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significant challenges and importance of understand-
ing the nexus between canopy and root development. 
Finally, we present the opportunity to adopt multi-
trait genomic prediction approaches to efficiently uti-
lise key physiological traits, that can be assayed using 
high-throughput phenotyping platforms, to accelerate 
genetic gain in drought and heat prone environments.

Keywords  Cicer arietinum · Abiotic stress · 
Drought · Heat · Genomic prediction · High-
throughput phenotyping

Introduction

Chickpea (Cicer arietinum L.) plays a crucial role in 
human and animal nutrition and agricultural systems 
by improving soil fertility and providing a disease 
break (Siddique et  al. 2011). Chickpea is primarily 
grown in rainfed production systems that typically 
rely on the residual soil moisture from the preced-
ing season (Varshney et  al. 2013b; Ramamoorthy 
et  al. 2017). As such, production is often affected 
by drought and heat, particularly when abiotic stress 
coincides with the reproductive phase (Gaur et  al. 
2018).

Yield losses due to drought are variable and 
depend on the timing and degree of water scarcity. 
For instance, yield reductions can range from 58–95% 
depending on severity (Leport et al. 2006; Fang et al. 
2010). Heat stress also significantly impacts yield due 
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to its impact on pod set and seed set (Devasirvatham 
et al. 2012, 2013). The optimum growing temperature 
of chickpea during the reproductive phase is 15 ˚C, 
as temperatures below this may inhibit pollen growth 
and pod set (Berger et al. 2004, 2006; Chauhan et al. 
2017; Rani et  al. 2020) and 30 ˚C,  as temperatures 
above this may have a detrimental impact on yield 
(Summerfield et al. 1984; Devasirvatham et al. 2012; 
Lake et  al. 2016). For every 1  °C increase in sea-
sonal temperature, yield is predicted to decrease by 
53–301 kg−1 ha−1 (Kalra et al. 2008). Under climate 
change, yield losses to heat and drought are expected 
to increase. Chickpea is particularly vulnerable to 
climate change given the limited genetic variation in 
elite germplasm (Muehlbauer and Sarker 2017).

Best management practices may not guarantee 
maximum performance because of in-season variabil-
ity, particularly in regions without reliable access to 
irrigation. Therefore, germplasm that is well adapted 
to the target environment is required. Research and 
breeding efforts have been employed to improve yield 
in some regions over the past 30 years. However, cur-
rent yield trends suggest that production is increasing 
due to expansion in total land area cultivated, rather 
than genetic improvement per se (Foyer et al. 2016). 
Continued investment in research and crop improve-
ment programs is critical to develop more productive 
cultivars suited to the target environments in which 
they are grown.

Within any crop improvement program, under-
standing the target environment is key to ensure 
genetic progress leads to productivity gains in grow-
ers fields (Cooper et al. 2020). This includes stresses 
that limit crop productivity such as the intensity and 
frequency of water deficit. To achieve this goal, envi-
rotyping approaches can be undertaken and informa-
tion used to strategically deploy a combination of 
traits into the right environments (Tardieu et al. 2018; 
Kholova et  al. 2021). This process has commenced 
for chickpea in India (see, Hajjarpoor et al. 2018).

A number of studies have highlighted key physi-
ological traits that underpin adaptation to heat and 
drought environments (Singh et al. 2008; Chen et al. 
2017; Ramamoorthy et al. 2017). The publication of 
accessible genomic resources, including the reference 
genomes for Cicer arietinum and Cicer reticulatum 
(Varshney et  al. 2013c; Varshney 2016), provided a 

major step forward for chickpea improvement. These 
resources and tools, combined with new breeding 
technologies, such as high-throughput phenotyping 
and genomic selection, offer new opportunities to 
rapidly improve germplasm by targeting physiologi-
cal traits that confer yield advantages in drought and 
heat-prone environments (Roorkiwal et al. 2020).

