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Géofroy KinhoégbèID
1,2*, Gustave Djèdatin1, Rachit Kumar Saxena2¤a, Anu Chitikineni2¤b,

Prasad Bajaj2, Johiruddin Molla2, Clément Agbangla3, Alexandre Dansi4, Rajeev

Kumar Varshney2¤c

1 Laboratory of Molecular Biology and Bioinformatics Applied to Genomics, National University of Sciences,

Technologies Engineering and Mathematics of Abomey, Dassa-Zoumé, Benin, 2 Centre of Excellence in
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Abstract

Genetic diversity studies provide important details on target trait availability and its variability,

for the success of breeding programs. In this study, GBS approach was used to reveal a new

structuration of genetic diversity and population structure of pigeonpea in Benin. We used a

total of 688 high-quality Single Nucleotide Polymorphism markers for a total of 44 pigeonpea

genotypes. The distribution of SNP markers on the 11 chromosomes ranged from 14 on

chromosome 5 to 133 on chromosome 2. The Polymorphism Information Content and gene

diversity values were 0.30 and 0.34 respectively. The analysis of population structure

revealed four clear subpopulations. The Weighted Neighbor Joining tree agreed with struc-

ture analyses by grouping the 44 genotypes into four clusters. The PCoA revealed that geno-

types from subpopulations 1, 2 and 3 intermixed among themselves. The Analysis of

Molecular Variance showed 7% of the total variation among genotypes while the rest of varia-

tion (93%) was within genotypes from subpopulations indicating a high gene exchange (Nm

= 7.13) and low genetic differentiation (PhiPT = 0.07) between subpopulations. Subpopula-

tion 2 presented the highest mean values of number of different alleles (Na = 1.57), number

of loci with private alleles (Pa = 0.11) and the percentage of polymorphic loci (P = 57.12%).

We discuss our findings and demonstrate how the genetic diversity and the population struc-

ture of this specie can be used through the Genome Wide Association Studies and Marker-

Assisted Selection to enhance genetic gain in pigeonpea breeding programs in Benin.
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Introduction

Pigeonpea (Cajanus cajan [L.] Millspaugh) is an important food legume crop widely grown in

tropical and subtropical climates [1]. It is a diploid (2n = 22) crop with a genome size of 833.07

Mbp [2]. Pigeonpea is counted among the five comestible legumes used for food, fodder and

firewood [3]. It constitutes a rich source of protein and is used to supplement cereals [4, 5].

In Benin, pigeonpea is largely cultivated and consumed in Adja socio-linguistics area in the

South-East of the country and in some others socio-linguistics areas where it improves household

income [6, 7]. Despite the importance of this legume, till date, no research effort has been directed

towards pigeonpea crop improvement in the country. In general, there are several factors that

contribute to the current level situation of pigeonpea development in the country. This includes

lack of sufficient characterization of genetic resources and therefore, lack of genetic data [8].

The success of breeding programs, in any crop, depends on the extent of genetic diversity

through different traits available to breeders for breeding desirable varieties [9]. These parame-

ters significantly affect parents’ choice for the hybridization and the adopted selection proce-

dures [10]. In addition, by showing the differences which exist among accessions [11], the

genetic diversity studies provide important details on target trait availability and its variability

for the success of breeding programs [12–14]. Thus, before establishing conservation and

improvement programs of pigeonpea genetic resources in Benin, it is necessary to discover the

level of genetic diversity and population structure of cultivated landraces.

Different methods are usually used to access genetic diversity. One of them is the agro-mor-

phological traits approach, given the accessibility of their easily measurable characteristics is

the most used approach to establish relationships between genotypes and provide information

for varieties improvement programs [15, 16]. Hence, agro-morphological traits have been uti-

lized in pigeonpea germplasm’s characterization of both world reference collections [17] and

national collections [18–23]. In Benin, agro-morphological traits have already been used in the

evaluation of pigeonpea genetic diversity [24–26]. However, the environmental conditions

affect agro-morphological traits. Hence, morphological characters do note only reflect the

genetic constitution of the cultivars but also the available genetic diversity [27].

