
Genome-wide association study,
haplotype analysis, and genomic
prediction reveal the genetic
basis of yield-related traits in
soybean (Glycine max L.)

Javaid Akhter Bhat1,2†*, Kehinde Adewole Adeboye3†,
Showkat Ahmad Ganie4, Rutwik Barmukh5, Dezhou Hu1,
Rajeev K. Varshney5,6* and Deyue Yu1*
1Soybean Research Institution, National Center for Soybean Improvement, State Key Laboratory of
Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China,
2International Genome Center, Jiangsu University, Zhenjiang, China, 3Department of Agricultural
Technology, Ekiti State Polytechnic, Isan, Nigeria, 4Plant Molecular Science and Centre of Systems and
Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Surrey,
United Kingdom, 5Center of Excellence in Genomics & Systems Biology, International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India, 6Murdoch’s Centre for Crop & Food
Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, MurdochUniversity, Perth,
WA, Australia

Identifying the genetic components underlying yield-related traits in soybean is

crucial for improving its production and productivity. Here, 211 soybean

genotypes were evaluated across six environments for four yield-related

traits, including seed yield per plant (SYP), number of pods per plant number

of seeds per plant and 100-seedweight (HSW). Genome-wide association study

(GWAS) and genomic prediction (GP) analyses were performed using

12,617 single nucleotide polymorphism markers from NJAU 355K SoySNP

Array. A total of 57 SNPs were significantly associated with four traits across

six environments and a combined environment using five Genome-wide

association study models. Out of these, six significant SNPs were

consistently identified in more than three environments using multiple

GWAS models. The genomic regions (±670 kb) flanking these six consistent

SNPs were considered stable QTL regions. Gene annotation and in silico

expression analysis revealed 15 putative genes underlying the stable QTLs

that might regulate soybean yield. Haplotype analysis using six significant

SNPs revealed various allelic combinations regulating diverse phenotypes for

the studied traits. Furthermore, the GP analysis revealed that accurate breeding

values for the studied soybean traits is attainable at an earlier generation. Our

study paved the way for increasing soybean yield performance within a short

breeding cycle.
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Introduction

Soybean (Glycinemax L. Merr.) is one of the most important

food legume crops cultivated globally (Hina et al., 2020). Many

countries including China are highly dependent on soybean

imports to fulfil their domestic needs (Liu et al., 2018;

Karikari et al., 2019). Improving soybean yield has been a

primary objective of breeders from China and several other

countries across the world (Karikari et al., 2019). Seed yield of

soybean is governed by yield-related traits such as the number of

pods per plant, number of seeds per plant, and seed weight

(Bianchi et al., 2020). However, yield and its component traits are

complex, being controlled by multiple genes and are considerably

affected by the environment (Liu et al., 2011).

Many studies have revealed the genetic basis of yield-related

traits in staple crops such as maize (Badu-Apraku et al., 2020;

Yang et al., 2020), rice (Yue et al., 2015; Adeboye K. A. et al.,

2021), and soybean (Karikari et al., 2019; Hu et al., 2020) by using

bi-parental mapping populations. To date, several hundred QTLs

regulating yield and yield-related traits have been mapped across

the soybean genome, and many QTLs were consistently

identified in different populations (http://www.soybase.org).

All these studies have validated the role of linkage mapping as

an efficient approach to dissecting the genetic basis of

quantitative traits (Karikari et al., 2019; Hina et al., 2020).

However, a major limitation of the linkage mapping approach

is its dependence on limited diversity existing within segregating

populations derived from two contrasting parents. By contrast,

GWAS has emerged as an alternative approach, which is more

efficient in the identification of QTLs regulating quantitative

traits by utilizing natural diversity existing within crop

germplasm and the use of high-density genetic markers

(Zargar et al., 2015; Yu et al., 2019). Importantly, GWAS has

a higher potential to identify candidate genes regulating the trait

of interest because of a reduced level of genomic linkage

disequilibrium (LD) (Alqudah et al., 2020).

Advances in next-generation sequencing technologies have

enabled a wider availability of high-throughput sequencing and

genotyping platforms (Bhat et al., 2020; Sahu et al., 2020). As a

result, genomics-assisted breeding (GAB) has emerged as the

method of choice for crop improvement in plant breeding

programs (Varshney et al., 2021). Although, both linkage

mapping and GWAS approaches are being successfully used

for the identification of QTLs/candidate genes in crop plants,

limited allelic diversity and genomic resolution associated with

linkage mapping are addressed by GWAS in the gene

identification process (Brachi et al., 2011). GWAS has been

efficiently used to identify the QTLs/genes underlying various

yield-related traits in soybeans such as seed protein and oil

content (Zhang et al., 2019), agronomy (Zatybekov et al.,

2017), salt tolerance (Zeng et al., 2017), and yield-related

traits (Hu et al., 2020). Another genomic-based plant breeding

approach is the genomic prediction (GP). Here, phenotypic traits

or performance of an individual is predicted based on genomic

data. GP is currently being used in multiple plant species to

estimate the genetic values (genotypic estimated breeding values

(GEBVs)) of the individual genotypes based on the genome-wide

genotypic data without the need for phenotypic data (Habier et

al., 2007; Bhat et al., 2016; Crossa et al., 2017). The GP allows for

the captures of QTLs with minor effects since the model is based

on the genome-wide marker data rather than few markers as in

the marker-assisted selection model. Thus, it has a great potential

for improving the genetic gain associated with yield and other

complex traits within a limited time frame in different crop

plants (Crossa et al., 2017; Voss-Fels et al., 2019; Lebedev et al.,

2020). Moreover, GP has been used in soybean for improving

different traits such as cyst nematode infestation (Ravelombola

et al., 2020), disease resistance (Rolling et al., 2020), agronomic

traits (Beche et al., 2021), and seed yield (Mendonça et al., 2020).

The results of these studies have demonstrated the potential of

GP for improving complex traits in soybean. Furthermore,

advanced sequencing technologies are providing high accuracy

in gene and haplotype mining in crop germplasm (Bevan et al.,

2017; Bhat et al., 2021).

The present study analyzes the genetic basis of yield-related

traits in summer planting soybean genotypes grown in soybean

growing areas of China. We evaluated 211 diverse soybean

genotypes across six environments for four yield-related traits,

including seed yield per plant (SYP), number of pods per plant

(PPP), number of seeds per plant (SPP), and 100-seed weight

(HSW). Based on the phenotypic performance, genome-wide

association analysis was conducted to identify QTLs associated

with the studied traits using five different models. The genes

underlying the identified QTLs were validated based on RNA-seq

data for soybean tissues. Furthermore, superior haplotypes and

alleles were identified within the genomic regions associated with

the studied traits. Also, genetic values of individual genotypes

were estimated based on the studied yield-related traits to

facilitate the selection of soybean for improved yield

performance.