This review highlights recent developments in 
physiological and molecular research of drought 
and heat adaptation in chickpea. It underscores 
approaches and technologies that could accelerate 
the development of high yielding drought and heat 
adapted varieties.

Literature analysis reveals opportunities 
for future research

To understand the current status of drought and heat 
research in chickpea and identify key research areas 
that may be explored into the future, we searched 
for articles in Scopus using the following keywords: 
drought; water deficit; heat; high temperature; chick-
pea; Cicer arietinum; Cicer reticulatum. Our search 
produced 365 articles published between 1970 and 
29 June 2020. A total of 58% of the articles focused 
on drought, 38% on heat, and 4% on heat and drought 
combined.

In addition, we analysed all text in the abstract, 
title, and keywords of each article using Leximancer 
version 4.5. The analysis revealed that studies con-
taining words; “gene or genetics”, “flowering” and 
“canopy” occurred at a lower frequency (Fig. 1). This 
suggests that many of the studies to date have focused 
on the agronomic performance of chickpea to drought 
and heat. This is not surprising, considering that trait 
dissection and gene discovery studies require long-
term and sustained funding to support resources 
including, though not limited to, high-cost infrastruc-
ture, laboratory facilities, and specialised personnel.

Given the excellent genetic resources for chickpea 
and the availability of new technologies we predict a 
rapid expansion of genomics research in the next dec-
ade (Thudi et al. 2021). Additionally, lessons learned 
from other crops will likely accelerate progress for 
chickpea as plant adaptation mechanisms are often 
conserved and may be translated across crops.
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Traits conferring drought and heat adaptation

Over thousands of years, terrestrial plants have suc-
cessfully adapted to a dry environment characterized 
by temperature and light extremes. In agricultural 
systems, the impact of abiotic stress is influenced by 
genotype, environment and management interactions 
(Messina et  al. 2009). Plants use different mecha-
nisms to respond to challenges in the environment 
which allow for continued survival. Plant responses 
to the environment are complex as multiple abiotic 
or biotic stressors often affect species simultane-
ously (Canci and Toker 2009; Rani et al. 2020). As a 
result, drought and heat tolerance mechanisms oper-
ate at various spatial and temporal scales (Tardieu 
et  al. 2018). The extent to which drought and heat 
impact plants is primarily dependent on the timing 
and duration of the stress (Carrão et al. 2016). These 
factors cumulatively make it challenging to study and 
improve plants for drought and heat adaptation.

Although the timing and severity of stress are 
dependent on the environment, the majority of 
research suggests that drought mostly impacts the 
reproductive phase in several crops, including chick-
pea (Daryanto et al. 2015; Ramamoorthy et al. 2017; 
Lamaoui et al. 2018; Rani et al. 2020). As the canopy 
develops and water demand increases, residual soil 
moisture is often depleted during the critical repro-
ductive stage. Under drought stress, pod and flower 
abscission increases in response to reduced assimilate 
supply, pod set reduces and consequently, seed yield 
is impacted (Leport et  al. 2006; Fang et  al. 2010). 
High temperature, has a similar impact during the 
reproductive phase, affecting pod set and pod fill-
ing stages leading to a yield penalty (Devasirvatham 
et al. 2013). A decrease in pod set is observed, usu-
ally as a consequence of decreased pollen viability, 
pollen fertility, pollen load and pollen germination 
(Kaushal et al. 2013, 2016) as heat stress disrupts and 
reduces the supply of sucrose to the anthers, affecting 