Molecular markers are one of the powerful tools used in the characterization of genetic

resources [28]. In recent years, the advancement in pigeonpea genomic resources is a result of

the development of molecular markers and genome sequence data which are all essentials in

molecular breeding approach [29]. Thus, in several crops, a few approaches have been used for

simultaneous SNP discovery and genotyping such as Restriction site Associated DNA sequenc-

ing (RADseq) [30] and Genotyping-By-Sequencing (GBS) [31], etc. Among these approaches,

GBS is the simplest and most cost-effective approach [31] and has proven itself in trait map-

ping and Genome-Wide Association Studies (GWAS) as well as in diversity studies [32] in var-

ious crops like chickpea [33], common bean [34], wheat [35], pigeonpea [36], etc.

In Benin, SNPs markers have been used to assess genetic diversity and population structure

of cultivated pigeonpea [37]. However recently, new morphotypes of cultivated pigeonpea

have been identified in the country and corresponding accessions collected [7]. This assumes a

new structure of the pigeonpea diversity other than that reported by the previous study [37].

Therefore, in the present study, GBS approach was used to reveal a new structure within the

pigeonpea genetic resource and to provide important information for pigeonpea breeding pro-

grams. Consequently, the objective of the present study was to characterize the genetic diver-

sity and population structure of 50 pigeonpea landraces collected in Benin. We hypothesized

that beninese pigeonpea germplasm encompasses more genetic diversity than reported by

Zavinon et al. [37] who stated that there are three genetic groups and three subpopulations

using SNPs markers.
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Materials and methods

Plant materials

The material included 50 pigeonpea landraces collected in Benin and held in the genebank of

the Laboratory of Molecular Biology and Bioinformatics applied to Genomics of the National

University of Sciences, Technologies Engineering and Mathematics of Abomey in Benin and

at International Crop Research Institute for the Semi-Arid Tropics at Patancheru in India.

These genotypes are originated from 39 villages (S1 Table).

Germplasm and DNA isolation

Total DNA was isolated from two to three young leaves using a high-throughput DNA extrac-

tion protocol. The quality of the DNA was checked on 0.8% agarose gels. DNA concentration

was assessed with NanoDrop ND-1000 (Thermo Fisher Scientific Inc., Waltham, USA) and

extract purity using the absorbance ratio 260nm to 230nm. According to the DNA concentra-

tion, different dilution rates were applied to each sample to normalize each sample at 10 ng/μl

for further use.

Library construction and Genotyping by Sequencing (GBS)

GBS libraries were prepared following Elshire et al. [31] and in accordance with the genomic

analysis platform of the Center of Excellence in Genomics and Systems Biology at Interna-

tional Crops Research Institute for the Semi-Arid Tropics in India. Thus, the restriction

enzyme ApeKI was used to digest each sample. The digested product was ligated to adapters

with cohesive ends (GWC) by addition of T4 DNA ligase enzyme [36] before being incubated

at 22˚C and heated at 65˚C for 1h and 30 min respectively to make the T4 DNA ligase enzyme

inactivate. The digested and ligated products from each sample were mixed in equal propor-

tion to construct the GBS libraries. Each library was then amplified and purified. The libraries

were sequenced on an Illumina sequencer HiSeq 2500 platform (Illumina Inc, San Diego, CA,

USA).

SNP calling and genotyping

The raw sequence data generated was filtered using Tassel v5.2.63 [38] analysis pipeline

according Saxena et al. [36]. In this manner, SNPs were identified and high-quality SNP geno-

typing dataset was compiled. The draft genome sequence of pigeonpea described by Varshney

et al. [2] was used as a reference to align the compiled dataset using Bowtie 2 software [39].