Materials and methods

Plant materials and field experiment

The GWAS panel of soybean used in the current study

consists of 211 diverse genotypes; which include

201 genotypes originating from 25 provinces of China that

represents all three ecological habitats of China (Zhang S.

et al., 2021) and ten genotypes from the United States, Japan,

and Brazil (Zhang et al., 2015). This soybean germplasm was

evaluated at three different locations in China viz., Nanjing,

Nantong, and Yangzhou, for two consecutive years. This makes a

total of six different environments viz., E1 and E2 (Nanjing);

E3 and E4 (Nantong); and E5 and E6 (Yangzhou). The study
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location was previously described by Bhat et al. (2022). Nanjing

(32°12′ N, 118°37′ E) has north subtropical humid climate. It

receives an average rainfall of 1,106.5 mm, 76% average relative

humidity, and 15.4°C average temperature. Nantong (31°58′ N,
120°53′ E) is located at the lower reaches of Yangtze River in the

alluvial plain with mild marine climate, and possesses an average

temperature and precipitation of 15.1°C and ~1,040 mm,

respectively. Yangzhou (32°23′ N, 119°25′ E) is located in the

southern end of Yangtze Huaihe plain, and receives an average

precipitation and temperature of 1,020 mm and 14.8°C,

respectively. In each environment, all the 211 diverse soybean

genotypes were planted in a randomized complete block design

with three replications. Each genotype was planted in a plot of

three rows with row-length and spacing of 200 and 50 cm,

respectively. Normal agronomic practices were followed for

the cultivation of soybean germplasm at each location, as

previously described by Zhang S. et al. (2021).

Phenotypic data collection and analysis

At maturity, five consecutive plants of each genotype were

selected from the middle of each plot for data collection.

Phenotypic data were recorded for four yield-related traits

including seed yield per plant (SYP), number of pods per plant

(PPP), number of seeds per plant (SPP), and 100-seed weight

(HSW). The phenotypic data were subjected to analysis of

variance with the mixed linear model using lme4 – an

r-package implemented in PBTools v1.4 (IRRI, 2014).

BLUPs were generated for GWAS by setting the genotype

as random. Pearson correlation coefficient between traits was

determined at p < 0.05 and visualized using MVApp

(Julkowska et al., 2019).

Genotyping, linkage disequilibrium, and
genome-wide association study

NJAU 355 K Soy SNP Array previously developed and

described by Wang et al. (2016) was used in this study.

Quality control analysis was performed using PLINK v1.07

(Purcell et al., 2007) with the following criteria: missing

genotype and individual at 0.1; minor allele frequency (MAF)

at 0.01, and Hardy-Weinberg exact test at 0.000001. For the

genome-wide LD analysis, pairwise squared allele-frequency

correlations (r2) between SNP markers with known genomic

positions were calculated using Trait Analysis by Association,

Evolution, and Linkage (TASSEL) v5.72 (Bradbury et al., 2007)

with 100 sliding window sizes. The expected values of r2 under

drift equilibrium were calculated according to Hill and Weir

(1988) and plotted against physical distance (Kbp). The LD decay

curve line was fitted on the scatterplot using the smoothing spline

regression line at the genome level following the procedure of

Remington et al. (2001) in the R environment.

The GWAS was performed using the following five models:

1) General linear model (GLM) with principal component

analysis (PCA) to reduce false positive association due to

population structure (Price et al., 2006) based on the equation

as follows:

Where Si = testing marker, and Q = Population structure.

2) The compressed mixed linear model (CMLM) (Zhang et al.,

2010), has increased statistical power for marker-trait

association detection relative to other methods. CMLM

method groups individuals into clusters, and random

effects are fitted as genetic values of clusters in a

mathematical model:

Where Si = testing marker, Q = Population structure, and K =

Kinship by group.

3) The multiple-locus mixed linear model (MLMM) (Segura

et al., 2012) incorporates the kinship matrix and Pseudo

Quantitative Trait Nucleotide (QTN) to control false

discovery rate (FDR) based on the model equation:

Where Si = testing marker, Q = Population structure, K =

Kinship of individuals, and S = Pseudo QTN.

4) The fixed and random model circulating probability

unification (FarmCPU) (Liu et al., 2016) iteratively uses

the Fixed Effect Model (FEM) and a Random Effect Model

(REM) as shown in the model equation:

Where K = kinship derived from only the associated markers or

Pseudo QTN (S) using maximum likelihood method.
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5) Bayesian-information and linkage-disequilibrium iteratively

nested keyway (BLINK) (Huang et al., 2019) is an improved

version of FarmCPU model and expressed as below:

S = pseudo QTNs that are not in LD with each other selected

in two FEMs and one filtering process and optimization using

Bayesian information criterion (BIC).

Among the five GWAS models used, GLM and CMLM are

single locusmodels; whereas, MLMM, FarmCPU, and BLINK are

the multi-locus models. All of the models were implemented

using GAPIT v3 package (Lipka et al., 2012) in an R

environment. To correct for the population structure, PCA

was employed using BIC to estimate the optimal numbers of

PCA (Schwarz, 1978). The population structure was visualized

based on soybean ecological regions in China using the “ggbiplot”

package in the R environment. Significant SNP associations were

determined according to the inherently included method in

GAPIT v3 (Lipka et al., 2012) as the negative logarithm of

p-value (where p-value = 0.01/number of markers, and

0.01 represents MAF cut-off). Furthermore, only SNPs that

were commonly detected across a minimum of two models

were considered for further analysis.

Prediction of candidate genes

The genes lying upstream and downstream of each stable

SNP (within the LD decay distance of the studied population)

were obtained from the freely available online RNA-seq data for

different soybean tissues on SoyBase website (https://www.

soybase.org). Functional descriptions of these genes were also

obtained, manually screened, and presented in a heatmap.

Allele-effect and haplotype analysis

Effects of alleles underlying the significant stable SNP

markers were analyzed as previously described by Su et al.

(2019) and Alemu et al. (2021). Genotypes were grouped into

independent groups according to their specific SNP alleles, and

means were compared using Turkey’s HSD test.

Haplotype analysis was conducted using PLINK v1.07 (Purcell

et al., 2007). The stable SNP markers (identified in two or more two

environments) were considered reference markers for building

haplotype blocks/loci. Besides, all markers that were in close

association with the reference SNP markers within the estimated

LD decay distance of the studied population formed a haplotype

block/locus. Effects of haplotype alleles on the studied traits were

tested across all the six environments using the conditional haplotype

testing command (--chap). Also, the contribution of each haplotype to

the observed phenotypic variance across the environments was

estimated using the "--hap-assoc” command (Purcell et al., 2007)

and visualized in Microsoft Excel.

Genomic prediction

The genomic prediction was explored for each trait in

individual and combined environments using Genomic best

linear unbiased prediction (gBLUP) and the ridge regression

best linear unbiased prediction (rrBLUP) based on the mixed-

model:

y � Xβ + Zμ + ε

where β and μ represent the vectors of fixed and random effects,

respectively, and ε is the residual error.
The gBLUPwas implemented in TASSEL v5.72 (Bradbury et al.,

2007). Cross-validation was achieved in five-folds with 20 iterations

to test the genomic prediction accuracy and to avoid overfitting of

the model. The rrBLUP on the other hand was implemented using

the “rrBLUP” package (Endelman, 2011; Endelman and Jannink,

2012) in the R environment. To validate the genomic prediction

accuracy, the dataset was randomly divided into training and testing

sets at 80 and 20% respectively. To manage the challenges of

overfitting, the cross-validation was conducted in five hundred

cycles of iterations. The predictive ability was estimated as the

Pearson’s correlation coefficient between the observed and

predicted phenotypic values of the test set based on the effect

estimates of genotypes in the training set.

Results

Phenotypic analysis

Analysis of variance for the four yield-related traits evaluated

across 211 soybean genotypes is summarized in Table 1. A highly

TABLE 1 Combined analysis of variance and broad-sense heritability
for four yield and yield-related traits.