Fig. 1   Analysis of 365 independent research articles on heat 
and drought adaptation between 1970 and June 2020 sourced 
from Scopus. (a) Pie chart of the 365 articles showing the per-
centage of research articles focusing on drought alone, heat 
alone and combination of drought and heat. The blue colour 
represents the drought articles, red represents the heat articles, 

while the yellow represents the articles focusing on the com-
bined effects of drought and heat (b) Text analysis result from 
Leximancer version 4.5 showing the number of times a spe-
cific word is used and ranked them according to the number of 
times they appeared in the titles, abstracts, and keywords
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stigmatic function (Kaushal et  al. 2013; Devasir-
vatham et  al. 2015). Devasirvatham et  al. (2013) 
reported that the effect of heat stress on pollen fer-
tility starts as early as the third day of the stress and 
the effects on the ovule and ovary are observed after 
seven days of heat stress. Due to the nature of abiotic 
stress, heat and drought stress often occur simulta-
neously. Unsurprisingly, many traits associated with 
adaptation to heat stress also confer an advantage 
under drought. For instance, early flowering can avoid 
both end of season drought and heat.

Traits vary in their importance for drought and 
heat adaptation and the impact that each has on agro-
nomic performance is context dependent. QTL have 
been identified for traits involved in drought and heat 
adaptation in chickpea (Table  1). Table  1 primarily 
includes traits associated with phenology, yield com-
ponents and root system architecture. This highlights 
an opportunity to understand the genetic controls of 
canopy development and other key traits associated 
with water use efficiency.

There are two main ways to adapt a crop to 
drought; 1) optimise the timing of water use across 
development and 2) improve access to water. A 
determinant of water demand in chickpea is the rate 
and extent of canopy development (Sivasakthi et  al. 
2017). This is highly dependent on the timing of 
water use, which among other traits, is associated 
with phenology (Zaman-Allah et  al. 2011). Canopy 
architecture traits such as leaf area development, can-
opy size and canopy conductance influence transpi-
ration rate and in some environments, may improve 
drought adaptation (Thudi et al. 2014).

To improve access to water, root architecture traits 
have been a major target in chickpea crop improve-
ment over many decades (Saxena et  al. 1993; Sid-
dique et  al. 2011). Significant genetic variation in 
root traits have been reported (Serraj et  al. 2004; 
Kashiwagi et  al. 2006; Chen et  al. 2017; Purush-
othaman et al. 2017). Moreover, many studies report 
that improvements in root traits, specifically root 
length density and rooting depth, have an overall 
positive impact on adaptation to drought (Ludlow and 
Muchow 1990; Saxena et  al. 1993; Krishnamurthy 
et al. 2003; Kashiwagi et al. 2005, 2015; Gaur et al. 
2008; Ramamoorthy et al. 2017). Rooting depth can 
exceed 100  cm (Kashiwagi et  al. 2006), and water 
uptake from soil layers of 90 – 120  cm is a feature 
of many drought adapted genotypes (Purushothaman 

et al. 2017). Serraj et al. (2004) noted that increases in 
root depth and root length density led to greater water 
use translating to higher yields. Similarly, a prolific 
root system was determined to positively affect seed 
yield under drought (Kashiwagi et al. 2006; Varshney 
et al. 2013a).

However, changes in root architecture may have 
a tradeoff in some environments. Increases in root-
ing depth and biomass may not necessarily lead to 
increases in grain yields due to the metabolic cost 
of increased biomass partitioning and energy loss 
through respiration (Vadez et  al. 2008; Kashiwagi 
et  al. 2015; Ramamoorthy et  al. 2017). Addition-
ally, it is now also recognised in chickpea that tem-
poral changes in root growth influence the effective 
use of available water during the crop cycle (Vadez 
et al. 2008, 2007; Zaman-Allah et al. 2011). There is 
a strong association between aboveground biomass 
and profligate water uptake, leading to higher water 
use and a yield penalty in some contexts as water 
availability during pod initiation is critical for yield 
development (Fig.  2). During the vegetative period, 
conservative water use can improve water availabil-
ity during pod initiation, which is a critical period for 
determining yield. Conservative water use is a func-
tion of the root system and aboveground traits such as 
canopy development.