Subsequently, the alignment file was processed through GBS analysis pipeline for SNP calling

and genotyping. Eventually, quality control filters were applied to both SNPs and samples fol-

lowing Zhang et al. [40] and Hussain et al. [41] based on the following criteria. Firstly, variants

should be bi-allelic SNPs. Secondly, SNPs with more than 20% of missing information were

excluded and lastly the SNP markers with minor allele frequency greater than or equal to 0.05

were retained.

Statistical analysis

Major Allele Frequency (MAF), gene diversity, and Polymorphic Information Content (PIC)

values for all SNP markers, were calculated using Power Marker v.3.25 software [42].

The Structure v2.3.4 Software [43] was used for population structure analysis. The member-

ship of each accession was run for value of K = 1 to K = 10 with the admixture model and cor-

related allele frequency. For each K, it was replicated 3 times. Each run was implemented with

a burn-in period of 50,000 steps followed by 100,000 Monte Carlo Markov Chain replicates.
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“Structure harvester” (http://taylor0.biology.ucla.edu/structureHarvester/) available online

was used to calculate the final population structure. The likelihood value Ln (K) (mean + SD)

method [44] was used. This method translates the mean of estimated Ln (Prob of data) values

as a function of the probable number of subpopulations (K). It assumes that when K

approaches the true value, Ln (K) (mean + SD) reaches a plateau or has an inconsequential

variance [44]. Genotypes with membership probabilities greater than or equal to 0.7 were

grouped together genotypes with membership probability lower than 0.7 were assigned to the

admixture group. Genetic variation within the subpopulations was assed using the fixation

index (Fst) and average distances between individuals in same cluster using the Expected Het-

erozygosity (HE).

To assess genetic diversity, genetic distances across genotypes were calculated using Tassel

v5.2.63 [38]. The dissimilarity matrix generated was used to construct Neighbor Joining tree.

In addition, Principle Coordinate Analysis (PCoA) and Analysis of Molecular Variance

(AMOVA) was performed, based on the Structure results and the differentiation genetic index

(PhiPT and Nm) allowed to describe the genetic diversity between and among subpopulations

and their degrees of differentiation. Also, the genetic diversity index such as mean values of

number of loci with private alleles (Pa), number of different alleles (Na); Shannon’s diversity

index (H) and the Shannon’s Information Index (I) were calculated. PCoA and AMOVA per-

formed using GenAlEx 6.503 [45] and SNP data was numerically coded as suggested in GenA-

lEx user manual.

Results

Sequence data and SNP discovery

Genotyping by sequencing (GBS) of the 50 genotypes provided 18.7 Gb data containing 3.16

million sequence reads. The sequencing data was mapped on to the reference pigeonpea

genome and the alignment sequences provided 71,712 SNPs across 50 genotypes. Considering

the filtering criteria applied both to samples and SNP, six genotypes (kk7, kk8, kk19, kk29,

kk35 and kk36) were excluded from further analysis and a total of 688 high quality SNPs were

retained for further analysis. The number of SNPs per chromosome ranged from 14 on chro-

mosome 5 to 133 on chromosome 2 (Fig 1A and S2 Table). The rate of polymorphism was

100% across the other 44 genotypes. The PIC varied from 0.12 to 0.55 with a mean value of

0.30 (Fig 1B). The gene diversity ranged from 0.13 to 0.62 with an average of 0.34 (Fig 1C). A

total of 1,376 alleles could be identified. The Major Allele Frequency for all 688 SNPs ranged

from 0.48 to 0.93 with an average of 0.80 (Fig 1D). About 2% of SNPs were found to be least

informative with PIC and gene diversity values equaling 0.12 and 0.13 respectively and the

Major Allele Frequency of 0.93.

Population structure in pigeonpea landraces

The likelihood value method used showed a first clear peak at K = 2 (Fig 2A and S3 Table).