Traits PPP HSW SPP SYP

Variance

Genotype (G) 320.8*** 24.8*** 1,144.5*** 11.9***

Environment (E) 386.1*** 1.3*** 861.8*** 22.9***

G × E 73.8*** 1.7*** 329.4*** 5.8***

Error 259.5 2.2 919.5 17.7

Broad-sense heritability 0.85 0.99 0.89 0.80

***represents the significance level at p< 0.0001.
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significant variation (p < 0.0001) was observed for the genotype,

environment, and G × E interaction in all the studied traits.

However, the estimates of variance components varied across

different traits (Table 1). For all the studied traits, the genotype

component accounted for the highest proportion of the observed

variations. Moreover, medium to high broad-sense heritability

(h2) was observed, ranging from 0.61 (SYP) to 0.99 (HSW) in

individual environments (Supplementary Table S1) and from

0.80 (SYP) to 0.99 (HSW) in the combined environment

(Table 1).

Furthermore, Pearson correlation analysis revealed that SYP

has a positive significant correlation with PPP, SPP and HSW

(Figure 1). Whereas, HSW was negatively correlated with PPP

and SPP in all the studied environments. Also, PPP showed a

positive correlation with SPP across all six environments.

Marker quality control, population
structure, and linkage disequilibrium

The quality control analysis retained 12,617 SNPs across

211 soybean genotypes at a genotyping rate of 99% after

removing SNPs that failed the missingness, minor allele

frequency, and Hardy-Weinberg exact tests. The markers were

distributed across the soybean genome, with the highest (1,112)

and lowest (352) number of markers present on Chr.06 and

Chr.05, respectively (Figure 2A). Heatmaps and dendrograms of

the kinship matrix, based on 12,617 polymorphic SNPs for the

studied genotypes, indicated that there was no clear clustering

among the genotypes (Figure 2B). The population structure

based on soybean ecological regions in China also revealed a

continuous distribution without any distinct structure

(Figure 2C).

The graphical representation of the linkage disequilibrium

characteristics of the 211 soybean genotypes is presented in

Figure 3. The average r2 value of the genome was 0.12, and the

LD decay was found to initiate at an r2 value of 0.47 and reached

half-decay at 0.24. The LD decay curve intersected with the half-

decay at 670 Kbp, which represents the genome-wide critical

distance to detect linkage. Hence, markers associated with the

same trait within this distance were considered as a single QTL.

Marker-trait associations for yield-related
traits

A total of 57 SNPs detected using five different GWAS

models were found to possess significant association with four

studied traits across six different environments

(Supplementary Figure S1; Table 2). These SNPs were

FIGURE 1
Pearson correlation analysis of yield and yield-related traits evaluated across diverse environments. The four traits including seed yield per plant
(SYP), number of pods per plant (PPP), number of seeds per plant (SPP), and 100-seed weight in grams (HSW) were evaluated in six environments (E1,
E2, E3, E4, E5, and E6) and the combined environment. The color and size of the circle reflect the strength of correlation. The non-significant
correlations (p > 0.05) are indicated with a cross in individual cells.
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FIGURE 2
Kinship plot and population structure analysis of the soybean panel using 12,617 SNP markers. (A) Distribution of 12,617 SNP markers across
20 soybean chromosomes used for GWAS and GP analysis. (B) Kinship plot depicting the relationship among 211 soybean genotypes. (C) Population
structure analysis of 211 soybean genotypes.

FIGURE 3
A scatter plot (r2 values) of pairwise SNPs showing genome-wide linkage disequilibrium (LD) decay. The red curve line represents the smoothing
spline regression model fitted to LD decay. The vertical green line indicates the genetic distance (670 Kbp) at which the LD half-decay (r2 = 0.24, the
horizontal blue line) intersect with the LD decay curve.
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TABLE 2 Significant marker-trait associations identified for four yield and yield-related traits across six environments (E1, E2, E3, E4, E5, and E6) and a
combined environment (COM) using five GWAS models.

Sr.
No

SPP Trait Chra Pos.
(bp)b

Environments Model p-value MAF

1 AX-
93668,616

SYP 1 11,556,172 E3 and COM BLINK, FarmCPU, GLM 2.68E-06 to
6.87E-14

0.06

2 AX-
93973,672

PPP 1 55,502,450 E1 BLINK, GLM 1.69E-08 to
7.65E-08

0.01

3 AX-
93991,698

SYP 3 24,910,743 COM BLINK, FarmCPU 3.23E-07 to
7.38E-07

0.04

4 AX-
93703,924

PPP, SPP 4 4,291,705 E3, E6 and COM BLINK, FarmCPU, GLM 1.33E-06 to
8.45E-07

0.04

5 AX-
93707,240

HSW 4 1,611,547 E1 and E5 BLINK, FarmCPU, GLM 1.05E-12 to
9.43E-07

0.17

6 AX-
94000,527

PPP 4 5,416,455 E2 and COM FarmCPU, GLM 1.26E-06 to
4.17E-10

0.35

7 AX-
94006,694

HSW 4 39,016,845 E3 BLINK, FarmCPU 5.37E-07 to
9.88E-07

0.45

8 AX-
93922099

HSW 5 36,599,702 E1, E5 and COM BLINK, FarmCPU 2.12E-09 to
8.33E-08

0.09

9 AX-
93715,038

HSW 5 2,491,676 E1 and E4 FarmCPU, GLM 1.01E-07 to
6.23E-07

0.09

10 AX-
93725,825

PPP 6 5,623,054 E1 BLINK, GLM 3.09E-07 to
3.63E-07

0.13

11 AX-
93730,411

HSW 6 19,462,776 E2 BLINK, GLM 1.35E-09 to
2.78E-08

0.09

12 AX-
93735,201

HSW 6 43,399,273 E4 BLINK, FarmCPU 1.07E-06 to
1.83E-06

0.14

13 AX-
94033,285

SYP 6 48,786,905 E3 BLINK, FarmCPU 6.83E-09 to
9.40E-10

0.48

14 AX-
94034,566

HSW,
SYP

7 1,626,042 E3 and E3 BLINK, FarmCPU, GLM 1.24E-06 to
2.98E-07

0.32

15 AX-
94050,700

SYP 8 15,859,520 COM BLINK, FarmCPU 5.66E-10 to
9.74E-09

0.04

16 AX-
94283,862

PPP 8 19,011,459 COM BLINK, FarmCPU 1.27E-06 to
7.72E-08

0.04

17 AX-
93755,601

PPP 8 19,248,053 E3 BLINK, FarmCPU 1.57E-10 to
5.25E-07

0.12

18 AX-
93636,437

SYP 9 6,958,542 E2 BLINK, GLM 6.90E-07 to
9.77E-12

0.05

19 AX-
93772,794

SYP 9 4,4,392,036 COM BLINK, GLM 1.36E-06 to
1.78E-06

0.13

20 AX-
93793,210

HSW,
SPP

11 29,587,057 E1, E2, E3, E4, E5 and COM BLINK, FarmCPU, GLM and MLMM 1.13E-08 to
7.01E-11

0.26

21 AX-
93792,964

HSW,
PPP

11 27,468,886 E5, E6 BLINK, FarmCPU, GLM 1.31E-07 to
5.42E-13

0.19

22 AX-
94276,492

PPP, SPP 11 2,211,768 E3 BLINK, GLM 1.34E-08 to
8.75E-10

0.10

23 AX-
93792,958

HSW 11 27,459,211 E2 and COM BLINK, FarmCPU, GLM and MLMM 3.22E-06 to
8.67E-07

0.19

24 AX-
94092,104

SYP 11 38,213,308 COM BLINK, FarmCPU, GLM 1.98E-08 to
4.35E-07

0.09

25 AX-
93797,890

PPP, SPP 12 5,802,813 E3 and E5 BLINK, FarmCPU 1.11E-06 to
9.02E-08

0.03

26 AX-
93804,315

PPP 12 33,817,396 E1 FarmCPU, GLM 2.29E-08 to
3.72E-07

0.01

27 AX-
93805,697

SYP 12 37,339,415 E4 BLINK, GLM 1.49E-07 to
3.29E-07

0.20

(Continued on following page)
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TABLE 2 (Continued) Significantmarker-trait associations identified for four yield and yield-related traits across six environments (E1, E2, E3, E4, E5, and
E6) and a combined environment (COM) using five GWAS models.