The importance of considering root traits in terms 
of their spatial and temporal characteristics is sup-
ported by studies that describe genotypes suitable for 
water-limited environments as those with root growth 
vigour and deeper soil root proliferation at the begin-
ning of the reproductive stage (Singh et al. 1995; Kell 
2011). Furthermore, an optimal root system for effi-
cient uptake of soil water is unlikely to be optimal 
for nutrient uptake. To avoid this tradeoff, there may 
be genetic variation in root system architecture that 
could be exploited.

Understanding the root‑shoot nexus

The relationship between canopy development and 
the root system is crucial and can be investigated to 
avoid yield tradeoffs in drought and heat adapted vari-
eties. Similar to the principle of supply and demand, 
the root system supplies the shoot with water and soil 
nutrients according to demand as they operate within 
the same hydraulic continuum (Vadez 2014; Vadez 
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et al. 2014). Sivasakthi et al. (2017) reported that root 
hydraulic characteristics influence chickpea transpira-
tion rate under different vapour pressure deficit condi-
tions and in turn affects its vigour and water use effi-
ciency. This highlights the strong connection between 
root and canopy traits. This makes sense from an 
evolutionary perspective as it is how plants regu-
late the balance of resources relative to growth and 
reproductive success. However, this nexus could get 
in the way when selecting for traits associated with 
improved water use and uptake. For example, it is dif-
ficult to match water uptake and water use efficiency 
with time because root and canopy development are 
closely related (Ratnakumar et al. 2009; Maurel et al. 
2010; Zaman-Allah et al. 2011; Bouteille et al. 2012). 
Identifying genetic variants that deviate from this 
relationship may provide novel pathways to design 
chickpea varieties suited to drought and heat for dif-
ferent environments.

A strong connection between root and canopy 
development has been reported in several species. For 
example, in wheat and barley a key gene in the flow-
ering pathway, VERNALIZATION1 (VRN1) (Deng 
et  al. 2015) also modulates root architecture (Voss-
Fels et al. 2018). Similar findings have been reported 
in maize, where 62 of 133 QTL for nodal root number 
were also associated with flowering time (Zhang et al. 

2018). To date, little is known about the relationship 
between above- and below-ground traits in chick-
pea. Nevertheless, there is a need to assemble unique 
combinations of root and canopy architectural traits. 
If these cannot be found in existing germplasm col-
lections, they may be engineered through gene editing 
approaches by targeting the key pathways involved 
(Massel et al. 2021).

Approaches to efficiently measure traits

Targeted, novel phenotyping methods are required to 
understand phenotype-genotype relationships (Cobb 
et  al. 2013) and support crop improvement (Tester 
and Langridge 2010; Rahaman et  al. 2015). Ideally, 
phenotyping approaches will be hypothesis-driven, 
accurate, rapid, and cost-effective (de Castro et  al. 
2019; Jang et  al. 2020; Kholova et  al. 2021). This 
will make them suitable for evaluating large mapping 
populations which are required to dissect the genetic 
architecture of adaptive traits and more likely to be 
integrated into breeding programs (Rutkoski et  al. 
2016).

The success of molecular and traditional breed-
ing may be amplified when integrated with high-
throughput phenotyping tools (Xiao et  al. 2017; 

Fig. 2   Aboveground bio-
mass associated with water 
use a) Profligate water use 
leading to yield penalty 
b) Conservative water use 
leading to yield benefit

(a) 

Conservative water-use 

Profligate water-use 

Yield 

benefit 

Yield 

penalty 

(b) 
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Ren et  al. 2020). Phenotyping complex traits 
underpinning adaptation to drought and heat can be 
time-consuming, labour intensive and often expen-
sive. For instance, measuring mature root system 
architecture may give precise information for phys-
iological insight, but only a small number of geno-
types can be screened and the technique is usually 
destructive. This is not complementary with mod-
ern plant breeding approaches that seek to evaluate 
large numbers of lines in a non-destructive fashion.