However, others larger values of K corresponding to a continuous gradual increase in the like-

lihood values were observed but the largest was K = 5. This value of K indicated that 5 subpop-

ulations could exist in the analyzed collection. Nevertheless, the best value of K which clearly

defined the number of subpopulations was K = 4. As a result, four subpopulations (pop1,

pop2, pop3 and pop4) were identified. The subpopulation 1 (in red) grouped 8 genotypes, the

subpopulation 2 (in green) grouped 17 genotypes, the subpopulation 3 (in blue) grouped 15

genotypes and the subpopulation 4 (in yellow) grouped 4 genotypes (Fig 2B). 18.18% of admix-

ture supported the 4 subpopulations (S4 Table).
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Fig 1. SNPs markers characteristics. (a) Distribution of SNPs across the 11 chromosomes. (b) Polymorphic Information Content (PIC). (c) Variation of Gene

Diversity. (d) Frequency distribution of Major Allele Frequency.

https://doi.org/10.1371/journal.pone.0271565.g001

Fig 2. Estimated population structure of 44 pigeonpea genotypes. (a) Average of likelihood value L (K) (mean + SD)

against probable number of clusters (K). (b) Barplot of subpopulations at K = 4. Each genotype is represented by a

vertical bar and partitioned into colored segments which represent the estimated probability membership in each of

the K-inferred clusters on the y-axis. Bar colors (red, green, blue and yellow) indicate the groups identified through the

structure program.

https://doi.org/10.1371/journal.pone.0271565.g002

PLOS ONE Genetic diversity and population structure of pigeonpea landraces grown in Benin

PLOS ONE | https://doi.org/10.1371/journal.pone.0271565 July 20, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0271565.g001
https://doi.org/10.1371/journal.pone.0271565.g002
https://doi.org/10.1371/journal.pone.0271565


Genetic diversity

The Neighbor Joining tree based on the genetic distances analysis showed four major clusters

within all the 44 pigeonpea analyzed genotypes (S5 Table and Fig 3). Cluster 1 (in black) and

cluster 2 (in blue) contained 4 and 18 genotypes respectively. Cluster 3 (in green) grouped 10

genotypes and Cluster 4 (in red) grouped 12 genotypes. PCoA was realized with all the 688

SNPs markers. Genotypes were labelled with four different colors according to structure based

grouping of genotypes. The first, second and third PC accounted for 33.24% of the cumulative

variation. The results did not agree with the structure results but showed an intermixing

among genotypes from subpopulation 1, 2 and 3 (Fig 4).

Analysis of molecular variance and genetic diversity indices

The AMOVA results identified 7% of the total variation among subpopulation and 93% was

observed within subpopulations. The differentiation genetic index (PhiPT and Nm) were 0.07

and 7.13 respectively (Table 1). The mean value of different alleles (Na) ranged from 1.38 in the

subpopulation 1 to 1.57 in the subpopulation 2. The total number of alleles (N) ranged from 4

(in subpopulation 4) to 17 (in subpopulation 2). The percentage of polymorphic loci per popu-

lation ranged from 37.97% in subpopulation 1 to 57.12% in subpopulation 2. Subpopulation 2

had the highest mean value of loci with private allele (Pa = 0.11) (Table 2). The number of pri-

vate alleles ranged from 2 to 21 across the genotypes (Fig 5 and S6 Table). The highest Shannon

Information index (I) and Shannon diversity index (H) were 0.28 and 0.20 respectively and

hold by subpopulation 4 (Table 2). The mean values of Fst values for subpopulations pop1 pop2

pop3 and pop4 were 0.46; 0.48; 0.57 and 0.40 respectively. We observed a low average distance

(HE) between individuals in same cluster in subpopulation 3 (0.09) (Fig 6).

Fig 3. Neighbor—Joining tree of pairwise relatedness among 44 pigeonpea genotypes.

https://doi.org/10.1371/journal.pone.0271565.g003
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Discussion

The knowledge of genetic diversity is of paramount importance not only for the development

of conservation strategies but also and more importantly the selection of parents to be used in

genetic improvement [46–48]. In this study, we report the second genetic diversity analysis

study of pigeonpea using Genotyping-by-sequencing approach in Benin. GBS approach pro-

vided 688 high-quality SNPs markers. The mean values of PIC and gene diversity were 0.30

and 0.34 respectively. These values were higher than those reported in Saxena et al. [49] which

were 0.17 and 0.2 respectively for PIC and gene diversity across 21 pigeonpea landraces on the

one hand and on the other hand 0.19, and 0.24 respectively across 56 pigeonpea elite cultivars.