Sr.
No

SPP Trait Chra Pos.
(bp)b

Environments Model p-value MAF

28 AX-
93807,406

HSW,
SPP

13 1,843,185 E1, E2, E4, E5, E6 and COM BLINK, FarmCPU, GLM 1.17E-10 to
8.25E-08

0.28

29 AX-
94104,132

HSW,
SPP

13 1,704,148 E3 and COM BLINK, FarmCPU, GLM 1.74E-06 to
9.50E-07

0.23

30 AX-
94111,538

HSW 13 29,191,712 E5 and COM BLINK, FarmCPU 1.00E-07 to
4.87E-07

0.03

31 AX-
93810,993

HSW 13 13,752,815 E5 BLINK, FarmCPU 1.73E-06 to
4.86E-08

0.05

32 AX-
94123,137

PPP, SPP 14 23,593,462 E3 BLINK, GLM 1.31E-10 to
9.43E-09

0.02

33 AX-
94137,762

SYP 15 22,710,572 E5 BLINK, FarmCPU, CMLM, GLM and
MLMM

1.64E-09 to
2.48E-06

0.04

34 AX-
93648,081

HSW 15 1,479,982 E6 BLINK, FarmCPU, GLM 1.84E-07 to
6.39E-07

0.34

35 AX-
94138,593

SYP 15 29,628,987 COM BLINK, FarmCPU, GLM 2.98E-07 to
8.36E-15

0.01

36 AX-
93647,998

PPP 15 14,306,514 COM BLINK, GLM 1.10E-10 to
1.24E-06

0.05

37 AX-
94139,057

SPP 15 32,570,960 E6 BLINK, GLM 1.07E-06 to
1.31E-07

0.07

38 AX-
94139,404

SYP 15 37,194,980 E3 FarmCPU and MLMM 1.18E-13 to
2.51E-06

0.03

39 AX-
94139,741

SPP 15 40,016,648 COM BLINK, GLM 1.66E-07 to
4.89E-10

0.14

40 AX-
94139,803

PPP 15 40,162,413 E2 BLINK, GLM 1.44E-08 to
6.40E-08

0.06

41 AX-
93843,622

HSW 15 44,240,130 E5 FarmCPU, GLM 1.03E-06 to
4.93E-08

0.13

42 AX-
93843,767

SPP 15 44,966,712 COM BLINK, GLM 3.31E-06 to
9.03E-11

0.14

43 AX-
93650,734

HSW 16 30,750,889 E3 BLINK, FarmCPU, GLM 2.98E-06 to
9.61E-09

0.13

44 AX-
93855,303

SPP 16 33,390,841 E5 BLINK, FarmCPU, GLM 2.13E-09 to
7.13E-07

0.02

45 AX-
93652076

SYP 17 1,3,931,777 E6 BLINK, FarmCPU, GLM 1.67E-06 to
4.45E-07

0.01

46 AX-
93959,968

SPP 17 12,429,289 E2 FarmCPU, GLM 1.52E-06 to
4.87E-07

0.02

47 AX-
94176727

HSW,
PPP

18 46,137,043 E1, E2 and COM BLINK, FarmCPU, GLM 1.22E-07 to
5.79E-07

0.04

48 AX-
93869,048

PPP 18 3,396,703 E3 BLINK, FarmCPU 2.32E-06 to
3.28E-07

0.04

49 AX-
93886,740

PPP 19 3,901,635 E3 FarmCPU, GLM 1.57E-07 to
3.77E-06

0.03

50 AX-
94199992

PPP, SPP 20 12,095,298 E1, E3 and COM BLINK, FarmCPU, GLM 1.27E-08 to
6.40E-10

0.05

51 AX-
93901,622

SPP 20 10,355,416 E2 and E3 BLINK, FarmCPU, GLM and MLMM 1.88E-06- to
4.95E-07

0.01

52 AX-
93903,055

PPP 20 17,413,084 E1 and E2 BLINK, FarmCPU, GLM 1.10E-07 to
8.65E-09

0.01

53 AX-
94198582

PPP 20 4,715,203 E3 BLINK, GLM 2.07E-09 to
2.67E-13

0.08

54 AX-
94201014

PPP 20 17,645,281 E3 GLM, MLMM 1.50E-06 to
8.73E-11

0.02

(Continued on following page)
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distributed across 17 soybean chromosomes. Among the

significant SNPs identified, the highest number of SNPs (10)

are found on Chr.15, followed by eight and five SNPs on

Chr.20 and Chr.11, respectively. Four significant SNPs were

found each on Chr.04, Chr.06, and Chr.13; whereas, Chr.08 and

Chr.12 possessed three significant SNPs each. The remaining

ten chromosomes possessed one or two significant SNPs.

Further, some of these SNPs were consistently detected in

multiple environments, using different GWAS models, and

were found to be associated with more than one studied trait.

Such SNPs were considered stable MTAs. For example, the

significant SNP (AX-93793,210) on Chr.11 was identified

consistently in five individual environments (E1, E2, E3, E4,

and E5) and the combined environment. In addition, this SNP

was also identified through four different GWAS models

(BLINK, FarmCPU, GLM, and MLMM), and was found to

be associated with two yield-related traits (HSW and SPP).

Similarly, another SNP (AX-93807,406) detected on

Chr.13 was found to be significantly associated with HSW

and SPP across five individual environments (E1, E2, E4, E5,

and E6) and the combined environment. This SNP was also

identified using three GWAS models (BLINK, FarmCPU,

and GLM).

Furthermore, three significant SNPs (AX-94199992, AX-

93703,924, and AX-94176727) on Chr.20, Chr.04, and Chr.18,

respectively, were consistently detected in the combined

environment using three different models (BLINK,

FarmCPU, and GLM) and showed association with two of

the three traits viz., HSW, PPP, and SPP. The SNP (AX-

93922099) was detected in the combined environment using

two different models (BLINK and FarmCPU) and was

associated with HSW. Few significant SNPs such as AX-

93792,964, AX-94034,566, AX-93797,890, and AX-

94104,132, present on Chr.11, Chr.07, Chr.12, and Chr.13,

respectively, were found to be associated with two of the four

studied traits, using up to three GWAS models in one or two

individual environments and a combined environment.

Moreover, eight SNPs (AX-93668,616, AX-93707,240, AX-

TABLE 2 (Continued) Significantmarker-trait associations identified for four yield and yield-related traits across six environments (E1, E2, E3, E4, E5, and
E6) and a combined environment (COM) using five GWAS models.

Sr.
No

SPP Trait Chra Pos.
(bp)b

Environments Model p-value MAF

55 AX-
93903,184

PPP 20 18,155,072 E3 BLINK, GLM 4.38E-11 to
7.33E-09

0.02

56 AX-
94207999

HSW 20 42,330,677 E2 BLINK, GLM 6.29E-09 to
7.83E-07

0.30

57 AX-
94292,257

PPP 20 45,876,916 E5 BLINK, FarmCPU 1.99E-07 to
2.36E-07

0.01

aChromosome.
bPhysical position; MAF (minor allele frequency).