Emerging phenotyping technologies enable 
rapid, non-invasive trait capture of large popula-
tions directly in the field (Smith et al. 2021). These 
technologies can utilise mechanistic physiological 
understanding of abiotic stress response for applied 
breeding applications. For instance, unmanned 
aerial vehicle (UAV) imaging platforms are evolv-
ing as a powerful phenotyping tool and may offer 
an efficient, field-based, non-invasive approach to 
evaluate drought and heat traits such as integra-
tive end-of-season traits and canopy temperature 
(Reynolds et al. 2006; Lopes and Reynolds 2010). 
While for cereals, plot-level indices derived from 
UAV platforms have been validated (Deery et  al. 
2014, 2016; Pinto and Reynolds 2015) this must 
be first demonstrated prior to implementation in 
chickpea breeding programs. Leaf, canopy and 
plot scale traits are likely to be very different for 
chickpea compared to cereals, such as wheat due to 
differences in leaf size, shape, canopy architecture 
and development.

Dedicated phenotyping facilities allow for the 
precise evaluation of traits in a high-throughput 
manner under controlled conditions (Honsdorf 
et al. 2014; Asif et al. 2021) or conditions similar 
to the field (Vadez et  al. 2015). Phenotyping plat-
forms reach their full potential when they are used 
to evaluate well-designed populations important to 
the breeding program and phenotypes are analysed 
with other datasets in a context specific manner. 
Such technologies have been used in chickpea and 
combined with genomics have led to the discovery 
of QTL associated with adaptation in water limited 
environments (Sivasakthi et al. 2018). Phenotyping 
technologies such as the LeasyScan (Vadez et  al. 
2015) are a unique and powerful tool to discover 
novel trait variations that may be subsequently 
used in breeding programs.

Mining and exploiting genetic variation

As with most modern crops, elite chickpea germ-
plasm has a narrow genetic base as a result of sev-
eral genetic bottlenecks, including domestication and 
intensive selection in breeding programs (Chandora 
et al. 2020). Globally, there are approximately 87,341 
chickpea accessions in genebanks (Abbo et al. 2003), 
with the International Crop Research Institute for 
the Semi-arid Tropics (ICRISAT) genebank housing 
20,764 accessions (308 wild and 20,456 cultivated) 
and the International Centre for Agricultural Research 
in the Dry Areas (ICARDA) housing 15,734 acces-
sions (540 wild and 15,194 cultivated) (Abbo et  al. 
2003). These accessions include wild relatives, lan-
draces and historical breeding material.

While genebank accessions may carry useful 
traits for heat and drought adaptation, there are many 
challenges associated with using these materials 
in a breeding context. This germplasm is typically 
not adapted to the target environment and therefore 
requires a high degree of pre-breeding to effectively 
transfer the novel traits into adapted germplasm. This 
can be a time consuming process, involving many 
cycles of backcrossing. Furthermore, without mark-
ers linked to useful traits, to identify suitable donors, 
genebank accessions must be screened through phe-
notyping platforms which is a major bottleneck. 
These challenges make the genebank-to-farm process 
a lengthy, laborious and costly one. A further consid-
eration is the need for a benefit-sharing agreement 
and Nagoya compliance for certain biological materi-
als (Smith et al. 2018; Sherman and Henry 2020).