Previously in Benin, mean values of 0.25 and 0.30 for PIC and gene diversity respectively were

reported on pigeonpea by using a set of 794 SNPs [37]. The difference between the present

diversity index and those reported in Saxena et al. [49] could be explained through the radical

certification of certain varieties of pigeonpea. Indeed, in the Indian context where there is

selection followed by certification and commercialization of several varieties, the pigeonpea

genetic diversity tends towards homogenization by an interesting alleles fixation which leads

Fig 4. Principal Coordinate Analysis (PCoA) of 44 pigeonpea genotypes based on the population structure result.

https://doi.org/10.1371/journal.pone.0271565.g004

Table 1. Analysis of molecular variance (AMOVA) of the genetic variation among and within the four subpopulations of C. cajan genotypes using the 688 SNPs.

Source Df SS MS Est.Var %

Among subpopulations 3 578.89 192.96 7.90 7

Within subpopulations 40 4506.12 112.65 112.65 93

Total 43 5085.02 120.55 100

p value = 0.001. Df, Degrees of freedom; SS, Sum of Squares; MS, Mean Square; Est.Var, Estimated variance; Nm, Number of migrants.

https://doi.org/10.1371/journal.pone.0271565.t001
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to the reduction of its diversity [50]. Hence, compared with previous studies, the high level of

index of diversity observed in the present study suggested that pigeonpea germplasm encom-

passes more genetic diversity than reported by previous studies in Benin [51]. Allelic diversity

is known for its use as indicator of genetic variation [52]. For the set of 688 SNP markers, we

could count 1 376 alleles. This non-negligible total allele’s number is lower than that reported

on pigeonpea by Zavinon et al. [37] who reported a total allele’s number of 1 588 using a set of

794 SNP markers generated by GBS approach. For all genetic diversity index calculated, the

observed difference with our results and those of previous studies could be explained by the

difference between the genetic background of the accessions analyzed or between the number

Table 2. Variation of different genetic parameters among the four identified subpopulations.

Indices de diversité pop1 pop2 pop3 pop4

N 7.16 (0.03) 14.39 (0.06) 13.13 (0.05) 3.41 (0.03)

Na 1.38 (0.02) 1.57 (0.02) 1.50 (0.02) 1.45 (0.02)

I 0.19 (0.01) 0.20 (0.01) 0.18 (0.01) 0.28 (0.01)

Pa 0.06 (0.01) 0.11 (0.01) 0.08 (0.01) 0.04 (0.01)

H 0.12 (0.01) 0.11 (0.01) 0.10 (0.01) 0.20 (0.01)

P 37.94% 57.12% 50.44% 44.91%

N, Total number of alleles; Na, Number of different alleles; H, Shannon’s diversity index; I, Shannon’s Information

Index; P, Percentage of polymorphic loci; pop, Subpopulation. For each parameter, mean value is used followed by

the Standard Error in brackets except the Percentage of polymorphic loci (P).

https://doi.org/10.1371/journal.pone.0271565.t002

Fig 5. Variation of number of genotypes with private alleles within all the 44 pigeonpea analyzed genotypes.

https://doi.org/10.1371/journal.pone.0271565.g005
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of markers involved in the different studies or the collection size [53–55]. All these findings

reinforced the existence of a new structuration in pigeonpea genetic diversity in Benin.

Population structure analysis clarifies genetic diversity studies [8]. This study showed that

Beninese’s pigeonpea were divided into four clears subpopulations with a high genetic differ-

entiation between these subpopulations as revealed by a low rate of admixed varieties

(18.18%). The Weighted Neighbor Joining tree agreed structure results by giving similar result.