TABLE 3 Stable QTLs/genomic regions identified for the studied traits in at least three or more environments.

QTL Chra Rep.SPPb Pos.
(bp)c

Environments Model Related QTL References

qPPP-SPP4 4 AX-
93703,924

4,291,705 E3, E6 and COM BLINK, FarmCPU, GLM Novel QTL Not available

qHSW5 5 AX-
93922099

36,599,702 E1, E5 and COM BLINK, FarmCPU Seed weight 34–9; Seed-
yield 22–10

Han et al., 2012; Du et al.,
2009

qHSW-
SPP11

11 AX-
93793,210

29,587,057 E1, E2, E3, E4,
E5 and COM

BLINK, FarmCPU, GLM
and MLMM

Seed weight 35–9 Han et al. (2012)

qHSW-
SPP13

13 AX-
93807,406

1,843,185 E1, E2, E4, E5,
E6 and COM

BLINK, FarmCPU, GLM Novel QTL Not available

qHSW-
PPP18

18 AX-
94176727

46,137,043 E1, E2 and COM BLINK, FarmCPU, GLM Novel QTL Not available

qPPP-
SPP20

20 AX-
94199992

12,095,298 E1, E3 and COM BLINK, FarmCPU, GLM Novel QTL Not available

aChromosome.
bThe representative SPP, with the min p value.
cPhysical position.

The italic values indicate “QTL names” and “Gene IDs”.
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93792,958, AX-94000,527, AX-93715,038, AX-94111,538,

AX-93901,622, and AX-93903,055) were detected in one or

two individual environment(s) and a combined environment.

Each of these eight SNPs was associated with only one trait

and identified using up to four different GWAS models. The

SNPs (AX-94276,492 and AX-94123,137) were found to be

associated with two traits (PPP and SPP) and were identified

using two GWAS models (BLINK and GLM), but were

identified in only one individual environment. The

remaining 37 significant SNPs were found to be associated

with only one trait and environment, and most of them were

identified using two or three GWAS models.

Based on GWAS, we identified six significant SNPs (AX-

93703,924, AX-93922099, AX-93793,210, AX-93807,406, AX-

94176727, and AX-94199992) on Chr.4, Chr.5, Chr.11,

Chr.13, Chr.18, and Chr.20, respectively, consistently in three

or more than three environments and using multiple models

(Tables 2, 3). Of these, five SNPs (AX-93807,406, AX-93793,210,

AX-94199992, AX-93703,924, and AX-94176727) were found to

be associated with two studied traits (Tables 2, 3). However, the

SNP AX-93922099 was associated with only HSW (Tables 2, 3).

Hence, based on the LD decay, the genomic regions (±670 kb)

flanking these significant SNPs (AX-93807,406, AX-93793,210,

AX-94199992, AX-93922099, AX-93703,924, and AX-94176727)

were considered as QTLs viz., qHSW-SPP13, qHSW-SPP11,

qPPP-SPP20, qHSW5, qPPP-SPP4, and qHSW-PPP18,

respectively (Table 3). These QTLs/genomic regions

represented stable genetic elements potentially regulating

soybean yield-related traits.

RNA-seq data revealed 15 putative genes
regulating yield-related traits

Six QTLs/genomic regions were identified on Chr.04 (qPPP-

SPP4), Chr.05 (qHSW5), Chr.11 (qHSW-SPP11), Chr.13 (qHSW-

SPP13), Chr.18 (qHSW-PPP18), and Chr.20 (qPPP-SPP20) were

further used to identify putative genes regulating yield-related

traits in soybean. The gene models and their annotations

underlying the physical intervals of these six QTL regions

were downloaded from the SoyBase database to predict

putative candidates (Supplementary Table S2). In total,

739 gene models were identified within the physical genomic

interval of qPPP-SPP4, qHSW5, qHSW-SPP11, qHSW-SPP13,

qHSW-PPP18 and qPPP-SPP2. However, by considering gene

annotation, we selected 113 gene models within their physical

genomic interval, which consisted of 31, 33, 10, 11, 14, and

14 genes underlying qPPP-SPP4, qHSW5, qHSW-SPP11, qHSW-

TABLE 4 Putative genes underlying six QTLs and their gene annotation.

QTL
name

Gene IDs Chrom-
osome

Gene functional annotation

qPPP-SPP4 Glyma04g05500 04 Protein folding; abiotic stress response; positive regulation of transcription

Glyma04g05520 04 NA

Glyma04g05580 04 Gluconeogenesis; glycolysis; translational initiation; abiotic stress response

Glyma04g05690 04 Lipid biosynthetic process

Glyma04g05720 04 Protein folding; abiotic stress response

Glyma04g05800 04 Photosynthesis

qHSW5 Glyma05g31250 05 Acetyl-CoA metabolic process; abiotic stress response; polysaccharide transport; sterol biosynthetic process;
brassinosteroid biosynthetic process

Glyma05g31260 05 Nuclear division; cytokinesis by cell plate formation; chromatin silencing; nucleolus organization; biological process;
cell proliferation; histone phosphorylation; histone H3-K9 methylation

qHSW-SPP11 Glyma11g28990 11 NA

Glyma11g29000 11 Protein N-linked glycosylation; ethylene biosynthetic process; sugar mediated signaling pathway; stem cell division;
proteasomal ubiquitin-dependent protein catabolic process; cotyledon development; regulation of post-embryonic
root development

qHSW-SPP13 Glyma13g01950 13 Carbohydrate metabolic process; regulation of meristem growth

qHSW-
PPP18

Glyma18g38490 18 Regulation of transcription; gibberellin biosynthetic process; response to auxin stimulus; response to abscisic acid
stimulus; gibberellic acid mediated signaling pathway; embryo development; terpenoid biosynthetic process;
cotyledon development; cell division

Glyma18g38570 18 Cell morphogenesis; protein N-linked glycosylation; N-terminal protein myristoylation; cell growth; protein
ubiquitination; regulation of protein localization; protein autophosphorylation; Golgi vesicle transport; root hair
elongation

Glyma18g38610 18 Regulation of transport

qPPP-SPP20 Glyma20g08580 20 Actin filament organization; regulation of stomatal movement; regulation of protein localization

The italic values indicate “QTL names” and “Gene IDs”.
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SPP13, qHSW-PPP18 and qPPP-SPP20, respectively

(Supplementary Table S2). In addition, RNA-seq data for

samples collected across different stages of soybean growth

and development (www.soybase.org) was downloaded and

analyzed for identifying putative genes underlying the QTL

intervals (Supplementary Table S3). The RNA-seq data of

these genes are represented using a heatmap (Supplementary

Figure S2). Based on the in-silico analysis of gene expression data

and gene annotations, we predicted a total of 15 putative

candidates underlying six QTLs. These include 6, 2, 2, 1, 3,

and 1 gene underlying qPPP-SPP4, qHSW5, qHSW-SPP11,

qHSW-SPP13, qHSW-PPP18, and qPPP-SPP20, respectively

(Table 4).

Allelic effects of stable marker-trait
associations

The six significant SNPs (AX-93703,924, AX-93922099,

AX-93793,210, AX-93807,406, AX-94176727, and AX-

94199992), showing stable MTAs with yield-related traits

were further used to determine the effects of their individual

alleles on the studied traits (Figure 4). The alleles of these six

SNP markers showed substantial effects on yield-related

traits combined from all the six environments (Figure 4).