Despite the wealth of genetic resources, this 
genetic variation is underutilised in most breeding 
programs. To date, QTL mapping studies (Table  1) 
have largely focused on bi-parental populations. Such 
populations offer high statistical power but lack map-
ping resolution and only examine two alleles at any 
one locus (Jannink 2007; Ongom and Ejeta 2018). To 
identify useful germplasm, Focused Identification of 
Germplasm Strategies (FIGS) concept was developed 
to create a subset of genetic material for easy evalu-
ation. For example, FIGS was successfully applied 
to discover materials needed for drought tolerance in 
maize (Bari et al. 2012) and aphid resistance in wheat 
(El Bouhssini et  al. 2012). Similarly, this method 
may be applied to scout for parental lines with novel 
alleles for drought and heat adaptation in chickpea. 
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Incorporating available supporting software for deci-
sion making in specific traits would enhance the use 
of FIGS in chickpea (Bari et  al. 2016). The concept 
of core reference sets can also be used to finely char-
acterise and identify important germplasm from a 
pool of materials available across genebanks (Glasz-
mann et al. 2010). These core reference sets are used 
to represent available diversity, evaluate phenotypic 
variation and dissect traits for genes underlying their 
functions (Glaszmann et al. 2010; Emma Huang et al. 
2013). In general, core collections help to improve 
the use of genetic resources for crop improvements 
(Upadhyaya and Ortiz 2001).

Once promising accessions have been identi-
fied, populations can be created to understand the 
genetic control of relevant traits. Creating multi-par-
ent populations allows for the inclusion of multiple 
donor parents potentially carrying multiple alleles 
at any one locus (Bandillo et  al. 2013; Thudi et  al. 
2014) increasing the likelihood of discovering novel, 
allelic variation that could be harnessed in breeding 
programs (Ladejobi et  al. 2016). For instance, Mul-
tiparent Advanced Generation Intercross (MAGIC) 
and Nested Association Mapping (NAM) popula-
tions have been generated to study a range of eco-
nomically important traits in a variety of crops such 
as; sorghum (Ongom and Ejeta 2018), maize (Huang 
et  al. 2015; Holland 2015; Ren et  al. 2020), barley 
(Mathew et al. 2018; Hemshrot et al. 2019; Afsharyan 
et al. 2020), wheat (Christopher et al. 2021) and cow-
pea (Huynh et al. 2018). Recently a chickpea MAGIC 
population was created at ICRISAT using eight par-
ents (Attri 2018; Gaur et  al. 2019). This represents 
a useful resource to study the genetic control of heat 
and drought adaptation. To complement this effort a 
NAM population could be created to harness diver-
sity from genebanks and continually updated over 
time (Bari et al. 2016).

Identifying alleles underpinning complex traits and 
transferring them into elite material is challenging 
and time-consuming. Therefore, we propose an inte-
grated approach for chickpea (Fig. 3). High-through-
put phenotyping could be used to rapidly screen 
germplasm with desirable heat and drought traits for 
pre-breeding activities that could exploit multi-par-
ent populations for trait dissection. Identified alleles 
may be incorporated into elite germplasm for the tar-
get environment. This integrated approach requires a 

multidisciplinary team and cutting edge pre-breeding 
and breeding approaches.

Latest breeding approaches: tools for faster crop 
improvement

Understanding the genetic architecture of traits in 
diverse germplasm provides insight into key QTL and 
novel alleles that may be targeted in breeding pro-
grams. Selection is an essential step in plant breeding 
programs for improvement of target traits of interest. 
The concept of genomics-asssited breeding has been 
suggested for integrating advanced genome discov-
eries in crop improvement (Varshney et  al. 2005, 
2021). For instance, marker assisted selection (MAS) 
involves applying selection for a molecular marker 
associated with a trait of interest. MAS has been used 
in the past to hasten the process of selection and can 
reduce the years of pre-breeding and breeding activi-
ties for simply inherited traits underpinned by single 
or few genes. When combined with backcrossing, 
i.e. marker assisted backcrossing (MABC) the tech-
nique can facilitate the transfer of a trait into an elite 
genetic background, for example the introgression of 
a QTL region into elite chickpea cultivars to improve 
drought tolerance (Varshney et al. 2013a; Bharadwaj 
et al. 2021). However, MAS or MABC is not the pre-
ferred approach for complex traits governed by many 
genes (Wang et al. 2018; Charmet et al. 2020). Alter-
natively, genomic prediction (GP) is well-suited to 
improve complex traits as it considers the effect of all 
loci on the trait of interest (Crossa et al. 2017).

