
However, the accuracy of weather-yield relationships derived from crop 
models is dependent on the quality of the underlying input data used to 
run these models. In this context, a major challenge in many developing 
countries is the lack of free accessible and reliable meteorological 
datasets (Hajjarpoor et al., 2018; Parkes et al., 2019; Vadez et al., 2017). 
However, in some other countries, there may be plenty of sources with 
national and meteorological systems. A possible surrogate for regions 
where weather station network is irregular is the use of gridded weather 
data (GWD). 

Phenotyping programs and G x E interaction assessments can benefit 
from broad-scale climate analysis to assess the extent to which sites 
represent target environments. An important recent advancement in 
climatic analysis is the availability of ready-to-use climate data available 
via the Internet (Table A1) or in software applications like MARKSIM 
(Jones et al., 2002; Jones and Thornton, 2000). Within a diverse 
topography, selecting a GWD with higher spatial resolution (smaller 
number/grids in Table A1) would be preferable. In addition, going for 
point data in a heterogeneous environment can be a solution. Historical 
point data (weather station data) is provided by some inventories like 
the integrated Agricultural Information and Management System 
(iAIMS) and the Global Historical Climate Network Daily (NOAA). 

Some other databases are also available, but to our knowledge there 
is a lack of some essential parameters for modeling purposes like the 
CHIRPS database that was initially developed based on estimates from 
rain gauge and satellite observations to build high resolution (0.05◦) 
gridded precipitation data (Funk et al., 2015). This type of data is very 
helpful for hydrometeorology, water resource management, trend 
analysis, flood and seasonal drought monitoring. In addition, some 

modelers use a combination of CHIRPS precipitation and other surface 
meteorology databases. Also, we only listed databases with daily tem-
poral resolution, however, some databases like Land Data Assimilation 
System (FLDAS) (Amy McNally, 2018) and Climate Research Unit 
gridded Time Series (CRU ST) (Harris et al., 2020) are available at a 
monthly temporal resolution. In this case, it is possible to use some 
weather generators integrated into crop models like WeatherMan (in 
DSSAT, Pickering et al., 1994) or standalone models such as WGEN and 
LARS-WG to generate daily time series data (Semenov et al., 1998). 
These weather generators can also be used to downscale large-scale 
climate projections from global climate models (GCMs) to local-scale 
climate scenarios for impact assessments (Semenov and Stratonovitch, 
2015). 

However, these reference datasets are also known to contain 
important biases and uncertainties according to the source type and 
method to propagate data (Reanalysis of climate model data, remote 
sensing and extrapolation method of in situ gauges). The user, then, has 
to be cautious using these synthetic data sources and always crosscheck 
their relevance against ground-truthed information for the intended 
modeling exercise (Dias and Sentelhas, 2021; Hajjarpoor et al., 2021, 
2018). Parkes et al. (2019) reviewed and checked the uncertainty of 
estimating crop yield responses to different weather dataset. Ruane et al. 
(2015) also compared different databases of weather data for agricul-
tural modeling. 

Appendix II. . Soil data 

Data on soil properties are a key category of information for agro-
ecological assessments (Table A2). However, advances in the develop-
ment of soil datasets are hindered by the difficulty of mapping the entire 
world. The main problem is that soils can be highly variable even across 
short distances. Moreover, not all countries use the same soil classifi-
cation systems. The concept of the likelihood or probability of finding a 
given soil property has been used to reflect data uncertainty at a 
particular point when using maps like the FAO 1:5 million soil map of 
the World. This map remains the most widely used soil map for conti-
nental and global applications. 

According to van Ittersum et al. (2013), simulations should be run for 
the dominant soils in a defined area and expert opinion from country 
agronomists should be used. 
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Bustos-korts, D., Romagosa, I., Borràs-gelonch, G., Casas, A.M., Slafer, G.A., Eeuwijk, F. 
Van, 2019. Genotype by Environment Interaction andAdaptationGenotype Environ. 
Interact. Adapt. https://doi.org/10.1007/978-1-4939-2493-6_199-3. 