However, the number of alleles for each of these six SNP

markers in the whole soybean population varied from two to

three. For example, the SNP markers AX-93807,406, AX-

93793,210, and AX-94199992 each possessed three different

alleles; whereas, AX-93922099, AX-93703,924, and AX-

94176727 possessed two alleles each (Figure 4). The SNP

marker AX-93807,406 possessed three alleles (AX-

93807406-AA, AX-93807406-AG, and AX-93807406-GG),

and were found to regulate HSW and SPP (Figures 4A,B).

The AX-93807406-AA, AX-93807406-AG, and AX-

93807406-GG alleles governed higher, intermediate, and

lower HSW, respectively; whereas these same alleles

regulated lower, intermediate, and higher SPP,

respectively. The SNP marker AX-93793,210 is associated

with two yield-related traits (HSW and SPP), and all three

alleles of this marker (AX-93793210-TT, AX-93793210-TC,

and AX-93793210-CC) showed significantly different allelic

effects on both HSW and SPP (Figures 4C,D). The allele AX-

93793210-TT was associated with higher HSW, whereas AX-

93793210-CC was associated with lower HSW. The effect of

AX-93793210-TC on HSW was intermediate between that of

AX-93793210-TT and AX-93793210-CC. However, the

effect of three alleles of AX-93793,210 on SPP was found

to be opposite to that of HSW, which also supports the

negative correlation between HSW and SPP.

FIGURE 4
Allele-effect analysis for six stable significant SNPs including AX-93807,406 (A,B), AX-93793,210 (C,D), AX-94199992 (E,F), AX-93922099 (G),
AX-93703,924 (H,I), and AX-94176727 (G,K). The box plot depicts the number of the alleles for each of the six significant SNPs in 211 soybean
genotypes, and the contribution of these alleles to the phenotypic variation observed for yield and yield-related traits.
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Moreover, three alleles of SNP marker AX-94199992,

including AX-94199992-AA, AX-94199992-AG, and AX-

94199992-GG, were found to govern three diverse

phenotypes of SPP and PPP (Figures 4E,F). Besides, these

three alleles of AX-94199992 regulated SPP and PPP

phenotype in the same order as lower, intermediate and

higher, respectively, which further supports the positive

correlation of SPP and PPP traits. The two alleles of

marker AX-93922099, including AX-93922099-TT and AX-

93922099-TC, showed a significant difference in the

regulation of HSW. For instance, the allele AX-93922099-

TT governed lower HSW; whereas, the allele AX-93922099-

TC was associated with higher HSW (Figure 4G). Similarly,

the AX-93703,924 marker governed SPP and PPP traits, and

the two alleles of this marker (AX-93703924-CC and AX-

93703924-CG) regulated lower and higher trait values,

respectively, for both the traits (Figures 4H,I). The SNP

marker AX-94176727, possessing two alleles (AX-

94176727-TT and AX-94176727-AT), regulated contrasting

phenotypes of HSW and PPP (Figures 4J,K). For instance, AX-

94176727-TT and AX-94176727-AT regulated lower and

higher HSW, respectively; whereas, the same alleles

governed higher and lower PPP values, respectively. These

results are per the negative correlation observed between

HSW and PPP.

Haplotypes for yield-related traits

The six stable markers mentioned above were used as a

reference for the identification of haplotypes for yield-related

traits. These stable markers were located on Chr.04 (AX-

93703,924), Chr.05 (AX-93922099), Chr.11 (AX-93793,210),

Chr.13 (AX-93807,406), Chr.18 (AX-94176727), and Chr.20

(AX-94199992). All the markers that were in strong LD

(within ±670 kbp) with these six SNP markers, represented a

haplotype block/locus (Figure 5; Table S4). For example, 17 SNP

markers were in strong LD with the reference marker AX-

93703,924 (3,957,601–4291,705) and formed a haplotype

block. Three haplotype alleles were identified within this

haplotype block, in the soybean population (Figure 5A). These

three haplotype alleles identified on Chr.04 showed significant

FIGURE 5
Haplotype analysis for yield and yield-related traits in soybean. (A–K) The bar plot represents haplotype alleles identified for haplotype block on
(A) Chr.04 (3,957,601–4291,705 bp) (B) Chr.04 (3,957,601–4291,705 bp) (C) Chr.05 (36,238,983–3,7,041,764 bp) (D) Chr.11
(29,587,057–30102,619 bp) (E) Chr.11 (29,587,057–30102,619 bp) (F) Chr.13 (1,843,185–1943,859 bp) (G) Chr.13 (1,843,185–1943,859 bp) (H)
Chr.18 (45,780,783–46,573,568 bp) (I) Chr.18 (45,780,783–46,573,568 bp) (J) Chr.20 (11,625,046–12,289,831 bp), and (K) Chr.20
(11,625,046–12,289,831 bp), and their contribution to the regulation of yield and yield-related traits. Six haplotype blocks were identified by
considering six stable significant SNPs (AX-93807,406, AX-93793,210, AX-94199992, AX-93922099, AX-93703,924 & AX-94176727) as reference
markers.
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differences in the phenotypes of SPP and PPP. Further, the

reference marker AX-93922099 (36,238,983–3,7,041,764)

formed a haplotype block with 26 markers, which consisted of

eight haplotype alleles (Figure 5B). Substantial phenotypic

variance in HSW was observed for haplotype alleles present

within this haplotype block on Chr.05 (Figure 5C). The marker

AX-93793,210 (29,587,057–30102,619) constituted a haplotype

block with five SNP markers constituting four haplotype alleles.

Variation in these four alleles led to significant phenotypic

variation in HSW and SPP traits (Figures 5D,E).

Eight SNP markers were associated with AX-93807,406

(1,843,185–1943,859), which represented a haplotype block and

constituted six haplotype alleles. All the six alleles identified within

this haplotype block showed significant differences in the phenotypes

of HSW and SPP (Figures 5F,G). Similarly, six SNPs were in

association with the reference marker AX-94176727

(45,780,783–46,573,568), which together formed a haplotype block

on Chr.18. Eight alleles identified within this haplotype block showed

substantial variation in the phenotypes of HSW and PPP (Figures

5H,I). Further, 13 SNP markers were in close association with AX-

94199992 (11,625,046–12,289,831) and formed a haplotype block

representing nine haplotype alleles (Figures 5J,K). The haplotype

alleles of the AX-94199992 (11,625,046–12,289,831) block showed

significant phenotypic variation in PNP and SNP (Figures 5H,I).

Although haplotype alleles for most haplotype blocks showed

significant differences in the phenotypes of different yield-related

traits in six individual environments, a few exceptions were also

observed. For example, the haplotype alleles of AX-93922099

(36,238,983–3,7,041,764) block on Chr.05 did not show significant

phenotypic variation in HSW for E3 (NT1) and E6 (YZ2). Moreover,

the haplotype alleles of all other haplotype blocks showed a significant

phenotypic difference (p < 0.05) in their associated traits across all six

environments. The phenotypic variance contributed by the alleles of

different haplotype blocks to the associated traits across six

environments is shown in Figure 5. The list of markers that are in

close association with the reference markers and the effects of the

common haplotypes are provided in Supplementary Table S4.