The presence of structure in pigeonpea landraces has been reported early in South American

by Sousa et al. [56], in Malawi by Njung’e et al. [14] and in Benin by Zavinon et al. [37]. This

result supports the findings of Sousa et al. [56] among 77 tested pigeonpea. However, our

results contradicted Zavinon et al. [37] who reported three subpopulations with high rate

(20%) of admixed genotypes. The presence of a structure within pigeonpea as identified in the

present study is of paramount importance. Thus, our results could lay the basis for Genome

Wide Association Studies and consequently Marker-Assisted Selection to enhance genetic

gain in pigeonpea breeding programs [8]. They could therefore facilitate genes of interest dis-

covery, molecular breeding and allow rapid identification of heterogeneous groups for the

development of hybrids with high agronomic performance [57]. Gene flow like selection and

genetic drift plays a major role in shaping the genetic structure [58]. In this study, AMOVA

results indicated a high level of genetic diversity (93%) within the four subpopulations whereas

the rest of the variation (7%) was among subpopulations suggesting a high level of differentia-

tion within subpopulations. The selection for specific agronomic traits by farmers could be the

main reason for this high variation within subpopulations. The Nm value (7.13) observed was

very high. Knowing that an Nm value less than 1 indicates limited gene flow among subpopu-

lations [59], our result suggested that a high genetic exchange or high gene flow [8] may occur

and confirmed that the genetic variation among subpopulations was low when compared to

the second level of variation. This result coincided with the PCoA results for which most of the

genotypes from subpopulations 1, 2 and 3 showed intermixing among themselves. These find-

ings were in line with those of Kinhoégbè et al. [26] on pigeonpea seed system management in

Benin. According to the authors, pigeonpea seed system is informal which favored gene flow

through seeds exchanges [26]. They corroborated Radosavljevic et al., [58] who reported that

selection and gene flow constituted the main factors of the population structure’s dynamic

over time. Hence, these two factors were the main factors that influenced Beninese pigeonpea

structure. However, by relying on pigeonpea’s strong tendency to autogamy [60] which is

known to contribute to the low genetic variation [61], the low rate (18.18%) of admixed varie-

ties as reported in this study justified the fact that the relatively great diversity obtained in

Beninese pigeonpea was due to the selection based on specific traits rather than gene flow.

Fig 6. Genetic variation within the subpopulations. (a) Average distances (Expected Heterozygosity) between individuals in same cluster. (b) Genetic variation within

the subpopulations (Fst).

https://doi.org/10.1371/journal.pone.0271565.g006
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The diversity pattern revealed by the mean values of total number of alleles, number of loci

with private alleles and percentage of polymorphic loci within subpopulations provided insight

to genetic diversity within populations [62] indicated a signature in populations [57]. We

observed that subpopulation 2 had the highest mean value of the total number of alleles. The

loci with private alleles and the percentage of polymorphic loci followed the same trend while

the genotypes from subpopulation 4 were the most highly differentiated (I = 0.28; H = 0.20)

from those of the remaining populations. This is probably because subpopulation 2 had the

largest number of genotypes indicating the high genetic diversity that existed among the geno-

types [8]. As a result, the subpopulation 2 represented the main gene pool and could be serve

as a source for diverse parents’ selection useful to improve the existing landraces.

Conclusion

In this study, GBS approach was used to determine the level of genetic diversity, population

structure of a collection of pigeonpea landraces grown in Benin. Results showed significant

genetic diversity structured and maintained by the selection of cultivars based on specific

traits. Four clear subpopulations were identified. The subpopulation 2 exhibited the highest

mean values of total number of alleles, number of loci with private alleles and percentage of

polymorphic loci. It represented the main gene pool in the analyzed collection and could con-

tain desirable traits, such as biotic or abiotic stress tolerance. These findings laid the basis for

Genome Wide Association Studies and consequently Marker-Assisted Selection to enhance

genetic gain in pigeonpea breeding programs in Benin.
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