Genomic prediction (GP), the use of genome-wide 
DNA polymorphisms to estimate breeding values, 
was proposed to better select individuals when deal-
ing with complex traits. GP does not rely on QTL 
identification and detection (Meuwissen et  al. 2001, 
2016). Application in a breeding program involves 
building a prediction model based on a reference 
population with genome-wide markers and phenotype 
information (Heffner et  al. 2009; Wang et  al. 2018; 
Kushwah et  al. 2020). GP can increase genetic gain 
per year and reduces the length of time required for 
variety development (Wang et al. 2018). By perform-
ing GP on selection candidates, a plant breeder can 
make selections in early generations without the time-
consuming step of phenotyping across multiple years 
and seasons. This saves time in the breeding cycle 
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and can help improve selection intensity and accu-
racy when combined with performance data. GP has 
many applications including a role in exploiting novel 
allelic variation. For instance, Crossa et  al. (2017) 
reported that application of GP during pre-breeding 
can accelerate the identification and flow of genes 
from genebank accessions into elite lines.

In chickpea, GP holds potential to increase the rate 
of genetic gain in breeding programs. This has been 
demonstrated in chickpea for drought tolerance and 
yield related traits, however, the prediction accuracies 
must be improved for selection implementation in 
breeding programs (Roorkiwal et  al. 2016, 2018; Li 
et al. 2018, 2021). GP has been effectively applied in 
other crops including sorghum (Velazco et al. 2019), 
wheat (Montesinos-Lopez et  al. 2019) and barley 
(Bhatta et al. 2020). To achieve this for chickpea, the 

accuracy of the GP model is the most important con-
sideration for successful implementation. Accuracy 
of GP depends on the magnitude of the trait heritabil-
ity and the size of the reference population. Using a 
multi-genetic background population and multivari-
ate GP models can also increase prediction accuracy 
(Crossa et al. 2017).

In drought and heat prone environments, the herit-
ability of yield traits is typically lower compared to 
environments where resources are not limiting. This 
source of variation and lower heritability, impacts 
on prediction accuracy. To counter this, traits corre-
lated with yield (secondary traits) may be included 
in the prediction model to increase prediction accu-
racy (Pszczola et al. 2013; Rutkoski et al. 2016). For 
instance, key physiological traits underpinning per-
formance may be incorporated into the prediction 

Fig. 3   Schematic diagram of how genetic variation in gene bank material may be exploited using pre-breeding approaches
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framework (Rutkoski et al. 2016; Watson et al. 2019). 
This strategy may be employed to enhance GP for 
chickpea performance in drought and heat environ-
ments (Santantonio et al. 2020). Traits such as those 
outlined in this review, particularly those that can be 
phenotyped in high-throughput platforms, could be 
targeted for inclusion in GP frameworks. To imple-
ment this successfully, an understanding of trait value 
in the target environment is critical to prioritise trait 
selection.

Conclusion

Drought and heat stress are the major abiotic stresses 
impacting chickpea yield globally. It is clear, that 
climate variability and erratic rainfall distribution 
will worsen, and the effects of such scenarios will 
challenge crop productivity. Fortunately, previous 
physiological and genetic studies in chickpea have 
provided a strong foundation for future crop improve-
ment. While progress has been made to identify traits 
important for yield in drought and heat environments 
the underlying mechanisms are yet to be fully eluci-
dated. To create novel varieties that are able to bal-
ance resource capture and use, a deeper understand-
ing of the relationship between canopy development 
and root architecture is required. The availability of 
genomic resources and high-throughput phenotyp-
ing platforms presents opportunities to accelerate the 
design of new chickpea varieties better suited to target 
environments. A multidisciplinary team is required 
to implement an integrated approach incorporating 
a strong understanding of physiological mechanisms 
driving adaptation in target environments, the lat-
est phenotyping platforms, utilization of genebank 
resources, trait dissection and breeding technologies.
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