Genomic prediction

The genome-wide prediction accuracy values obtained from the

gBLUP and rrBLUP approaches for the studied yield-related traits are

presented in Figure 6. Based on the gBLUP approach, theGP accuracy

of HSWamong different environments ranged between 0.76 and 0.85

(Figure 6A). The E3 environment showed the lowest GP accuracy

(0.76), while the combined environment displayed the highest GP

accuracy (0.85) for HSW (Figure 6A). For the PPP trait, the

E4 environment had the lowest GP accuracy with 0.44, while the

highest accuracy was recorded in the E3 environment (0.72)

FIGURE 6
Histograms showing the genomic prediction accuracy of the genomic best linear unbiased prediction (gBLUP) and ridge regression best linear
unbiased prediction (rrBLUP) models for (A) 100-seed weight (HSW) (B)Number of pods per plant (PPP) (C)Number of seeds per plant (SPP), and (D)
Seed yield per plant (SYP), across six different environments (E1, E2, E3, E4, E5, and E6).
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(Figure 6B). Moreover, the GP accuracy for SPP varied from 0.46 to

0.72 in E4 and E3 environments, respectively (Figure 6C). Similarly, in

the case of SYP, the GP accuracy was found to be highest (0.70) in the

combined environment, whereas the lowest GP accuracy of 0.37 was

observed in the E5 environment (Figure 6D). A similar trend in the

genome-wide prediction accuracy was observed using the rrBLUP

approach: HSW ranged between 0.78 and 0.85 for E3 and combined

environment, respectively (Figure 6A); and PPP varied from 0.49 to

0.69. The PPP trait possessed the highest GP accuracy in the

E1 environment and the lowest accuracy in the E2 environment

(Figure 6B). Also, the GP accuracy for SPP and SYP respectively

ranged from 0.50 (E4) to 0.73 (combined environment) and 0.36 (E5)

to 0.72 (combined environment) (Figures 6C,D).

Discussion

Yield-related traits are important characters associated with yield

and directly govern the productivity and quality of crops (Hina et al.,

2020). They also represent selection targets in plant breeding

programs when direct selection for yield is complex. Hence, crop

germplasm collections are characterized for yield-related traits to

facilitate crop improvement (Adeboye K. A. et al., 2021). In soybean, a

complex inheritance pattern of yield and its sensitivity to the

environment have been documented (Lee et al., 2015). Therefore,

it has remained the long-term goal of breeders to improve soybean

yield by manipulating yield-related traits. Determining the genetic

basis of yield-related traits is a key step in soybean improvement

strategy for developing varieties with higher yield potential.

In the present study, 211 soybean germplasm accessions were

characterized in six field trials for four yield-related traits. The

genotypic performance of the soybean germplasm based on all

these traits varied significantly, indicating the possibility of

genetic improvement. Moreover, the medium to high broad-

sense heritability observed for these traits across environments is

an indication that the same phenotypic performance is

achievable if grown in the same environment. However, the

significant environmental variations observed for all the four

yield-related traits studied suggest possible complexity in their

inheritance pattern which may lead to difficulty in breeding

efforts. These findings corroborate many earlier reports on these

yield-related traits in soybean germplasm (Hu et al., 2014; Diers

et al., 2018; Klein et al., 2020; Li et al., 2020). Moreover,

correlation analysis revealed a positive association of SYP with

the three yield-related traits (PPP, SPP, and HSW) consistent

with the findings of Malik et al. (2006). The HSW was negatively

correlated with PPP and SPP; while PPP was positively associated

with SPP. These results are in accordance with previous reports

(Malik et al., 2006; Liu et al., 2011; Li et al., 2020).

Based on the high genetic variability observed, the studied

yield-related traits were subjected to further analysis to unravel

their genetic basis and pave the way for their improvement

through marker-assisted breeding (MAB). MAB involves the

identification of genetic markers that are associated with the

trait of interest in a defined germplasm collection, such as bi-

parental population or a panel of diverse accessions as used in

this study. Marker-trait association using a panel of diverse

accessions is often confounded by several factors, including

genotyping error, population structure, and linkage

disequilibrium. These factors are responsible for the high rate

of false associations that are not useful in MAB. In this study, the

discovery of false association was reduced by ensuring only

quality markers which included a total of 12.617 SNPs at

genotyping rate of 99%, which were retained for further

analysis. Although the population structure of the germplasm

collection used in this study appears continuous with no definite

stratification, the LD decay distance of 670 kb within which

significant association may be defined as relatively large. In

self-pollinating plants such as soybean, LD may range over

several hundred Kbp leading to the inclusion of many

candidate genes in a single LD block exhibiting a significant

signal (Gupta et al., 2005; Yano et al., 2016). Moreover, several

studies have revealed that the discovery of false positives arising

from population structure in crops may not be completely

controlled (Myles et al., 2009; Hamblin et al., 2011; Lipka

et al., 2015). Based on this, we explored various statistically

robust models for the genome-wide marker-trait association

analysis.

Hundreds of QTLs for yield and yield-related traits have been

reported in soybean mainly by using the low-resolution approach

of linkage mapping. Rarely any of these QTLs have been used for

breeding high-yielding soybean varieties (Karikari et al., 2019). In

this context, GWAS facilitates enhanced resolution and accuracy

for mining genetic loci for four yield-related traits (Assefa et al.,

2019; Zhang W. et al., 2021). In the current study, we report a

total of 57 MTAs associated with four traits. These MTAs were

detected on all chromosomes of soybean, except Chr.02 and

Chr.10, indicating the complex genetic regulation of soybean

yield, which is in agreement with previous reports (Li et al., 2019;

Hu et al., 2020). Many significant MTAs were detected in one

environment and some in five environments, suggesting the

presence of environmental influence on these traits. Per the

present results, the interaction of QTLs with the environment

has been previously documented (Fang et al., 2020; Hu et al.,

2020).

Significant SNPs reported in more than three environments

and using different models were considered stable MTAs. The

regions within ±670 kb flanking six significant SNPs were

referred to as stable QTLs, based on LD decay (Wang et al.,

2016). The QTL on Chr.11 associated with HSW has been

previously reported in the genomic region between

27,790,963–32,194,459 bp (Han et al., 2012), and the genomic

region underlying qHSW-SPP11 was found to co-locate with the

same physical interval. Therefore, qHSW-SPP11might be similar

to Seed weight 35–9, as reported earlier by Han et al. (2012).

Notably, compared to Seed weight 35–9, the physical interval of
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qHSW-SPP11 has been considerably decreased in the present

study. Furthermore, qHSW5 identified in the present study was

found to co-locate with two previously identified QTLs viz., Seed

weight 34–9 (8,665,543–40,414,305 bp) and Seed-yield 22–10

(35,536,817–37,612,231 bp) on Chr.05 (Kraakman et al., 2004;

Du et al., 2009; Han et al., 2012). However, the remaining four

QTLs (qHSW-SPP13, qPPP-SNP20, qPPP-SPP4, and qHSW-

PPP18) identified in the current study represented novel

QTLs. The physical intervals of qHSW-SPP11 and qHSW5

were considerably reduced in the present study. This ability of

the GWAS allows for its increased utility in crop breeding

programs for developing high-yielding stress-tolerant soybean

varieties (Zargar et al., 2015; Yu et al., 2019).

The favourable and unfavourable alleles can be easily

determined either with or without considering the

heterozygous SNPs in plant species (Soltani et al., 2017; Su

et al., 2019). For instance, Wu et al. (2016) set the

heterozygous SNPs as missing and only used the homozygous

SNPs for a GWA study in Brassica napus. Soybean is a highly

heterozygous crop species with a complex background, in which

the presence of heterozygous loci is very common. A locus is

considered to be in a heterozygous state if the depth of the minor

allele is larger than one-third of the total sample depth during

SNP calling (Chong et al., 2016). The above-mentioned six stable

significant SNP loci (AX-93807,406, AX-93793,210, AX-

94199992, AX-93922099, AX-93703,924, and AX-94176727)

associated with yield-related traits were not all in a

heterozygous state in the GWAS population. For example, the

SNP markers AX-93807,406, AX-93793,210, and AX-94199992

were heterozygous, whereas the remaining three markers AX-

93922099, AX-93703,924, and AX-94176727 were homozygous.