Ceccarelli, S., 1989. Wide adaptation: How wide? Euphytica 40, 197–205. https://doi. 
org/10.1007/BF00024512. 

Ceccarelli, S., Grando, S., Baum, M., 2007. Participatory plant breeding in water-limited 
environments. Exp. Agric. 43, 411–435. https://doi.org/10.1017/ 
s0014479707005327. 

Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., 
Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H., 
Nachit, M., 2010. Plant breeding and climate changes. J. Agric. Sci. 148, 627–637. 
https://doi.org/10.1017/s0021859610000651. 

A. Hajjarpoor et al.                                                                                                                                                                                                                             

https://doi.org/10.3390/proceedings2019036005
https://doi.org/10.3390/proceedings2019036005
https://doi.org/10.1016/j.fcr.2014.11.010
https://doi.org/10.1016/j.fcr.2019.06.007
https://doi.org/10.1016/j.fcr.2019.06.007
https://doi.org/10.1093/insilicoplants/diab002
https://doi.org/10.1093/insilicoplants/diab002
https://doi.org/10.1007/s13593-020-00630-7
https://doi.org/10.1007/s13593-020-00630-7
https://doi.org/10.1007/978-1-4939-2493-6_199-3
https://doi.org/10.1007/978-1-4939-2493-6_199-3
https://doi.org/10.1007/978-1-4939-2493-6_199-3
https://doi.org/10.1007/BF00024512
https://doi.org/10.1007/BF00024512
https://doi.org/10.1017/s0014479707005327
https://doi.org/10.1017/s0014479707005327
https://doi.org/10.1017/s0021859610000651


Field Crops Research 283 (2022) 108554

11

Chapman, S.C., Hammer, G.L., Butler, D.G., Cooper, M., 2000. Genotype by environment 
interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in 
the target population of environments. Aust. J. Agric. Res. 51, 223. https://doi.org/ 
10.1071/AR99022. 

Chauhan, Y.S., Rachaputi, R.C.N., 2014. Defining agro-ecological regions for field crops 
in variable target production environments: A case study on mungbean in the 
northern grains region of Australia. Agric. . Meteorol. 194, 207–217. https://doi. 
org/10.1016/j.agrformet.2014.04.007. 

Chenu, K., 2015. Characterizing the crop environment - nature, significance and 
applications, in: Crop Physiology. Applications for Genetic Improvement and 
Agronomy, Second edition.,. Academic Press,, pp. 321–348. https://doi.org/ 
10.1016/B978-0-12-417104-6.00013-3. 

Chenu, K., Cooper, M., Hammer, G.L., Mathews, K.L., Dreccer, M.F., Chapman, S.C., 
2011. Environment characterization as an aid to wheat improvement: interpreting 
genotype-environment interactions by modelling water-deficit patterns in North- 
Eastern Australia. J. Exp. Bot. 62, 1743–1755. https://doi.org/10.1093/jxb/erq459. 

Comstock, R.E., 1977. Quantitative genetics and the design of breeding programs. In: 
Pollak, E. (Ed.), Proceedings of the International Conference on Quantitative 
Genetics. Iowa State University Press, Ames, USA, pp. 705–718. 

Cooper, M., Gho, C., Leafgren, R., Tang, T., Messina, C., 2014. Breeding drought-tolerant 
maize hybrids for the US corn-belt: Discovery to product. J. Exp. Bot. 65, 
6191–6194. https://doi.org/10.1093/jxb/eru064. 

Cooper, M., Powell, O., Voss-Fels, K.P., Messina, C.D., Gho, C., Podlich, D.W., 
Technow, F., Chapman, S.C., Beveridge, C.A., Ortiz-Barrientos, D., Hammer, G.L., 
2021a. Modelling selection response in plant-breeding programs using crop models 
as mechanistic gene-to-phenotype (CGM-G2P) multi-trait link functions. Silico Plants 
3. https://doi.org/10.1093/insilicoplants/diaa016. 