Trait values governed by the heterozygous alleles of three

SNP markers (AX-93807,406, AX-93793,210, and AX-

94199992) were intermediate between two homozygous

alleles which control the extreme phenotypes of yield-

related traits. However, two homozygous alleles identified

for the remaining three SNP markers (AX-93922099, AX-

93703,924, and AX-94176727) regulate contrasting/extreme

trait values of the corresponding traits. As a result, the SNP

alleles with higher trait effect, i.e., which increase the target

trait, were defined as “favourable alleles”; whereas, SNP alleles

regulating the lowest trait value were defined as “unfavourable

alleles”. However, the heterozygous alleles possessing trait

effect between favourable and unfavourable alleles were

referred to as “intermediate alleles”. This classification

assisted in the use of these alleles for yield modulation in

soybean. To date, the effectiveness of marker-based gene

pyramiding strategies in soybean has been demonstrated for

soybean mosaic virus (Wang D. G. et al., 2017), Phytophthora

rot and powdery mildew resistance (Ramalingam et al., 2020),

and rust resistance (Yamanaka and Hossain, 2019). Hence, the

elite alleles identified for yield-related traits within six

significant SNP markers can be effectively used for

developing high-yielding soybean varieties through MAB

efforts. Negligible efforts have been made toward mining

candidate genes for yield-related traits in soybean (Karikari

et al., 2019; Li et al., 2019; Qi et al., 2020); except for two genes

that have been reported viz., in (Jeong et al., 2012) and PP2C-1

(Lu et al., 2011). In the present study, we predicted some

putative genes underlying six QTLs identified based on the

gene expression data and annotations. We selected only those

genes whose functions were directly or indirectly related to

regulating the seed yield of soybeans, such as seed oil, seed

protein, photosynthesis, cell division or elongation, and

phytohormones. The putative genes identified in the present

study need further functional validation for their deployment

in soybean breeding programs.

Recent studies have documented desirable haplotype alleles

for important traits such as salinity tolerance in soybean (Patil

et al., 2016), grain quality traits in rice (Wang X. et al., 2017), and

drought stress tolerance in pigeon pea (Sinha et al., 2020). In the

present study, haplotypes were constructed by using six

significant SNP markers as a reference. These six stable

markers possessed multiple significant SNP markers within

the LD range of 670 kbp. Our results revealed that haplotype

alleles identified within the haplotype blocks/loci regulated a

diverse range of phenotypes of yield-related traits in soybean.

The haplotype analysis revealed that, compared to individual

SNP markers, the haplotype-based markers possessed a

considerably higher number of alleles regulating a diverse

range of phenotypic variation for the trait of interest, similar

to previous studies (Zaitlen et al., 2005; Qian et al., 2017). Hence,

haplotype-based markers provided more options to modulate the

desired yield potential in soybean (Meuwissen et al., 2001). In the

case of significant SNP markers identified, we found a maximum

of three alleles in the GWAS population, which allowed tomodify

the yield of soybean at three levels. The incorporation of these

haplotype alleles in soybean breeding programs can effectively

improve yield potential in soybean. We propose that the

haplotype-based breeding approach will assist in the selection

of desirable plant genotypes possessing superior haplotype alleles

(Varshney et al., 2019). Parent accessions with diverse haplotypes

can be used for the generation of novel superior haplotypes.

However, it is important to identify the interactive effects of

diverse haplotypes of various genes regulating the trait of interest.

Genomic Prediction (GP) is a modern breeding approach that

involves the use of genome-wide markers to estimate the breeding

value of the genotypes at the genomic level (Meuwissen et al., 2001;

Varshney et al., 2014). For the past 2 decades, GP has emerged as a

powerful tool to select favourable genetic material for traits of

interest (Bhat et al., 2016; Crossa et al., 2017). In the present

study, GWAS identified minor-to-moderate effect QTLs. Thus, it

was hypothesized that the GPmethod could be more appropriate to

select high-yielding genotypes based on the overall marker effect

(Varshney et al., 2014). Different statistical models have been

developed and used for GP analysis (Daetwyler et al., 2010;

Frontiers in Genetics frontiersin.org15

Bhat et al. 10.3389/fgene.2022.953833

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.953833


Wang et al., 2018; Merrick and Carter, 2021). However, these

methods mainly differ in the assumptions of the distribution and

variances of marker effects (Wang et al., 2015). In the present study,

we explored two approaches, including the gBLUP and rrBLUP,

both of which are based on the mixed linear model statistical

functions. Therefore, our results show a similar trend in their

prediction accuracy as expected, suggesting their equal potential

and efficiency in the prediction of yield-related traits in soybean.

The range of moderate to high GP accuracy of 100-seed

weight and seed yield observed in our study is similar to the

observation of Ravelombola et al. (2021) and Matei et al. (2018)

in soybean based on rrBLUP approach. Similarly, Duhnen et al.

(2017) reported a moderate GP accuracy for the seed yield of

soybean based on the gBLUP approach. Moreover, moderate to

high GP accuracy has been reported for yield-related traits from

both rrBLUP and gBLUP approaches in other crops such as

wheat (Ali et al., 2020), tea (Lubanga et al., 2021), rice (Xu et al.,

2018), and chickpea (Roorkiwal et al., 2016). The genomic

prediction results from our study revealed that accurate

breeding values for the studied yield-related traits can be

estimated at an earlier generation of soybean, which allows for

yield improvement within a short breeding cycle.

Conclusion

The present study used GWAS, haplotype analysis, and GP for

studying the genetic architecture of four yield and yield-related traits

in soybean. GWAS identified a total of 57 significant SNPs and six

stable QTL regions (qPPP-SPP4, qHSW5, qHSW-SPP11, qHSW-

SPP13, qHSW-PPP18, and qPPP-SPP20). Among these six QTLs,

four QTLs (qPPP-SPP4, qHSW-SPP13, qHSW-PPP18, and qPPP-

SPP20) were novel; whereas, the remaining two QTLs (qHSW5 and

qHSW-SPP11) were reported previously. Besides, a total of 15 genes

underlying these six QTLs were prioritized as putative candidates.

Allele-effect analysis of the six significant SNPs showed the presence

of two or three alleles within each of these SNPs that regulated

contrasting phenotypes of the associated traits. Moreover, multiple

haplotype alleles detected within each of the six haplotype blocks

regulated a diverse range of phenotypic variation for yield and yield-

related traits. The GP analysis for four studied traits showed

moderate to high accuracy using two methods (gBLUP and

rrBLUP). The stable QTLs as well as the desirable SNP alleles

and haplotype alleles (underlying these stable QTLs) identified for

the yield-related traits can serve as potential resource for the

improvement of soybean yield. After proper validation of these

QTLs and alleles/haplotypes in different genetic backgrounds of

soybean, they can be introduced into marker-assisted breeding

programs for developing high-yielding soybean varieties. Besides,

the putative candidate genes underlying these stable QTLs, after

proper functional validation using overexpression or gene knockout

studies, can be deployed in the development of high-yielding

soybean varieties. Our study provided critical analyses of

cultivated soybean genetic resources and identified novel genomic

resources (QTLs and haplotype alleles) for soybean yield

improvement programs.
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