Cooper, M., Stucker, R.E., DeLacy, I.H., Harch, B.D., 1997. Wheat breeding nurseries, 
target environments, and indirect selection for grain yield. Crop Sci. 37. https://doi. 
org/10.2135/cropsci1997.0011183X003700040024x. 

Cooper, M., Tang, T., Gho, C., Hart, T., Hammer, G., Messina, C., 2020. Integrating 
genetic gain and gap analysis to predict improvements in crop productivity. Crop Sci. 
1–23. https://doi.org/10.1002/csc2.20109. 

Cooper, M., Technow, F., Messina, C., Gho, C., Totir, L.R., 2016. Use of crop growth 
models with whole-genome prediction: application to a maize multienvironment 
trial. Crop Sci. 56, 2141–2156. https://doi.org/10.2135/cropsci2015.08.0512. 

Cooper, M., Voss-Fels, K.P., Messina, C.D., Tang, T., Hammer, G.L., 2021b. Tackling 
G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop 
improvement by predicting contributions of genetics and management to crop 
productivity. Theor. Appl. Genet. https://doi.org/10.1007/s00122-021-03812-3. 

Cooper, M., Woodruff, D.R., 1993. Predicting grain yield in Australian environments 
using data from CIMMYT international wheat performance trials 3. Testing predicted 
correlated response to selection. F. Crop. Res. 35, 191–204. https://doi.org/ 
10.1016/0378-4290(93)90153-E. 

Cooper, M., Woodruff, D.R., Eisemann, R.L., Brennan, P.S., Delacy, I.H., 1995. 
A selection strategy to accommodate genotype-by-environment interaction for grain 
yield of wheat: managed-environments for selection among genotypes. Theor. Appl. 
Genet. 90, 492–502. https://doi.org/10.1007/bf00221995. 

De Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., Van Kraalingen, D., 
Supit, I., Van Der Wijngaart, R., Van Diepen, K., 2019. 25 years of the WOFOST 
cropping systems model. Agric. Syst. 168, 154–167. https://doi.org/10.1016/j. 
agsy.2018.06.018. 

DeLacy, I.H., Basford, K.E., Cooper, M., Bull, J.K., McLaren, C.G., 1996. Analysis of multi- 
environment trials–an historical perspective. Plant Adapt. Crop Improv 39124. 

Dias, H.B., Sentelhas, P.C., 2021. Assessing the performance of two gridded weather data 
for sugarcane crop simulations with a process-based model in Center-South Brazil. 
Int. J. Biometeorol. https://doi.org/10.1007/s00484-021-02145-6. 

Donatelli, M., Magarey, R.D., Bregaglio, S., Willocquet, L., Whish, J.P.M., Savary, S., 
2017. Modelling the impacts of pests and diseases on agricultural systems. Agric. 
Syst. 155, 213–224. https://doi.org/10.1016/j.agsy.2017.01.019. 

Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., Bindi, M., 
Palosuo, T., Rötter, R., Kersebaum, K.C., Olesen, J.E., Patil, R.H., Şaylan, L., 
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Package for Determining the Relevant Number of Clusters in a Data Set. Acta Geol. 
Slov. 5, 45–54. 

Pickering, N.B., Hansen, J.W., Jones, J.W., Wells, C.M., Chan, V.K., Godwin, D.C., 1994. 
WeatherMan: A utility for managing and generating daily weather data. Agron. J. 
86, 332–337. https://doi.org/10.2134/agronj1994.00021962008600020023x. 

Porter, J.R., Challinor, A., Ewert, F., Falloon, P., Fischer, T., Gregory, P., Van Ittersum, M. 
K., Olesen, J.E., Moore, K.J., Rosenzweig, C., 2010. Food security: focus on 
agriculture. Sci. (80-. ) 328, 172–173. 
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